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Abstract– A method is presented to compute the switch-
ing angles in a multilevel converter so as to produce the
required fundamental voltage while at the same time not
generate higher order harmonics. Previous work has shown
that the transcendental equations characterizing the har-
monic content can be converted to polynomial equations
which are then solved using the method of resultants from
elimination theory. A di culty with this approach is that
when there are several DC sources, the degrees of the poly-
nomials are quite large making the computational burden
of their resultant polynomials (as required by elimination
theory) quite high. Here, it is shown that the theory of
symmetric polynomials can be exploited to reduce the de-
gree of the polynomial equations that must be solved which
in turn greatly reduces the computational burden. In con-
trast to results reported in the literature that use iterative
numerical techniques to solve these equations, the approach
here produces all possible solutions.
Keywords– Multilevel Inverter, Symmetric Polynomials,

Resultants.

I. Introduction

A multilevel inverter is a power electronic device built
to synthesize a desired ac voltage from several levels of
dc voltages. For example, the output of solar cells are dc
voltages, and if this energy is to be fed into an ac power
grid, a power electronic interface is required. A multilevel
inverter is ideal for connecting such distributed dc energy
sources (solar cells, fuel cells, the rectified output of wind
turbines) to an existing ac power grid.
A key issue in the fundamental switching scheme is to

determine the switching angles (times) so as to produce
the fundamental voltage and not generate specific higher
order harmonics. Here, techniques are given that allow one
to control a multilevel inverter in such a way that it is an
e cient, low total harmonic distortion (THD) inverter that
can be used to interface distributed dc energy sources to a
main ac grid or as an interface to a traction drive powered
by fuel cells, batteries or ultracapacitors.
Previous work in [1][2][3] has shown that the transcen-

dental equations characterizing the harmonic content can
be converted into polynomial equations which are then
solved using the method of resultants from elimination the-
ory [4][5]. However, if there are several dc sources, the de-
grees of the polynomials in these equations are large. As a
result, one reaches the limitations of the capability of con-
temporary computer algebra software tools (e.g., Mathe-
matica orMaple) to solve the system of polynomial equa-
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tions using elimination theory (by computing the resultant
polynomial of the system). A major distinction between
the work in [1][2][3] and the work presented here is that
here it is shown how the theory of symmetric polynomials
[6] can be exploited to reduce the degree of the polynomial
equations that must be solved so that they are within the
capability of existing computer algebra software tools.

II. Cascaded H-bridges

A cascade multilevel inverter consists of a series of H-
bridge (single-phase full-bridge) inverter units. The gen-
eral function of this multilevel inverter is to synthesize a
desired voltage from several separate dc sources (SDCSs),
which may be obtained from solar cells, fuel cells, batteries,
ultracapacitors, etc. Figure 1 shows a single-phase struc-
ture of a cascade inverter with SDCSs [7]. Each SDCS is
connected to a single-phase full-bridge inverter. Each in-
verter level can generate three di erent voltage outputs,
+ 0 and by connecting the dc source to the ac
output side by di erent combinations of the four switches,
1 2 3 and 4.
The ac output of each level’s full-bridge inverter is con-

nected in series such that the synthesized voltage waveform
is the sum of all of the individual inverter outputs. The
number of output phase voltage levels in a cascade muli-
tilevel inverter is then 2 + 1, where is the number of dc
sources. An example phase voltage waveform for an 11-
level cascaded multilevel inverter with five SDSCs ( = 5)
and five full bridges is shown in Figure 2. The output phase
voltage is given by = 1 + 2 + 3 + 4 + 5.
With enough levels and an appropriate switching algo-

rithm, the multilevel inverter results in an output voltage
that is almost sinusoidal. For the 11-level example shown
in Figure 2, the waveform has less than 5% THD with each
of the H-bridges’ active devices switching only at the fun-
damental frequency.

