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Abstract. An analysis of the properties of the centroid method for subpixel
accuracy image feature location is presented. This method is free of sys-
tematic error if the maximum spatial frequency of the image incident on
the image sensor is less than the sensor’s sampling frequency. This can
be achieved by using a lens aperture setting such that the modulation
transfer function cut-off frequency due to diffraction is appropriately small.
Both simulation and experimental tests of this prediction are presented
for the case of the location of the center lines of the images of projected
light stripes in a triangulation-based three-dimensional shape measure-
ment system.

Subject terms: centroid; subpixel accuracy, light stripe location.
Optical Engineering 30(9), 1320-1331 (September 1991).

Two sources of error are usually considered:

1. Systematic error due to the nature of the algorithm: This
error is reproducible given a particular lens point spread
function and a particular position of a particular image
feature relative to the array of light sensors.

2. Error due to noise: Any deviation in the intensities of the
image pixels from the ideal will propagate through to a
deviation in the calculated centroid. Some sources of such
deviation are shot noise, CCD amplifier noise, CCD pixel
response nonuniformity, and quantization noise.

The properties of the systematic error have been 1nvest1§ated
with respect to the degree of blur of the i image feature® and
the width of the sensmve area of the pixels in relation to the
pixel pltch °In general, systematic error was reduced by
increasing degrees of blur and by the use of pixels of wider
sensitive area. However, one result* shows error first decreasing
and then increasing as pixel width is increased.

In this paper the properties of the systematic error are inves-
tigated using a spatial-frequency-based approach. This method
will lead to an explanation of the origin of the systematic error
and to a method for its removal.

1. INTRODUCTION

The centroid method has been widely used for the locatlon of
image features of various types to subpixel accuracy.’

The one-dimensional centroid has been used for light stripe
center locatlon in surface measurement systems using active
triangulation. '~ 3 Its use for edge location by estimation of the
center of the peak in the first dlfference of the pixel values
crossing the edge has also been described.® The performance of
the two-dimensional centroid has been investigated for the lo-
cation of area targets7’l3 and point sources.”!® It has been ap-
plied in star trackers. 11,12
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The pro gemes of the error due to noise are described
elsewhere® and are not considered here.

2. LIGHT STRIPE LOCATION USING THE
CENTROID

In this paper we study the centroid method in the context of the
location of the center lines of an array of projected light stripes
used in a trlangulatlon -based three-dimensional surface shape
measurement system.' The system arrangement is shown in Fig. 1.

An array of 64 horizontal light stripes with a mark to space ratio
of 1.4:1 is projected onto the surface to be measured using a
liquid crystal based white light projector. A camera displaced
vertically from the projector views the stripes. After determining
the positions and identities of the stripes in the camera’s image,
the 3-D coordinates of points on the stripes are calculated by
triangulation. We achieved coding of the light stripes by pro-
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Fig. 1. Shape measurement system arrangement for which the cen-
troid method is used to achieve subpixel accuracy in light stripe
location.

jecting a sequence of stripe patterns using the liquid crystal. In
each pattern the intensity of each light stripe indicates one bit
in its code.

The light stripes are initially located in an image taken with
all 64 stripes turned on. Since the light stripes are oriented
approximately horizontally in the camera’s image they can be
located by searching for intensity peaks along each column of
pixels. The intensity peak corresponding to each light stripe is
delineated by a local minimum in intensity on either side. The
center of the peak is estimated by the centroid of the area between
the two minima and above a threshold level. This threshold level
is either the intensity of the higher intensity minimum or a
specified level T., whichever is greater. Level T, is set just
above the noise level and comes into use for isolated stripes or
stripes on the edge of the array.

Let the intensity of the i’th pixel in a column of pixels be g;.
Let h; equal g; minus the threshold level with any resulting
negative values of A; set to zero. The stripe center X is calculated
as the centroid of A; between pixels m and n, the positions of
the minima either side of the stripe:

_ 27=m ihi
X = ﬁ . 1

3. SYSTEMATIC ERROR IN LIGHT STRIPE
LOCATION USING THE CENTROID

Figure 2 illustrates the process of forming a sampled image of
a single light stripe. (For simplicity of discussion we assume
there is no ambient lighting.) Waveform e(x) of Fig. 2(a) is the
intensity profile of the image of the stripe on the surface of the
CCD. Waveform e(x) results from the convolution of a(x), the
ideal profile, with the line spread functions of the projector and
camera lenses. Waveform e(x) is convolved with p(x) of Fig. 2(b),
the pixel sensitivity profile, giving waveform f (x) of Fig. 2(c).
Then f (x) is multiplied by the sampling function s(x) (Fig. 2[d])
giving g(x), the sequence of sample values, in Fig. 2(e).
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Fig. 2. The process of sampling an image of a projected stripe.
(a) intensity profile e(x) of light incident on the CCD surface [ideal
profile a(x) shown dotted]. (b) Pixel sensitivity profile p(x).
(c) Waveform f(x) resulting from convolution of pixel sensitivity pro-
file with stripe image intensity profile. (d) Sampling function s(x).
(e) Sample waveform g(x) obtained by multiplying sampling func-
tion by f(x).

