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Abstract

Algorithms in new application areas like machine learning

and network analysis use “irregular” data structures such as

graphs, trees and sets. Writing efficient parallel code in these

problem domains is very challenging because it requires

the programmer to make many choices: a given problem

can usually be solved by several algorithms, each algorithm

may have many implementations, and the best choice of

algorithm and implementation can depend not only on the

characteristics of the parallel platform but also on properties

of the input data such as the structure of the graph.

One solution is to permit the application programmer to

experiment with different algorithms and implementations

without writing every variant from scratch. Auto-tuning to

find the best variant is a more ambitious solution. These

solutions require a system for automatically producing ef-

ficient parallel implementations from high-level specifica-

tions. Elixir, the system described in this paper, is the first

step towards this ambitious goal. Application programmers

write specifications that consist of an operator, which de-

scribes the computations to be performed, and a schedule

for performing these computations. Elixir uses sophisticated

inference techniques to produce efficient parallel code from

such specifications.

We used Elixir to automatically generate many paral-

lel implementations for three irregular problems: breadth-

first search, single source shortest path, and betweenness-

centrality computation. Our experiments show that the best

generated variants can be competitive with handwritten code

for these problems from other research groups; for some in-

puts, they even outperform the handwritten versions.
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1. Introduction

New problem domains such as machine learning and so-

cial network analysis are giving rise to applications with “ir-

regular” data structures like graphs, trees, and sets. Writing

portable parallel programs for such applications is challeng-

ing for many reasons.

The first reason is that programmers usually have a choice

of many algorithms for solving a given problem: even a

relatively simple problem like the single-source shortest path

(SSSP) problem in a directed graph can be solved using

Dijkstra’s algorithm [11], the Bellman-Ford algorithm [11],

the label-correcting algorithm [22], and delta-stepping [22],

among others. These algorithms are described in more detail

in Sec. 2, but what is important here is to note that which

algorithm is best depends on many complex factors.

• There are complicated trade-offs between parallelism and

work-efficiency in these algorithms; for example, Dijk-

stra’s algorithm is very work-efficient but it has relatively

little parallelism, whereas the Bellman-Ford and label-

correcting algorithms can exhibit a lot of parallelism but

may be less work-efficient. Therefore, the best algorith-

mic choice may depend on the number of cores that are

available to solve the problem.

• The amount of parallelism in irregular graph algorithms

is usually dependent also on the structure of the input

graph. For example, regardless of which algorithm is

used, there is little parallelism in the SSSP problem if

the graph is a long chain (more generally, if the diameter

of the graph is large); conversely, for graphs that have a

small diameter such as those that arise in social network

applications, there may be a lot of parallelism that can
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be exploited by the Bellman-Ford and label-correcting

algorithms. Therefore, the best algorithmic choice may

depend on the size and structure of the input graph.

• The best algorithmic choice may depend on the core

architecture. If SIMD-style execution is supported ef-

ficiently by the cores as is the case with GPUs, the

Bellman-Ford algorithm may be preferable to the label-

correcting or delta-stepping algorithms. Conversely, for

MIMD-style execution, label-correcting or delta-stepping

may be preferable.

Another reason for the difficulty of parallel programming

of irregular applications is that even for a given algorithm,

there are usually a large number of implementation choices

that must be made by the performance programmer. Each of

the SSSP algorithms listed above has a host of implementa-

tions; for example, label corrections in the label correcting

algorithm can be scheduled in FIFO, LIFO and other orders,

and the scheduling policy can make a big difference in the

overall performance of the algorithm, as we show experi-

mentally in Sec. 6. Similarly, delta-stepping has a parameter

that can be tuned to increase parallelism at the cost of per-

forming extra computation. As in other parallel programs,

synchronization can be implemented using spin-locks, ab-

stract locks or CAS operations. These choices can affect per-

formance substantially but even expert programmers cannot

always make the right choices.

1.1 Synthesis of Irregular Programs

One promising approach for addressing these problems is

program synthesis. Instead of writing programs in a high-

level language like C++ or Java, the programmer writes a

higher level specification of what needs to be computed,

leaving it to an automatic system to synthesize efficient par-

allel code for a particular platform from that specification.

This approach has been used successfully in domains like

signal processing where mathematics can be used as a spec-

ification language [29]. However, irregular graph problems

do not have mathematical structure that can be exploited to

generate implementation variants.

In this paper, we describe a system called Elixir that

synthesizes parallel programs for shared-memory multicore

processors, starting from irregular algorithm specifications

based on the operator formulation of algorithms [25]. The

operator formulation is a data-centric description of algo-

rithms in which algorithms are expressed in terms of their

action on data structures rather than in terms of program-

centric constructs like loops. There are three key concepts:

active elements, operator, and ordering.

Active elements are sites in the graph where there is

computation to be done. For example, in SSSP algorithms,

each node has a label that is the length of the shortest known

path from the source to that node; if the label of a node

is updated, it becomes an active node since its immediate

neighbors must be examined to see if their labels can be

updated as well.

The operator is a description of the computation that is

done at an active element. Applying the operator to an active

element creates an activity. In general, an operator reads

and writes graph elements in some small region containing

the active element. These elements are said to constitute the

neighborhood of this activity.

The ordering specifies constraints on the processing of

active elements. In unordered algorithms, it is semantically

correct to process active elements in any order, although dif-

ferent orders may have different work-efficency and paral-

lelism. A parallel implementation may process active ele-

ments in parallel provided the neighborhoods do not over-

lap. The non-overlapping criterion can be relaxed by using

commutativity conditions, but we do not consider these in

this paper. The preflow-push algorithm for maxflow com-

putation, Boruvka’s minimal spanning tree algorithm, and

Delaunay mesh refinement are examples of unordered algo-

rithms. In ordered algorithms on the other hand, there may

be application-specific constraints on the order in which ac-

tive elements are processed. Discrete-event simulation is an

example: any node with an incoming message is an active

element, and messages must be processed in time order.

