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Abstract. – The equilibrium statistics of quantities computed by means of DPD (dissipative
particle dynamics) are usually very sensitive to the time step used in the simulation. In this
letter we show how to eliminate this sensitivity by considering the irreversible dynamics in DPD
as the limiting case of a thermostat that leaves Maxwell-Boltzmann distribution invariant even
for finite time steps. The remaining dependency on time step is solely due to the discretization
of the conservative part of the dynamics and is independent of the thermostat.

Introduction. – Dissipation particle dynamics (DPD) is a particle-based simulation tech-
nique. It was originally proposed to simulate fluids on a mesoscopic scale [1]. A DPD particle
models a blob of atoms that have effective, soft interactions. By means of dissipative and
fluctuating pair-forces, the equilibrium state of the system is made to satisfy the Boltzmann
distribution. Alternatively, one can view upon DPD as a thermostatic scheme in a molecular
dynamics (MD) code. In this case, the (conservative) interactions need not be soft.

Because DPD is particle-based, it does not have problems associated with the use of a grid
such as, e.g., lattice Boltzmann simulations. It is Galilean invariant and momentum is con-
served. This is different from Brownian dynamics, Stokesian dynamics and the Andersen ther-
mostat. Different from to the Nosé-Hoover thermostat, the DPD thermostating occurs locally
in space through pair interactions. Therefore, the dynamics is expected to be more realistic.

A drawback of DPD is that the results of the simulation depend on the chosen time step.
None of the DPD schemes proposed up to now give the exact Boltzmann distribution when
a finite time step is used. Lowe [2] has introduced a scheme that is similar to the Andersen
thermostat, but considers relative velocities of nearby pairs instead of the velocity of individual
particles. This scheme gives the Boltzmann distribution, even for finite time steps. It has
similar characteristics as DPD, but is not equivalent. In this paper we show how to generalise
the ideas of Lowe. The resulting scheme always gives correct equilibrium statistics and reduces
to the DPD equations in the limit of zero time step.
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In DPD the equations of motion for particle i have the form [1,3]

dri

dt
=

pi

mi
,

dpi =

[
fC

i −
∑

j

γ ωωω(rij) · vij

]
dt +

∑
j

√
2kT γ ωωω(rij) · dWij , (1)

where rij = ri − rj and vij = vi − vj .
A dissipative, or frictional, force acts between pairs of particles and is proportional to the

relative velocity. It depends on the connecting vector by means of the tensor ωωω(rij). In this
paper we consider the commonly used form

ωωω(rij) = ω(rij)r̂ij r̂ij , with ω(r) = max(1− r/rc, 0)2, (2)

where rij is the length of the connecting vector, r̂ij is the unit vector pointing in its direction
and rc is the characteristic interaction length.

The last term in eq. (1) is the fluctuating, or Brownian, force. Here dWij is a time
differential of a Wiener process. For one pair dWij = −dWji. An increment of the Wiener
process, ∆Wij , is a normally distributed random variable with variance 〈∆Wij∆Wij〉 = I∆t
and zero mean. For different pairs the Wiener processes are statistically independent. Time
increments over non-overlapping time intervals are also statistically independent.

The dissipative and the fluctuating term are related via a fluctuating-dissipation relation.
As a result, the DPD equations in the differential sample the canonical ensemble. In practice,
a finite time step discretization of the equations of motion is used. One usually finds a (large)
dependency of equilibrium properties on the chosen time step [4].

The generalised Lowe thermostat. – To eliminate this time step dependence, we will
introduce a new approach for deriving the DPD equations, starting from the Lowe thermo-
stat [2]. In the Lowe thermostat, one considers two particles i and j and re-equilibrates their
relative momentum using the Maxwell-velocity distribution. The thermostat leaves the total
momentum of the two-particle system unchanged. Another way of stating this is that the
centre-of-mass velocity of the two-particle system remains unchanged.

By splitting off the centre-of-mass velocity explicitly, one can rewrite the velocity of par-
ticles i and j as

vi = vcm,ij +
µij

mi
vij , vj = vcm,ij − µij

mj
vij , where

1
µij

=
1

mi
+

1
mj

, (3)

vcm,ij is the centre-of-mass velocity of the two particles and µij the reduced mass. In his
paper Lowe considers pairs that have the same mass, but we have generalised this a little bit
by allowing for different masses.

Since the thermostat leaves the centre-of-mass velocity unchanged, it is useful to rewrite
the two-particle Maxwell-Boltzmann distribution by using eq. (3) as

exp

[
− miv

2
i +mjv

2
j

2kT

]
= exp

[
− (mi +mj)vcm,ij

2kT

]
exp

[
− µijv

2
ij

2kT

]
. (4)

This shows that distribution of the centre-of-mass velocity and of the relative velocity are
statistically independent.