If the pixel sensitivity profile is symmetrical it is clear that
the centroid of waveform f(x), given by

waxf(x) dx

G = %)
f_wf(X) dx

is equal to the centroid of e(x).
The sample values g; in the digitized image correspond to
the impulses in waveform g(x). The centroid of g;, given by

KD yEr v

OPTICAL ENGINEERING / September 1991 / Vol. 30 No. 9 / 1321



ALEXANDER, NG

is therefore equal to the centroid of g(x)

f ng(x) dx

Xg = = .
[ s

C))

As stated in Sec. 2, in practice the position of the stripe center
is estimated by calculating the centroid of g; between the min-
imum on each side of the stripe after subtraction of a threshold
value. In evaluating the accuracy of this technique two aspects
are considered in the following sections.

1. The relationship between the centroid of the continuous
profile f (x) and the centroid of the corresponding sampled
intensity profile g(x), for the ideal case of an isolated
stripe and no noise. Systematic error will be present if the
centroid of g(x) is not equal to the centroid of f(x).

2. The effect on accuracy of the practical situation of cal-
culation of the centroid over a limited range of pixels after
subtraction of a threshold.

that cause blurring of the stripe, F(s) will decrease for higher
spatial frequencies and is zero above a cutoff frequency s..

Multiplication of f(x) by the sampling function s(x) gives
the sampled function g(x). Correspondingly, convolution of the
Fourier transforms, F(s) and S(s), yields the Fourier transform
G(s) of Fig. 3(f), in which the transform of f(x) is replicated
at intervals of 1/7, the sampling frequency (1 sample per unit
distance in Fig. 3).

The centroid X7 of f(x) is related to its Fourier transform as
follows:'

f:xf(x) dx

F'(0)
2mjiF(0)

f - ()
f_ acf (x) dx

We can see that the centroid of f(x) is dependent only on the
behavior of F(s) and F'(s) at the origin. Likewise, the centroid
of the sampled function X, will depend only on the behavior of
G(s)and G'(s) at the origin:

The main aspect considered in this paper is the first above. The f x8(x) dx ,
second is only briefly dealt with here. —— - __GO 6
YT T T T 2mico) ©
3.1. Relationship between the centroids of continuous and _ 8L dx
sampled waveforms
The relationship between the centroid of a continuous function Therefore, if
and its sampled equivalent can be well understood by considering
the Fourier transforms of the two waveforms. Figure 3 shows, G(0) = F(0) , ™
on the left, waveforms corresponding to Figs. 2(c), 2(d), and
2(e), and on the right, their Fourier transforms. 4 Since f(x) is, and
in general, not an even function its transform, F(s) has an imag-
inary part, which is shown dotted. Due to the various factors G'(0) = F'(0) , ®)
f(x) F(s)
(a) (b)
X ~ ~ JC/ASC ?
X
| s(x) S(s)
{L
(c) (d)

\j

~—

Fig. 3. Sampling in the spatial domain and the spatial frequency domain. (a) Intensity profile
f(x). (b) Fourier transform F(s) of f(x). (c) Sampling function s(x). (d) Fourier transform of
sampling function S(s). (e) Waveform g(x) = f(x)s(x). (f) Fourier transform of g(x), G(s) =

F(s) * S(s).
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then
% =%, ©)

i.e., the centroid of the sampled function g(x) will be equal to
the centroid of the corresponding continuous function f (x).

With reference to G(s) in Fig. 3(f), it is apparent that Eqs.
(7) and (8) will be satisfied if the replicated transforms of f(x)
do not overlap to such a degree that any part of a replicated
transform is present at the origin. This will be the case if the
cutoff frequency s, is less than 1/T, the sampling frequency, as
shown.

Note that if the centroids of the sampled and continuous
functions are to be equal, the critical cutoff frequency of F(s)
is the sampling frequency, not half the sampling frequency as
is required for exact reconstruction of f(x) from the sample
values.