The specification language described in this paper per-

mits application programmers to specify (i) the operator, and

(ii) the schedule for processing active elements; Elixir takes

care of the rest of the process of generating parallel imple-

mentations. Elixir addresses the following major challenges.

• How do we design a language that permits operators and

scheduling policies to be defined concisely by application

programmers?

• The execution of an activity can create new active ele-

ments in general. How can newly created active elements

be discovered incrementally without having to re-scan

the entire graph?

• How should synchronization be introduced to make ac-

tivities atomic?

Currently, there are two main restrictions in the speci-

fication language. First, Elixir supports only operators for

which neighborhoods contain a fixed number of nodes and

edges. Second, Elixir does not support mutations on the

graph structure, so algorithms such as Delaunay mesh re-

finement cannot be expressed currently in Elixir. We believe

Elixir can be extended to handle such algorithms, but we

leave this for future work.

The rest of this paper is organized as follows. Sec. 2

presents the key ideas and challenges, using a number of

algorithms for the SSSP problem. Sec. 3 formally presents

the Elixir graph programming language and its semantics.

Sec. 4 describes our synthesis techniques. Sec. 5 describes

our auto-tuning procedure for automatically exploring im-

plementations. Sec. 6 describes our empirical evaluation of
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Elixir. Sec. 7 discusses related work and Sec. 8 concludes

the paper.

2. Overview

In this section, we present the main ideas behind Elixir, us-

ing the SSSP problem as a running example. In Sec. 2.1 we

discuss the issues that arise when SSSP algorithms are writ-

ten in a conventional programming language. In Sec. 2.2, we

describe how operators can be specified in Elixir indepen-

dently of the schedule. and how a large number of different

scheduling policies can be specified abstractly by the pro-

grammer. In particular, we show how the Dijsktra, Bellman-

Ford, label-correcting and delta-stepping algorithms can be

specified in Elixir just by changing the scheduling specifi-

cation. Finally, in Sec. 2.3 we sketch how Elixir addresses

the two most important synthesis challenges: how to synthe-

size efficient implementations, and how to insert synchro-

nization.

2.1 SSSP Algorithms and the Relaxation Operator

Given a weighted graph and a node called the source, the

SSSP problem is to compute the distance of the shortest path

from the source node to every other node (we assume the

absence of negative weight cycles). As mentioned in Sec. 1,

there are many sequential and parallel algorithms for solv-

ing the SSSP problem such as Dijkstra’s algorithm [11],

the Bellman-Ford algorithm [11], the label-correcting algo-

rithm [22], and delta-stepping [22]. In all algorithms, each

node a has an integer attribute ad that holds the length of the

shortest known path to that node from the source. This at-

tribute is initialized to ∞ for all nodes other than the source

where it is set to 0, and is then lowered to its final value using

iterative edge relaxation: if ad is lowered and (i) there is an

edge (a, b) of length wab, and (ii) bd > ad+ wab, the value

of bd is lowered to ad + wab. However, the order in which

edge relaxations are performed can be different for different

algorithms, as we discuss next.

In Fig. 1 we present Java-like pseudocode for the sequen-

tial label-correcting and the Bellman-Ford SSSP algorithms

with the edge relaxation highlighted in grey. Although both

algorithms use relaxations, they may perform them in differ-

ent orders and different numbers of times. We call this order

the schedule for the relaxations. The label-correcting algo-

rithm maintains a worklist of edges for relaxation. Initially,

all edges connected to the source are placed on this worklist.

At each step, an edge (a, b) is removed from the worklist and

relaxed; if there are several edges on the worklist, the edge

to be relaxed is chosen heuristically. If the value of bd is

lowered, all edges connected to b are placed on the worklist

for relaxation. The algorithm terminates when the worklist

is empty. The Bellman-Ford algorithm performs edge relax-

ations in rounds. In each round, all the graph edges are re-

laxed in some order. A total of |V |−1 rounds are performed,

Label Correcting

INITIALIZATION:

for each node a in V {
if (a==Src) ad = 0;

else ad = INFINITY;

}
RELAXATION:

Wl = new worklist () ;

// init worklist

for each e=(Src , , ) {
Wl.add(e);

}
while (!Wl.empty()) {
(a ,b,w) = Wl.get () ;

if (ad + w < bd) {

bd=ad+w;

for each e:outEdg(b)

Wl.add(e);

}
}

Bellman Ford

INITIALIZATION:

for each node a in V {
if (a==Src) ad = 0;

else ad = INFINITY;

}
RELAXATION:

for i = 1.. |V | − 1 {
for each e=(a ,b,w) {

if (ad + w < bd) {

bd=ad+w;

}}

Figure 1: Pseudocode for label-correcting and Bellman-Ford

SSSP algorithms.

where |V | is the number of graph nodes. Although both al-

gorithms are built using the same basic ingredient, as Fig. 1

shows, it is not easy to change from one to another. This is

because the code for the relaxation operator is intertwined

intimately with the code for maintaining worklists, which is

an artifact of how the relaxations are scheduled by a partic-

ular algorithm. In a concurrent setting, the code for synchro-

nization makes the programs even more complicated.

2.2 SSSP in Elixir

Fig. 2 shows several SSSP algorithms written in Elixir. The

major components of the specification are the following.

