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Elitist Binary Wolf Search Algorithm 
for Heuristic Feature Selection in 
High-Dimensional Bioinformatics 
Datasets
Jinyan Li1, Simon Fong1, Raymond K. Wong2, Richard Millham  3 & Kelvin K. L. Wong4,5

Due to the high-dimensional characteristics of dataset, we propose a new method based on the Wolf 

Search Algorithm (WSA) for optimising the feature selection problem. The proposed approach uses 

the natural strategy established by Charles Darwin; that is, ‘It is not the strongest of the species that 

survives, but the most adaptable’. This means that in the evolution of a swarm, the elitists are motivated 

to quickly obtain more and better resources. The memory function helps the proposed method to 

avoid repeat searches for the worst position in order to enhance the effectiveness of the search, 
while the binary strategy simplifies the feature selection problem into a similar problem of function 
optimisation. Furthermore, the wrapper strategy gathers these strengthened wolves with the classifier 
of extreme learning machine to find a sub-dataset with a reasonable number of features that offers the 
maximum correctness of global classification models. The experimental results from the six public high-
dimensional bioinformatics datasets tested demonstrate that the proposed method can best some 

of the conventional feature selection methods up to 29% in classification accuracy, and outperform 
previous WSAs by up to 99.81% in computational time.

Data size can be measured using two aspects: the number of features and the number of samples. A large num-
ber of features can cause serious problems, such as the Curse of Dimensionality1, and the dimensions of feature 
spaces should not be too high, due to an empirical axiom in machine learning2. In recent years, dataset sizes have 
skyrocketed in my many bioinformatics applications3, such as text mining, image processing, gene chromosome 
engineering and biological engineering. Given that it is di�cult to determine whether the extracted features have 
enough information, to improve data identi�cation, feature extraction is used to extract as many features as pos-
sible. �is operation increases dataset dimensions with some invalid, nonrelated and redundant features. �ese 
massive datasets can then lead to serious problems for and challenges to the performance and measurability of 
machine learning algorithms.

Feature selection is a commonly and e�ectively used method of feature dimension reduction in selecting a 
suitable low-dimensional sub-dataset from an initial high-dimensional dataset4, 5. In machine learning, feature 
selection can be expressed as follows. Given machine learning algorithm A, dataset D and d as taken from a cate-
gorised sample space with the features F1, F2, F3, …, Fn, there is an optimal sub-dataset Dx that can o�er best evo-
lution indicator E = E(A, D). �e meanings of feature selection are as follows. First, reduce the negative e�ects of 
invalid, nonrelated and redundant features to improve accuracy. Second, use a low-dimensional dataset to replace a 
high-dimensional dataset, which decreases the computational cost and improves adaptability. Feature selection can 
be considered an optimisation problem. �ere are N! / [(N − n)! × n!] candidate solutions to select n sub-features 
from N features in the search space. For instance, if n = 10 and N = 100, the number of candidate solutions is 
1.731e + 13. Furthermore, the number of n is an unde�ned value, thus we must �nd the best combination of fea-
tures at the best length. In addition, previous researchers have proven that searching for the best sub-dataset is an 
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NP problem6, which means that there are no other methods to guarantee that the optimal solution must be found, 
other than the exhaustive method. However, the dimensions increase as the dataset grows, thus the huge compu-
tational cost of the exhaustive method is not practical for real applications. Researchers are now studying swarm 
intelligence algorithms, which are heuristic methods, to �nd an optimal or second-best solution.

There are several versions of heuristic algorithms for feature selection. Kennedy and Russell created a 
well-known method called Binary Particle Swarm Optimisation (BPSO)7, and Russell extended the BPSO research 
to feature selection8, which changed the traditional feature selection pattern to processing a binary optimisation 
problem. Recently, Tang proposed the Wolf Search Algorithm (WSA), inspired by the behaviour displayed by 
wolves while hunting9, 10. Its jump mechanism helps the wolves e�ectively avoid falling into a local optimum. In 
previous research, WSAs have adopted wrapper strategies with di�erent traditional classi�ers, signi�cantly exceed-
ing some well-known swarm-based feature selection methods in classi�cation performances11, 12. However, the 
high computational time cost is the problem requiring optimisation. �e new binary version of the WSA for feature 
selection proposed in this paper is called the Elitist Binary Wolf Search Algorithm (EBWSA). �e size of the search 
space is 2 × N, where N denotes the number of features. In such cases, the program avoids simultaneously consid-
ering the best length and combination of sub-features from the 2N − 1 possible candidate solutions. Moreover, the 
elitist mechanism drives the better wolves to lead the whole population toward a better solution within a shorter 
computational time. �is type of competitive strategy also accelerates the elimination and rebirth of the worst 
wolves. In addition, the memory function increases the e�ective and positive search by considering the previous 
worst positions in the limited memory, because an overly long memory length increases the time cost of input/
output (I/O). Compared with other non-iterative traditional methods, such as BPSOs and WSAs, the proposed 
method could improve the accuracy of classi�cation models with high computational and convergence speeds.

