
(a)
E-mail: 

(b)
E-mail: Claes-Goran.Granqvist@Angstrom.uu.se 

 

 

Pages provided by publisher 

Elimination of a Second-Law-attack, and all cable-resistance-
based attacks, in the Kirchhoff-law–Johnson-noise (KLJN) 
secure key exchange system 

LASZLO B. KISH 
1(a)

 and CLAES G. GRANQVIST 
2(b) 

1 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA 
2 Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden 
 

 

received and accepted dates provided by the publisher 

other relevant dates provided by the publisher 

 

PACS 72.70.+m – Noise processes and phenomena 

PACS 89.20.Ff – Computer science and technology 

PACS 89.90.+n – Other topics in areas of applied and interdisciplinary physics 

 

Abstract – We introduce the so far most efficient attack against the Kirchhoff-law–Johnson-noise 

(KLJN) secure key exchange system. This attack utilizes the lack of exact thermal equilibrium in 

practical applications and is based on cable resistance losses and the fact that the Second Law of 

Thermodynamics cannot provide full security when such losses are present. The new attack does not 

challenge the unconditional security of the KLJN scheme, but it puts more stringent demands on the 

security/privacy enhancing protocol than for any earlier attack. In this paper we present a simple 

defense protocol to fully eliminate this new attack by increasing the noise-temperature at the side of the 

smaller resistance value over the noise-temperature at the at the side with the greater resistance. It is 

shown that this simple protocol totally removes Eve’s information not only for the new attack but also 

for the old Bergou-Scheuer-Yariv attack. The presently most efficient attacks against the KLJN scheme 

are thereby completely nullified. 

 

 

Introduction. – The Kirchhoff-law–Johnson-noise (KLJN) 

scheme [1,2], shown in Figure 1, is a classical statistical phys-

ical competitor to a quantum key distribution for secure com-

munication. For the duration of a single bit exchange, the 

communicating parties (Alice and Bob) connect their random-

ly chosen resistor and corresponding noise-voltage generator 

to a wire line (cable). These resistors are randomly selected 

from the publicly known set
 
RL ,RH{ } , R

L
≠ R

H
, where the 

elements represent low (L) and high (H) bit values. The 

Gaussian voltage noise generators—mimicking the Fluctua-

tion-Dissipation Theorem and delivering band-limited white 

noise with publicly agreed bandwidth—produce enhanced 

thermal (Johnson) noise at a publicly agreed effective temper-

ature T
eff

, typically being T
eff
≥109K  [3], so the temperature 

of the wire can be neglected. The noises are statistically inde-

pendent of each other and from the noise of the former bit 

period.  

In the case of secure bit exchange—i.e., the LH or HL bit 

situations for Alice and Bob—an eavesdropper (Eve) cannot 

distinguish between these two situations by measuring the 

mean-square value of the voltage 
  
U

c
(t)  and/or current 

  
I

c
(t)  

in the cable, because both arrangements lead to the same 

result. In the rest of the paper we assume that one of these 

secure bit exchange situations (either LH or HL) apply. 

 

 

Figure 1. Schematic of the Kirchhoff-law–Johnson-noise secure key exchange 

system. To defend against active and hacking attacks, the cable parameters and 

integrity are randomly monitored; the instantaneous voltage Uc(t) and current 

Ic(t) amplitudes in the cable are measured and compared via public authenticat-

ed data exchange; and full spectral and statistical analysis/checking is carried 

out by Alice and Bob. R, t and Teff denote resistance, time and effective tem-

perature, respectively. Line filters, etc., are not shown. 
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shape of a probability distribution, the noises are Gaussian [1], 

and it has been proven that other distributions are not secure 

[4,5]. From a physics perspective, the security is provided by 

the Second Law of Thermodynamics because directional 

information, due to the direction of power flow, does not exist 

since the mean power flow is zero even though the LH and 

HL situations have asymmetric resistance arrangements [1]. In 

other words, the security of the ideal KLJN scheme against 

passive (non-invasive listening/measuring) attacks is as strong 

as the impossibility to build a perpetual motion machine of the 

second kind. The security against active (invasive) attacks 

is—perhaps surprisingly—provided by the robustness of 

classical physical quantities, which guarantees that these 

quantities can be monitored (and their integrity with the cable 

parameters and model can be checked) continuously without 

destroying their values. We observe, in passing, that the situa-

tion is totally different for the case of quantum physics. 