III. Mathematical Model of Switching for the
Multilevel Converter

Following the development in [3] (see also [8][9][10]), the
Fourier series expansion of the (staircase) output voltage
waveform of the multilevel inverter as shown in Figure 2 is

( ) =
X

=1 3 5

4 × (1)³
cos( 1) + cos( 2) + · · ·+ cos( )

´
sin( )
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Fig. 1. Single-phase structure of a multilevel cascaded H-bridges
inverter.
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Fig. 2. Output waveform of an 11-level cascade multilevel inverter.

where is the number of dc sources. Ideally, given a de-
sired fundamental voltage 1, one wants to determine the
switching angles 1 · · · so that (1) becomes ( ) =

1 sin( ). In practice, one is left with trying to do this
approximately. The goal here is to choose the switching
angles 0 1 2 · · · 2 so as to make the first
harmonic equal to the desired fundamental voltage 1 and
specific higher harmonics of ( ) equal to zero. As the ap-
plication of interest here is a three-phase system, the triplen
harmonics in each phase need not be canceled as they au-
tomatically cancel in the line-to-line voltages. Specifically,
in case of = 5 dc sources, the desire is to cancel the
5 7 11 13 order harmonics as they dominate the
total harmonic distortion. The mathematical statement of

these conditions is then

4
(cos( 1) + cos( 2) + · · ·+ cos( 5)) = 1

cos(5 1) + cos(5 2) + · · ·+ cos(5 5) = 0

cos(7 1) + cos(7 2) + · · ·+ cos(7 5) = 0 (2)

cos(11 1) + cos(11 2) + · · ·+ cos(11 5) = 0

cos(13 1) + cos(13 2) + · · ·+ cos(13 5) = 0

This is a system of five transcendental equations in the
five unknowns 1 2 3 4 5. The question here is “When
does the set of equations (2) have a solution?”. The correct
solution to the conditions (2) would mean that the out-
put voltage of the 11 level inverter would not contain the
5 7 11 and 13 order harmonic components. One
approach to solving this set of nonlinear transcendental
equations (2) is to use an iterative method such as the
Newton-Raphson method [8][9][10][11]. In contrast to it-
erative methods, here a new approach is considered that
gives all possible solutions and requires significantly less
computational e ort than the approach in [3]. To pro-
ceed with the new methodology, first let = 5, and define
= cos( ) for = 1 5. Using standard trigonometric

identities the conditions (2) become

1( ) , 1 + 2 + 3 + 4 + 5 = 0

5( ) ,
5X
=1

³
5 20 3 + 16 5

´
= 0

7( ) ,
5X
=1

³
7 + 56 3 112 5 + 64 7

´
= 0

11( ) ,
5X
=1

¡
11 + 220 3 1232 5 + 2816 7

2816 9 + 1024 11
´
= 0

13( ) ,
5X
=1

¡
13 364 3 + 2912 5 9984 7 + 16640 9

13312 11 + 4096 13
´
= 0

where = ( 1 2 3 4 5) and , 1 (4 ). The
modulation index is = = 1 ( 4 ) (Each in-
verter has a dc source of so that the maximum output
voltage of the multilevel inverter is . A square wave of
amplitude results in the maximum fundamental out-
put possible of 1max = 4 so , 1 1max =

1 ( 4 ) = )
This is a set of five equations in the five unknowns
1 2 3 4 5. Further, the solutions must satisfy 0
5 · · · 2 1 1. This development has resulted
in a set of polynomial equations rather than trigonometric
equations. In previous work [1][2][3], the authors consid-
ered the three dc source case (7 levels) and solved the cor-
responding system of three equations in three unknowns
using elimination theory by computing the resultant poly-
nomial of the system (see [12] where polynomial systems
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were also used). It turns out this procedure can be used
for the four dc source case (9 levels), but requires several
hours of computation on a Pentium III. However, when
one goes to five dc sources (11 levels), the computations
using contemporary computer algebra software tools, e.g.,
the Resultant command inMathematica [13]) on a Pen-
tium III (512Mb RAM) appear to reach their limit (i.e., the
authors were unable to get a solution before the computer
gave “out of memory” error messages). This computational
complexity is because the degrees of the polynomials are
large which in turn requires the symbolic computation of
the determinant of large × matrices.
Here (cf. [3]) a new approach to solving the system is