As mentioned above, the classical de�nition of feature selection is selecting a sub-dataset d with f features from 
the primary dataset D with F features, f ≤ F, such that d exhibits optimal performance in all of the sub-datasets 
with f features from the primary dataset6. Based on the basic framework of feature selection, four necessary 
steps are proposed for the feature selection procedur13: subset generation, subset evaluation, stop criteria and 
results validation. Subset generation is a search process that uses corresponding strategies to select preselected 
sub-datasets. �e evaluated metrics of each preselected sub-dataset must then be compared with the same metrics 
for the current best sub-dataset. If a preselected sub-dataset is better than the current best, the former replaces 
the latter. Subset generation and evaluation cycle until the stop criteria are met. Finally, the selected sub-dataset 
is validated to build the model.

�erefore, during the feature selection process, in addition to �nding a suitable algorithm to select an optimal 
sub-dataset with distinguished selected features in the shortest time, cost is very important, and the evaluation 
metrics are essential in estimating whether the selected features are optimal. �us, feature selection approaches 
can be divided into two types: those that function according to the strategy for searching subsets, and those that 
do so according to the evaluation standard for features.

�ere are three strategies for searching subsets: global optimisation14, heuristic15 and random2. �e exhaustion 
method traverses all of the feature combinations in a feature space, making it one of the most straightforward 
approaches. However, due to the computational complexity of O(2N), the exhaustion method is infeasible when the 
objective is a high-dimensional dataset. �e Branch and Bound algorithm16, 17 is the only method that uses a global 
optimisation search strategy to obtain an optimal solution. Compared with exhaustion, Branch and Bound reduces 
the time cost but uses monotonic evaluation functions, which can be di�cult to design. Moreover, its e�ciency is 
still signi�cantly lower when tackling high-dimensional problems. �e heuristic searching strategy is an approx-
imation algorithm that adopts a compromise strategy between searching performance and computational com-
plexity. It generally obtains a solution that is approximated to the optimal, and its computation complexity is equal 
to or smaller than O(N2). Sequential forward selection (SFS) and sequential backward selection (SBS)18 are two of 
the most typical heuristic searching strategies. SFS uses a top-down searching strategy in which the initial selected 
feature set is empty, and a feature is added to the set in each searching time until the set reaches the requirement. 
Generalised SFS is the accelerated version of the strategy. SBS is the opposite of SFS, in that the whole dataset 
deletes the features until the remaining features satisfy the stop criteria. �e corresponding accelerated version is 
Generalised SBS. SFS ignores the correlations between features, and while SBS’s performance and robustness are 
preferable to those of SFS, the former needs more computational time. A single optimal combination of features is 
obtained by calculating and ranking the estimated value of each feature to obtain a combination that comprises the 
d preferential features. �is method can only achieve a good combination of features when the estimated value of 
a single feature can be summed or multiplied. A random strategy is one in which the sub-features are totally ran-
domly generated. In probability random feature selection, sub-features are chosen based on the given probability. 
Although the computational complexity of a random search strategy is still O(2N), it can drop to less than O(2N) if 
the maximum iteration is de�ned. Feature selection is essentially a combinatorial optimisation problem that can 
be tackled using non-global optimal target search methods and swarm intelligence random algorithms. �erefore, 
this strategy combines feature selection, with the simulated annealing algorithm19, or genetic algorithm (GA)20, or 
particle swarm optimisation (PSO) algorithm21 or the bootstrap approach22, 23. Intelligence algorithms always have 
multiple parameters that a�ect and determine whether a method can achieve optimal performance. �erefore, the 
performance of these intelligence algorithms directly a�ects the selection of optimal sub-features.

At present, the latter two strategies have not been shown to guarantee an optimal solution. However, feature selec-
tion based on swarm intelligence algorithms with random and reasonable heuristic searching strategies have been 
widely applied11, 12 to practical applications in �nding second-best solutions with relatively fast computational speeds.

�e evaluation standards for features can be grouped into �lter24 and wrapper25 approaches. �e wrapper 
approach uses the performance of machine learning algorithms as evaluation standards to estimate the selected 
features. In contrast, the �lter approach is dependent without learning algorithms. Hence, compared with the 
�lter approach, the wrapper approach is more complex but can achieve sub-features with better performance. 
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A feature selection methods-based �lter approach has a higher computational e�ciency to evaluate the qual-
ity of features with certain metrics, such as distance26, information gain27, correlation28 and consistency29. �e 
RELIEF30 series algorithms are commonly used for �lter approach. A RELIEF algorithm aims to solve binary 
class datasets. First, it randomly selects m samples from the training dataset based on: the di�erence between each 
selected sample with its two nearest samples, respectively, in the same and di�erent classes, to calculate correla-
tions between each feature of the selected samples and each class; then, the average values of multiple selection 
as the weights of each feature; and �nally, the algorithm obtains the correlation between each feature and class. 
Selecting the features with higher weights as selected feature combinations, RELIEFF31 is an extended version for 
solving multi-class and regression problems. It estimates the selected features as the closed samples’ identi�cation 
abilities; that is, the samples with better feature combinations in the same classes are closed in the search space, 
and vice versa.