The most famous and explored, and so far the most effec-

tive, attack against the non-ideal KLJN scheme is the Bergou-

Scheuer-Yariv (BSY) cable resistance attack [6,7] which 

utilizes the fact that, due to the non-zero cable resistance, the 

mean-square voltage will be slightly less at the cable end with 

the smaller resistance value than at the other end with the 

greater resistance. It should be noted that the results (includ-

ing their physical units) are wrong in Ref. [7], but a correct 

evaluation of the BSY effect was carried out later by Kish and 

Scheuer (KS) [8]. Eve’s measured absolute difference be-

tween the mean-square voltages 
  

U
cH

2 (t)  and 
  

U
cL

2 (t)  of 

the “H” and “L” ends (cf. Figure 2) is given by [8] 

  

Δ
KS

= U
cH

2 (t) − U
cL

2 (t) = 4kT
eff
Δf

R
c

2 R
H
− R

L( )
R

H
+ R

c
+ R

L( )
2

 , (1) 

where k is Boltzmann’s constant,  Δf  is noise bandwidth and 

Rc is cable resistance. Clearly
 
Δ

KS
 scales with the square of 

the cable resistance, i.e.,
  
Δ

KS
∝ R

c

2
. 

 

 
 
Figure 2. Scheme devised to illustrate the Bergou-Scheuer-Yariv attack and the 

Second-Law-attack. Alice’s and Bob’s locations are arbitrary in the figure. 

During the Second-Law-attack, the powers flowing out from the “H” and “L” 

ends of the cable are calculated and compared. The temperature of the cable 

resistor Rc can be neglected because of the high noise temperature of the genera-

tors. The notation is consistent with that in Figure 1. 

 

The Second-Law-attack – In the rest of the paper we use the 

rules about transformations of noise spectra in linear systems, 

along with Johnson’s formula for thermal noise, and write [1]  

  
U

R

2 (t) = 4kT
eff

RΔf    .    (2) 

Here
  

U
R

2 (t)  denotes mean-square voltage fluctuations on the 

resistor, with resistance R, within the bandwidth Δf . 

       The cable resistance has a non-zero value, and therefore 

the resistors and their noise generators are not in thermal 

equilibrium in practical versions of the KLJN system (with 

  
T

eff
 much greater than the cable temperature). Consequently 

the Second Law of Thermodynamics cannot provide full 

security. The cable-heating powers by the generators at the 

“H” and “L” ends are different and are given by 

  

P
Hc
= I

A

2 (t) R
c
=

4kT
eff

R
H
Δf

R
H
+ R

c
+ R

L( )
2

R
c

  ,  (3) 

and 

  

P
Lc
= I

B

2 (t) R
w
=

4kT
eff

R
L
Δf

R
H
+ R

c
+ R

L( )
2

R
c
= P

Hc

R
L

R
H

 . (4) 

       The difference between PHc and PLc can be utilized for the 

Second-Law-attack, because the resistor values 
  
R

H
 and 

  
R

L
 

are publicly known. The implementation of this attack is to 

measure and compare the net power flows at the two ends of 

the cable, as illustrated in Figure 2. The mean power flow 

  
P

HL
 from the “H” end toward the “L” end of the cable, and 

the mean power flow 
  
P

LH
 from the “L” end toward the “H” 

end are, respectively, 

  

P
HL

= U
H

2 (t)
R

c
+ R

L

R
H
+ R

c
+ R

L

⎛

⎝⎜
⎞

⎠⎟

2

1

R
c
+ R

L

                           − U
L

2(t)
R

H

R
H
+ R

c
+ R

L

⎛

⎝⎜
⎞

⎠⎟

2

1

R
H

= 4kT
eff
Δf

R
H

R
c
+ R

L( )− R
L
R

H

R
H
+ R

c
+ R

L( )
2

= 4kT
eff
Δf

R
H

R
c

R
H
+ R

c
+ R

L( )
2

(5) 

and 

  

P
LH

= U
L

2(t)
R

c
+ R

H

R
H
+ R

c
+ R

L

⎛

⎝⎜
⎞

⎠⎟

2

1

R
c
+ R

H

                             − U
H

2 (t)
R

L

R
H
+ R

c
+ R

L

⎛

⎝⎜
⎞

⎠⎟

2

1

R
L

= 4kT
eff
Δf

R
L

R
c
+ R

H( )− R
H

R
L

R
H
+ R

c
+ R

L( )
2

= 4kT
eff
Δf

R
L
R

c

R
H
+ R

c
+ R

L( )
2

(6) 