presented which greatly reduces the computational burden.
Specifically, the theory of symmetric polynomials [4][14] is
exploited to obtain a new set of relatively low degree poly-
nomials whose resultants can easily be computed using ex-
isting computer algebra software tools. Further, in contrast
to results reported in the literature that use iterative nu-
merical techniques to solve these type of equations (e.g.,
[15]), the approach here produces all possible solutions.

IV. Solving Polynomial Equations

For the purpose of exposition, the three source (7 level)
multilevel inverter will be used to illustrate the approach.
The conditions are then

1( ) , 1 + 2 + 3 = 0 , 1

4

5( ) ,
3X
=1

¡
5 20 3 + 16 5

¢
= 0 (3)

7( ) ,
3X
=1

¡
7 + 56 3 112 5 + 64 7

¢
= 0

Eliminating 3 by substituting 3 = ( 1 + 2) into
5 7 gives

5( 1 2) = 5 1 20 3
1 + 16

5
1 + 5 2 20 2

2 + 16
5
2

+5( 1 2) 20( 1 2)
3

+16( 1 2)
5

(4)

7( 1 2) = 7 1 + 56
3
1 112 5

1 + 64
7
1 7 2 + 56

3
2

112 5
2 + 64

7
2 7( 1 2)

+56( 1 2)
3 112( 1 2)

5

+64( 1 2)
7

where

deg
1
{ 5( 1 2)} = 4 deg

2
{ 5( 1 2)} = 4

deg
1
{ 7( 1 2)} = 6 deg

2
{ 7( 1 2)} = 6 (5)

A. Elimination Using Resultants

In order to explain the computational issues with finding
the zero sets of polynomial systems, a brief discussion of the
procedure to solve such systems is now given. The question

at hand is “Given two polynomial equations ( 1 2) = 0
and ( 1 2) = 0, how does one solve them simultaneously
to eliminate (say) 2?". A systematic procedure to do this
is known as elimination theory and uses the notion of re-
sultants [4][5]. Briefly, one considers ( 1 2) and ( 1 2)
as polynomials in 2 whose coe cients are polynomials in
1. Then, for example, letting ( 1 2) and ( 1 2) have
degrees 3 and 2, respectively in 2, they may be written in
the form

( 1 2) = 3( 1)
3
2 + 2( 1)

2
2 + 1( 1) 2 + 0( 1)

( 1 2) = 2( 1)
2
2 + 1( 1) 2 + 0( 1)

The × Sylvester matrix, where = deg
2
{ ( 1 2)}+

deg
2
{ ( 1 2)} = 3 + 2 = 5, is defined by

( 1) =

0( 1) 0 0( 1) 0 0

1( 1) 0( 1) 1( 1) 0( 1) 0

2( 1) 1( 1) 2( 1) 1( 1) 0( 1)

3( 1) 2( 1) 0 2( 1) 1( 1)
0 3( 1) 0 0 2( 1)

The resultant polynomial is then defined by

( 1) = Res
³
( 1 2) ( 1 2) 2

´
, det ( 1) (6)

and is the result of solving ( 1 2) = 0 and ( 1 2) = 0
simultaneously for 1, i.e., eliminating 2. See the Ap-
pendix for an explanation of this fact. The point here is
that as the degrees of the polynomials increase, the size
of the corresponding Sylvester matrix increases and there-
fore the symbolic computation of its determinant becomes
much more computationally intensive.

