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Abstract– A method is given to determine conditions for
which the switching angles in a multilevel converter can be
chosen to produce the required fundamental voltage while
at the same time cancel out higher order harmonics. A
complete analysis is given for a 7− level converter where
it is shown that for a range of the modulation index mI ,
the switching angles can be chosen to produce the desired
fundamental V1 = mI(s4Vdc/π) while making the 5th and 7th
harmonics identically zero.
Keywords–multilevel inverter, multilevel converter, resul-

tants, hybrid electric vehicle, motor drive, cascade inverter

I. Introduction

Designs for heavy duty hybrid-electric vehicles (HEVs)
that have large electric drives such as tractor trailers, trans-
fer trucks, or military vehicles will require advanced power
electronic inverters to meet the high power demands (> 100
kW) required of them. Development of large electric drive
trains for these vehicles will result in increased fuel effi-
ciency, lower emissions, and likely better vehicle perfor-
mance (acceleration and braking).
Transformerless multilevel inverters are uniquely suited

for this application because of the high VA ratings possible
with these inverters [9]. The multilevel voltage source in-
verter’s unique structure allows it to reach high voltages
with low harmonics without the use of transformers or
series-connected, synchronized-switching devices. The gen-
eral function of the multilevel inverter is to synthesize a de-
sired voltage from several levels of dc voltages. For this rea-
son, multilevel inverters can easily provide the high power
required of a large electric traction drive. For parallel-
configured HEVs, a cascaded H-bridges inverter can be
used to drive the traction motor from a set of batteries,
ultracapacitors, or fuel cells. The use of a cascade inverter
also allows the HEV drive to continue to operate even with
the failure of one level of the inverter structure [14][15][16].
Multilevel inverters also have several advantages with re-

spect to hard-switched two-level pulse width modulation
(PWM) adjustable-speed drives (ASDs). Motor damage
and failure have been reported by industry as a result of
some ASD inverters’ high voltage change rates (dV/dt),
which produced a common-mode voltage across the mo-
tor windings. High-frequency switching can exacerbate the
problem because of the numerous times this common mode
voltage is impressed upon the motor each cycle. The main
problems reported have been “motor bearing failure” and

“motor winding insulation breakdown” because of circulat-
ing currents, dielectric stresses, voltage surge, and corona
discharge [1][4][13].

II. Cascaded H-bridges

Cascade multilevel inverter consists of a series of H-
bridge (single-phase full-bridge) inverter units. The gen-
eral function of this multilevel inverter is to synthesize a
desired voltage from several separate dc sources (SDCSs),
which may be obtained from batteries, fuel cells, or ultraca-
pacitors in a HEV. Figure 1 shows a single-phase structure
of a cascade inverter with SDCSs [9]. Each SDCS is con-

Fig. 1.

nected to a single-phase full-bridge inverter. Each inverter
level can generate three different voltage outputs, +Vdc, 0
and −Vdc by connecting the dc source to the ac output side
by different combinations of the four switches, S1, S2, S3
and S4. The ac output of each level’s full-bridge inverter is
connected in series such that the synthesized voltage wave-
form is the sum of all of the individual inverter outputs.
The number of output phase voltage levels in a cascade
multilevel inverter is then 2s+1, where s is the number of
dc sources. An example phase voltage waveform for an 11-
level cascaded multilevel inverter with five SDCSs (s = 5)
and five full bridges is shown in Figure 2. The output phase
voltage is given by van = va1 + va2 + va3 + va4 + va5.



Fig. 2.

With enough levels and an appropriate switching algo-
rithm, the multilevel inverter results in an output volt-
age that is almost sinusoidal. For the 11 - level example
shown in Figure 2, the waveform has less than 5% THD
with each of the active devices of the H-bridges active de-
vices switching only at the fundamental frequency. Each
H-bridge unit generates a quasi-square waveform by phase-
shifting its positive and negative phase legs’ switching tim-
ings. Each switching device always conducts for 180◦ (or
1
2 cycle) regardless of the pulse width of the quasi-square
wave so that this switching method results in equalizing
the current stress in each active device.