2.2.1 Operator Specification

In Fig. 2, lines 1–2 define the graph. Nodes and edges

are represented abstractly by relations that have certain at-

tributes. Each node has a unique ID and an integer attribute

dist; during the execution of the algorithm, the dist at-

tribute of a node keeps track of the shortest known path to

that node from the source. Edges have a source node, a desti-

nation node, and an integer attribute wt, which is the length

of that edge. Line 4 defines the source node. SSSP algo-

rithms use two operators, one called initDist to initialize

the dist attribute of all nodes (lines 6–7), and another called

relaxEdge to perform edge relaxations (lines 9–13).

Operators are described by rewrite rules in which the left-

hand side is a predicated subgraph pattern, and the right-

hand side is an update.

A predicated subgraph pattern has two parts, a shape

constraint and a value constraint. A subgraph G′ of the

graph is said to satisfy the shape constraint of an operator if

there is a bijection between the nodes in the shape constraint

and the nodes in G′ that preserves the edge relation. The

shape constraint in the initDist operator is satisfied by

every node in the graph, while the one in the relaxEdge
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operator is satisfied by every pair of nodes connected by an

edge. A value constraint filters out some of the subgraphs

that satisfy the shape constraint by imposing restrictions

on the values of attributes; in the case of the relaxEdge

operator, the conjunction of the shape and value constraints

restricts attention to pairs of nodes (a, b) which have an

edge between them, and whose dist attributes satisfy the

constraint ad+wab < bd. A subgraph that satisfies both the

shape and value constraints of an operator is said to match

the predicated sub-graph pattern of that operator, and will

be referred to as a redex of that operator; it is a special

case of the general notion of neighborhoods in the operator

formulation [25].

The right-hand side of a rewrite rule specifies updates to

some of the value attributes of nodes or edges in a subgraph

matching the predicated subgraph pattern on the left-hand

side of that rule. In this paper, we restrict attention to local

computation algorithms [25] that are not allowed to morph

the graph structure by adding or removing nodes and edges.

Elixir allows disjunctive operators of the form

op1 or . . . or opk

where all operators opi share a common same shape con-

straint. The Betweenness Centrality programs discussed

in Sec. 6 use disjunctive operators with 2 disjuncts.

Statements define how operators are applied to the graph.

A looping statement has one the forms ‘foreach op’, ‘for

i=low..high op’, or ‘iterate op’ where op is an oper-

ator. A foreach statement finds all matches of the given

operator and applies the operator once to each matched sub-

graph in some unspecified order. Line 15 defines the initial-

ization statement to be the application of initDist once

to each node. A for statement applies an operator once for

each value of i between low and high. An iterate state-

ment applies an operator ad infinitum by repeatedly finding

some subgraph that matches the left-hand side of the opera-

tor and applying the operator there. The statement terminates

when no sub-graphs match the left-hand side of the opera-

tor. Line 16 expresses the essence of the SSSP computation

as the repeated application of the relaxEdge operator (for

now, ignore the text “>> sched”). It is the responsibility of

the user to guarantee that iterate arrives to a fixed-point

after a finite number of steps by specifying meaningful value

constraints. Finally, line 17 defines the entire computation to

be the initialization followed by the distances computation.

Elixir programs can be executed sequentially by repeat-

edly searching the graph until a redex is found, and then ap-

plying the operator there. Three optimizations are needed to

make this baseline, non-deterministic interpreter efficient.

1. Even in a sequential implementation, the order in which

redexes are executed can be important for work-efficiency

and locality. The best order may problem-dependent, so

it is necessary to give the application programmer con-

1 Graph [ nodes(node : Node, dist : int )

2 edges(src : Node, dst : Node, wt : int ) ]

3

4 source : Node

5

6 initDist = [ nodes(node a, dist d) ] →
7 [ d = if (a == source) 0 else ∞]

8

9 relaxEdge = [ nodes(node a, dist ad)

10 nodes(node b, dist bd)

11 edges(src a, dst b, wt w)

12 ad + w < bd ] →
13 [ bd = ad + w ]

14

15 init = foreach initDist

16 sssp = iterate relaxEdge ≫ sched

17 main = init ; sssp

Algorithm Schedule specification

Dijkstra sched = metric ad ≫ group b

Label-correcting sched = group b ≫ approx metric ad ≫ unroll 2

∆-stepping-style
DELTA : unsigned int

sched = metric (ad + w) / DELTA

Bellman-Ford

NUM NODES : unsigned int

// override sssp

sssp = for i =1..( NUM NODES −1)

step

step = foreach relaxEdge

Figure 2: Elixir programs for SSSP algorithms.

trol over scheduling. Sec. 2.2.2 gives an overview of the

scheduling constructs in Elixir.

2. To avoid scanning the graph repeatedly to find redexes, it

is desirable to maintain a worklist of potential redexes in

the graph. The application of an operator may enable and

disable redexes, so the worklist needs to be updated in-

crementally whenever an operator is applied to the graph.

The worklist can be allowed to contain a superset of the

set of actual redexes in the graph, provided an item is

tested when it is taken off the worklist for execution.

Sec. 2.3.1 gives a high-level description of how Elixir

maintains worklists.

3. In a parallel implementation, each activity should appear

to have executed atomically. Therefore, Elixir must insert

appropriate synchronization. Sec. 2.3.2 describes some of

the main issues in doing this.

2.2.2 Scheduling Constructs

Elixir provides a compositional language for specifying

commonly used scheduling strategies declaratively and au-

tomatically synthesizes efficient implementations of them.

We use Dijkstra-style SSSP computation to present the

key ideas of our language. This algorithm maintains nodes

in a priority queue, ordered by the distance attribute of the

nodes. In each iteration, a node of minimal priority is re-

moved from the priority queue, and relaxations are per-

formed on all outgoing edges of this node. This is described

by the composition of two basic scheduling policies.

