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ABSTRACT

This paper presents a new approach to elimination of impul-
sive disturbances from archive speech signals. The proposed
sparse autoregressive (SAR) signal representation is given in
a factorized form – the model is a cascade of the so-called for-
mant filter and pitch filter. Such a technique has been widely
used in code-excited linear prediction (CELP) systems, as it
guarantees model stability. After detection of noise pulses us-
ing linear prediction, the factorized model is converted into
a generic sparse form in order to perform a projection-based
signal interpolation. It is shown that the proposed algorithm
is able to deal favorably with speech signals with strong glot-
tal activity, which is a serious problem for algorithms based
on the classical AR modeling.

Index Terms— Sparse autoregressive models, recon-
struction of speech signals, elimination of clicks

1. INTRODUCTION

Archived audio recordings are often degraded by impulsive
disturbances. Clicks, pops and record scratches are caused
by aging and/or mishandling of the surface of gramophone
records (shellac or vinyl). In case of magnetic tape recordings
impulsive disturbances can be usually attributed to transmis-
sion or equipment artifacts (e.g. electric or magnetic pulses)
– for more details see e.g. [1].

There are many methods that allow to eliminate noise
pulses from audio signals [1], [2]. Most of these techniques
are based on autoregressive (AR) signal modeling and model-
based adaptive prediction: an on-line identification of the AR
model of audio signal is carried out and its results are used to
predict new samples from the old ones. If the magnitude of
the prediction error is too large (e.g. if it exceeds three stan-
dard deviations of its nominal value), the sample is classified
as an outlier and scheduled for interpolation. As shown in [3],
the task of simultaneous identification/detection/interpolation
can be stated as a nonlinear filtering problem and solved using
the theory of extended Kalman filter (EKF).
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Although the procedure described above yields very good
results when applied to music recordings, it often fails on
archived speech signals (e.g. historic speech recordings), es-
pecially those with strong voiced episodes. The reason is not
difficult to guess. Since voiced speech sounds are formed
by means of exciting the vocal tract (represented by the AR
model) with a periodic train of glottal air pulses, the outlier
detector is prone to confuse pitch excitation with noise pulses.
One way of coping with this problem, worked out in some de-
tail in [4], is based on blocking or desensitizing the click de-
tector at the moments of expected pitch activity. However, the
obvious disadvantage of this approach is that it works poorly
in all cases where noise pulses happen to coincide with glottal
pulses. In this paper we present a new procedure for declick-
ing speech signals, which is free of the drawback mentioned
above.

2. CLASSICAL AR APPROACH

Elimination of clicks can be handled by using classical AR
modeling. In this approach the sampled audio signal y(t) is
represented by the following AR model of order p

y(t) =

p∑
i=1

aiy(t− i) + n(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized (dimension-
less) discrete time, a1, . . . , ap are the so-called autoregressive
coefficients and n(t) denotes white driving noise.

2.1. Prediction-based detection of noise pulses (outliers)

Model coefficients are continuously updated using a parame-
ter tracking algorithm – such as exponentially weighted least
squares (EWLS), least mean squares (LMS) or Kalman filter
(KF) based [5] – which yields â1(t), . . . , âp(t).

The first detection alarm is raised1 when the magnitude of
the AR model-based one-step-ahead prediction error exceeds
µ times its estimated standard deviation (typically µ ∈ [3, 5])

|ε(t+ 1|t)| = |ŷ(t+ 1|t)− y(t)| > µσ̂ε(t+1|t) (2)
1d(t) = 1 will further mean that the sample y(t) is corrupted with a noise

pulse; otherwise d(t) = 0



where

ŷ(t+ 1|t) =
p∑
i=1

âi(t)y(t− i), σ̂ε(t+1|t) = σ̂n(t)

and σ̂2
n(t) denotes the local estimate of the driving noise vari-

ance, obtained by means of averaging the recently observed
squared one-step-ahead prediction errors (after excluding out-
liers).

σ̂2
n(t) =

{
γσ̂2

n(t− 1) + (1− γ)ε2(t|t− 1) if d(t) = 0
σ̂2
n(t− 1) if d(t) = 1

The coefficient γ, 0 < γ < 1, denotes the forgetting constant
which determines the estimation memory of the averaging al-
gorithm.