3.1.1. Two-dimensional centroid

An analogous analysis applies for the two-dimensional centroid.
Given the two-dimensional Fourier transform F(u,v) of a con-
tinuous function f(x,y) the x and y values (x,y) of the centroid
of f(x,y) are given'* by

[ Loy o,
T TN 1
| | ey acay
f [ yf(x.y) dx dy
vl T _ _M 11)
Y 2mjF(0,0) (

) fwfwf(x,y) dx dy

In analogy with the one-dimensional case, the centroid of f (x,y)
is dependent only on the behavior of F(u,v) at the origin.

The Fourier transform of a sampled version g(x,y) of f(x,y)
consists of replicated versions of F(u,v) spread over the u,v
plane at intervals of u and v equal to the sampling frequencies
in the x and y directions, respectively. The centroid of g(x,y)
will be equal to the centroid of f(x,y) if no part of any of the
replicated versions of F(u,v) is present at the origin. This will
be the case if the cutoff frequency of F(«,v) in the u direction
is less than the x sampling frequency and the cutoff frequency
in the v direction is less than the y sampling frequency.

3.2. Elimination of systematic error in practice

Given the above result, it is apparent that systematic error can
be eliminated by a choice of camera lens aperture such that the
lens MTF cutoff frequency due to diffraction lies below the
sampling frequency. If the camera lens MTF cuts off at spatial
frequency s., then E(s) [the Fourier transform of e(x)], and
hence F(s), must cut off at s..

For incoherent light, the lens MTF cutoff frequency is 1/(AF),
where \ is the wavelength of light and F the lens f-number. The
camera used for the experimental results presented later in this
paper has a pixel pitch in the vertical direction of 13.5 wm giving
a sampling frequency of 74.1 samples per mm. For A\ equal to
550 nm (this value of A will be used for all further calculations
in this paper), a camera lens f~-number greater than 24.5 will

result in a cutoff frequency less than this sampling frequency
and, consequently, no systematic error.

While this aperture of f/24.5 is small, it should be noted that
wider apertures apply in the infrared.

3.3. Properties of the systematic error

If F(s) does not cut off below the sampling frequency, systematic
error will, in general, occur. It is of interest to calculate the
properties of this error.

Let function f.(x) be even; its centroid is then zero. Let f(x)
equal f,(x) shifted by sampling offset d from the origin, i.e.,

fx) =fx —d), (12)
and
F(s) = exp(—j2mds)F.(s) . (13)

G(s) consists of an infinite series of instances of F(s),

> F(s — nT)
n= —oo

> expl—j2wd(s—n/T)] Fe(s — n/T) .

n=—

G(s)
(14)

The centroid of g(x) is a function of G(0) and G'(0). We have
G'(s) = >, {—j2ndexpl—j2nd(s — wT)] Fe(s — n/T)
n=—o

+ exp[—j2md(s — WT)] Fo(s — nT)} . (15)

Substituting s = 0 into Eqs. (14) and (15), and noting that F(s)
is even and F.(s) is odd, gives

> exp(j2mwdn/T)F(—n/T)

n=—

G(0)

F.(0) + n; Fo(—n/T) [exp( j2mwdn/T)

(16)
+ exp(—j2mdn/T)]

F.(0) + é:l F.(n/T)2 cos2wdn/T ,
and
G'(0) = nim [—j2wd exp(j2wdn/T) F.(—n/T)
+ exp(j2wdn/T) Fo(—niT)]
= —j2wdF.(0) + nél {—j2mdF.(—n/T)

X [exp(j2wdn/T) + exp(—j2wdn/T)] a7
+F¢(—n/T) [exp(j2mwdn/T) — exp(—j2wdn/T)]}

= —j2mdF.(0) + 21 [ —j2wdF . (n/T)2 cos2mdn/T
=
— FYn/T)2j sin2wdn/T] .
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Substituting Eqs. (16) and (17) into Eq. (6) to find the centroid
of g(x) gives

Xg =

—j2~rrdFe(O)+E:= 1l —j27dF(n/T)2 cos2wdn/T — Fo(n/T)2j sin2wdn/T ]

—2mj[Fo(0) + Dom=1Fe(n/T)2 cos2mdn/T)

Sw_ (FAn/T) sin2wdn/T

=d+ .
TFe(0) + Dom=1Fo(n/T)2 cos2mdniT| (18)

Ideally the centroid of g(x) would be d so the error d is

> w1 FY(n/T) sin2mdn/T
T TFo0) + Dam 1Fo(n/T)2 cos2mdniT]

(19)

Consider the situation where the camera lens aperture is such
that the MTF cutoff frequency is between 1/7 and 2/T. In this
case 9 simplifies to

~ FUUT) sin2md/T
T[Fe(0) + Fo(1/T)2 cos2md/T]

(20)

Generally F.(0) is much larger than F.(1/T) so the cosine term
in the denominator can be ignored, giving

Fo.(1/T) sin2wd/T
b= ——— . 21
7F(0) @D

Therefore & has the form sin6 with 6 ranging from — 1 to 7 as
the offset d is changed from —0.5 to 0.5 (for T = 1). The
magnitude of & is directly proportional to the slope of F,(s) at
the sampling frequency.