1. Given a choice between relaxing edge e1 = (a1, b1) and

edge e2 = (a2, b2) where ad1 < ad2, give e1 a higher
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priority for execution. In Elixir, this is expressed by the

specification metric ad.

2. To improve spatial and temporal locality, it is desirable to

co-schedule active edges that have the same source node

a, in preference to interleaving the execution of edges

of the same priority from different nodes. In Elixir this

is expressed by the specification group b, which groups

together relaxEdge applications on all neighbors b of

node a. This can be viewed as a refinement of the metric

ad specification, and the composition of these policies is

expressed as metric ad >> group b.

These two policies exemplify two general scheduling

schemes: dynamic and static scheduling. Scheduling strate-

gies that bind the scheduling of redexes at runtime are called

dynamic scheduling strategies, since they determine the pri-

ority of a redex using values known only at runtime. Typ-

ically, they are implemented via a dynamic worklist data-

structure that prioritizes its contents based on the specific

policy. In contrast, static scheduling strategies, such as

grouping, bind scheduling decisions at compile-time and are

reflected in the structure of the source code that implements

composite operators out of combinations of basic ones. One

of the contributions of this paper is the combination of static

and dynamic scheduling strategies in a single system. The

main scheduling strategies supported by Elixir are the fol-

lowing.

metric e The arithmetic expression e over the variables of

the redex is the priority function. In practice, many algo-

rithms use priorities heuristically so they can tolerate some

amount of priority inversion in scheduling. Exploiting this

fact can lead to more efficient implementations, so Elixir

supports a variant called approx metric e.

group V specifies that every redex pattern node v ∈ V

should be matched in all possible ways. Thus, it applies the

grouping refinement for every operator referring to v.

unroll k Some implementations of SSSP perform two-

level relaxations: when an edge (a,b) is relaxed, the outgo-

ing edges of b are co-scheduled for relaxation if they are ac-

tive, since this improves spatial and temporal locality. This

can be viewed as a form of loop unrolling. Elixir support

k-level unrolling, where k is under the control of the appli-

cation programmer.

(op1 or op2) ≫ fuse specifies that instances of op1, op2
working on the same redex should create a new composite

operator. Fusing improves locality and amortizes the cost of

acquiring and releasing locks necessary to guarantee atomic

operator execution.

The group, unroll and fuse operations define static

scheduling strategies. We use the language of Nguyen et

al. [23] to define a series dynamic scheduling policies that

combine metric with LIFO,FIFO policies and use imple-

mentations of these worklists from the Galois framework [2].

Fig. 2 shows the use of Elixir scheduling constructs

to define a number of SSSP implementations. The label-

correcting variant [22] is an unordered algorithm, which on

each step starts from a node and performs relaxations on all

incident edges, up to two “hops” away. The delta-stepping

variant [22] operates on single edges and uses a ∆ parameter

to partition redexes into equivalence classes. This heuristic

achieves work-efficiency by processing nodes in order of in-

creasing distance from the source, while also exposing par-

allelism by allowing redexes in the same equivalence class

to be processed in parallel. Finally Bellman-Ford [11] works

in a SIMD style by performing a series of rounds in which it

processes all edges in the graph.

2.3 Synthesis Challenges

This section gives a brief description of the main challenges

that Elixir addresses. First, we discuss how Elixir optimizes

worklist manipulation and second how it synchronizes code

to ensure atomic operator execution.

2.3.1 Synthesizing Work-efficient Implementations

To avoid scanning the graph repeatedly for redexes, it is nec-

essary to maintain a worklist of redexes, and update this

worklist incrementally when a redex is executed since this

might enable or disable other redexes. To understand the is-

sues, consider the label-correcting implementation in Fig. 1,

which iterates over all outgoing edges of b and inserts them

into the worklist. Since the worklist can be allowed to con-

tain a superset of the set of the redexes (as long as items are

checked when they are taken from the worklist), another cor-

rect but less efficient solution is to insert all edges incident

to either a or b into the worklist. However, the programmer

manually reasoned that the only place where new “useful”

work can be performed is at the outgoing edges of b, since

only bd is updated,. Additionally, the programmer could ex-

periment with different heuristics to improve efficiency. For

example, before inserting an edge (b, c) into the worklist, the

programmer could eagerly check whether db+ wbc ≥ dc.

In a general setting with disjunctive operators, differ-

ent disjuncts may become enabled on different parts of

the graph after an operator application. Manually reason-

ing about where to apply such incremental algorithmic steps

can be daunting. Elixir frees the programmer from this task.

In Fig. 2 there is no code dealing with that aspect of the

computation; Elixir automatically synthesizes the worklist

updates and also allows the programmer to easily experi-

ment with heuristics like the above without having to write

much code.

Another means of achieving work-efficiency is by using a

good priority function to schedule operator applications. In

certain implementations of algorithms such as betweenness

centrality and breadth first search, the algorithm transitions

through different priority levels in a very structured manner.

Elixir can automatically identify such cases and synthesize
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customized dynamic schedulers that are optimized for the

particular iteration patterns.

2.3.2 Synchronizing Operator Execution

To guarantee correctness in the context of concurrent execu-

tion, the programmer must make sure that operators execute

atomically. Although it is not hard to insert synchronization

code into the basic SSSP relaxation step, the problem be-

comes more complex once scheduling strategies like unroll

and group are used since the resulting “super-operator” code

can be quite complex. There are also many synchronization

strategies that could be used such as abstract locks, concrete

locks, and lock-free constructs like CAS instructions, and

the trade-offs between them are not always clear even to ex-

pert programmers.