The power flows
  
P

HL
and 

  
P

LH
are directly measurable by Eve, 

and their difference, 

  

ΔP
HL

= P
HL

− P
LH

= 4kT
eff
Δf

R
c

R
H
+ R

L( )
R

H
+ R

c
+ R

L( )
2

 ,  (7) 



 

 

gives the difference between the powers supplied by the two 

cable ends; with the measured cable voltages and current (see 

Figure 2) it is 

  

ΔP
HL

= P
HL

− P
LH

= I
c
(t)U

cH
(t) − − I

c
(t)U

cL
(t)

                                          = U
cH

(t)+U
cL

(t)⎡⎣ ⎤⎦ I
c
(t)

  .    (8) 

It should be observed that the opposite current sign at the “L” 

end expresses the fact that the current flowing out from the 

“H” end is flowing into the “L” end (using the same current 

sign would instead provide the power dissipated in the cable 

resistance, which is always positive and gives no directional 

information). 

       Suppose now that Eve measures the above current–

voltage cross-correlations at the two ends and evaluates the 

pertinent quantities. With the notation introduced in Figure 3, 

one finds that 

  
ΔP

AB
= P

AB
− P

BA
= U

cA
(t)+U

cB
(t)⎡⎣ ⎤⎦ I

c
(t)  .                    (9) 

As an example, suppose that 
  
R

H
 has the greater resistance 

value and 
  
R

L
 the smaller one, i.e., 

  
R

L
< R

H
. In the ideal 

case, when
  
R

c
= 0 , one obtains 

  
ΔP

AB
= 0  in accordance with 

the Second Law of Thermodynamics, which yields 

  
U

c
(t)I

c
(t) = 0 . However, in the practical case, with

  
R

c
> 0 , 

one finds 

(i) if 
  
ΔP

AB
> 0 , then Alice has 

  
R

H
 and Bob has 

  
R

L
 , 

(ii) if 
  
ΔP

AB
< 0 , then Alice has 

  
R

L
 and Bob has 

  
R

H
 .  

 

 

 
Figure 3. Eve’s measurements during the Second-Law-attack. The powers 

flowing out from the two ends of the cable are measured and compared. The 

notation is consistent with that in Figure 1. 

  

       The signal inherent in the Second-Law-attack scales 

linearly with
  
R

c
, which provides a much better situation for 

Eve—especially in the case of vanishing cable resistance—

than the square-law scaling of the BSY attack. Moreover, it is 

also obvious that in a practical case [3,9,10], where 

  
R

c
<< R

L
<< R

H
, Eve’s signal-to-noise ratio is always greater 

in the Second-Law-attack than in the BSY attack. This is so 

because the BSY attack evaluates the dc fraction of 

  
≈ R

c

2 / R
L
R

H( )  in the measured (empirical) mean-square 

channel noise voltage, while the Second-Law-attack evaluates 

the dc fraction of 
  
R

c
/ R

H
 in the measured mean power flow. 

It should be noted that the measured mean-square channel 

noise voltage, and the measured mean power flow, follow 

similar statistics because they are the time average of the 

products of Gaussian processes [11]. 

       The Second-Law-attack is an elegant and efficient one, 

but it does not challenge the unconditional security of the 
KLJN scheme [2]. Eve’s probability p of successful guessing 

can arbitrarily approach the limit 
  p = 0.5  by proper tuning of 

the parameters inherent in the KLJN scheme, such as re-

sistances and bandwidth, and privacy amplification can be 

implemented if needed; this was evaluated in detail elsewhere 

[2], where relationships were reported between security level, 

cable parameters and communication speed. Nevertheless the 

new Second-Law-attack is important and may significantly 

increase the demands on parameter tuning and/or necessitate 

elaborate privacy amplification [12], which of course come at 

a cost.  

       In the rest of this paper we demonstrate two methods 

capable of fully eliminating the Second-Law attack. The 

advanced method nullifies the BSY attack as well. 

 

Natural/“Simple” defense – Suppose it is possible to keep 

the cable and the resistors at the same temperature. This tem-

perature-equilibration method virtually eliminates any Se-

cond-Law-attack information for Eve (but not the information 

in the BSY-attack, albeit its formula for the information leak 

is changed).  

