
In the previous paper, we reported a modified version of the
UVE-PLS (Uninformative Variable Elimination–Partial Least
Squares) method1 originally developed by Centner et al.2 The
UVE-PLS method is an algorithm to increase the predictive
ability of the standard PLS method, where wavelength (or
independent) variables which cannot contribute to the model
construction very much are eliminated.  The key is to make a
comparison between experimental variables and purposely-
added noise variables with respect to the degree of contribution
to the model.  The number of the noise variables is the same as
the number of the experimental ones.  In the modified version,
the overfitting problem in the original UVE-PLS algorithm was
solved by introducing the PRESS (Prediction Error Sum of
Squares) criterion3,4 and the calculation time was reduced by a
factor of several times.

In practical situations, however, unexpected experimental
errors or measurement noise are introduced into concentration
(or dependent) variables as well as wavelength variables.  They
must deteriorate the predictive ability of the PLS model.  In
some cases, samples which cannot be used as calibration data at
all might be introduced accidentally for some reasons.
Although many robust modeling techniques5,6 for coping with
such problems have been developed so far, most of them use all
of the wavelength variables given.  Among the wavelength
variables, therefore, uninformative ones which cannot
contribute to the model will be included.  In order to increase
the predictive ability of the model, therefore, such
uninformative variables should be eliminated in advance, and
thereafter uninformative samples should be eliminated.  In other
words, uninformative samples should be eliminated by taking
into account both wavelength variables and concentration
variables.

Basing upon such an idea, we have improved our previous
method, that is the modified UVE-PLS (MUVE-PLS) method,
so that the uninformative samples (or concentration variables)
are eliminated.  In the present article, we call such a procedure
USE (Uninformative Sample Elimination), and the whole
method is called MUVE-USE-PLS.  In order to demonstrate the
effectiveness of the MUVE-USE-PLS method, we have applied
it to two kinds of mid-infrared absorption spectral data sets:
water–ethanol mixtures1 and ethyl acetate–acetonitrile mixtures.

Uninformative Sample Elimination (USE)

Figure 1 shows a procedure of the MUVE-USE-PLS method:
(1) First, the modified UVE (MUVE) that we have reported

previously is applied for a calibration data set with the final
number of latent variables (LVs) A.  At this stage,
uninformative wavelength variables are eliminated.

(2) For the ith (1≤i≤n) sample, the value of the prediction error
e(i) is calculated.  At the same time, the value of RMSEP
(Root Mean Squares Error of Prediction) is evaluated.

(3) For the ith sample, the standard deviation σ(i) of the
prediction error is calculated by the leave-one-out manner.
It means that σ(i) is calculated from the other (n–1) e(j)
values except e(i) according to the following equations:

e(i) = yi – ŷi, (1)

(2)RMSEP = {e(i)}2 n,
n

i= 1
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(3)

(4)

where yi is the measured value of the ith sample and ŷi is its
predicted value.
(4) We make a comparison of which is larger among the

absolute values of e(i), abs{e(i)}, and 3σ(i) for i = 1,2,…,n.
(5) If abs{e(i)}>3σ(i), the ith sample is eliminated as an

uninformative sample and the PLS model is built from the
retained calibration data set with A LVs.  Then, we return to
(2) again.

(6) If abs{e(i)}≤3σ(i), the final PLS model is built by using the
retained data set.

In the proposed method, the ability to discriminate
extraordinary samples against ordinary ones is enhanced
because of the calculation of the σ(i) values by the leave-one-
out manner.  The MUVE-USE-PLS method can be carried out
by a slight change in our previous MUVE-PLS program.

(i) =σ {e(j) – e(i)}2 (n – 1)
n

j = 1

(i ≠ j),

1
n – 1

e(i) = e(j)     (i ≠ j), 
n

j = 1

Experimental

Spectral data sets
We have applied the algorithm to two kinds of mid-infrared

spectral data sets: data set I and data set II.  The data set I is the
same as that we previously reported,1 which consisted of thirty
mid-infrared absorption spectra of water–ethanol mixtures with
various molar fraction ratios χeth.  In order to demonstrate the
sample elimination ability of the USE algorithm in the present
article, we purposely varied the ethanol molar fraction of the
19th sample from a true value (χeth = 0.11) to a wrong one (χeth

= 0.08).  The molar fraction ratios of the mixtures are listed in
Table 1 and the corresponding spectra are shown in Fig. 2(a)
(see in details in Fig.2 in Ref. 1).