B. Symmetric Polynomials

Consider once again the system of polynomial equa-
tions (4). In [3] (see also [1][2]) the authors computed
the resultant polynomial of the pair { 5( 1 2) 7( 1 2)}
to obtain the solutions to (3). This involved setting up
a 10 × 10 Sylvester matrix (10 = deg

2
{ 5( 1 2)} +

deg
2
{ 7( 1 2)}) and then computing its determinant to

obtain the resultant polynomial ( 1) whose degree was 22.
However, as one adds more dc sources to the multilevel

inverter, the degrees of the polynomials go up rapidly. For
example, in the case of four dc sources, the final step of
the method requires computing (symbolically) the deter-
minant of a 27× 27 Sylvester matrix to obtain a resultant
polynomial of degree 221.
In the case of five sources, using this method, the au-

thors were only able to get the system of five polynomial
equations in five unknowns to reduce to three equations in
three unknowns. The computation to get it down to two
equations in two unknowns requires the symbolic compu-
tation of the determinant of a 33×33 Sylvester matrix. To
get around this computational di culty, a new approach is
developed here which exploits the fact that the polynomials
are symmetric.
The polynomials 1( ) 2( ) 3( ) in (3) are symmetric

polynomials [14][16], that is,

( 1 2 3) = ( (1) (2) (3)) for all = 1 2 3
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and any permutation (·)1. Define the elementary sym-
metric functions (polynomials) 1 2 3 as

1 , 1 + 2 + 3

2 , 1 2 + 1 3 + 2 3 (7)

3 , 1 2 3

A basic theorem of symmetric polynomials is that they
can be rewritten in terms of the elementary symmet-
ric functions [14][16] (This is easy to do using the
SymmetricReduction command in Mathematica [13]).
In the case at hand, it follows that with = ( 1 2 3)
and using (7), the polynomials (3) become

1( ) = 1

5( ) = 5 1 20 3
1 + 16

5
1 + 60 1 2 80 3

1 2

+80 1
2
2 60 3 + 80

2
1 3 80 2 3 (8)

7( ) = 7 1 + 56
3
1 112 5

1 + 64
7
1 168 1 2

+560 3
1 2 448 5

1 2 560 1
2
2 + 896

3
1
2
2

448 1
3
2 + 168 3 560 2

1 3 + 448
4
1 3

+560 2 3 1344 2
1 2 3 + 448

2
2 3 + 448 1

2
3

One uses 1( ) = 1 = 0 to eliminate 1 so that

5( 2 3) , 5( 2 3) = 5 20 3 + 16 5 + 60 2

80 3
2 + 80

2
2 60 3 + 80

2
3 80 2 3

7( 2 3) , 7( 2 3) = 7 + 56 3 112 5

+64 7 168 2 + 560
3
2 448 5

2

560 2
2 + 896

3 2
2 448 3

2 + 168 3

560 2
3 + 448

4
3 + 560 2 3

1344 2
2 3 + 448

2
2 3 + 448

2
3

where

deg
2
{ 5( 2 3)} = 2 deg

3
{ 5( 2 3)} = 1

deg
2
{ 7( 2 3)} = 3 deg

3
{ 7( 2 3)} = 2

The key point here is that degrees of these poly-
nomials in 2 3 are much less than the degrees of
5( 1 2) 7( 1 2) in 1 2 (see (5)) In particular, the
Sylvester matrix of the pair { 5( 2 3) 7( 2 3)} is 3× 3
(if the variable 3 is eliminated) rather than being 10× 10
in the case of { 5( 1 2) 7( 1 2)} in (4). Eliminating
3, the resultant polynomial 5 7( 2) is given by

5 7( 2) , Res
³
5( 2 3) 7( 2 3) 3

´
= 16 ×

³
1575 + 9800 2 24080 4 + 28160 6

15360 8 + 3072 10 10500 2 + 56000
2
2

103040 4
2 + 78080

6
2 20480 8

2

19600 2
2 + 89600

2 2
2 116480 4 2

2 + 46080
6 2
2

11200 3
2 + 44800

2 3
2 35840 4 3

2

´
1That is, ( 1 2 3) = ( 2 1 3) = ( 3 2 1), etc.

which is only of degree 3 in 2. For each , one would solve
5 7( 2) = 0 for the roots { 2 } =1 3. These roots are

then used to solve 5( 2 3) = 0 for the root 3 resulting
in the set of 3-tuples©
( 1 2 3) C3 | ( 1 2 3) = ( 2 3 ) =1 3

ª
as the

only possible solutions to (8).