The detection process is continued for multi-step-ahead
predictions until p consecutive prediction errors are suffi-
ciently small, namely

|ε(t+ k0 + i|t)| ≤ µσ̂ε(t+k0+i|t), i = 1, . . . , p (3)

or until the length of the detection alarm k0 reaches a pre-
scribed value kmax. The quantity ŷ(t + k|t) can be obtained
as a concatenation of k one-step-ahead predictions

ŷ(t+ k|t) =
p∑
i=1

âi(t)ŷ(t+ k − i|t) (4)

where ŷ(t + j|t) = y(t + j|t) for j ≤ 0. The variance of
the multi-step prediction errors can be evaluated recursively
using the following algorithm proposed by Stoica [6]

σ̂2
ε(t+k|t) = σ̂2

ε(t+k−1|t) + σ̂2
n(t)f

2
k−1(t) (5)

fk−1(t) = g0k−1(t)

gik(t) = gi+1
k−1(t) + âi+1(t)fk−1(t)

i = 1, . . . , p− 1

k = 2, . . . , kmax

with initial conditions: σ̂2
ε(t+1|t) = σ̂2

n(t), f0(t) = 1 and
gi1(t) = ai+1(t), i = 1, . . . , p− 1.

When the detection process is finished, the sequence of ir-
revocably distorted samples {y(t+1), . . . , y(t+k0)} is inter-
polated using the available signal model (1). The projection-
based interpolation is based on p samples preceding the miss-
ing block, and p samples succeeding the block [5]. In [3]
all quantities needed to carry out the detection/ interpolation
process are evaluated by the extended Kalman filter (EKF).

3. APPROACH BASED ON SPARSE AR MODELING

The sparse AR model of speech signal can be defined in the
form

y(t) =

r∑
i=1

aiy(t− i) +
τ+s∑
j=τ+1

ajy(t− j) + n(t) (6)

where the quantities τ (τ � r) and s are chosen in such a
way that τ + 1 ≤ T ≤ τ + s, where T denotes the period
of pitch excitation (if present). Even though formally of order
p = τ+s, such a model is sparse as it contains only r+s� p
nonzero coefficients.

Sparse AR models capture both short-term correlations
[taken care of by the first component on the right-hand side
of (6)] and long-term correlations [taken care of by the sec-
ond component on the right hand side of (6)] of the analyzed
time series. Hence, when appropriately fitted, such models
can adequately represent both formant and pitch structure of
speech signals. The main problem with the model (6) is that
no identification algorithms seem to exist that can guarantee
its stability. Since the order of the model p = τ + s is large
(usually exceeding 100, even for moderate sampling rates),
stability tests are also hardly practical.

3.1. Sparse AR model in a factorized form

Stability problems, mentioned above, can be easily solved if
the sparse autoregressive (SAR) model is seeked in the fol-
lowing factorized form, widely used for predictive coding of
speech, e.g. in CELP coders [8]

y(t) =

r∑
i=1

αiy(t− i) + x(t) (7)

x(t) = βx(t− T ) + n(t) (8)

Equation (7) describes the so-called formant filter, character-
ized by formant coefficients α1, . . . , αr, and equation (8) de-
scribes pitch filter, characterized by the pitch coefficient β.
Note that the formant filter and the pitch filter form a cascade.

The factorized model (7) - (8) can be converted into to the
generic sparse form (6) by setting

ai = αi, i = 1, . . . , r , ai = 0, r < i < T

aT = β, aT+i = −βαi, i = 1, . . . , r

Stability of the factorized model is guaranteed if both
filters (formant and pitch) are stable, which can be easily
achieved using appropriate estimation tools and simple sta-
bility enforcement mechanisms [9].

Based on (7) - (8), the multi-step predictions can be eval-
uated using the following recursive algorithm

ŷ(t+ k|t) =
r∑
i=1

α̂i(t)ŷ(t+ k − i|t) + x̂(t+ k|t)

x̂(t+ k|t) = β̂(t)x̂(t+ k − T̂ (t)|t)



where, for j ≥ 0, ŷ(t−j|t) = y(t−j) and x̂(t−j|t) = y(t−j)
−
∑r
i=1 α̂i(t)y(t− j − i). Estimation of the corresponding

prediction error variances can be carried out using the algo-
rithm (5), after converting the factorized model into the form
(6).