Elixir frees the programmer from having to worry about

these issues because it automatically introduces appropriate

fine grained locking. This allows the programmer to focus

on the creative parts of problem solving and still get the

performance benefits of parallelism.

3. The Elixir Graph Programming Language

In this section, we formalize our language whose gram-

mar is shown in Fig. 3. Technically, a graph program defines

graph transformations, or actions, that may be used within

an application. A graph program first defines a graph type

by listing the data attributes associated with its nodes and

edges. Next, a program defines global variables that actions

may only read. They may be initialized by the larger appli-

cation before invoking an action. The graph program then

defines operators and actions. Operators define unit trans-

formations that may be applied to a given subgraph. They

are used as building blocks in statements that apply opera-

tors iteratively. An important limitation of operators is that

they may only update data attributes, but not alter the graph

structure. Actions compose statements and name them. They

compile to C++ functions that take a single graph reference

argument.

3.1 Graphs and Patterns

Let the Attrs denote a finite set of attributes. An attribute de-

notes a subtype of one of the following types: the set of nu-

meric values Nums (integers and reals), graph nodes Nodes

and sets of graph nodes ℘(Nodes). Let Vals
def

= Nums ∪
Nodes ∪ ℘(Nodes) stand for the union of those types.

Definition 3.1 (Graph). 1 A graph G = (V G, EG,AttG)
where V G ⊂ Nodes are the graph nodes, EG ⊆ V G × V G

are the graph edges, and AttG : ((Attrs × V G) → Vals) ∪
((Attrs × V G × V G) → Vals) associates values with nodes

and edges. We denote the set of all graphs by Graph.

1 Our formalization naturally extends to graphs with several node and edge

relations, but for simplicity of the presentation we have just one of each.

attid Graph attributes

acid Action identifiers

opid Operation identifiers

var Operator variables and global variables

ctype C++ type

program ::= graphDef global+ opDef+ actionDef+

graphDef ::= Graph [ nodes(attDef+ edges(attDef+) ]

attDef ::= attid : ctype | attid : set[ctype]

global ::= var : ctype

opDef ::= opid = opExp

opExp ::= [ tuple∗ (boolExp) ] → [ assign∗ ]

tuple ::= nodes(att∗) | edges(att∗)

boolExp ::= !boolExp | boolExp & boolExp | arithExp < arithExp

| arithExp == arithExp | var in setExp

arithExp ::= number | var | arithExp + arithExp | arithExp - arithExp

| if (boolExp) arithExp else arithExp

setExp ::= empty | {var} | setExp + setExp | setExp - setExp

assign ::= var = arithExp | var = setExp | var = boolExp

att ::= attid var

actionDef ::= acid = stmt

stmt ::= iterate schedExp | foreach schedExp

| for var = arithExp .. arithExp stmt | acid

| invariant? stmt invariant?

| stmt; stmt

schedExp ::= ordered | unordered

unordered ::= disjuncts

ordered ::= opsExp fuseTerm? groupTerm? metricTerm

disjuncts ::= disjunctExp | disjunctExp or disjuncts

disjunctExp ::= statExp dynSched

opsExp ::= opid | opid or opsExp

statExp ::= opsExp fuseTerm? groupTerm? unrollTerm?

dynSched ::= approxMetricTerm? timeTerm?

fuseTerm ::= >> fuse

groupTerm ::= >> group var∗

unrollTerm ::= >> unroll number

metricTerm ::= >> metric arithExp

approxMetricTerm ::= >> approx metric arithExp

timeTerm ::= >> LIFO | >> FIFO

Figure 3: Elixir language grammar (EBNF). The notation e?

means that e is optional.

Definition 3.2 (Pattern). A pattern P = (V P , EP ,AttP ) is

a connected graph over variables. Specifically, V P ⊂ Vars

are the pattern nodes, EP ⊆ V P×V P are the pattern edges,

and AttP : (Attrs × V P ) → Vars ∪ (Attrs × V P × V P ) →
Vars associates a distinct variable (not in V P ) with each

node and edge. We call the latter set of variables attribute

variables. We refer to (V P , EP ) as the shape of the pattern.

In the sequel, when no confusion is likely, we may

drop superscripts denoting the association between a com-

ponent and its containing compound type instance, e.g.,

G = (V,E).

Definition 3.3 (Matching). Let G be a graph and P be a

pattern. We say that µ : V P → V G is a matching (of P in

G), written (G,µ) |= P , if it is one-to-one, and for every

edge (x, y) ∈ EP there exists an edge (µ(x), µ(y)) ∈ EG.

We denote the set of all matchings by Match : Vars →
Nodes.

We extend a matching µ : V P → V G to evaluate attribute

variables µ : Vars → Vals as follows. For every attribute a,

pattern nodes y, z ∈ V P , and attribute variable x, we define:

µ(x) = AttG(a, µ(y)) if AttP (a, y) = x

µ(x) = AttG(a, µ(y), µ(z)) if AttP (a, y, z) = x .
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Lastly, we extend µ to evaluate expressions over the vari-

ables of a pattern by structural induction over the natural

definitions of the sub-expression types defined in Fig. 3.

3.2 Operators

We denote an operator by op = [Rop,Gdop] → [Updop]
where Rop is called the redex pattern; Gdop is a Boolean-

valued expression over the variables of the redex pattern,

called the guard; and Updop : V R → Exprs contains an

assignment per attribute variable in the redex pattern, in

terms of the variables of the redex pattern (for brevity, we

omit identity assignments).