�e wrapper approach in feature selection depends on the machine learning algorithm. It uses the selected 
sub-feature set to train the machine learning algorithm directly, then estimates the quality of the selected 
sub-feature set’s performance in testing the machine learning algorithm. �e wrapper approach can achieve a 
signi�cant solution when it combines machine learning (classi�cation) and random strategy algorithms, which 
are mentioned in the previous section together. Previous researchers have combined GA and decision trees into 
classi�cation models that select the optimal combination of features with the lowest error rate32; moreover, they 
have combined di�erent classi�ers – such as neural networks, Naive Bayes11, 12 and support vector machines32 
– with random strategy algorithms, such as PSO and bat-inspired (BAT) algorithms11 to optimise the wrapper 
approach. �erefore, researchers are constantly trying to optimise machine learning and random strategy algo-
rithms to enhance their computational e�ciency and the quality of selected features. Given that the wrapper 
approach requires that these classi�ers be constantly called and trained to verify and evaluate the performance of 
selected sub-feature sets, it takes more computation time than the �lter approach. �e wrapper approach o�ers 
higher accuracy, but when tackling high-dimensional datasets, the �lter approach is more commonly used.

Results
The classification results are assessed by different training and testing parts. We perform a strict 10-fold 
cross-validation33, 34 to test the corresponding performance of the current dataset classi�cation model. �e data-
set is randomly subdivided into ten parts, based on averages, and each part takes a turn being the testing dataset 
with the other nine parts as training datasets in the repeated ten-times classi�cations. Accuracy and other perfor-
mances of this cross validation process are then averaged from these ten classi�cations. To maintain the fairness of 
the experiment, because our proposed method, PSO, BPSO and WSA are random searching strategy algorithms, 
their experiments are also repeated ten times, and the �nal results are used as the mean value.

Tables 1 to 3 record the accuracy, dimension (%) and kappa statistics35, 36 of the selected sub-datasets with dif-
ferent methods. Tables 4 and 5 present the precision and recall values, respectively, to help us evaluate and compare 
these methods. Given the randomness of swarm intelligence algorithms, the results of this category in this time 
are the average values of their o�sets (stand deviations) to verify and re�ect the impartiality of our experiment.

Accuracy ALLAML GLI_85 Prostate_GE SMK_CAN_187 Colon Leukemia

ELM 0.61 0.66 0.53 0.5 0.52 0.6

CHSAE 0.65 0.64 0.57 0.50 0.71 0.69

INFORGAE 0.68 0.67 0.61 0.50 0.63 0.72

RFAE 0.56 0.61 0.52 0.48 0.68 0.58

PSO 0.71 ± 0.03 0.69 ± 0.05 0.66 ± 0.04 0.53 ± 0.02 0.64 ± 0.06 0.68 ± 0.05

BPSO 0.70 ± 0.06 0.70 ± 0.06 0.7 ± 0.08 0.54 ± 0.04 0.66 ± 0.02 0.68 ± 0.05

WSA 0.72 ± 0.04 0.73 ± 0.04 0.66 ± 0.11 0.56 ± 0.04 0.66 ± 0.06 0.68 ± 0.05

EBWSA 0.78 ± 0.08 0.74 ± 0.03 0.81 ± 0.04 0.66 ± 0.06 0.68 ± 0.04 0.79 ± 0.06

Table 1. Accuracy of all datasets with di�erent methods (best results highlighted in bold).