The following points can be made:

¢ As noted by many authors,”™'® increased blur will reduce
systematic error. The preceding analysis has shown that the
error will be reduced if the slope of F.(s) at the sampling
frequency is reduced. This will occur for increasing degrees
of blur in general. [Introduction of blur by use of a lens
with large aberrations would, of course, not normally be
useful. Blur due to aberrations is generally asymmetrical
so the centroid of the intensity profile e(x) of the light
incident on the surface of the CCD would not correspond
to the centroid of the ideal profile a(x).]

« If the form of the image e(x) incident on the image sensor’s
surface is relatively fixed (as would be the case when view-
ing a point source with a diffraction limited lens, for ex-
ample) then the form of f.(x) and hence, F.(s), is fixed so
the systematic error is predictable and can be corrected for.
However, if the image varies significantly in size, as for
example do the images of the projected light stripes used
in the shape measurement system, the form of F.(s) will
vary and the behavior of the systematic error will conse-
quently vary. In this case, a correction for systematic error
is not readily possible.

4. SIMULATIONS

This section describes the use of a simulation to investigate the
predictions of the previous sections. The procedure used to eval-
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uate the systematic error is direct calculation of the shape of
waveform f (x) for a particular optical arrangement. Then f(x)
is sampled and the centroid of the samples calculated and com-
pared with the known centroid of f(x). In order to simplify this
process, a(x) is made periodic and even. Each stripe is of am-
plitude 1, width W, and the stripe pitch is X. The case of an
isolated stripe can be reasonably accurately handled by setting
X to a relatively large value.

Note that the systematic error can be calculated directly using
Eq. (19). However, the approach used here also allows the effect
of calculation of the centroid over a limited range of pixels to
be conveniently evaluated.

Since a(x) is even, it is represented by the Fourier cosine
series:

2nw
a(x) aop + 2 an cos———x

(22

COS———Xx .

w > 2 . Wnm 2nm
——+Z——n
X = X X

Given a(x), f (x) can be obtained by multiplying each coefficient
an by the values of the modulation transfer functions of the
camera lens, M.(s), and the CCD, M.4(s), at frequency n/X.
The reason for not considering the projector lens is given later.

= < ) <n> 2 . Wnm 2nmw
2 Meq | =] — sin—— cos—x .
nw

(23)

fx) ==

As defined above, f(x) is centered on the origin. The sequence
of sample values g; is generated by calculating the value of f(x)
at increments of 1 pixel along the x axis with the series of samples
starting at sampling offset d from the origin, i.e.,

g = flG + a)T] . (24)

Here d has units of pixel pitch. Varying d over the range —0.5
to 0.5 allows us to simulate the effect of moving the stripe
relative to the array of pixels. The more natural approach would
be to sample at x = iT and move f(x), but the technique used
is more straightforward to implement. [Note that the sample
values obtained using offset d above are equivalent to those
obtained when sampling at x = T after shifting f(x) by —d
from the origin.]

Given g;, h; is formed as described in Sec. 2. The centroid
of h;, given in pixel units by

(i + )k
o 2ol D 25)

Z:‘::’nhi

would ideally equal the centroid of f(x) (i.e.,zero) for any d.
The systematic centroid error is X, — 0 = Xj.

4.1. Modulation transfer functions

4.1.1. Lens MTF
The camera lens modulation transfer function for diffraction is

Mc(s) = %{cos_l()\Fs) — NFs sin[cos ~ \(\Fs)1} (26)
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for points on the optical axis. 16 Here M.(s) cuts offats = 1/\F.
For typical lenses this function should be reasonably accurate
for apertures smaller than about f/11.

We do not consider the effect of the projector lens in the
simulation because the height of the projector’s image (the stripe
array on the liquid crystal) is about four times that of the camera’s
image sensor. Consequently, given the same f~numbers for the
two lenses, the effect of diffraction due to the camera lens will
swamp that due to the projector lens if the projected stripe array
fills the camera’s image.

4.1.2. Image sensor MTF
The pixel sensitivity profile of width w can be approximated by

0 when x < —w/2
px) = {lUw when —w2<x < w/2 . 27)
0 when x > w/2

The Fourier transform of p(x) is

Meed(s) = % . (28)

Except where stated, the simulation results that follow apply to
the camera used for the experimental measurements of centroid
error presented in Sec. 5.1. This camera has an interline transfer
CCD with a pixel pitch of 13.5 pm in the vertical direction.
Clock electrodes separate the sensing elements and their width
w in the vertical direction is approximately 10 pm.