We now define the semantics of an operator as a function

that transforms a graph for a given matching [[·]] : opExp →
(Graph × Match) → Graph. Let op = [R,Gd] → [Upd] be

an operator and let µ : V R → V G be a matching (of the R

in G). We say that µ satisfies the shape constraint of op if

(G,µ) |= R. We say that µ satisfies the value constraint

of op (and shape constraint), written (G,µ) |= R,Gd, if

µ(Gd) = True. In such a case, µ induces the subgraph

D = µ(R), which we call a redex and define by:

V D def

= {µ(x) | x ∈ V R}

ED def

= {(µ(x), µ(y)) | (x, y) ∈ ER}

AttD
def

= {(a,AttG(a, u)), (b,AttG(b, v, w)) |
a, b ∈ Attrs, u ∈ V D, (v, w) ∈ ED} .

We define

[[op]](G,µ) =

{

G′ = (V G, EG,Att′), (G,µ) |= Rop,Gdop;

G, else

where D = µ(Rop) and the node and edge attributes in D

are updated using the expressions in Updop:

Att′(a, v) =







µ(Updop(y)),
v ∈ V D, v = µ(xv)

and AttR(a, xv) = y;

Att(a, v) else.

Att′(a, u, v) =















µ(Updop(y)),
(u, v) ∈ ED,

u = µ(xu), v = µ(xv)

and AttR(a, xu, xv) = y;

Att(a, u, v) else.

The remainder of this section defines the semantics of

statements. iterate and foreach statements have two dis-

tinct flavors: unordered iteration and ordered iteration. We

define them in that order. We do not define for statements as

their semantics is quite standard in all imperative languages.

3.3 Semantics of Unordered Statements

Unordered statements have the form ‘iterate unordExp’ or

‘foreach unordExp’ where unordExp uses the or operator,

which we will refer to as disjunction, to combine expressions

of the form

opsExp >> statExp >> dynSched .

Intuitively, a disjunction represents alternative graph trans-

formations.

The expression opsExp is either a single operator op or a

disjunction of operators op1or . . . or opk having the same

shape (Rop1 = . . . = Rop
k ). We define the shorthand

opi..j = opior . . . or opj .

The expression statExp, called a static schedule, is a pos-

sibly empty sequence of static scheduling terms, which may

include fuse, group, and unroll. If opsExp is a disjunc-

tion then it must be followed by a fuse term. An expression

of the form opsExp>>statExp defines a composite operator

by grouping together operator applications in a statically-

defined (i.e., determined at compile-time) way. We refer to

such an expression as a static operator.

The expression dynSched, called a dynamic schedule, is

a possibly empty sequence of dynamic scheduling terms,

which may include approx metric, LIFO, and FIFO. A

dynamic schedule determines the order by which static op-

erators are selected for execution by associating a dynamic

priority with each redex.

To simplify the exposition, in this paper we present the

semantics under the simplifying assumption that statExp is

empty. For the full technical treatment, the reader is referred

to [27].

3.3.1 Preliminaries

Definition 3.4 (Active Element). An active element, denoted

by elem〈op, µ〉, pairs an operator op with a matching µ ∈
Match. Intuitively, it means that op is applied on µ. We

denote the set of all active elements by A.

We define the set of redexes for an operator and for a

disjunction of operators, respectively by

RDX[[op]]G
def

= {µ ∈ Match | (G,µ) |= Rop,Gdop}

RDX[[op1..k]]G
def

= RDX[[op1]]G ∪ . . . ∪ RDX[[opk]]G .

We define the set of redexes of an operator op′ created by

an application of an operator op by

DELTA[[op, op′]] (G,µ)
def

=
let G′ = [[op]](G,µ)
in RDX[[op′]]G′ \ RDX[[op′]]G .

We lift the operation to disjunctions:

DELTA[[opa, opc..d]] (G,µ)
def

=
⋃

c≤i≤d

DELTA[[opa, opi]] (G,µ) .

Let R = Rop be the pattern of an operator op and v ⊆ V R

be a subset of the pattern nodes. We require V R \v to induce

a connected subgraph of R. We define the set of matchings

V R → G identifying with µ on the node variables v by

EXPAND[[op, v]](G,µ)
def

= {µ′ ∈ V R → V G | µ|v = µ′|v}

We use EXPAND to implement the group static scheduling

term and to implement DELTA.
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3.3.2 Defining Dynamic Schedulers

Let iterate exp be a statement and let op1..k be the

operators belonging to exp. An iterate statement ex-

ecutes by repeatedly finding a redex for a operator and

applying that operator to the redex. We now describe

how metric, approx metric, LIFO, and FIFO scheduling

terms define a quasi order over active elements by associ-

ating them with priorities, as they are created. An execu-

tion of iterate results with a (possibly infinite) sequence

G = G0, . . . , Gk, . . . where each index represents the appli-

cation of one operator. Let elem〈op, µ〉 be an active element

created at Gi. For an arithmetic expression a, the terms

metric a and approx metric a associate the priority µ(a)
evaluated at Gi and quasi order p ≤metric a p′ if p ≤ p′. The

terms LIFO and FIFO associate the priority i and quasi order

p ≥LIFO p
′ if p ≤ p′ and p ≤FIFO p

′ if p ≤ p′.