III. Switching Algorithm for the Multilevel
Converter

The Fourier series expansion of the (stepped) output
voltage waveform of the multilevel inverter as shown in
Figure 2 is [14][15][16]

V (ωt) =
∞X

n=1,3,5,...

4Vdc
nπ

(cos(nθ1) + cos(nθ2) + · · ·+ cos(nθs)) sin(nωt)
(1)

where s is the number of dc sources. Ideally, given a de-
sired fundamental voltage V1, one wants to determine the
switching angles θ1, · · · , θn so that (1) becomes V (ωt) =
V1 sin(ωt). In practice, one is left with trying to do this
approximately. Two predominate methods in choosing the
switching angles θ1, · · · θn are (1) eliminate the lower fre-
quency dominant harmonics, or (2) minimize the total har-
monic distortion. The more popular and straightforward
of the two techniques is the first, that is, eliminate the
lower dominant harmonics and filter the output to remove
the higher residual frequencies. Here, the choice is also to
eliminate the lower frequency harmonics.
The goal here is to choose the switching angles 0 ≤ θ1 <

θ2 < · · · < θs ≤ π/2 so as to make the first harmonic equal

to the desired fundamental voltage V1 and specific higher
harmonics of V (ωt) equal to zero. As the application of
interest here is a three-phase motor drive, the triplen har-
monics in each phase need not be canceled as they auto-
matically cancel in the line-to-line voltages. Consequently,
the desire here is to cancel the 5th, 7th, 11th, 13th order har-
monics as they dominate the total harmonic distortion.
The mathematical statement of these conditions is then

4Vdc
π

(cos(θ1) + cos(θ2) + · · ·+ cos(θs)) = V1

cos(5θ1) + cos(5θ2) + · · ·+ cos(5θs) = 0

cos(7θ1) + cos(7θ2) + · · ·+ cos(7θs) = 0 (2)

cos(11θ1) + cos(11θ2) + · · ·+ cos(11θs) = 0

cos(13θ1) + cos(13θ2) + · · ·+ cos(13θs) = 0.

This is a system of 5 transcendental equations in the un-
knowns θ1, θ2, · · · , θs so that at least 5 steps are needed
(s = 5) if there is to be any chance of a solution. One ap-
proach to solving this set of nonlinear transcendental equa-
tions (2) is to use an iterative method such as the Newton-
Raphson method [3][14][15][16]. The correct solution to the
conditions (2) would mean that the output voltage of the
11−level inverter would not contain the 5th, 7th, 11th and
13th order harmonic components.
The fundamental question is “When does the set of equa-

tions (2) have a solution?”. As will be shown below, it turns
out that a solution exists for only specific ranges of the
modulation index1 mI , V1/ (s4Vdc/π). This range does
not include the low end or the high end of the modulation
index. A method is now presented to find the solutions
when they exist. This method is based on the theory of
resultants of polynomials [5]. To proceed, let s = 5, and
define

x1 = cos(θ1)

x2 = cos(θ2)

x3 = cos(θ3)

x4 = cos(θ4)

x5 = cos(θ5).

Using the trigonometric identities

cos(5θ) = 5 cos(θ)− 20 cos3(θ) + 16 cos5(θ)
cos(7θ) = −7 cos(θ) + 56 cos3(θ)− 112 cos5(θ)

+64 cos7(θ)

cos(11θ) = −11 cos(θ) + 220 cos3(θ)− 1232 cos5(θ) +
2816 cos7(θ)− 2816 cos9(θ) + 1024 cos11(θ)

cos(13θ) = 13 cos(θ)− 364 cos3(θ) + 2912 cos5(θ)−
9984 cos7(θ) + 16640 cos9(θ)−
13312 cos11(θ) + 4096 cos13(θ)

1Each inverter has a dc source of Vdc so that the maximum out-
put voltage of the multilevel inverter is sVdc. A square wave of
amplitude sVdc results in the maximum fundamental output pos-
sible of V1max = 4sVdc/π. The modulation index is therefore
mI , V1/V1max = V1/ (s4Vdc/π) .



