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Elimination of Nonphysical Solutions and Implementation of Adaptive Step

Size Algorithm in Time-Stepping Finite-Element Method for Magnetic

Field–Circuit–Motion Coupled Problems

W. N. Fu and S. L. Ho

Electrical Engineering Department, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

The time-stepping finite-element method (FEM) has become a powerful tool in solving transient electromagnetic fields. The formula-
tion can include complex issues such as time harmonics and space harmonics, nonlinear magnetic property of iron materials, external
circuit, and mechanical motion in the system equations. However, as the derivatives of physical quantities are usually unknown at the ini-
tial step of the time-stepping method, erroneous solutions might appear at the beginning of the transient process. To reduce the number
of time steps, an adaptive step size algorithm can be used. In this paper, a method to eliminate the nonphysical or nonrealistic solutions
at the start of the time-stepping finite-element analysis (FEA), when simulating the transient process of electric devices, is presented. A
practical implementation of adaptive time step size algorithm for coupled problems is proposed. A matrix operation method, which can
be understood clearly and implemented easily, that deals with matching boundary conditions in the study of mechanical motion, is also
described.

Index Terms—Adaptive algorithm, coupling method, electric circuit, electric device, finite-element method, initialization, magnetic
field, mechanical motion, time-stepping.

I. INTRODUCTION

T
HE TIME-STEPPING finite-element method (FEM),

which couples magnetic field with electric circuit and

mechanical force/torque balance equations, has been widely

used to simulate transient operation of electric devices [1]–[7].

As with all numerical methods, it is crucial to increase the

accuracy of the solution with minimal computing effort and

FEM is no exception. A formulation for magnetic field—arbi-

trary connected electric circuit coupled problems, which has

symmetrical coefficient matrix in the system equations, has

been presented [8]. The formulation is further enhanced to im-

prove its nonlinear convergence while reducing the numerical

error of its derivative quantities [9]. An adaptive time step size

algorithm is also proposed to reduce the computing time [10].

At the starting point of time stepping (time ), the so-

lution may well be incorrect because the time derivatives of

some physical quantities are unknown. For adaptive time-step-

ping method, because of the presence of complicated physical

quantities in the field–circuit–motion coupled models, there are

indeed many practical problems that must be addressed thor-

oughly and carefully in the implementation of the adaptive time-

stepping methodology.

A method to initialize the time-stepping FEM solver for

magnetic field–electric circuit–mechanical motion coupled

problems is proposed in this paper to eliminate the nonphysical

solutions. A practical, effective and robust implementation

method of the adaptive time stepping algorithm is also de-

scribed. The merits of the proposed method are: 1) the criterion

of the step size control is suitable for coupled system equations
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having different physical quantities, such as magnetic vector

potential, electric current and rotor position; 2) smart control of

the step size ensures that the accuracy of the indirect coupling

with the mechanical balance equation is high; 3) the discretiza-

tion error of the excitations is also included in the choice

of the step size; and 4) some special measures are added to

prevent unrealistic sharp changes that might give rise to unduly

small step size. A matrix operation method is also described to

simply and clearly deal with matching boundary conditions in

the study of mechanical motion.

II. BASIC SYSTEM EQUATIONS

A. System Equations

The proposed method can be applied to both two-dimen-

sional (2-D) and three-dimensional (3-D) FEM. For simplicity,

the discussion will be limited to a 2-D problem defined in the

- plane. For completeness of this paper, the basic equations

of transient magnetic field–electric circuit coupled problem are

summarized as magnetic field equation [11]–[16]

(1)

together with an additional equation

(2)

and an electric circuit branch equation

(3)

where is the depth of the model in the -direction; is the sym-

metry multiplier which is defined as the ratio of the original full

cross-sectional area to the solution area; is the reluctivity of

material and is its conductivity; is the -component of the
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Fig. 1. The matching boundary condition.

magnetic vector potential; is the polarity ( or ) to repre-

sent, respectively, the forward paths or return paths of the wind-

ings; is the total cross-sectional area of the region occupied

by the winding in the solution domain; is the total conductor

number of this winding; is the number of parallel branches in

the winding; is the dc resistance of the winding; and

are the branch current and voltage of the winding, respectively;

is the magnetic permeability in vacuum; and are, re-

spectively, the - and -components of the magnetization vector

(amperes/meter) in the permanent magnets (PM). If the external

circuit equations are established by using the loop method, the

additional (2) and the additional current are introduced in

regions of solid conductors to ensure the last coefficient matrix

of the field-circuit coupled equations is symmetrical [8]. More-

over, the rationale for multiplying the depth of the model to

all terms in (1) is to generalize the formulation [14]. If there are

minor differences in the model depths among different objects,

the formulation still works for 2-D models. With the terms for-

mulated in (1), the integration will be on volume, instead of on

surfaces as in normal 2-D methods. The second rationale of the

multiplication operation is to make the last coefficient matrix of

the field-circuit coupled system equation symmetrical. The di-

mensions of (2) and (3) are voltages. If the depth of the model

is multiplied to each and every term in (1), the coupling terms

of the magnetic field and the electric circuit in the last system

equations will be the same [14].