We denote the priority given by term t to an active el-

ement v constructed at graph Gi by p(t, v, i). We define

the priority given by an expression d = t1>> . . . >>tk ∈
dynSched by p(d, v, i) = 〈p(t1, v, i), . . . , p(tk, v, i)〉 and

the lexicographic quasi order, which is also defined for

vectors of different lengths. A prioritized active element

elem〈op, µ, p〉 is an active element associated with a prior-

ity. We denote the set of all prioritized active elements by

AP . For two prioritized active elements v = (opv, µv, pv)
and w = (opw, µw, pw), we define v ≤ w if pv ≤ pw

We define the type of prioritized worklists by WP def

=
AP∗

. We say that a prioritized worklist ω = e1, . . . , ek ∈
WP is ordered according to a dynamic scheduling expres-

sion d ∈ dynSched, if for every 1 ≤ i ≤ j ≤ k, we have

that ei ≤ ej , i.e., ω starts with the lowest priority element.

We define PRIORITY[[d]]ω = ω′ if ω′ is a permutation of

ω preserving the quasi order induced by d ∈ dynSched. We

define the following scheduler-related operations for a dy-

namic scheduling expression exp:

EMPTY
def

= ǫ

POP ω
def

= (head(ω), tail(ω))

MERGE[[exp]] (ω, δ)
def

= PRIORITY[[exp]] (ω ∪ δ)

INIT[[exp]]G
def

= MERGE[[exp]] (ǫ, RDX[[op1..k]]G)

3.3.3 Iteratively Executing Operators

We define the set of program states as Σ
def

= Graph∪Graph×
Wl. The meaning of statements is given in terms of a transi-

tion relation having one of the following forms:

1. 〈S, σ〉 =⇒ σ′, means that the statement S transforms the

state σ into σ′ and finishes executing;

2. 〈S, σ〉 =⇒ 〈S′, σ′〉, means that the statement S trans-

form the state σ into σ′ to which the remaining statement

S′ should be applied.

The definition of =⇒ is given by the rules in Fig. 4. The

semantics induced by the transition relation yields (possibly

infinite) sequences of states σ1, . . . , σk, . . .. A correct con-

iterateinit starts executing iterate e by initializing a scheduler

with the set of redexes found in G
〈iterate exp, G〉 =⇒ 〈iterate exp, G+ Wl〉 if

Wl = INIT[[exp]]G
iteratestep executes an operator

〈iterate exp, G+ Wl〉 =⇒ 〈iterate exp, G′ + Wl′′〉 if

(elem〈op, µ, p〉,Wl′) = POP Wl

G′ = [[op]](G,µ)
∆ = DELTA[[op, op1..k]] (G,µ)
Wl′′ = MERGE[[exp]] (Wl′,∆)

iteratedone returns the graph when no more operators can be

scheduled

〈iterate exp, G+ EMPTY[[exp]]〉 =⇒ G

foreachinit, foreachdone same rules as for iterate

foreachstep executes an operator

〈foreach exp, G+ Wl〉 =⇒ 〈foreach exp, G′ + Wl′〉 if

(elem〈op, µ, p〉,Wl′) = POP Wl

G′ = [[op]](G,µ)

Figure 4: An operational semantics for Elixir statements.

current implementation gives the illusion that each transition

occurs atomically, even though the executions of different

transitions may interleave.

3.4 Semantics of Ordered Statements

Ordered statements have the form

iterate opsExp >> statExp >> metric exp .

The static scheduling expression statExp is the same as in

the unordered case, except that we do not allow unroll.

The expression opsExp is either a single operator op or a

disjunction of operators op1or . . . or opk having the same

shape. If opsExp is a disjunction then it is followed by a

fuse term.

Prioritized active elements are dynamically partitioned

into equivalence classes Ci based on the value of exp. The

execution then proceeds as follows: We start by processing

active elements from the equivalence class C0, which has

the lowest priority. Applying an operator to active elements

from Ci can produce new active elements at other priority

levels, e.g., Cj . Once the work at priority level i is done

we start processing work at the next level. We will restrict

our attention to the class of algorithms where the priority of

new active elements is greater than or equal to the priority of

existing active elements (i ≤ j). Under this restriction, we

are guaranteed to never miss work as we process successive

priority levels. The execution terminates when all work (at

the highest priority level) is done. All the algorithms that we

studied belong to this class. The above execution strategy ad-

mits a straightforward and efficient parallelization strategy:

associate with each Ci a bucket Bi and have parallel threads

process all work in bucket Bi before moving to Bi+1. This

implements the so-called “level-by-level” parallel execution

strategy.
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3.5 Using Strong Guards for Fixed-Point Detection

Our language allows defining iterate actions that do not

terminate for all inputs. It is the responsibility of the pro-

grammer to avoid defining such actions. When an action

does terminate for a given input, it is the responsibility of the

compiler to ensure that the emitted code detects the fixed-

point and stops.

Let µ be a matching and D = µ(G) be the matched

subgraph. Further, let G′ = [[op]](G,µ). One way to check

whether an operator application leads to a fixed-point is to

check whether an operator has made a change to the redex,

i.e., Att′D = AttD. This requires comparing the result of the

operator to a backup copy of the redex created prior to its

application. However, this approach is rather expensive. We

opt for a more efficient alternative by placing a requirement

on the guards of operators, as explained next.

Definition 3.5 (Strong Guard). We say that an operator op

has a strong guard if for every matching µ, applying the

operator disables the guard. That is, if G′ = [[op]](G,µ)
then (G′, µ) 6|= Gdop.

A strong guard allows to check (G,µ) 6|= Gdop, which

involves just reading the attributes of D and evaluating a

Boolean expression.

Further, strong guards help us improve the precision of

our incremental worklist maintenance by supplying more

information to the automatic reasoning procedure, as ex-

plained in Sec. 4.3.

Our compiler checks for strong guards at compile-time

and signals an error to the programmer otherwise (see details

in Sec. 4.3). In our experience, strong guards do not limit

expressiveness. For efficiency, operators are usually written

to act on a graph region in a single step, which leads to

disabling their guard.