When the detection process is finished, the sequence of ir-
revocably distorted samples {y(t+1), . . . , y(t+k0)} is inter-
polated using the sparse model (6). The projection-based in-
terpolation is based on p samples preceding the missing block,
and r samples succeeding the block.

3.2. Estimation of formant coefficients

To ensure the stability of the formant (short-term) model,
the method of least squares with exponential data windowing
(LSEW) is employed for the purpose of parameter tracking.

In this approach, the method of least squares is applied,
at any time instant t > r, to the windowed data sequence
{λt−10 y(1), . . . , λ0y(t− 1), y(t)} where λ0, 0 < λ0 < 1, de-
notes the so-called forgetting constant. After extending this
sequence with r zero samples at its beginning and at its end
(the so-called autocorrelation technique), the LS estimate of
the parameter vector θ(t) = [α1(t), . . . , αr(t)]

T can be ex-
pressed in the form

θ̂(t) = R−1(t)s(t) (9)

R(t) =

 ρ0(t) · · · ρr−1(t)
...

. . .
...

ρr−1(t) · · · ρ0(t)

 , s(t) =

 ρ1(t)
...

ρr(t)


where the recursively computable quantity

ρi(t) = λ20ρi(t− 1) + λi0y(t)y(t− i)

after scaling, can be interpreted as the local estimate of the
i-th autocorrelation coefficient of y(t).

Since the regression matrixR(t) is, by construction, pos-
itive definite and Toeplitz, the estimates α̂1(t), . . . , α̂r(t) can
be evaluated using the well-known Levinson-Durbin algo-
rithm [7].

The tracking properties of the LSEW algorithm (9) are
similar to those of the classical EWLS algorithm equipped
with the forgetting constant equal to

√
λ0. However, unlike

EWLS, the LSEW algorithm guarantees stability of the ob-
tained model for all values of t. Note that while the quanti-
ties ρ0(t), . . . , ρr(t) should be continuously updated, the es-
timates θ̂(t) can be evaluated on demand.

3.3. Estimation of pitch period

The usefulness of the SAR model (7) - (8) critically depends
on precise knowledge of the pitch period T . In many cases de-
tection/interpolation performance may drop significantly even
if the estimated value of T differs from its true value by only

one or two samples. Since the pitch period may be subject
to fast changes, its accurate estimation is a really challenging
task.

Denote by Tmin/Tmax the smallest/largest pitch lags that
can be expected under a given sampling frequency, and let
T0 = [Tmin, Tmax]. Our estimation scheme is based on mul-
tiple models. Four competitive estimates of the pitch period,
given by

T̂j(t) = arg min
T∈T0

S(t;T, kj , fj , gj), j = 1, . . . , 4 , (10)

are obtained by means of minimizing the sum of squared
differences between the selected fragments of the analyzed
speech signals

S(t;T, k, f, g) =

m−1∑
i=0

[f(t+ k − i)− g(t+ k − T − i)]2

where

j kj fj(t) gj(t)
1 0 ŷ(t) ŷ(t)
2 0 ŷ(t) y(t)
3 10 y?(t) ŷ(t)
4 10 y?(t) y(t)

In the first two cases (j = 1, 2), one tries to find the best
match between the m most recent samples (in our experi-
ments m was set to 50) of the already declicked signal ŷ(t)
and the analogous sequence derived either from the past of
the signal ŷ(t) (j = 1) or from the past of the original (unpro-
cessed) signal y(t) (j = 2). The second variant helps one to
avoid ‘serial’ detection errors which occur when a single in-
correct decision – classification of a pitch pulse as an outlier
– starts a chain of related ‘derivative’ decision errors.

In the last two cases (j = 3, 4), the reference frame, de-
noted by y?(t), is made up of the m−10 most recent samples
and 10 ‘future’ samples (not yet processed). This often al-
lows one to obtain more precise estimates of the pitch period
– unless the ‘future’ samples are severely distorted.