       Temperature equilibration constitutes a very simple de-

fense, but the cable temperature and its possible variations 

cannot be neglected any longer. If the cable temperature is 

different from that of the resistors, then the KLJN scheme is 

vulnerable to the Hao-type attack [13]. In principle, with 

cables of homogeneous temperatures, this attack can be 

avoided if Alice and Bob are able to monitor the temperature 

value of the cable by resistance and Johnson noise measure-

ments, since they can then choose Teff to be the same as the 

cable temperature. While these steps can be taken, the KLJN 

scheme is no longer simple. Moreover, the mentioned defense 

method may be unpractical because of the requirement of a 

homogeneous cable temperature, small noise levels, and since 

it prohibits the adoption of enhanced KLJN methods wherein 

Alice and Bob eliminate their own contributions in order to 

accomplish higher speed and security [9,14].  

 

Advanced defense, also eliminating all cable resistance 

attacks – As we have seen, the cable end with the smaller 

resistance value emits less power toward the other end, and 

this is the foundation of the Second-Law-attack. This effect, 

as well as Eve’s related signal, can be completely eliminated 

by properly changing the ratio of the noise-temperatures of 

the generators for the resistors with the smaller and the greater 

resistance values (see Figure 4).  

       Suppose now that we introduce an offset in the noise-

temperatures of the generators for the 
  
R

H
 and the 

  
R

L
 resis-

tors so that the equation 
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ΔP

HL
= P

HL
T

eff( )− P
LH

βT
eff( ) = 0               (10) 

holds, where 
  
T

eff
 is the noise temperature at the 

  
R

H
 resistors 

and 
  
βT

eff
 is the noise temperature of the 

  
R

L
 resistors. The 

solution of the equation is 

  

β =

1+
R

c

R
L

1+
R

c

R
H

  .         (11) 

This value of β  for the temperature-offset consequently 

eliminates Eve’s opportunity to use the Second-Law-attack. 

One finds β > 1 for 
  
R

L
< R

H
and  β <1  for 

  
R

H
< R

L
. 

 

 

Figure 4. Schematic for illustrating the elimination of the Second-

Law-attack and the BSY-attack by introduction of a proper tempera-

ture offset. The notation is consistent with that in Figure 1. 

 

       The remaining, essential question is whether the defense 

method delineated above introduces a higher signal for Eve’s 

BSY-attack or not. Reevaluating the analysis of the BSY [8] 

with the a temperature offset given by Eq. 11, one obtains 

  

Δ
KS

T
eff

,βT
eff( ) = U

cH

2 (t) − U
cL

2 (t)

             = 4kT
eff
ΔfR

H

R
c

2 1−αβ( )−αR
H

R
c
β −1( )

R
H
+ R

c
+ R

L( )
2

   ,   (12) 

where 

  
α =

R
L

R
H

. By substituting the above value for β , the 

nominator becomes zero so that 

  
Δ

KS
T

eff
,βT

eff( ) = U
cH

2 (t,T
eff

) − U
cL

2 (t,βT
eff

) = 0         (13) 

       Hence a modification of the noise temperature of the 

generators supplying the noise of the
  
R

L
 resistors by the 

factor β  yields a complete elimination the strongest attacks 

against the KLJN key exchange scheme, namely the Second-

Law-attack and the BSY-attack [6–8]. 

 

Conclusions – We introduced the so far most efficient attack 

against the Kirchhoff-law–Johnson-noise (KLJN) secure key 

exchanger, i.e., the Second-Law-attack. This attack utilizes 

the lack of exact thermal equilibrium in practical applications 

involving cables with non-zero resistance and results in more 

advantageous scaling and signal-to-noise ratio for Eve. 

       An advanced defense against this attack, involving a 

proper increase of the noise-temperature of the noise genera-

tor for the smaller resistances compared to that of the genera-

tors for the greater resistances surprisingly eliminated not only 

the Second-Law-attack but also the old Bergou-Scheuer-Yariv 

attack [6–8]. Removing these attacks can radically reduce 

Eve’s fidelity while increasing Alice’s and Bob’s ones as a 

result of the potentially allowed longer bit-exchange periods 

or higher bandwidths [15]. 

       Finally it should be emphasized that, in order to reduce 

the risk for hacking attacks or attacks due to possible malfunc-

tion, it is important not only to monitor and compare the 

voltage and current amplitudes at the two cable ends but also 

to run Gaussianity, spectral and other proper statistical checks 

on the signals, and to monitor the cable transfer function and 

signal integrity against hacking.  
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