Above, p(x) applies for interline transfer CCDs used in the
frame-integration mode in which charge is integrated for a whole
frame period for each sensing element and alternate rows of
sensing elements are read out for each field. Many interline
transfer cameras use the field-integration mode in which all of
the sensing elements are read out for each field but combined
differently in alternate fields (e.g., elements in rows 1 and 2
would be combined to give the first line of the odd field and
rows 2 and 3 combined for the first line of the even field). The
pixel sensitivity profile for this mode consists of two instances
of p(x) spaced 1 pixel apart.

Finding the centroid using this sensitivity profile is equivalent
to finding the centroid of sequence k; = g; + gi+1, where g;
is the pixel intensity resulting using sensitivity profile p(x). (Note
that the sampling offset for k; is shifted by 0.5 from that for
gi.) Here k; is the result of convolving g; with the sequence
m; = {1 1}. The centroid of a sequence resulting from the con-
volution of two sequences is the sum of the centroids of each
of the sequences.14 Consequently, the error in the centroid of
k; is equal to that in the centroid of g; (after allowing for the
sampling offset shift of 0.5). In summary, the centroid error for
the field-integration mode has the same magnitude as that for
the frame-integration mode.

4.2. Error versus lens aperture

First we evaluate the effect on the systematic error of varying
the camera lens aperture. A stripe width of 3.85 pixels and stripe
pitch of 32 pixels are used. The reason we use this stripe width
is given later. We set T, to zero so the centroid is evaluated
over the range of pixels between and including the minimum on
each side of the stripe. In this case, this range is 32 pixels. In

practice, the centroid would not generally be evaluated over such
a wide range due to the effect of noise.

For generality, we state the results in this section for lens
f-numbers given as the ratio of the f~number used in the simu-
lation F to the critical f~-number F., such that the lens MTF cuts
off exactly at the sampling frequency. The results can therefore
be applied directly for any pixel pitch and wavelength of light.

Figure 4(a) shows f(x) and the sample values when the sam-
pling offset d is equal to 0.25 pixels and the camera lens f~number
is half F.. Figure 4(c) shows f(x) and the sample values for a
camera lens f-number just greater than F.(F/F. = 1.02). The
sampling offset is again 0.25 pixels. We observe the expected
broadening of the edges of f(x) for the smaller aperture due to
the wider line spread function of the camera lens.

Figures 4(b) and 4(d) show the systematic error versus d for
F/F. equal to 0.5 and 1.02, respectively. (Note the change in
scale of the vertical axis.) As expected, the error is considerably
larger for F/F. = 0.5 than for F/F. = 1.02. The maximum
errors are 0.043 pixel and 1.5 X 10~ pixel, respectively. The
form of the error curve in Fig. 4(b) is as expected from the
analysis in Sec. 3.3. With F/F. = 0.5 the MTF cut-off fre-
quency is 2/T so the simplified result given in Eq. (21) applies.
We expect the error to be an approximately sinusoidal function
of the sampling offset, as is observed.

The error should ideally be zero for f-numbers greater than
F.. The residual error experienced here for the case F/F, =
1.02 is due to evaluating the centroid over a range of only 32
pixels.

Figures 5(a) and 5(c) show f(x) and the sample values for
an input approximating an impulse. This was done by using a
stripe width of 0.05 pixels. Figure 5(a) is for F/F, = 0.5 and
Fig. 5(c) for F/F. = 1.02, d is equal to 0.25 for both figures.
The intensity profile for F/F. = 1.02 is appreciably wider than
for F/IF. = 0.5, as expected. Note that the magnitude of f(x)
is small because the amplitude of the input a(x) was one unit.

Figures 5(b) and 5(d) show the systematic error versus d for
this stripe width. The systematic error is observed to be quite
high for F/F. = 0.5 with a maximum value of 0.19 pixel. The
error decreases significantly for F/F, = 1.02, as expected, with
a maximum then of 1.5 x 1073 pixel.

The error is expected to be larger in general for thinner stripes
because the magnitude of F.(s), and hence its slope, will gen-
erally then be higher at the sampling frequency and its multiples.
The form of the error curve for F/F. = 0.5 of Fig. 5(b) differs
slightly from a sinusoid because of the contribution of the cosine
term in the denominator of Eq. (20), which was ignored when
simplifying to the form of Eq. (21). This term is more significant
in this case than for a width of 3.85 pixels because the magnitude
of F.(s) is greater at the sampling frequency.