Using the Galerkin method to discretize the field equation, the

coupled field and circuit equations in the magnetic field regions

can be written in matrix format as [8]

(4)

where the coefficient sub-matrixes

and

is associated with the excitations of PM.

Adding the external circuit equations into (4) and using the

loop method, one has [9]

(5)

where is the loop current; is associated with the excitations

in the external circuit.

Because the time constant of the mechanical system is much

larger than those of the magnetic field and electric circuit

system, the mechanical force balance equation for translational

motion and the mechanical torque balance equation for rotation

are coupled to the system equations indirectly [17] in order to

keep the positions of the moving objects constant during the

nonlinear iteration at each time step.

B. Matching Boundary Conditions

At the interface between the moving objects and the back-

ground, the solutions are connected by a matching boundary

condition. The nodes on the background side of the interface are

called master nodes; the nodes on the moving objects’ side of the

interface are called slave nodes. The variables on the slave nodes

are depending on the variables of the master nodes and hence

are not solved. All contributions from the element assembly to

the slave nodes will be added to the associated master nodes. In

Fig. 1, the master nodes on the edge of a triangle are

( is the middle point of the edge); the slave node on the edge

of the neighbor triangle is .

The variable on the slave node can be expressed as

(6)

where the shape functions are

(7)

(8)

(9)

The local coordinates are

(10)

(11)

where and are the coordi-

nates on the nodes and , respectively. In the system

equations, will be replaced by and . Here a

first-order element is taken as an example. The element on the

moving object has three nodes: 0, 1, and 2. The slave node 2 is

on the motion side of the interface. The system equation can be

expressed as (only the entries associated with this element are

listed):

...
...

...

...
...

...
...

...

...

...

...

...
(12)

The edge of the neighbor element has the nodes ,

which are master nodes. will be replaced by and
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. The transformation relationship is

(13)
where the transformation matrix is defined as

(14)

Substituting the above relationship into (13), and multiplying

to both sides of the sub-matrix from the row of to the

row of , one has

...
...

...

...
...

...
...

...

...

...
...

...

(15)

Substituting (14) into the above matrix equation, one has (16),

shown at the bottom of the page.

The matrix equation (17) can be further expressed as (18),

shown at the bottom of the page.

The coefficient matrix of the system equations is still

symmetrical.

III. INITIALIZATION OF THE FEM SOLVER

A. No Mechanical Motion

At the first step of time-stepping FEM , the derivatives

of the physical quantities with respect to time, such as ,

and (where is the magnetic vector potential and is the

electric current) are unknown. At the starting point of simula-

tion, the magnetic field is assumed to be at steady state.

is thus zero and there is no eddy current in the conductors. There

is no induced back electromotive force (EMF) in the windings.

All circuit couplings are disabled. Only the magnetostatic field

needs to be solved. The magnetic filed is excited by the initial

currents in windings and the magnetization of PM materials.

That means all windings that have current sources will have ini-

tial values of .

At the first step, the setup of the model is automatically mod-

ified inside the solver as summarized below:

1) The conductivities of all materials are set to zero, thereby

making equal to zero.

2) All circuit equations are removed.

3) In the winding regions, the current excitations are assumed

to have their initial current values.

...
...

...

...
...

...
...

...

...

...

...

...
(16)

...
...

...

...
...

...
...

...

...

...

...

...

(17)

...
...

...

...
...

...
...

...

...

...

...

...

(18)
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The magnetic field equation (1) is simplified as

(19)

To simplify programming and avoid relocation of computer

memory, the structure of the sparse coefficient matrix is kept

largely the same as that of (5). Only and are re-

placed by a unit matrix and are

set to be zero; the right-hand side of the first row in (5) is ex-

tended to include the current excitations. Equation (5) becomes

(20)

After the first step, the eddy current and the electric circuit are

taken into account. The normal matrix equation (5) is solved.

B. Having Mechanical Motion

If there is mechanical motion and its initial speed is not equal

to zero, changes in the magnetic field due to the moving objects

will induce eddy current in the solid conductors and back EMF

in the windings. In such case the derivative at must

be estimated. The proposed procedures are:

1) The time stepping starts from

(where is the time step size). At , only the

magnetostatic field is solved. All conductivities are set

to zero. After the first step, that is, from , the

eddy-current will be accounted for and the conductivities

are set to their normal values.