the conditions (2) become

p1(x) , x1 + x2 + x3 + x4 + x5 −m = 0

p5(x) ,
5X
i=1

¡
5xi − 20x3i + 16x5i

¢
= 0

p7(x) ,
5X
i=1

¡−7xi + 56x3i − 112x5i + 64x7i ¢ = 0
p11(x) ,

5X
i=1

¡−11xi + 220x3i − 1232x5i+
2816x7i − 2816x9i + 1024x11i

¢
= 0

p13(x) ,
5X
i=1

¡
13xi − 364x3i + 2912x5i − 9984x7i

+16640x9i − 13312x11i + 4096x13i
¢
= 0

(3)

where x = (x1, x2, x3, x4, x5) and m , V1/ (4Vdc/π).
This is a set of five equations in the five unknowns
x1, x2, x3, x4, x5. The interest here is to find solutions x
for m ∈ [0, s] which satisfy 0 ≤ x5 < · · · < x2 < x1 ≤ 1.
This development has resulted in a set of polynomial equa-
tions rather than trigonometric equations. Though the
degree is high, the theory of resultants of polynomials [5]
provides a systematic way to determine all the zeros of the
set of polynomials (3).

A. Seven Level Case

To illustrate the procedure of using the theory of resul-
tants to solve the system (3), the seven level case is con-
sidered. The conditions are

p1(x) , x1 + x2 + x3 −m = 0, m , V1
4Vdc/π

= smI

p5(x) ,
3X
i=1

¡
5xi − 20x3i + 16x5i

¢
= 0 (4)

p7(x) ,
3X
i=1

¡−7xi + 56x3i − 112x5i + 64x7i ¢ = 0.
Substitute x3 = m− (x1 + x2) into p5, p7 to get
p5(x1, x2) = 5x1 − 20x31 + 16x51 + 5x2 − 20x22 + 16x52

+5(m− x1 − x2)− 20(m− x1 − x2)3
+16(m− x1 − x2)5

p7(x1, x2) = −7x1 + 56x31 − 112x51 + 64x71 − 7x2
+56x32 − 112x52 + 64x72 − 7(m− x1 − x2)
+56(m− x1 − x2)3 − 112(m− x1 − x2)5
+64(m− x1 − x2)7

The goal here is to find solutions of

p5(x1, x2) = 0

p7(x1, x2) = 0.

For each fixed x1, p5(x1, x2) can be viewed as a polynomial
of (at most) degree 5 in x2 whose coefficients are polyno-
mials of (at most) degree 5 in x1. For example2,

p5(x1, x2) = 5m− 20m3 + 16m5 + 60m2x1 − 80m4x1

−60mx21 + 160m3x21 − 160m2x31 + 80mx
4
1

+
£
60m2 − 80m4 − 120mx1 + 320m3x1

+60x21 − 480m2x21 + 320mx
3
1 − 80x41

¤
x2

+
£−60m+ 160m3 + 60x1

−480m2x1 + 480mx
2
1 − 160x31

¤
x22

+
£−160m2 + 320mx1 − 160x21

¤
x32

+[80m− 80x1]x42
This is often written as p5(x1, x2) ∈ <[x1](x2) to empha-

size that p5 is being viewed as a polynomial in x2 whose
coefficients are in the ring of polynomials <[x1]. Similarly,
p7(x1, x2) ∈ <[x1](x2) is a polynomial of degree 7 in x2
whose coefficients are polynomials of (at most) degree 7 in
x1.
A pair (x10, x20) is a simultaneous solution of

p5(x10, x20) = 0, p7(x10, x20) = 0, if and only if the cor-
responding resultant polynomial r5,7(x10) = 0. (The
reader is referred to [5] for an explanation of resultants
and their computation.) Consequently, finding the roots of
the resultant polynomial r5,7(x1) = 0 gives candidate so-
lutions for x1 to check for common zeros of p5 = p7 =
0. Here, the resultant polynomial r5,7(x1) of the pair
{p5(x1, x2), p7(x1, x2)} was found with Mathematica R°
using the Resultant command. The polynomial r5,7(x2)
turned out to be a 22nd order polynomial. The algorithm
is as follows:
Algorithm for the 7 Level Case