4.3. Variation of stripe width

In this and the following sections, we plot the systematic error
for a range of stripe widths. First, in this section, we again
consider the effect of varying the lens aperture.

In these simulations, we calculated the systematic error for
stripe widths over the range 0.05 to 5.0 pixels with the sampling
offset varied in steps of 0.05 pixel from 0.0 to 0.5 pixels for
each width. We plotted the absolute value of the worst case error
for each stripe width.

Figure 6 shows curves for three camera lens apertures, F/F, =
0.25, F/F. = 0.5, and F/F. = 1.02. The reduction of error
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Fig. 4. Calculated stripe intensity profiles and systematic error for a stripe width of 3.85 pixels.
(a) Intensity profile for F/F. = 0.5. (b) Centroid error for F/F. = 0.5. (c) Intensity profile for F/F. =

1.02 (d) Centroid error for F/F; = 1.02.

with increasing f-number is apparent. An overall reduction of
error with increasing stripe width is also apparent.

The relationship between the systematic error and the stripe
width is periodic. For F/F. = 0.5 a local maximum occurs for
a width of about 3.85 pixels, hence the use of this width in the
examples of the previous section. This periodic relationship is
explained shortly.

4.4. Comparison of sensor types

Figure 7 shows a comparison of systematic error for three sensor
pixel sensitivity profile widths. The lens f-number was half F_.
Plots are given for sensitivity profile widths, in units of pixel
pitch, of w = 0.5, w = 0.74, and w = 1.0.

The case w = 0.74 corresponds to the interline transfer CCD
with pixel width of 10 pm and pitch of 13.5 pm, for which the
previous simulations applied.

Frame transfer CCD sensors have no gaps between the sen-
sitive areas of the pixels so w = 1.0 applies in this case. This
curve also applies for frame transfer sensors that generate in-
terlaced video output by accumulating the signal charge under
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different electrodes of each CCD stage during the integration
time for each field. In this case, the sensitive areas of the pixels
overlap and the pixel width is twice the pitch (w = 2.0). The
sensitivity profile forw = 2.0 can be considered as two instances
of profile p(x) for w = 1.0 spaced one pixel apart. This profile
was shown in Sec. 4.1.2 to give the same magnitude of system-
atic error as p(x).

In these results, the systematic error is lower overall for wider
sensitivity profiles. This trend does not continue indefinitely
however. In Sec. 4.5.1 we show that systematic error is actually
a periodic function of sensitivity profile width.

4.5. Form of the error versus stripe width relationship

The periodic variation in systematic error versus stripe width
evident in the simulation results presented can be explained by
considering the variation in the form of F,(s) versus stripe width.
Here F.(s) is the product of A.(s), the Fourier transform of the
ideal stripe intensity profile a(x) when centered at the origin,
the lens MTF M (s), and the CCD MTF M cq(s).
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Given a.(x) for an isolated stripe defined as

0 when x < —W/2
a.(x) =41 when — W72 <x < W2, 29)
0 when x > W/2

then A.(s) is given by

sin(Wrrs)

s

Ae(s) = (30)

M.(s) and Mccq(s) were defined earlier. Figure 8 shows A.(s),
M(s), Mcca(s), and Fe(s) for W = 2.0, F/F, = 0.5, and w =
1.0. The spatial frequency scale in this figure is normalized with
respect to the sampling frequency. For display purposes, A.(s)
and F,(s) have been scaled vertically by 0.5.

Consider the case of a stripe width of 1 pixel and a pixel
sensitivity profile of width 1 pixel. Then A.(s) and Mq(s) pass
through zero at each integer multiple of the sampling frequency.
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Fig. 6. Worst case systematic error versus stripe width and camera
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Both the slope and magnitude of F,(s) will therefore be zero at
each multiple of the sampling frequency. The systematic error
will therefore be zero, regardless of the lens f-number (see
Eq. [19]). For wider stripe widths the zeros of A.(s) move to-
ward the origin with a stripe width of 2 pixels resulting in the
second zero crossing of A.(s) lying at the sampling frequency,
as shown in Fig. 8. Systematic error will again be zero. At
intermediate stripe widths the magnitude of F.(s) at multiples
of the sampling frequency will still be zero, but the slope will
not be zero so systematic error will be present. In summary, the
error will be zero for integer stripe widths and nonzero otherwise.
This behavior can be observed for the case w = 1.0 in Fig. 7.