Dimension ALLAML GLI_85 Prostate_GE SMK_CAN_187 Colon Leukemia

ELM 7130 22284 5967 19994 2001 7071

CHSAE 1026 192 1354 1867 28 1250

INFORGAE 2432 3562 2451 1727 220 1321

RFAE 5898 16780 4514 12525 1320 5569

PSO 3674.1 ± 1816.1 12456.5 ± 6205.8 2018.9 ± 1742.6 9505.2 ± 7589.8 1025.8 ± 687.3 2526.9 ± 2057.1

BPSO 3674.1 ± 566.5 12456.5 ± 5619.5 2018.9 ± 2258.6 9505.2 ± 5127.3 1025.8 ± 479.1 2526.9 ± 2339.6

WSA 3925.7 ± 3401.21 11174.3 ± 7988.38 2816.6 ± 2866.1 6406.4 ± 8237.1 1823.1 ± 368.3 5365.1 ± 2900.9

EBWSA 1098.4 ± 2179.4 8267.2 ± 5777.9 43.2 ± 59.4 25.3 ± 22.6 818.4 ± 554.6 972.5 ± 1554.1

Table 2. Dimensions of all datasets with di�erent methods.
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�e classi�cation accuracy of the original all datasets for ELM is around 0.5 and 0.6. �e �rst three methods 
with the heuristic and �lter strategies improve the accuracy a little, whereas the RFAE obtain worse accuracy 
while processing high-dimensional datasets. �e CHSAE is the best of the �rst three. It evaluates the chi-squared 
statistics of each feature with respect to the class. As mentioned in Section 2, heuristic searching strategies com-
bined with �lters can achieve some good e�ects, but random searching strategies based on a wrapper approach 
can obtain better feature sets with higher accuracy. �eir worst algorithm (PSO) is still better than the CHSAE. 
Combining the results shown in Fig. 1 with the values in Table 1, and WSA, the binary version of PSO and BPSO 
are all better than PSO, which is a typical, e�ective swarm intelligence algorithm. However, it can be observed 
that WSA and BPSO do not increase the classi�cation accuracy by much, whereas the features selected by the 
EBWSA exhibit more than a 10% increase in classi�cation accuracy. �e Kappa statistic is a value to measure the 
robustness of classi�cation models35, with a bigger value indicating greater reliability. Table 3 and Fig. 2 illustrate 
that the robustness of the classi�cation model for the original high-dimensional bioinformatics dataset is weak. 
A�er feature selection, the Kappa statistic of each classi�cation model is enhanced for the bioinformatics dataset 
SMK_CAN_187 with �lter methods. �e EBWSA cycle in Fig. 2 is much bigger than the others, along with the 
point of the CHSAE for the Colon dataset.

Table 2 records the selected optimal features of each method and dataset, and Fig. 3 presents the percentage 
of the size of the original feature set that the selected optimal feature subset contains; that is, the length of the 
selected feature subset in the percentage of the maximum dimension of the original feature set37 or % dimension. 
It can be observed that the dimensions of experimental datasets are in the thousands and tens of thousands. 
Figure 3 intuitively re�ects how the CHSAE and EBWSA selected smaller, more precise particles of feature sets, 
resulting in superior performances with respect to the �lter and wrapper approaches. However, the lengths of 
selected features do not imply that more re�ned feature sets perform better, because INFORGAE was much worse 
than most of the other methods with longer lengths.

Kappa ALLAML GLI_85 Prostate_GE SMK_CAN_187 Colon Leukemia

ELM 0.16 0.17 0.12 −0.0174 −0.06 0.06

CHSAE 0.37 0.19 0.14 −0.0165 0.39 0.37

INFORGAE 0.39 0.24 0.22 −0.0149 0.23 0.43

RFAE 0.06 0.08 0.04 −0.0427 0.28 0.1

PSO 0.36 ± 0.07 0.21 ± 0.12 0.32 ± 0.08 0.07 ± 0.05 0.21 ± 0.14 0.30 ± 0.11

BPSO 0.33 ± 0.12 0.25 ± 0.15 0.39 ± 0.17 0.08 ± 0.07 0.26 ± 0.06 0.30 ± 0.10

WSA 0.38 ± 0.08 0.30 ± 0.10 0.32 ± 0.21 0.12 ± 0.09 0.26 ± 0.14 0.30 ± .012

EBWSA 0.52 ± 0.08 0.34 ± 0.1 0.61 ± 0.21 0.32 ± 0.09 0.29 ± 0.14 0.53 ± 0.12

Table 3. Kappa statistics for all datasets with di�erent methods (best results highlighted in bold).

Precision ALLAML GLI_85 Prostate_GE SMK_CAN_187 Colon Leukemia

ELM 0.68 0.34 0.46 0.33 0.62 0.74

CHSAE 0.82 0.42 0.56 0.34 0.73 0.68

INFORGAE 0.62 0.5 0.66 0.37 0.65 0.7

RFAE 0.59 0.35 0.48 0.41 0.78 0.66

PSO 0.76 ± 0.04 0.34 ± 0.09 0.62 ± 0.06 0.41 ± 0.11 0.72 ± 0.07 0.77 ± 0.07

BPSO 0.74 ± 0.07 0.38 ± 0.12 0.65 ± 0.15 0.48 ± 0.10 0.72 ± 0.02 0.76 ± 0.08

WSA 0.78 ± 0.05 0.40 ± 0.09 0.64 ± 0.13 0.47 ± 0.14 0.75 ± 0.05 0.75 ± 0.05

EBWSA 0.85 ± 0.10 0.47 ± 0.11 0.81 ± 0.07 0.65 ± 0.10 0.78 ± 0.04 0.83 ± 0.07

Table 4. Precision of all datasets with di�erent methods (best results highlighted in bold).