1. Given m, find the roots of r5,7(x1) = 0.
2. Discard any roots that are less than zero, greater than 1
or that are complex. Denote the remaining roots as {x1i}.
3. For each fixed zero x1i in the set {x1i}, substitute it into
p5 and solve for the roots of p5(x1i, x2) = 0.
4. Discard any roots (in x2) that are complex, less than
zero or greater than one. Denote the pairs of remaining
roots as {(x1j , x2j)}.
5. Compute m− x1j − x2j and discard any pair (x1j , x2j)
that makes this quantity negative or greater than one. De-
note the triples of remaining roots as {(x1k, x2k, x3k)}.
6. Discard any triple for which x3k < x2k < x1k does not
hold. Denote the remaining triples as {(x1l, x2l, x3l)}. The
switching angles that are a solution to the three level sys-
tem (4) are

{(θ1l, θ2l, θ3l)} = {
¡
cos−1(x1l), cos−1(x2l), cos−1(x3l)

¢}.
A.1 Minimization of the 5th and 7th Harmonic Compo-

nents

For those values of m for which p5(x1, x2), p7(x1, x2) do
not have common zeros satisfying 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,
2In this case, it turns out that the coefficient of the x52 is zero so

that p5(x1, x2) has degree 4 in x2.



the next best thing is to minimize the error

c(x1, x2) = p
2
5(x1, x2)/25 + p

2
7(x1, x2)/49.

This was accomplished by simply computing the values
of c(j∆x, k∆y) for j, k = 0, 1, 2, ..., 1000 with ∆x =
.001,∆y = .001 and then choosing the minimum value.

A.2 Results for the 7 Level Inverter

The results are summarized in Figures 3, 4 and 5. These
three figures show the switching angles θ1, θ2, θ3 vs. m for
those values of m in which the system (4) has a solution.
Note that for m in the range from approximately 1.49 to
1.85, there are two different sets of solutions that solve (4).
On the other hand, for m ∈ [0, 0.8], m ∈ [0.83, 1.15] and
m ∈ [2.52, 2.77] there are no solutions to (4). Interestingly,
for m ≈ 0.8,m ≈ 0.82 and m ≈ 2.76 there are (isolated)
solutions.

Fig. 3. θ1 vs m

Fig. 4. θ2 vs m

Fig. 5. θ3 vs m

As pointed out above, for m ∈ [0, 0.8], m ∈ [0.83, 1.15],
m ∈ [2.52, 2.77] andm ∈ [2.78, 3] there are no solutions sat-
isfying the conditions (4). Consequently, for these ranges
of m, the switching angles were determined by minimizingq
(p5/5)

2 + (p7/7)
2. Figure 6 shows a plot of the resulting

minimum error
q
(p5/5)

2 + (p7/7)
2 vs. m for these values

of m. As Figure 6 shows, when m ≈ 0.81 and m ≈ 2.76,
the error is zero corresponding to the isolated solutions to
(4) for those values of m. For m = 1.15 and m = 2.52,
the error goes to zero because these values correspond to
the boundary of the exact solutions of (4). However, note,
e.g., when m = 0.25, the error is about 0.25, that is, the
error is the same size as m. Other than close to the end-
points of the two intervals [0, 0.8], [2.78, 3] the minimum

error
q
(p5/5)

2 + (p7/7)
2 is too large to make the corre-

sponding switching angles for this interval of any use. Con-
sequently, for m in this interval, one must use some other
approach (e.g., PWM) in order to get reduced harmon-
ics. For the other two intervals [0.83, 1.15], [2.52, 2.77], the

minimum error
q
(p5/5)

2 + (p7/7)
2 is around 5% or less

so that it might be satisfactory to use the corresponding
switching angles for these intervals.