The behavior for the other sensitivity profile widths in Fig. 7
are related to that for w = 1.0. Equation (19) shows that the
systematic error is proportional to the slope of F.(s) at the
sampling frequency. The minima in the curves for w = 0.74
and w = 0.5 occur for stripe widths such that the slope of F.(s)

0.8
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Fig. 8. Modulation transfer functions: (a) Fourier transform A.(s) of

the ideal stripe intensity profile for a stripe width of 2 pixels. (b) Lens

MTF curve M.(s) for F/F, = 0.5. (c) CCD MTF M,.q(s) for a pixel sen-

sitivity profile of width 1 pixel. (d) F.(s) resulting from the product

of curves (a), (b), and (c).
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is zero at the sampling frequency. Ideally the error would be
zero at these minima, but this is not the case here due to the
effect of calculation of the centroid over a finite range of pixels.

Note that since F/F. = 0.5 for Fig. 7, F.(s) cuts off at twice
the sampling frequency so we need consider only the slope at
the sampling frequency. For smaller values of F/F., we must
also consider the slope at multiples of the sampling frequency.
This explains the effect that the error at the minima of the curve
for F/F. = 0.25 in Fig. 6 does not decrease to as low a level
as for F/F. = 0.5. As for other f-numbers, these minima occur
for stripe widths such that the slope of F.(s) at the sampling
frequency is zero. However, the slope at s = 2/T and s = 3/T
is not generally zero at these stripe widths so significant error
still occurs. The error contributed by the second multiple of the
sampling frequency will generally be the most significant. An
error curve of the form sin20 with 6 ranging from — to  as
d ranges from —0.5 to 0.5 is therefore expected. This effect
has been observed under simulation.

4.5.1. Error versus pixel width relationship

Due to the similar forms of the pixel sensitivity profile p(x) and
the stripe profile a.(x), the plots of error versus stripe width for
particular pixel sensitivity profile widths in Fig. 7 can equally
apply as plots of error versus pixel width for particular stripe
widths. For example, the error for a sensitivity profile width of
0.5 pixels and a stripe width of 1.0 pixels is equal to the error
for a sensitivity profile width of 1.0 pixels and a stripe width of
0.5 pixels. When Fig. 7 is considered in this way, we see that
given a particular stripe width the systematic error magnitude is
a periodic function of sensitivity profile width. This result agrees
with observations by Hegedus and Small* and could be of im-
portance in scanning sensor applications where the pixel pitch
can be flexibly varied.

4.6. Variation of threshold level

Figure 9 shows the effect of varying the threshold level T.. All
previous simulation results were for T, = 0.0. Here T is spec-
ified as a fraction of the peak intensity of f (x), f(0). Curves for
T. = 0.0, T, = 001, T, = 0.02, and T, = 0.04 are shown.
All curves are for F/F. = 1.02.
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Fig. 9. Worst case systematic error versus stripe width for four
threshold levels (F/F; = 1.02).
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For a stripe width of 0.05 pixels T. = 0.01 results in either
6 or 7 pixels being used in the centroid calculation, depending
on the sampling offset; 7. = 0.02 results in either 4 or 5 pixels;
and T, = 0.04 in either 3 or 4. The reduction of the number of
pixels used in the centroid calculation by the use of higher
threshold levels clearly introduces systematic error. In practice,
this error must be traded off against error introduced due to
noise, which increases as the number of pixels used in the cen-
troid is increased.® A T, below 0.04 is generally used in practice
in the light stripe location application.

The above results apply for a pixel sensitivity profile width
of 0.74 pixels. Figure 10 shows the effect of different profile
widths for a particular threshold, 7. = 0.04. It is apparent that
the error is smaller for the wider profiles. This is particularly so
for a stripe width of 0.05 pixels.

Overall, the error introduced by practical threshold values is
not large. It is clear, however, that in order to minimize error
the threshold should be carefully chosen.

5. EXPERIMENTAL RESULTS

In order to measure the accuracy of light stripe center position
estimation using the centroid we projected the array of stripes
onto a flat surface. We evaluated centroid error by comparing
the calculated center of a stripe using the centroid with an ac-
curate estimate of the true center of the stripe for each of 100
columns of pixels. Since we knew the stripes to be straight in
the image, we estimated the true center of the stripe by fitting
a least-squares straight line to the series of center points found
using the centroid.

We can readily detect systematic error in the calculated stripe
center using this technique. The camera and projector are ar-
ranged such that the magnitude of the slope of the stripe in the
image is small, so over the range of 100 pixels for which the
centroid is calculated the stripe rises or falls by a few pixels.
Since the slope is not zero the position of the stripe center relative
to the rows of pixels (the sampling offset) is different for each
column of pixels. If the difference between the calculated stripe
center and the estimated true center is plotted against the column
number, systematic error will be evident as a periodic waveform
with period equal to the inverse of the stripe slope. Each period
of this waveform is equivalent to a plot of the type shown in
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Fig. 10. Worst case systematic error versus stripe width for T, = 0.04
and three pixel sensitivity profiles (F/F, = 1.02).