2) Speed is kept at its initial constant speed when . The

mechanical coupling algorithm is disabled.

3) The currents of all windings are kept at their initial values

of when .

The solutions at and are only used to

estimate the derivatives at . The results when are not

output to users.

IV. IMPLEMENTATION OF ADAPTIVE TIME STEP SIZE

A. Relative Local Truncation Error

The implicit backward Euler’s method is used to discretize
the time variable. Using Taylor’s expansion at the th step, the
local truncation error is [10]

(21)

If the forward Euler’s method (explicit method) is used, and
its solution is , the local truncation error is

(22)

Subtracting (21) from (22), and using differential mean-value
theorem, one has

(23)

Assuming , and substituting (23) into (21),
the local truncation error of the backward Euler’s method is

(24)

where is the solution of the backward Euler’s method at the
th step; is the solution of the forward Euler’s method at the
th step.
The solution of the forward Euler’s method can be di-

rectly obtained from the previous solutions. The system equa-
tion (5) can be simply written as

(25)

Using the backward Euler’s method at the th step, one
has

(26)

Using the forward Euler’s method at the th step, one has

(27)

Comparing (26) and (27), one has the error indicator of the
local truncation error

(28)

It can be interpreted as either the changing rate of the solu-
tions or as the difference between the predicted solution and the
true solution.

In the 2-D transient FEM solver, the unknown variables are

(29)

If the absolute values of the local truncation errors of different
variables are used, and because and have different di-
mensions, errors from those variables having small values will
be ignored; if the relative value of the local truncation error
is used, when is equal to zero, the error will become infinite.
In this paper a mixed absolute-relative “norm” is proposed to
form a scalar error estimation that properly includes the effects
from all variables:

(30)
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Fig. 2. A periodic function.

where . To prevent zero or very small value
of so that will not become infinite, a prescribed tem-
poral tolerance value for different physical quantities is in-
troduced in (30).

B. Consideration of Motion

In the transient solvers, the mechanical force/torque balance
equation is coupled indirectly; the position at the th step is pre-
dicted from the last step. Therefore, its accuracy can be ensured
only if the speed of the adjacent steps does not change drasti-
cally. To consider this issue, the speed is also included in the
error controller. The variable column matrix becomes

(31)

Good control of the step size ensures high solution accuracy
for the indirect coupling of the mechanical balance equation.

C. Discretization Error of Excitations

If only the local truncation error is used to control the step
size, it has some limitations as described below.

1) If the step size is too large, the estimated error may be
incorrect. Here is a typical example when considering an
extreme situation: if is a periodic function with the period

, and if , the estimated error of becomes zero
(see Fig. 2). Such conclusion is obviously incorrect.

2) If there are no terms, the local truncation error
should be equal to zero.

Therefore, the discretization error of the sources should also
be accounted for. If the source is a function , as shown in
Fig. 3, its error indicator is

(32)

According to trapezoidal rule, one has

(33)

A relative “norm” is used to form the scalar error estimate

(34)

Fig. 3. Discretization error of a source.

D. The Total Time Stepping Error

Usually, if the step size is small enough, ; if the step
size is too large, it is likely that . The total time stepping
error is the geometric average of and :

(35)

E. Basic Formulation for Adjusting the Step Size

Because is approximately proportional to (for back-
ward Euler’s method ), the predicted step size for the next
step is

(36)

where is the tolerance of the error; is the error at
the th step. The coefficient is a safety factor to
ensure the error size is neither too large nor too small.

At the step , if , this step size will be
rejected. The updated step size is

(37)

where and are the step
size (rejected) and the error at the step , respectively.
Because the computed error is from the same step, the value of

can be slightly larger; here .
After successive rejections, the approximate exponent can be

obtained from

(38)

F. Prevention of the Changing of the Step Size Too Large

The limitation to guard against changes in the step size be-
coming too large should be applied because:

1) If the step size changes too quickly, the predicted error may
be incorrect occasionally, i.e., could be too large
and rejection at the next step may need to be invoked.

2) In the solver if there are 2nd order derivative terms such as

(39)
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Fig. 4. The control strategy of adaptive step size.

Fig. 5. Block diagram of the adaptive time stepping algorithm.

the error of the 2nd order derivative terms
will be large [9].

Therefore, the following protection measures are included in
the program:

1) If the error is smaller than but larger than
(where ), the step size will

be kept the same (Fig. 4).
2) When rejection occurs, each pair of is stored. If

further reduction of step size cannot reduce the error, the
step size that has the smallest error will be used.