Recall ALLAML GLI_85 Prostate_GE SMK_CAN_187 Colon Leukemia

ELM 0.71 0.45 0.52 0.46 0.62 0.65

CHSAE 0.72 0.44 0.56 0.46 0.8 0.82

INFORGAE 0.81 0.46 0.58 0.47 0.74 0.84

RFAE 0.62 0.36 0.51 0.45 0.73 0.68

PSO 0.78 ± 0.03 0.51 ± 0.11 0.67 ± 0.05 0.53 ± 0.03 0.72 ± 0.06 0.75 ± 0.04

BPSO 0.75 ± 0.04 0.53 ± 0.12 0.70 ± 0.08 0.53 ± 0.05 0.74 ± 0.03 0.76 ± 0.04

WSA 0.80 ± 0.03 0.60 ± 0.10 0.66 ± 0.11 0.55 ± 0.04 0.74 ± 0.06 0.76 ± 0.05

EBWSA 0.82 ± 0.05 0.59 ± 0.08 0.80 ± 0.04 0.65 ± 0.06 0.75 ± 0.04 0.84 ± 0.04

Table 5. Recall of all datasets with di�erent methods (best results highlighted in bold).
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Discussion
It is indeed that �lter methods are much faster than the wrapped random searching algorithms. �e latter needs 
to call the classify tens of thousands of times. However, on the premise of the reasonable and acceptable time cost, 
wrapper is able to obtain better performances. Conventional WSA for feature selection is veri�ed that it better 
than PSO and BAT with di�erent classi�ers in classi�cation performance11. WSA’s shortcoming is that the large 
computation time because of its multi-leader and escape mechanism in a vast search space. Figure 4 displays the 
time cost of the proposed method with other three comprised swarm intelligence algorithms, the unit of time 
cost is the second. It is signi�cantly observed that super time cost of WSA, and the extremely and e�ectively 
shorten the consumption time of EBWSA. Although EBWSA needs more time than PSO and BPSO, but they are 

Figure 1. Average classi�cation accuracy of all dataset.

Figure 2. Average Kappa value of classi�cation of all dataset.
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su�ciently close to each other In addition, the experimental results indicate that it even enhances the computa-
tional up to 99.81% than WSA. Furthermore, EBWSA also could obtain the better the second-best optimal feature 
set with higher classi�cation performance, it is displayed in Fig. 5. Figure 5 is the average accuracy, kappa and 
dimensions (%) in total of each method, besides RFAE, the results demonstrated the gradual growth from the le� 
to the right. Wrapper is better than �lter to have better selected features with higher performance of the classi�ca-
tion model. Swarm intelligence algorithms is able to select more suitable length of selected features.

The conclusions are as follows. This paper proposes the EBWSA to optimise the feature selection for a 
high-dimensional bioinformatics dataset. Based on the WSA, the EBWSA selects a better second-best feature set 
with higher accuracy for classi�cation within a more reasonable computation time. It uses the wrapper strategy 
that combines the EBWSA and ELM classi�cation to implement the feature selection operation. �e elitist strat-
egy motivates stronger wolves to �nd better solutions in severe environments to accelerate population updates, 
and while the weaker wolves are assigned to some resources when the environment improves, the resources are 
executed according to variable weights for each wolf as their �tness values change. Based on their searching abil-
ities, di�erent wolves have di�erent step sizes, and the memory function makes the search more e�ective by pro-
moting the convergence of the population. Meanwhile, the binary approach diverts the feature selection problem 
to a similar function optimisation problem to obtain an optimal feature set with optimal classi�cation accuracy 
and optimal length. �e experimental results show that the wrapper approach is better than the �lter approach 
in classifying selected features within a longer computing time. However, with an extremely high-dimensional 

Figure 3. Average dimension (%) of all dataset.

Figure 4. Consumption time by each swarm intelligence algorithm (i.e. PSO, BPSO, WSA, and EBWSA).
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dataset, the wrapper approach is more e�ective and useful than the �lter approach within a reasonable time 
(when faced with tens of thousands of features, a few hundred seconds is needed to obtain a better solution). �e 
EBWSA outperforms other conventional feature selection methods in classi�cation accuracy by up to 29%, and it 
outperforms the previous WSA by up to 99.81% in computational time.

Methods and Materials
Elitist Binary Wolf Search Algorithm. As mentioned, the random strategy algorithm is an essential part 
of the wrapper model in feature selection. Di�erent new algorithms are proposed to improve feature selection. 
�e swarm intelligence algorithm, also called a bio-inspired algorithm, is a unique random strategy algorithm 
that exhibits signi�cant performance (some examples include PSO38 and BAT39. As their names re�ect, they are 
inspired by natural biological behaviour and use swarm intelligence to �nd an optimal solution. �e WSA10 is 
a new swarm intelligence algorithm inspired by the hunting behaviour of wolves. However, it di�ers from the 
other bio-inspired algorithms because the behaviour in the WSA is assigned to each wolf rather than to a single 
leader, as in the traditional swarm intelligence algorithms. In other words, the WSA obtains an optimal solution 
by gathering multiple leaders, rather than by searching in a single direction. Figure 6 uses an example to show the 
hunting behaviour of WSA in 2-D.�e original WSA observes three rules and follows the related steps to achieve 
the algorithm37:

Each wolf has a full-circle visual �eld in full rage with v as the radius. Here, the distances are calculated by 
Minkowski distance, as in Equation 1:
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where x(i) is the current position, X denotes all of the candidate neighbouring positions, x(c) is one of X and µ is 
the order of dimensional space. Each wolf moves towards its companions, who appear within its visual circle, at a 
step size that is usually smaller than its visual distance.