Fig. 4(b), where we plotted the systematic centroid error against
the sampling offset.

The numerical measure of centroid error used is the standard
deviation of the difference between the calculated stripe center
and the estimated true center.

5.1. Experimental investigation of systematic centroid
error

We measured the properties of the systematic error for a stripe
width of approximately 4.0 pixels and with alternate stripes of
the array turned on. With alternate stripes used, the gap between
stripes is sufficient for the effect of the adjacent stripes to be
insignificant. The stripe mark to space ratio is then 1:2.4.

We used an NEC model TI-22AIl camera. This camera’s
image sensor is an interline transfer CCD with pixel pitch of
13.5 pm and sensitivity profile width of approximately 10 wm.
The CCD was used in the frame integration mode. Images were
digitized with eight-bit quantization using a Matrox MVP-AT
video digitizer. A Micro-Nikkor 55 mm f/2.8 lens was used on
the camera and a Schneider Companon-S 100 mm f/5.6 lens was
used on the projector. An image with all stripes turned off was
subtracted from the image with stripes on to remove ambient
lighting effects. In order to reduce error due to random noise
both images were generated by averaging 100 frames.

The optical configurations tested were:

1. Camera and projector lenses sharply focused and the cam-
era lens aperture set to f/8. Assuming a mean wavelength
of 550 nm the critical f-number for the camera used is
f124.5. Systematic error is therefore expected to be present.

2. Camera and projector lenses sharply focused and the cam-
era lens aperture set to f/32. Since this f-number is greater
than the critical f~number, systematic error should be re-
duced significantly in comparison with configuration 1.

We made no change in the experimental set up between each
case and used the same 100 pixel segment of one particular
stripe in both cases to allow direct comparison of the results.
The average peak intensity of the stripes was slightly different
for the two configurations. For configuration 1 it was 185 grey
levels, for configuration 2, 181 grey levels. Threshold T, was
set to five grey levels for configuration 1 and eight grey levels
for configuration 2. The ratio of T, to the stripe peak intensity
was therefore 0.027 and 0.044, respectively.

Figure 11(a) shows the results for configuration 1. Systematic
error is clearly visible in the form of a periodic waveform. The
slope of the stripe in the image was 0.067 so the period is
expected to be 15 pixels, as can be observed. The standard
deviation of the error was 0.033 pixels.

The amplitude of the error for a stripe width of four pixels,
an f~-number of f/8 and T. = 0.027 was predicted to be 0.061
pixels by the simulation. This corresponds to a standard deviation
of 0.043 pixels, assuming a sinusoidal error curve. The measured
error is slightly lower than this estimate because of the effect
of aberrations and the effect of the projector lens, which we
ignored in the simulation.

Figure 11(b) shows the results for configuration 2. Significant
differences can be seen between this plot and that of Fig. 11(a).
No systematic error is evident. Any remaining systematic error
is masked by error due to noise and deviations from straightness
of the stripe. The standard deviation of the error was 0.013
pixels.
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6. CONCLUSIONS

We have shown that the centroid of the digitized image of an
image feature is free of systematic error if the maximum spatial
frequency of the image incident on the sensor is less than the
sampling frequency. In practice, this can be achieved by using
a lens aperture such that the cut-off frequency due to diffraction
is less than the sensor’s sampling frequency. For the camera
used here, this critical f-number is f/24.5.

In the situation where the lens f~number is lower than the
critical f~number, systematic error is introduced. The use of a
spatial-frequency-based approach in the analysis here has led to
succinct explanations of many of the properties of this error.
We applied these results in the case of the location of light
stripes. Analysis showed that the error will vary approximately
sinusoidally as the stripe is shifted over the sensing elements.
This agrees with observation. We used simulation to evaluate
the magnitude of the systematic error for a range of lens aper-
tures, stripe widths, and pixel sensitivity profile forms. Error
decreased, as expected, with higher f~-numbers, becoming insig-
nificant for f~numbers higher than the critical f~-number. We
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observed a periodic relationship between error and stripe width
with error being greatest for small stripe widths. Wider pixel
sensitivity profiles were found to reduce error in general. How-
ever, we found the error to be a periodic function of sensitivity
profile width.

We used simulation to judge the effect of the threshold used
to limit the number of pixels used in the centroid calculation.
We saw that the error introduced by practical threshold values
is generally fairly small. Wider pixel sensitivity profiles were
found to result in less error being introduced, given a particular
threshold level.

Finally, experimental results support the prediction that sys-
tematic error is eliminated for lens f~numbers above the critical
f-number.
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