3) When the magnetic field is coupled with the ex-
ternal circuits and if there are switching elements,
the external circuits will govern the maximum step
size allowed. That is, during the time to ,
it is supposed that the statuses of all switching el-
ements are kept unchanged. Therefore, in the FEM
solver, if , set

, where
is the maximum step size allowed from the external circuit.

4) To provide flexibility to users, the users can specify the
minimum step size and maximum step size

, and in the program .
The block diagram of the adaptive time stepping algorithm is

shown in Fig. 5. At each time step, after the computation of the
magnetic field, the time stepping error will be estimated. If the
error is larger than the tolerance, the step size will be modified

Fig. 6. A PM motor.

Fig. 7. Computed back EMF using normal method.

and the field of this step will be solved again; if the error is less
than the tolerance, the step size for the next time step will be
predicted and the algorithm will go to the next time step.

V. APPLICATION EXAMPLES

A. Steady-State Operation of a Y-Connected PM Motor

The first example is to simulate the steady-state operation of a

Y-connected PM motor running at 3485 rpm (Fig. 6). Compar-

ison of the computed results of back EMF, current, and torque

obtained using the normal method and the proposed method, re-

spectively, are shown in Figs. 7–12. One notes that nonphysical

solutions at the starting of the simulation have been success-

fully eliminated. Fig. 7 shows the computed back EMF using

the normal method and it can be seen that the back EMF curves

have big spikes at and . Fig. 10 shows the com-

puted back EMF using the proposed method in which the back

EMF curves are very smooth at and .

B. An Induction Motor Driven by a Pulsewidth Voltage

The second example is an induction motor (Fig. 13) driven by

a pulsewidth voltage inverter. The waveform of the pulsewidth

voltage is shown in Fig. 14. The time step size when using au-

tomatic adaptive step size algorithm is shown in Fig. 15. The
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Fig. 8. Computed current using normal method.

Fig. 9. Computed torque using normal method.

Fig. 10. Computed back EMF using proposed method.

time stepping error when using fixed step size 1 s is

shown in Fig. 16. The time stepping error when using adaptive

step size algorithm is shown in Fig. 17.

Fig. 11. Computed current using proposed method.

Fig. 12. Computed torque using proposed method.

Fig. 13. An induction motor.

If using a fixed step size s, the time stepping

number is 300. With the use of the proposed adaptive time step

size and if the error tolerance is , the time stepping number

is 131. For this example, the computing time is reduced by about

56%.
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Fig. 14. The input PWM voltage of the induction motor.

Fig. 15. The time step size when using automatic adaptive step size algorithm.

Fig. 16. The time stepping error when using fixed step size.

C. A Transient Model of Windings for Steep-Front Surges

The third example is a transient model of windings (Fig. 18)

for steep-front surges. A step voltage (simulating the PWM

wavefront) having a 50 ns rise-time and 800 V magnitude is

applied to the terminals of the cable. The coil is modeled as

Fig. 17. The time stepping error when using adaptive step size algorithm.

Fig. 18. Slot section of a form-wound coil and its flux plot when � � �� s.

Fig. 19. Coil circuit for voltage distribution analysis.

Fig. 20. The coil is connected to a step voltage through a long cable.

solid conductors to include eddy-current effect (Fig. 19). The

feeding cable is represented by an external circuit (Fig. 20). If

a fixed step size ( s) is used, the time stepping

number is 20000 and the CPU time is 93 h. If adaptive step

size algorithm is used, the time stepping number is 442 and the

CPU time is only 125 min, which means the computing time is

dramatically reduced. The step size and the time stepping error

are shown in Figs. 21 and 22, respectively. The computed node

voltage distribution including the effect from the feeder cable
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Fig. 21. Automatic adaptive time step size. (Step size changes from ����

s to � � �� s.)

Fig. 22. Time stepping error when using adaptive time step size algorithm.

Fig. 23. Node voltage distribution including the effect from the feeder cable.

is shown in Fig. 23. A typical distribution of current density in

the conductors when s is shown in Fig. 24. The

computed back EMF is shown in Fig. 25.

Fig. 24. Distribution of current density in the conductors when� � ���� s.

Fig. 25. Computed back EMF in conductors.

VI. CONCLUSION

At the first step of time-stepping FEM, the magnetostatic field

is solved to obtain a reasonable initial field distribution. If there

is mechanical motion and its initial speed is not equal to zero,

the integrating time can start from a negative time in

order to evaluate the derivatives at . For adaptive step size

algorithm, a proper relative local truncation error is presented.

When determining the step size, the discretization error of the

excitations should be accounted for. The program should also

prevent the step size from changing too quickly. The proposed

algorithm can automatically determine the time step size at each

time step. It reduces computing time while controlling the time

stepping error to within specified tolerances. Almost no addi-

tional computation time is required. It is robust to a wealth of

problems.
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