The data set II consists of eleven mid-infrared spectral of
ethyl acetate–acetonitrile mixtures with various volume rations.
The spectra were measured by using a Fourier transform
infrared spectrometer (FT/IR-420, JASCO Co.) with a single
reflection attenuated total reflection (ATR) attachment (PIKE
Technologies Inc.).  Each spectrum consists of 870 variables,
corresponding to the absorbance values at wavenumbers from
4000 to 650 cm–1.  Volume ratios of ethyl acetate χea for the
eleven mixtures are listed in Table 2.  We purposely varied the
ethyl acetate volume ratio of the 9th sample from a true value
(χea = 80.0) to a wrong one (χea = 81.0) again.  Figure 2(b)
shows the eleven spectra of the mixtures.  Ethyl acetate and
acetonitrile were obtained from reagent grades (Wako Pure
Chemical Co.).

Calibration method
We have applied five kinds of modeling methods for the two

calibration data sets.  Relations among the five methods are
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Fig. 1 Procedure of MUVE-USE-PLS method.

Table 1 Partial mole fractions of ethanol ( eth) for various 
water–ethanol mixtures

1 1.000 11 0.317 21 0.072
2 0.881 12 0.281 22 0.058
3 0.788 13 0.248 23 0.041
4 0.695 14 0.224 24 0.036
5 0.621 15 0.198 25 0.024
6 0.553 16 0.171 26 0.019
7 0.493 17 0.150 27 0.012
8 0.441 18 0.124 28 0.006
9 0.399 19 0.110→0.080 29 0.002
10 0.358 20 0.090 30 0.000

No. No.eth eth No. ethχ χ χ

χ

Taken and modified by permission of the Society for Applied 
Spectroscopy from J. Koshoubu, T. Iwata, and S. Minami, Appl. 
Spectrosc., 2000, 54, 148.

Fig. 2 (a) Mid-infrared absorption spectra of water–ethanol
mixtures with various molar fraction ratios listed in Table 1.  Taken
by permission of the Society for Applied Spectroscopy from J.
Koshoubu, T. Iwata, and S. Minami, Appl. Spectrosc., 2000, 54, 148.
(b) Mid-infrared absorption spectra of ethyl acetate–acetonitrile
mixtures with various volume ratios listed in Table 2.



shown in Fig.3
(1) PLS: Application of the standard PLS method as the

criterion minimum RMSEP for the calibration data sets given.
(2) MUVE-PLS: Application of MUVE-PLS method for the

calibration data sets.  This method is one that we have
reported previously.1

(3) USE-PLS: Application of the USE algorithm for the
calibration data sets given.  After the USE, the standard PLS
is carried out without the MUVE procedure.

(4) MUVE-USE-PLS: Application of the USE algorithm for the
calibration data sets which are processed by the MUVE
method.  Thereafter, the standard PLS is carried out.  This
method is one that we propose in this article.

(5) USE-MUVE-PLS: Application of the USE algorithm at first
for the calibration data sets given.  After the USE, the
MUVE-PLS is carried out.  This method is the same as the
MUVE-USE-PLS but the order of the MUVE and the USE
is reversed.

Results and Discussion

Figure 4 shows the application results of the MUVE-USE-PLS
method for the spectral data set of thirty kinds of ethanol–water
mixtures listed in Table 1.  Figure 4(a) shows a plot of the
prediction error e(i) as a function of sample number i, which is
obtained from the first iteration loop.  Two stepwise lines in the
figure indicate ±3σ(i) values, which are used as the criterion for
elimination of uninformative samples.  From the first iteration,

two samples, No.1 and No.19, were eliminated.  The sample
No.19, the concentration value of which was purposely
changed, was reasonably eliminated.  Figure 4(b) shows a result
obtained from the second iteration loop.  At this time, sample
No.2 was eliminated.  Figure 4(c) shows a result obtained from
the third iteration loop and indicates that no sample was
eliminated: Individual prediction errors were plotted within
±3σ(i) values.  Among the thirty calibration data, two samples
(No.1 and No.2) which were not modified at all were eliminated
as uninformative.  The reasons for the elimination might be (1)
the nonlinearity of spectral intensity and (2) the sparse data
density of χeth in the high concentration region.  In the MUVE-
USE-PLS algorithm, after all, the final PLS model is built by
using the retained 27 samples.

Optimal prediction results obtained from the five different
calibration methods are summarized in Table 3.  We can find
that the MUVE-USE-PLS method proposed in this article brings
about a smaller RMSEP value than that of our previous MUVE-
PLS method.  In other words, the elimination of the two
uninformative samples has improved the PLS model by a factor
of more than two in the RMSEP sense.  On the one hand, the
USE-MUVE-PLS method was not able to give a better result
than the MUVE-USE-PLS method.  This result indicates that
elimination of uninformative wavelength variables before that
of uninformative samples is important.  This is because the
number (1038) of wavelength variables are usually much larger
than that (30) of concentration variables.