Equation 2 is the absorption coe�cient, where βo is the ultimate incentive and r is the distance between the 
food or the new position, and the wolf. Equation 2 is needed because the distance between the current wolf ’s 
position and its companion’s position must be considered. �e distance and attraction are inversely proportional, 
so the wolf is eager to move towards the position with the minimum distance.

β β= .r( ) (2)o
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Figure 5. Average accuracy, Kappa and Dimensions (%) of the ELM, CHSAE, INFORGAE, RFAE, PSO, BPSO, 
WSA, and EMWSA methods.
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where the escape () function obtains a random position to jump to with a minimum length constraint, x(j) is the 
peer with a better position and better �tness than x(i) and s and rand() in equation 4 are the step size and a rand 
value within −1 and 1, respectively. Actually, the step size of the WSA is equal to the velocity of PSO. An escape 
machine e�ectively reduces the population until it falls to the local optimum.

�e WSA outperforms the other swarm intelligence algorithms in accuracy of feature selection when used 
with the wrapper strategy35, 37. However, the multi-leader searching strategy and escape mechanism result in the 
need for better performance from selected features with a higher time cost. In a vast search space, a �xed step size 
limits wolves’ visual �elds and movement speeds. �e population of wolves converges slowly towards the optimal 
solution, and as mentioned, the wrapper strategy typically needs more computation time. �erefore, we proposed 
the Elitist Binary Wolf Search Algorithm (EBWSA) to improve the performance and reduce the time cost of the 
WSA for feature selection.

�e EBWSA, which is based on the WSA10, uses the weight of each wolf while searching, to determine the 
step size dynamics for their �tness values in the current iteration, to update their own weights 44. In initiation, 
each wolf is treated as a weak searcher. During the process of searching, the stronger wolves who �nd the better 
results with weights that are less than the half of the total gain more weight and become Elitist wolves. In contrast, 
under this mechanism, the wolves with poor ability weaken, as their Elitist counterparts take more than half of the 
total weight. If the Elitist wolves take less than half the total weight, it means that the living environment is poor, 
which will motivate them to gain more resources. When the living environment improves, the weak wolves gain 
resources to balance the whole population. �is simulates Darwinian evolution40; speci�cally, natural selection 
and survival of the �ttest. To avoid throwing the whole population out-of-balance, a weak wolf will be eliminated 
and reborn as a stronger wolf while its weight touches the elimination and reborn threshold for searching, the 
normalized operation of weights will redistribute the weights to each wolf. Meanwhile, if any wolf ’s weight is 
equal to or more than half of the whole, its weight will be reset and the weights of the population will be redis-
tributed. Inspired by the Eidetic WSA9, the EBWSA also has a memory function to avoid repetition and promote 
e�cient searching. �is function records the worst position of the wolf at each iteration, so that wolves in subse-
quent iterations will keep away from the previous worst positions. To reduce the time cost, several earlier records 
of the worst memory position will be forgotten once the default memory length is full. �is operation makes the 
whole population more intelligent to ful�l the imitated population in nature with the memorising–forgetting 
mechanism. Figure 7 in the diagram below demonstrates the 2-D hunting behaviour of a pack of �ve wolves with 
their weights being adjusted in an iteration according to EBWSA.

As the example was shown in Fig. 7. In the last iteration, if the total weight of better wolves is smaller than 0.5, 
the better wolf means its �tness is better than its previous iteration. Determine the current living environment 
is worse. �e better wolf ’s weight will be increased in the next iteration. In this diagram, w4 and w5 are better 
wolves in worse living environment in current iteration. On the contrary, if the total weight of the better wolves is 
bigger than 0.5 in the last iteration, the worse wolves will get some weights from the better wolves to increase their 
weights in better living environment, at this time, w1 and w2 are better wolves in current iteration. In addition, if 
total weight of better wolves is equal to 0.5, the wolves will keep their own weight. It needs to be noted that, if the 
weight of w4 or w5 bigger than 0.5, the whole weight will be re-given; else if the weight of w1 and w2 smaller than 
one percent of the initial weight, the whole weight will be re-assigned and these two positions will be reborn. �e 
following are the weight variation steps:

 1. �e total weight is 1, each wolf ’s weight is 1/N (Wi) in the initial phase and N is the size of the population.
 2. For m = 1,…, M (M is the maximum iteration time)

Figure 6. Hunting behaviors of WSA (based on an example of a population of �ve wolves in iteration).
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when γ < 0.5, σm > 0. If γ decreases, σm increases. �is means that if the current population of Elitist wolves 
takes less than half of the total resources, then the living environment is worse. If γ is bigger than 0.5, it 
indicates that the environment is good.