C. Solving the Symmetric Polynomials

For each solution triple ( 1 2 3), the corresponding
values of ( 1 2 3) are required to obtain the switching
angles. Consequently, the system of polynomial equations
(7) must be solved for the . To do so, one simply uses the
resultant method to solve the system of polynomials

1( 1 2 3) = 1 ( 1 + 2 + 3) = 0

2( 1 2 3) = 2 ( 1 2 + 1 3 + 2 3) = 0

3( 1 2 3) = 3 1 2 3 = 0

That is, one computes

1( 2 3) = Res
³

1( 1 2 3) 2( 1 2 3) 1

´
= 2 + 1 2

2
2 + 1 3 2 3

2
3

2( 2 3) = Res
³

1( 1 2 3) 3( 1 2 3) 1

´
= 3 + 1 2 3

2
2 3 2

2
3

so that

( 3) = Res
³
1( 2 3) 2( 2 3) 2

´
=

¡
3 2 3 + 1

2
3

3
3

¢2
(9)

The procedure is to substitute the solutions of (8)
into (9) and solve for the roots { 3 }. For each
3 , one then solves 1( 2 3 ) for the roots 2 . Fi-
nally, one solves 1( 1 2 3 ) = 0 for 1 to get the
triples {( 1 2 3) = ( 1 2 3 ) = 1 2 3 = 1 2} as
the only possible solutions to (3). This finite set of possible
solutions can then be checked as to which are solutions of
(3) satisfying 0 3 2 1 1.

V. Computational Results

Using the fundamental switching scheme of Figure 2, the
solutions of (2) were computed using the method described
above. These solutions are plotted in Figure 3 versus the
parameter . As the plots show, for in the intervals
[2 21 3 66] and [3 74 4 23] as well as = 1 88 1 89, the
output waveform can have the desired fundamental with
the 5 7 11 13 harmonics absent. Further, in the
subinterval [2 53 2 9] two sets of solutions exist while in
the subinterval [3 05 3 29] there are three sets of solutions.
In the case of multiple solution sets, one would typically
choose the set that gives the lowest total harmonic distor-
tion (THD). In those intervals for which no solutions exist,
one must use a di erent switching scheme (see [17] for a
discussion on such possibilities).
The corresponding total harmonic distortion (THD) was

computed out to the 31 according to

=
q
( 2
5 +

2
7 +

2
11 +

2
13 +

2
17 + · · ·+ 2

31)
2
1
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where = (4 ) (cos( 1) + cos( 2) + · · ·+ cos( ))
is the amplitude of the harmonic term of (1). The
THD versus is plotted in Figure 4 for each of the so-
lution sets shown in Figure 3. As this figure shows, one
can choose a particular solution for the switching angles
such that the THD is 6 5% or less for 2 25 4 23
(0 45 0 846). For those values of for which mul-
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Fig. 4. The total harmonic distortion versus for each solution set
( = with = 5).

tiple solution sets exist, an appropriate choice is the one
that results in the lowest THD.