3.4. Estimation of pitch coefficient

For each of the four estimates of the pitch period, the corre-
sponding estimates of the β coefficient are obtained using the
exponentially weighted least squares approach

β̂j(t) = argmin
β

t−1∑
i=0

λi
{
x̂(t− i)− βx̂[t− i− T̂j(t)]

}2

=
pj(t)

rj(t)
, j = 1, . . . , 4 (11)

where λ, 0 < λ < 1, denotes forgetting constant,

x̂(t) = y(t)−
r∑
i=1

α̂i(t)y(t− i)



and pj(t), rj(t) are recursively computable quantities:

pj(t) = λpj(t− 1) + x̂(t)x̂[t− T̂j(t)]

rj(t) = λrj(t− 1) + x̂2[t− T̂j(t)]

According to [9], the pitch filter (8) is stable if |β(t)| < 1.
If the condition |β̂j(t)| < 1, which is checked each time the
pitch coefficient is updated, is not fulfilled, the last accepted
coefficient is used instead.

3.5. Detection and interpolation

To increase robustness of the outlier detection scheme, and
decrease the number of false alarms, the final decisions are
worked out in a collaborative way. Five outlier detectors
are operated simultaneously. Four detectors are based on
SAR models corresponding to the same formant coefficients
α̂1(t), . . . , α̂r(t) and different pitch parameters T̂j(t), β̂j(t),
j = 1, . . . , 4. The fifth detector is based on the classical AR
model which incorporates only the formant coefficients.

The detection alarm is switched on if all five detectors
indicate the presence of the outlier. The detection alarm is
switched off when at least one of the detectors ‘accepts’ r
consecutive signal samples.

Detection is followed by the least squares signal interpo-
lation based on parameters of the model responsible for ter-
mination of the detection alarm.

4. EXPERIMENTAL RESULTS

The quality of the outlier detection/elimination system was
checked on real speech recordings using both objective and
subjective performance measures.

First, a special data base was created, made up of 10
uncorrupted speech fragments (5 male voices and 5 female
voices), each covering 2000 samples (the 22.05 kHz sampling
rate was used), embedded in longer speech recordings. All
recordings were appropriately scaled so as to equalize the
mean square signal value in all 10 test areas.

As a test material we used fragments which, when pro-
cessed by the detection/interpolation algorithm based on the
AR model with a carefully selected order (p = 10), led to au-
dible speech distortions. In each case the entire recording was
processed, but the detector was active only in the test area.
Even though, ideally, no detection alarm should be triggered
(because the precessed signals were ‘clean‘), the AR-model-
based detector raised many false alarms, followed by poor
signal interpolations. In each case this resulted in audible sig-
nal distortions. The same test fragments were next processed
using the proposed algorithm based on the SAR model of or-
der 5. False alarms were scarce and, even when they occured,
their effects were usually impossible to perceive during lis-
tening tests.

The experiment described above was then repeated after
adding to each test fragment the artificially generated noise

pulses (each sample was corrupted, with probability 0.01, by
adding a random number generated by a zero-mean Gaus-
sian source with variance 0.5). 10 different realization of the
noise sequence (containing a total number of 199 of noise
pulses) were used, the same for all recordings. The results of
both experiments are summarized in Table 1. As the perfor-
mance indicators we have used: the total number and percent-
age of correctly detected noise pulses, the total number and
the average length of false alarms (detection of nonexistant
pulses), the mean squared signal interpolation error (MSE)
and the mean opinion score (MOS). The mean opinion score
was based on listening tests. Each of 20 test persons knew the
localization of the test fragment, as it was signalled during au-
dition. The listening order was chosen randomly for each test
recording. The scores ranged from 1 (audible disturbances
or distortions, highly irritable) to 5 (no audible disturbances
or distortions). All results were obtained for the same exper-
imental settings: µ = 3.5, γ = λ = 0.99, λ0 = 0.996,
kmax = 50, Tmin = 50, Tmax = 500 and m = 50.

Fig. 1 presents typical experimental results. Fig. 1D
shows the detection signal d(t) generated by the algorithm
based on the 10-th order AR model. Even though this al-
gorithm is capable of localizing correctly quite a number of
noise pulses (it works very well on music signals), most of
the time it fails to distinguish between pitch pulses and noise
pulses. Since interpolations that follow are of poor quality,
the output signal (Fig. 1E) suffers from audible distortions. In
contrast with this, the algorithm based on a sparse AR model,
with 5 coefficients in the formant filter and 1 coefficient in
the pitch filter, copes favorably with all noise pulses (includ-
ing those localized in regions of glottal activity), and does not
rise false alarms – see Figs. 1F and 1G.