From eq. (4) combined with eq. (3), one can deduce a recipe to fully re-equilibrate the
relative velocity, but leaving the total momentum of the two-particle system unchanged. The
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recipe is to first compute the centre-of-mass of the two-particle system and next draw the
relative velocity from a normal distribution with variance kT/µijI. The new velocities vi and
vj can be constructed by means of eq. (3) by using the unchanged centre-of-mass velocity and
the freshly drawn relative velocity. If one wants the scheme to conserve angular momentum
only the relative velocity component in the direction of the connecting, r̂ij , vector should be
re-equilibrated. In this case, the scheme (in terms of momenta instead of velocities) is

p̃i := pi + µij

( − (vij · r̂ij) + vEQ
ij

)
r̂ij ,

p̃j := pj − µij

( − (vij · r̂ij) + vEQ
ij

)
r̂ij . (5)

Here the tilde indicates the equilibrated values. The quantity vEQ
ij is drawn from a normal

distribution with variance kT/µij .
The scheme eq. (5) is the core operation in the Lowe thermostat. The full procedure

proposed by Lowe [2] is to find all pairs with rij < rc, where rc is an interaction radius. For
all these pairs one decides with probability Γ∆t to perform eq. (5) or not.

Here we propose a new scheme that uses a generalisation of eq. (5) as its core operation.
Instead of performing a full re-equilibration of the relative velocity, we perform a partial
re-equilibration,

p̃i := pi + µij

( − α(vij · r̂ij) +
√
2α − α2 vEQ

ij

)
r̂ij ,

p̃j := pj − µij

( − α(vij · r̂ij) +
√
2α − α2 vEQ

ij

)
r̂ij , (6)

where 0 < α < 1. For α = 1, one recovers the Lowe method.
Similarly to eq. (5), this scheme leaves the centre of mass of the two-particle system

unchanged. Also the relative velocity in the two directions perpendicular to r̂ij remains
unchanged. Only the relative velocity in the r̂ij is changed. In this direction one finds that

ṽij := (1− α)vij +
√
2α − α2vEQ

ij . (7)

We claim that, when vij obeys the Maxwell-Boltzmann distribution, also the new relative ve-
locity obeys this distribution. The sum of two independent Gaussian variables is also normally
distributed. This means that we only have to consider the variance (and the mean which is
zero) to proof the claim,

〈ṽ2
ij〉 := (1− 2α + α2)〈v2

ij〉+ (2α − α2)
kT

µij
. (8)

When 〈v2
ij〉 = kT/µij , also 〈ṽ2

ij〉 = kT/µij . Furthermore, when applying eq. (6) in an iterative
manner starting from a non–Maxwell-Boltzmann distribution, the resulting distribution for
the relative velocity will converge toward the Maxwell-Boltzmann distribution. Since it only
acts on momenta, it does not change the spatial part of Boltzmann distribution and therefore
the full Boltzmann distribution is invariant under the transformation.

The combination of the instantaneous partial re-equilibration using eq. (6) at discrete
times and the exact solution of the equations of motion given by the Hamiltonian for the time
intervals in between builds the full Boltzmann distribution. (An extra constraint on the final
distribution is that the total momentum is an invariant.)

The advantage of this partial re-equilibration compared to the full re-equilibration of the
Lowe scheme is that one can choose the variable α. This variable α replaces the re-equilibration
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frequency Γ in the Lowe scheme. It is possible to make α depend on the distance between
pairs of particles and on the time step, ∆t, in a simulation. Due to this, one can easily choose
α such that in the limit ∆t → 0 the DPD equations are recovered.

The new scheme and the Lowe scheme (with a position-dependent Γ) cannot be made
equivalent. The reason is that in the Lowe scheme all moments of the velocity will converge
toward the equilibrium value with a rate proportional to Γ. In DPD higher-order moments
converge with a rate that is approximately nω, where n is the order of the moment. There
is probably no pressing physical reason to prefer one scheme above the other. The practical
reason to choose for the new method is the DPD limit.