VI. Experimental Results

The same experimental setup described in [3] was used
for this work. It is a three-phase 11-level (5 dc sources)
wye-connected cascaded inverter using 100 V, 70 A MOS-
FETs as the switching devices [18]. A battery bank of

15 SDCSs of 36 V dc each feed the inverter (5 SDCSs per
phase). In this work, the rt-lab real-time computing plat-
form from Opal-RT-Technologies Inc. [19] was used to in-
terface the computer (which generates the logic signals)
to the inverter. This system allows one to implement the
switching algorithm as a lookup table in Simulink which is
then converted to code using rtw (real-time workshop)
from Mathworks. The rt-lab software provides icons to
interface the Simulink model to the digital I/O board and
converts the code into executables. The step size for
the real time implementation was 32 microseconds. This
small step was used to obtain an accurate resolution for im-
plementing the switching times. Using the xhp (extreme
high performance) option in rt-lab as well as the multi-
processor option to spread the computation between two
processors, an execution time of 32 microseconds can be
achieved.
Note that while the calculations for the lookup table of

Figure 3 require some o ine computational e ort, the real-
time implementation is accomplished by putting the data
(i.e., Figure 3) in a lookup table and therefore does not
require high computational power for implementation.
The multilevel converter was attached to a three phase

induction motor with the following nameplate data: Rated
hp is 1 3 hp, rated current is 1 5 A, rated speed is 1725
rpm, rated voltage 208 V (RMS line-to-line @ 60 Hz ).
In the experiment reported here, = 3 2 was chosen

to produce a fundamental voltage of 1 = (4 ) =
3 2(4 × 36 ) = 146 7 V along with = 60 Hz. As can
be seen in Figure 4, there are three di erent solution sets
for = 3 2. The solution set that gave the smallest THD
(= 2 65% see Figure 4) was used. Figure 5 shows the phase
voltage and its corresponding FFT showing that the 5 ,

7 , 11 and 13 are absent from the waveform as pre-
dicted. The THD of the line-line voltage was computed
using the data in Figure 5 and was found to be 2 8%, com-
paring favorably with the value of 2 65% predicted in Fig-
ure 4. Figure 6 contains a plot of both the phase current
and its corresponding FFT showing that the harmonic con-
tent of the current is much less than the voltage due to the
filtering by the motor’s inductance. The THD of this cur-
rent waveform was computed using the FFT data and was
found to be 1 9%.

VII. Conclusions

A procedure to eliminate harmonics in a multilevel in-
verter has been given which exploits the properties of the
transcendental equations that define the harmonic content
of the converter output. Specifically, it was shown that one
can transform the transcendental equations into symmet-
ric polynomials which are then further transformed into
another set of polynomials in terms of the elementary sym-
metric functions. This formulation resulted in a drastic re-
duction in the degrees of the polynomials that characterize
the solution. Consequently, the computation of solutions
of this final set of polynomial equations was easily done us-
ing elimination theory (resultants) as the required symbolic
computations were well within the capabilities of contem-

3511



0 0.01 0.02 0.03
-200

-150

-100

-50

0

50

100

150

200
Voltage vs Time (m = 3.2; Lowest THD)

Time (Seconds)

V
an

(V
ol

ts
)

1

2

3

4

5

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normalized FFT vs Frequency 

Frequency (Hz)

a k/a
m

ax

Fundamental (60 Hz)

3rd

5th
7th

9th

11th

13th

15th17th
19th

Fig. 5. Phase output voltage waveform ( = 3 2) using the solu-
tions set with the lowest THD and its normalized FFT.

0 0.01 0.02
-1.5

-1

-0.5

0

0.5

1

1.5
Current vs Time (m = 3.2; Lowest THD)

Time (Seconds)

I a
(A

m
ps

)

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normalized FFT  vs Frequency (m = 3.2)

Frequency (Hz)

a k/a
m

ax

Fundamental (60 Hz)

3rd
5th

7th
9th

11th

13th 15th

17th
19th

Fig. 6. Phase current corresponding to the voltage in Figure 5 and
its normalized FFT.

porary computer algebra software tools. This methodology
resulted in the complete characterization of the solutions to
the harmonic elimination problem. That is, for each , it
produces all possible solutions or it shows that no solution
exists. This is in contrast to iterative numerical techniques
such as Newton-Raphson, optimization software, etc. (for
example, see [15],[20]) where one gets only one solution or
no solution and is left to ponder whether a solution exists or
not. Experiments were performed and the data presented
corresponded well with the predicted results.
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