Both the objective and subjective performance measures
confirm very good properties of the method based on SAR
modeling: it generates much smaller number of relatively
short false alarms, yields smaller interpolation errors, and –
perhaps most importantly from the practical viewpoint – earns
much better opinion scores during audition tests. The same
conclusion was drawn from the results of a series of tests on
real (gramophone) archive speech recordings (because of the
lack of space not reported here).

5. CONCLUSION

The problem of eliminating impulsive disturbances from
archive speech signals using sparse AR modeling was consid-
ered. Even though such models incorporate a small number
of coefficients, when carefully designed they have very good
predictive capabilities. To meet stability requirements, sparse
AR models are constructed in a factorized form, as a cascade
of a formant filter and a pitch filter. Experimental results
confirm good detection and interpolation properties of the
proposed approach, impossible to achieve when the classical
autoregressive approach is used.



Table 1: Detection statistics for the two compared models: AR and SAR. The remaining symbols represent: FA - the total
number of false detection alarms, FL - the average length of false detection alarms, MSE - Mean Square Error, MOS - Mean
Opinion Score, CD - the total number of correctly detected noise pulses, CD[%] - percentage of correctly detected noise pulses.

No. Model Fragments without noise pulses Fragments with noise pulses
FA FL MSE MOS CD CD[%] FA FL MSE MOS

1 AR 15 16,1 1,4E-03 4,65 181 91,0% 104 11 1,4E-02 3,75
SAR 4 6,5 8,7E-05 5,00 176 88,4% 52 2,1 1,5E-03 4,92

2 AR 13 31,5 2,0E-03 4,70 179 89,9% 99 14,6 2,0E-02 3,42
SAR 10 3,7 2,9E-05 4,95 178 89,4% 86 1,9 4,2E-04 4,67

3 AR 19 12,5 1,1E-03 3,15 177 88,9% 144 8,4 1,1E-02 2,64
SAR 0 - 0,0E+00 4,85 176 88,4% 6 1,1 2,1E-05 4,71

4 AR 20 16,8 1,1E-03 3,35 183 92,0% 138 12,7 1,2E-02 2,93
SAR 12 3,4 1,9E-05 4,90 182 91,5% 119 2,2 3,1E-04 4,77

5 AR 15 11,2 4,4E-04 3,60 172 86,4% 136 7,5 6,1E-03 2,73
SAR 1 8,0 1,6E-06 4,90 180 90,5% 21 1,6 2,2E-05 4,86

6 AR 19 19,0 1,8E-03 3,10 169 84,9% 148 12,1 1,5E-02 2,51
SAR 7 2,9 4,2E-06 4,95 176 88,4% 70 1,9 8,1E-05 4,67

7 AR 13 20,2 9,1E-04 3,85 177 88,9% 99 9,9 9,4E-03 2,62
SAR 1 14,0 1,0E-06 4,95 185 93,0% 17 2,1 1,2E-05 4,84

8 AR 12 22,2 9,5E-04 3,20 183 92,0% 88 10,6 8,3E-03 2,92
SAR 1 1,0 7,3E-09 4,90 186 93,5% 13 1,4 4,9E-06 4,44

9 AR 19 13,8 2,4E-04 4,15 185 93,0% 143 11,1 4,7E-03 3,09
SAR 1 7,0 3,6E-07 5,00 188 94,5% 14 1,3 3,6E-06 4,93

10 AR 10 23,2 9,4E-04 3,60 183 92,0% 83 11,7 1,0E-02 2,93
SAR 0 - 0,0E+00 5,00 185 93,0% 6 1,1 2,2E-06 4,58
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Fig. 1: Fragment of the original (noiseless) speech signal (A)
and a sequence of randomly generated noise pulses (B). The
remaining plots show: the speech signal corrupted with noise
pulses (C), detection (D) and interpolation (E) results yielded
by the AR model of order 10, detection (F) and interpolation
(G) results yielded by the SAR model of order 5.