IV. Experimental Work

A prototype three-phase 11-level wye-connected cas-
caded inverter has been built using 100 V, 70 A MOS-
FETs as the switching devices [19]. A battery bank of 15
SDCSs of 48 Volts DC each feed the inverter (5 SDCSs
per phase). In the experimental study here, this prototype
system was configured to be a 7-level (3 SDCSs per phase)
converter with each level being 12 Volts. A 50 pin ribbon
cable provides the communication link between the gate
driver board and the real-time processor. In this work, the
OpalRT R° real-time computing platform [8] was used to
interface the computer (which generates the logic signals)
to this cable. The OpalRT R° system allows one to write



Fig. 6. Error =
q
(p5/5)

2 + (p7/7)
2 vs. m

the switching algorithm in Simulink R° which is then con-
verted to C code using RTW R°. The OpalRT R° software
provides icons to interface the Simulink R° model to the
digital I/O board and converts the C code into executa-
bles. Using the XHP R° (extra high performance) option in
OpalRT R° as well as the multiprocessor option to spread
the computation between two processors, an execution time
of 16 microseconds was achieved.
Experiments were performed to validate the theoretical

results of section III-A.2. Due to space limitations, only
data for m = 0.5 and 2 are presented. The first value m =
0.5 corresponds to the case where the 5th and 7th harmonics
cannot be eliminated while the second valuem = 2 is a case
in which these harmonics can be eliminated. In this set of
data, the angles were chosen by taking θ1, θ2 according to
the upper curves in Figures 3 and 4, respectively and the
corresponding θ3 from the lower curve in Figure 5. The
frequency was set to 60 Hz in each case and the program
was run in real time with a 16 microseconds sample period,
i.e., the logic signals were updated to the gate driver board
every 16 microseconds.
The voltage was measured using a high speed data

acquisition oscilloscope every T = 5 microseconds re-
sulting in the data {v(nT ), n = 1, ..., N} where N =
3(1/60)/

¡
5× 10−6¢ = 10000 samples corresponding to

three periods of the 60 Hz waveform. A fast Fourier
transform was performed on this voltage data to get
{v̂(kω0), k = 1, ..., N} where the frequency increment is
ω0 = (2π/T )/N = 2π(20) rad/sec or 20 Hz. The num-
ber v̂(kω0) is simply the Fourier coefficient of the kth har-
monic (whose frequency is kω0 with ω0 =

2π
N

1
T ) in the

Fourier series expansion of the phase voltage signal v(t).
With ak = |v̂(kω0)| and amax = max

k
{|v̂(kω0)|}, the data

that is plotted is the normalized magnitude ak/amax.
Figure 7 is the plot of the phase voltage for m = 0.5

and the corresponding FFT of this signal is given in Fig-
ure 8. Figure 8 show a 0.225 normalized magnitude

of the 5th harmonic and a 0.15 normalized magnitude
of the 7th harmonic for a total normalized distortion ofq
(0.225)2 + (0.15)2 = 0.27 due to these two harmonics.

Figure 6 shows an error of about 0.125 at m = 0.5 for a
normalized magnitude of 0.125/0.5 = 0.25 because of these
two harmonics, which is in close agreement.
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Figure 9 is the plot of the phase voltage for m = 2.
The corresponding FFT of this signal is given in Figure
10. Figure 10 shows 5th and 7th harmonics are zero as
predicted in Figure 6.

V. Conclusions and Further Work

A full solution to the problem eliminating the 5th and
7th harmonics in a seven level multilevel inverter has been
given. Specifically, resultant theory was used to completely
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characterize for each m when a solution existed and when
it did not (in contrast to numerical techniques such as
Newton-Raphson). Futher, it was shown that for a range
of values of m, there were two sets of solutions and these
values were also completely characterized. The solution
set that happened to minimize the 11th and 13th harmon-
ics was chosen. Experimental results were also presented
and corresponded well to the theoretically predicted re-
sults. Further work is now underway to consider the case
studied by Cunnyngham [3] where the separate dc sources
do not all provide equal voltages Vdc.
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