 c) Update the distribution of weights for the wolves. If γ is smaller than 0.5, then σm has a positive value. If σe m 
is bigger than 1, then 
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m i1,  will increase in the next iteration. In other words, in a poor living environ-
ment, the weights of these wolves must be increased to motivate them. In contrast, the weaker wolves will 
have some weights that equal the population in a better environment. When the population is weak overall, 
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need help.
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�e updated formulas in equations (3) and (4) become equations (9) and (10). In equation 9, each wolf needs 
to multiply the corresponding weights to update its position. �e dynamic weight changes the �xed value of the 
step size to realise the Elitist wolf, who is able to go further in its searching. �e total value of the weights is nor-
malised in equation (8). �us, wi j,  is less than 1, and ⁎w Ni j,  is a value �oating around 1 to change the step size.
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�e EBWSA optimises the feature selection process into a binary optimisation problem. �e numbers of fea-
tures stand for the dimensions and positions of each feature. �is means that in the EBWSA’a feature selection, 

Figure 7. Hunting behaviors of EBWSA (based on an example of a pack of �ve wolves in an iteration).
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the position of each individual particle can be given in binary form (0 or 1), which adequately re�ects the straight-
forward ‘yes/no’ choice of whether a feature should be selected. �e scope of a position is from −0.5 to 1.5. �en, 
equation (9) is used to calculate the binary value of the position.

=






= . ≤ < .

=
X round x x

otherwise
( ) 1 0 5 1 5

0
,

(11)
i
j i

j
i
j

where xi
j denotes the particle x(i) in position(dimension) j and the round() function calculates the binary value 

Xi
j of the corresponding position to achieve the binary optimisation operation.
Figure 8 presents a wolf ’s movement in an iteration of a binary strategy. �e EBWSA’s feature selection can be 

regarded as a high-dimensional function optimisation problem, wherein the values of the independent variables 
are 0 or 1. In addition, values of 0 and 1 can also be given to dependent variables calculated by the rounding 
function, whose independent variables can be assigned from −0.49 to 1.49. �e step size of each position is a very 
small value in a �xed range. At the beginning of Section 2, we described the classical de�nition of feature selection 
as selecting a sub-dataset d with f features from the primary dataset D with F features, f ≤ F, where d has the opti-
mal performance in all of the sub-datasets with f features from the primary dataset6. �us, we know that the value 
of f is a de�ned value in this de�nition, and while it should be a variable, that means that algorithms should �nd 
the optimal length with an optimal combination. �e EBWSA repairs this problem to obtain the optimal feature 
set using a similar method of function optimisation. Figure 9 illustrates the weighted EBWSA process, and we 
present pseudo EBWSA code.

Figure 8. �e variation of a wolf ’s position during iteration.

Figure 9. Flow chart of the elitist process of WSA.
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EBWSA Pseudo code

Objective function f(x), x = (x1, x2,..xd)

Initialize the population of wolves xi(i = 1,2,.., M)

De�ne and initialize parameters:

�e memory length

T =  Maximum iterations

r = radius of the visual range

s = basic step size of each wolf

W= (w1,1, w2,1, w3,1,…, wi,j,…, wM,T)

// di�erent weights of di�erent wolves in di�erent iteration, i∈M and j∈T

w1,1 = w2,1 = w3,1, = , wM,1 = 1/M

pa= a user-de�ned threshold between 0 and 1

1. Initial the �tness of wolves with their own weights.

2. While(j<T and stopping criteria is not satis�ed)

3.   pp�tness = �tness; //store the previous �tness in pp�tness

4.   FOR i =1: W // for each wolf

5. Prey_new_food_initiatively × wi,j

6. Generate_new_location// check the location is in the memory or not, if yes, repeat generate new location

7.   IF the distance of two wolves are less than r and one is better than the other one

8. the better one will attract the other one to come over

9. ELSE IF

10. Prey_new_food_initiatively × wi,j

11. END IF

12.   Generate_new_location

13.   IF (rand > pa)

14. �is wolf will escape to a new position // check the location is in the memory or not,

if yes, repeat generate new location

15. END IF

16.   IF current �tness of xi stronger than the previous

17.    Recorded xi in a set of IDw // re-order the stronger wolves

18. END IF

19. END FOR

20. γ is the sum of the wolves’ weights in IDw

21.   IF γ! =  0

22. σ(j) = (1/2) × (log(γ/(1- γ)));

23. ELSE

24.    σ(j) = (1/2) × (log(1));