Figure 5 shows the application results of the MUVE-USE-
PLS method for the spectral data set of eleven kinds of ethyl
acetate–acetonitrile mixtures listed in Table 2.  Figure 5(a)
shows a plot of the prediction error e(i) as a function of sample
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Table 2 Volume ratios of ethyl acetate ( ea) for various ethyl 
acetate–acetonitrile mixtures

No. ea

1 0.0
2 10.0
3 20.0
4 30.0
5 40.0
6 50.0
7 60.0
8 70.0
9 80.0→81.0
10 90.0
11 100.0

χ

χ

Fig. 3 Five calibration methods: (1) standard PLS method, (2)
modified UVE (MUVE) method, (3) USE-PLS method, (4) MUVE-
USE-PLS method, (5) USE-MUVE-PLS method.

Fig. 4 Application result of the MUVE-USE-PLS method for the
calibration data set of water–ethanol mixtures listed in Table 1: (a)
plot of prediction error e(i) vs. sample number i obtained from the
first iteration loop, (b) that obtained from the second iteration loop,
and (c) that obtained from the third iteration loop.  Two stepwise
lines in each figure indicate ±3σ(i) values as the cutoff levels.



number i, which is obtained from the first iteration loop.  Two
stepwise lines in the figure indicate ±3σ(i) values, which are
used as the criterion for elimination of uninformative samples as
before.  From the first iteration, the sample No.9 was eliminated
again.  The sample No.9, the concentration value of which was
purposely changed, was reasonably eliminated.  Figure 5(b)
shows a result obtained from the second iteration loop and
indicates that no sample was eliminated: Individual prediction
errors were plotted within ±3σ(i) values.  Among the eleven
calibration data, only No.9 was eliminated as uninformative.  In
the MUVE-USE-PLS algorithm, after all, the final PLS model
is built by using the retained 10 samples.  Optimal prediction
results obtained from the three different calibration methods are
summarized in Table 4.  The USE-PLS method and the USE-
MUVE-PLS method were not able to give a better RMSEP
value than the PLS method.  For the spectral data set of ethyl
acetate–acetonitrile mixtures, the MUVE-USE-PLS method

gave the smallest RMSEP value again among the five different
calibration methods.

Conclusion

In order to improve the prediction ability of the standard PLS
model, we have proposed a new algorithm where uninformative
samples are eliminated from the calibration data set.  We called
it the MUVE-USE-PLS method, which was an extended version
of the MUVE-PLS method that we had reported before.1 As the
criterion for the sample elimination, the value of 3σ was
compared with the individual prediction errors, where the value
of 3σ was calculated by a leave-one-out manner.  Thanks to the
procedure, extraordinary data or nonlinearity in the calibration
model were able to be eliminated sensitively.  This technique
might be useful in a practical analysis when a precise model is
required.

Abbreviations and Acronisms

PLS: Partial Least Squares
UVE: Uninformative Variable Elimination
MUVE: Modified UVE
USE: Uninformative Sample Elimination
PRESS: Prediction Error Sum of Squares
RMSEP: Root Mean Squares Error of Prediction
LV: Latent Variable
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Table 3 Optimal prediction results of experimental data set of water–ethanol mixtures obtained from different calibration methods

Calibration method RMSEPa Number of LVs Number of retained variables Number of retained samples

(1) PLS 1757 21 1038 30
(2) MUVE-PLS 1053 4 43 30
(3) USE-PLS 1521 15 1038 29
(4) MUVE-USE-PLS 442 4 43 27
(5) USE-MUVE-PLS 794 6 59 29

a. ×10–5.

Table 4 Optimal prediction results of experimental data set of ethyl acetate–acetonitrile mixtures obtained from different calibration 
methods

Calibration method RMSEPa Number of LVs Number of retained variables Number of retained samples

(1) PLS 60170 4 870 11
(2) MUVE-PLS 54151 4 30 11
(4) MUVE-USE-PLS 34926 4 30 10

a. ×10–5.

Fig. 5 Application result of the MUVE-USE-PLS method for the
calibration data set of ethyl acetate–acetonitrile mixtures listed in
Table 2: (a) plot of prediction error e(i) vs. sample number i obtained
from the first iteration loop, and (b) that obtained from the second
iteration loop.  Two stepwise lines in each figure indicate ±3σ(i)
values as the cutoff levels.