The simulation algorithm. – Although the re-equilibration scheme leaves the Boltzmann
distribution invariant, there are no discretization schemes for conservative motion that have
this property for finite time steps. The simplest and most widely used integrator for re-
versible Hamiltonian dynamics is the Verlet scheme [5]. In our simulations every time step
the reversible part of the motion will be solved using the velocity Verlet algorithm,

pi

(
t +

1
2
∆t

)
= pi(t) +

∆t

2
fC

i (t),

ri(t +∆t) = ri(t) +
∆t

mi
pi

(
t +

1
2
∆t

)
,

pi(t +∆t) = pi

(
t+

1
2
∆t

)
+

∆t

2
fC

i (t +∆t). (9)

Next, the momenta will be partly re-equilibrated using

pi := pi +
( − aij(vij · r̂ij)∆t + bij∆Wij

)
r̂ij ,

pj := pj −
( − aij(vij · r̂ij)∆t + bij∆Wij

)
r̂ij , (10)

for all pairs i, j. To prevent biasing, we access the pairs i, j in a random sequence. The
coefficients aij and bij are chosen such that eq. (10) is of the form of eq. (5). This requirement
gives that

bij =

√
2kT aij

(
1− aij∆t

2µij

)
. (11)

For ∆t = 0, eq. (11) is identical to the relation between the dissipative and the fluctuating
part in DPD.

The first main differences with the usual DPD simulation routines is this ∆t correction
factor in bij . The other difference is that the velocity is updated subsequent to every individual
irreversible pair interaction (10). The recently proposed scheme by Shardlow [6] is similar in
this last respect. The combination of these two subtle changes gives that the thermostating
part of this new DPD discretization rigorously maintains the Maxwell-Boltzmann distribution.
The only possible deviation of the equilibrium statistics is due to the discretization errors made
by the Verlet algorithm, eq. (9).

In table I we give two possible choices for aij and bij that obey eq. (6) and give the
DPD frictional and fluctuating forces for ∆t → 0. The first possibility is obtained by simply
equating aij dt with the friction term in eq. (1) for pair i, j. The second possibility is obtained
by only considering one pair i, j and integrate the DPD equation for a time step, ∆t. The
advantage of the second expression is that in this case the irreversible motion imposes no
restriction on the choice of ∆t.
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Table I – Two possible choices of aij and bij that in the limit ∆t → 0 reduce to the DPD expressions,
but also for finite ∆t do not give rise to deviations in the equilibrium statistics.

Scheme aij b2
ij

I γω(rij) 2kTγω(rij)

(
1− γω(rij)∆t

2µij

)

II
µij

∆t

(
1− exp

[
− γω(rij)∆t

µij

])
kTµij

∆t

(
1− exp

[
− 2γω(rij)∆t

µij

])

One can approximate increments ∆Wij of the Wiener processes by non-Gaussian stochas-
tic variables with zero mean and the same second-order moment. We did simulations with
both normally and uniformly distributed increments and found virtually no differences in the
results.

Simulations. – In our simulation we fixed the units by setting kT = 1, m = 1 and rc = 1.
We consider two model systems that were also used in earlier studies [4]. The first system is
a model A. This is a, so-called, ideal DPD fluid with no conservative forces and with γ = 4.5
and n = 4. For model A, our method predicts all equilibrium properties without any time
step dependence because there are no conservative forces. For most DPD schemes the pair
correlation function g(r) is one of the quantities that is most sensitive to finite time step effects.

For model A the theoretical pair correlation function has no r-dependence: g(r) = 1. The
left graph of fig. 1 shows that the computed deviation from g(r) = 1 indeed obeys the expected
behaviour. There is only a noticeable deviation from g(r) = 1 very near r = 0. This deviation
is due to poor statistics in this region. In our simulations we computed the pair correlation
function by constructing a histogram with bins of width ∆r = 10−2. The number of particles
in a bin scales as N ∝ r2∆r and the relative error is proportional to 1/

√
N ∝ 1/r. Although

there is no time step dependence of the equilibrium properties for model A, the dynamical
quantities do show a dependence. The right graph of fig. 1 shows the time step dependence
of the self-diffusion.

Model B is as model A, apart from the fact that a pairwise repulsive conservative force of
the form is added:

fC(rij) = a
√

ω(rij)r̂ij , (12)

with a = 25. For model B there is a time step dependence of equilibrium properties. This
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Fig. 1 – a) For model A, deviation from the theoretical pair correlation g(r) = 1 is purely of statistical
origin. Three lines are shown for ∆t = 0.01, 0.1 and 0.5. b) The time step dependence of the self-
diffusion in model A when using the schemes I and II.
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Fig. 2 – The time step dependence of a) the temperature and b) the self-diffusion in model B. When
the Verlet step is subdivided into 10 smaller steps, the dependence almost disappears.

dependence is illustrated in the left graph of fig. 2 for the kinetic temperature. This dependence
is caused by the discretization of the conservative dynamics. This is illustrated by subdividing
the Verlet step into 10 sub-steps of size ∆t/10. Subsequent to the 10 Verlet sub-steps, the
partial equilibration step is performed once. The left graph of fig. 2 shows that the measured
temperature becomes almost independent of ∆t (for that range). Surprisingly, also dynamic
quantities improved upon subdivision of the Verlet step. The right graph of fig. 2 illustrates
this for the self-diffusion.