25. END IF

// Update the weight

26.   FOR i = 1: W

27.   IF the wolves in IDw

28. Wi, j+1 = Wi,j × exp(σ(j)) //enhance the weight of stronger Wolves in next iteration

29. Else

30.   Wi, j+1 = Wi,j × exp(-σ(j)) //reduce the weight of weaker wolves in next iteration

31. END IF

32. END FOR

33. Normalization processing W(1,…M), j+1

34.   FOR i = 1: W

35.   IF Wi, j+1<1/(100 × M)

36. Reset (reborn) this wolf // check the location is in the memory or not, if yes, repeat generate new location

37. Wi, j+1 = 1/M // Re initialize this wolves ‘weight

38.   ELSE IF Wi, j+1 > 1/2

39.   Wi, j+1 = Wi, j+1 × rand(0,1) // Re give this wolves’ weight

40. END IF

41. END FOR

42. Normalization processing W(1,…M), j+×

43. Check the memory is full or not // if it is full, it will delete de�ned number of earlier positions//

44.   Recorded the worst position in this iteration // check the location is in the memory or not

45. END WHILE
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The comments after the symbols “//” denotes explanatory information. �e function Generate_
new_location() calls for a classi�er to calculate the accuracy of the classi�cation model and return it as the �tness. 
What the EBWSA gathers is implemented using the above steps and codes to select the optimal feature set. In 
our experiment, we used classi�cation accuracy as the evaluation metric to estimate the quality of the selected 
features. Higher classi�cation accuracy signi�ed a better combination of features, and vice versa.

Figure 10 is an example of the EBWSA with 5 wolves and 100 iterations for the feature selection of the data-
set Prostate_Ge – a high-dimensional bioinformatics dataset introduced in the next section. �e �rst sub�gure 
represents the wolves’ survival environment, which expresses the total weight of the Elitist wolves, whose �tness 
values are better than those of the wolves in the previous iteration. If this value is smaller than 0.5, the survival 
environment is considered to be bad, and the Elitist wolves will get more weight from their weaker counterparts. 
Because the search spaces of high-dimensional datasets are large, and the populations are small, most of the 
wolves have a di�cult time �nding a better solution. �e next �ve sub�gures describe the variations in each wolf ’s 
(weight × population). If the weight is smaller than 1, then weight × population takes a value bigger or smaller 
than 1 to change the step size of each wolf. �erefore, these �ve sub�gures indirectly present the step size changes 
of each wolf in 100 iterations.

Figure 10. An example: variations of each wolf ’s (weight × population) for a population of 5 within a 
maximum of 100 iterations in the sub-�gures (a–e) and varations of living environments is showed in last sub-
�gure (d).

Data Set #Instances #Features

ALLAML 72 7129

GLI_85 85 22283

Colon 62 2000

Prostate_GE 102 5966

SMK_CAN_187 187 19993

Leukemia 72 7070

Table 6. Bioinformatics datasets used in experiments.
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Dataset benchmarks. �e six binary class bioinformatics datasets in Table 6 are used to test the e�ective-
ness of the proposed method, and to compare the algorithms. �ey are biological data downloaded from the 
Arizona State University website41. It is observed that these are high-dimensional bioinformatics datasets with 
tens of thousands of features, besides datasets Colon and Leukemia. Such dimensions are commonly seen in 
biological or bioinformatics datasets.

Comparison algorithms. In addition to the proposed methods, six algorithms are compared, three that use 
heuristic and �lter strategies and three that use random and wrapper strategies. Classi�cation accuracy is the evalu-
ation metric for the selected features in our experiment. Hence, the �rst comparison is of the basic classi�er extreme 
learning machine (ELM)42, which classi�es the original high-dimensional datasets, and a traditional single hidden 
layer feed-forward neural network (SLFN) ELM that promotes the computational time cost under the premise that 
it guarantees learning accuracy. It is a network structure composed of an input layer, a hidden layer and an output 
layer. �e hidden layer completely links the input and output layers. �e whole learning process can be brie�y 
divided into the following parts. First, determine the number of neurons in the hidden layer, then randomly set the 
threshold of neurons in the hidden layer and the connection weights between the input and hidden layers. Second, 
select an activation function to calculate the output matrix from the neurons in the hidden layer. Finally, calculate 
the output weights. Besides the ELM’s fast computational speed, simple parameters, strong generalisation ability 
and simple, quick construction of the SLFN make it ideal for use as the basic classi�er in our experiment.

ELMs also classify datasets with selected features using di�erent feature selection methods, and o�er their 
classi�cation accuracy for comparison. �e �rst three approaches are chi-squared attribute evaluation (CHSAE), 
information gain attribute evaluation (INFORGAE) and RELIEFF attribute evaluation (RFAE) from the Waikato 
Environment for Knowledge Analysis43. CHSAE evaluates the worth of an attribute by computing the value of 
the chi-squared statistic with respect to the class, INFORGAE does so by measuring the information gain with 
respect to the class and RFAE does so by repeatedly sampling an instance and considering the value of the given 
attribute for the nearest instance of the same and di�erent class. It can operate on both discrete and continuous 
class data. As mentioned before, these �lter approaches rank attributes as the measured value. �us, we retain 
and collect the features whose values are worth more than 0. �e other three feature selection methods are sepa-
rately wrapped PSO, binary PSO and a preliminary version of WSA with an ELM classi�er to perform the feature 
selection operation and discover the feature combinations with the optimal accuracy of classi�cation. �e swarm 
intelligence iterative methods and ELM are programmed by Matlab 2014b with a population of 15 and a maxi-
mum of 100 iterations, inertia weight is 0.8. �e computing platform for the entire experiment is CPU: E5-1650 
V2 @ 3.50 GHz, RAM: 32 GB.
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