Discussion. – In a recent paper by Nikunen et al. [4], the authors present a comparative
study of the efficiency of several “novel” DPD integration schemes. The study includes, among
others, the Shardlow scheme [6] and also the Lowe scheme [2]. They concluded that the Lowe
scheme performs best (but it is not a discretization of the DPD equations). The Shardlow
scheme is next best and has the advantage that it does discretise the DPD equations. Our
method is in a way a combination of the two methods that uses the best from both.

The core operation in our method is a generalised Lowe thermostating which strictly
conserves the Maxwell-Boltzmann velocity distribution. Because we allow for the partial
equilibration of the (central) relative velocities of pairs, we can use the scheme to discretise the
DPD equations. Similarly to the Lowe scheme, the velocities of pair of particles are updated
subsequent to each pair equilibration. Also the irreversible interactions and the conservative
interactions are split and treated separately. The method has in common these two features
with the Shardlow method [6]. This is different from the usual DPD discretizations where first
the contributions of all pair interactions are added and subsequently the update of velocities
and positions are computed. The main difference of our method to Shardlow’s is a small but
important ∆t term in fluctuating term, eq. (11). Because of this term, our method exactly
preserves the Maxwell-Boltzmann distribution and Shardlow method does not.

The main conclusion that can be drawn from the Nikunen et al. paper [4] is that different
(advanced) DPD discretizations perform differently in predicting the equilibrium properties
in model A (e.g., constant g(r) and a kinetic temperature of 1). With respect to time step
dependence of the dynamic quantities, such as diffusion, in model A and both the equilibrium
and dynamic properties of model B, all the discretizations they considered perform equally
well (or bad). Our method ranks in this classification as the best because it exactly predicts
the equilibrium properties of model A independent of time step and the deviations in the
other categories are of the same magnitude as the other DPD discretization methods.

For model B, we showed that the major part of the deviations of both equilibrium quantities
and dynamical ones (up to ∆t = 0.01) are due to the inaccuracy of the Verlet algorithm. As



E. A. J. F. Peters: Elimination of time step effects in DPD 317

an alternative to dividing the Verlet step in smaller sub-steps (see fig. 2) we tested a fourth-
order simplectic integrator. This did not improve the results. We conclude therefore that
the measured deviations are due to the fact that for larger ∆t the time step is too close to
the boundary of the stability region of the Verlet (and also of the higher-order) scheme. The
results might be improved by using a (simplectic?) integrator with a larger stability region.

Although the proposed scheme predicts equilibrium properties exactly (assuming that the
conservative part is integrated exactly), dynamic quantities remain having a ∆t-dependence.
The smallest relevant time scale in the system is the momentum relaxation time,

τm = mγ−1n−1r−3
c , (13)

since the rate of relaxation in eq. (1) is γ/m and a particle interacts with about 4/3πnr3
c other

particles (n = ρ/m the particle number density). In any explicit integration method this time
scale has to be resolved.

To make matters worse, some authors [2, 7] have argued that DPD only is meaningful for
simulation of liquids when the Schmidt number, Sc, has a value typical of liquids, i.e., of the
order 1000. The Schmidt number is the ratio of the kinematic viscosity and the self-diffusion.
It is proportional to τ−1

m [7]. Combined with the fact that ∆t < τm, one finds that the CPU
time scales proportional to Sc. From a simulation point of view, one would therefore like to
use Sc of order one.

One should realise that the self-diffusion in liquids is that of individual molecules and
not of DPD blobs, so the particle-based Sc is ill-defined within a DPD simulation. The
centre-of-mass motion of a collection of neighbouring DPD particles is not influenced much by
self-diffusion of individual DPD particles, because the total momentum is locally conserved.
For larger-scale motion D is irrelevant. An indication for this is that it does not appear in
the Navier-Stokes equation. To avoid non-hydrodynamic modes at small length scales, one
might prefer the use of Sc > 1. There is, however, no need to simulate “realistically” large
Sc ≈ 1000 and waste CPU time.

If one wants to perform accurate simulations with ∆t > τm, some kind of implicit scheme
needs to be used. One might think of using a multiscale approach where at small length scales
the force balance between dissipative, fluctuating and conservative forces is approximately
solved. This is similar to, e.g., Brownian dynamics. At larger length scales inertial effects
should be taken into account. Inertial effects only become important at length scales where
the Reynolds number associated with that scale becomes of order 1.
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