4. Synthesis

In this section, we explain how to emit code to implement

Elixir statements. We use the notation Code(e) for the code

fragment implementing the mathematical expression e in a

high-level imperative language.

This section is organized as follows. First, we discuss

our assumptions regarding the implementation language.

Sec. 4.1 describes the synthesis of operator-related proce-

dures. Sec. 4.2 describes the synthesis of the EXPAND op-

eration, which is used to synthesize RDX and as a building

block in synthesizing DELTA. Sec. 4.3 describes the synthe-

sis of DELTA via automatic reasoning. Sec. 4.4 puts together

the elements needed to synthesize unordered statements. Fi-

nally, Sec. 4.5 describes the synthesis of ordered statements.

Implementation Language and Notational Conventions

We assume the language contains standard constructs for se-

quencing, conditions, looping, and evaluation of arithmetic

and Boolean expressions such as the ones used in Elixir. Op-

erations on sets are realized by methods on set data struc-

tures. We assume that the language allows static typing by

the notation v : t, meaning that variable v has type t. To

promote succinctness, variables do not require declaration

and come into scope upon initialization. We write vi..j to

denote the sequence of variables vi, . . . , vj . Record types

are written as record[f1..k], meaning that an instance r of

the record allows accessing the values of fields f1..k, written

as r[fi]. We use static loops (loops preceded by the static

keyword) to concisely denote loops over a statically-known

range, which the compiler unrolls, instantiating the induction

variables in the loop body as needed. In defining procedures,

we will use the notation f [statArgs](dynArgs) to mean that

f is specialized for the statically-given arguments statArgs

and accepts at runtime the dynamic arguments dynArgs. We

note that, since we assume a single graph instance, we will

usually not explicitly include it in the generated code.

Graph Data Structure. We assume the availability of a

graph data structure supporting methods for reading and up-

dating attributes, and scanning the outgoing edges and in-

coming edges of a given node. The code statements corre-

sponding to these methods are as follows. Let vn and vm be

variables referencing the graph nodes n and m, respectively.

Let a be a node attribute and b be an edge attribute. Let da
and db be variables of the appropriate types for attributes a

and b, respectively, having the values d and d′, respectively.

• da := get(a, vn) assigns AttG(a, n) to da and db :=
get(a, vn, vm) assigns AttG(b, n,m) to db.

• set(a, vn, da) updates the value of the attribute a on the

node n to d: Att′G = AttG(a, n) 7→ d, and set(b, vn, vm, db)
updates the value of the attribute b on the edge (n,m) to

d′: Att′G = AttG(b, n,m) 7→ d′.

• edge(vn, vm) checks whether (n,m) ∈ EG.

• succs(vn) and preds(vn) return (iterators to) the sets of

nodes {s | (n, s) ∈ EG} and {p | (p, n) ∈ EG},

respectively.

• nodes returns (an iterator to) the set of graph nodes V G.

In addition, we require that the graph data structure be

linearizable2.

4.1 Synthesizing Atomic Operator Application

Let op = [nt1..k, et1..m, bexp] → [nUpd1..k, eUpd1..m] be an

operator consisting of the following elements, for i = 1..k
and j = 1..m: (i) node attributes nti = nodes(node ni, ai vi);
(ii) edge attributes etj = edges(src sj , dst dj , bj wj); (iii)

a guard expression bexp = opGd; (iv) node updates nUpdi =
vi 7→ nExpi; and (v) edge updates eUpdj = wj 7→ eExpj .

2 In practice, our graph implementation is optimized for non-morphing

actions. We rely on the locks acquired by the synthesized code to correctly

synchronize concurrent accesses to graph attributes.
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def apply[op](mu : record[n1..k]) =

static for i = 1..k {ni := mu[ni]}
static for i = 1..k {lk i := ni}
sort(lock less, lk 1..k)
static for i = 1..k {lock(lk i)}
static for i = 1..k {vi := get(ai, ni)}
static for j = 1..m {wj := get(bj , sj , dj)}
if checkShape[op](mu) ∧ Code(bexp)

static for i = 1..k {set(ai, ni,Code(nExpi))}
static for j = 1..m {set(bj , sj , dj ,Code(eExpj))}

static for i = 1..k {unlock(lk i)}
(a) Code([[op]])

def checkShape[op](mu : record[n1..k]) : bool =

static for i = 1..k {ni := mu[ni]}
// Now sj and dj correspond to µ(sj , dj)
static for i = 1..k

static for j = 1..k
if ni = nj // Check if µ is one-to-one.

return false

static for j = 1..m
if ¬edge(sj , dj) // Check for missing edges.

return false

return true

(b) Code((G,µ) |= Rop)

def checkGuard[op](mu : record[n1..k]) : bool =

static for i = 1..k {ni := mu[ni]}
static for i = 1..k {vi := get(ai, ni)}
static for j = 1..m {wj := get(bj , sj , dj)}
return Code(bexp)

(c) Code((G,µ)Gdop)

Figure 5: Operator-related procedures.

We note that in referring to pattern nodes the naming of

variables ni, sj , dj , etc. are insignificant in themselves, but

rather stand for different ways of indexing the actual set of

variable names. For example n1 and s2 may both stand for a

variable ‘a’.

Fig. 5 shows the codes we emit, as procedure definitions,

for (a) evaluating an operator, (b) for checking a shape con-

straint, and (c) for checking a value constraint.

The procedure apply uses synchronization to ensure

atomicity. The procedure first reads the nodes from the

matching variable ‘mu’ into local variables. It then copies

the variables to another set of variables used for locking.

We assume a total order over all nodes, implemented by

the procedure lock less, which we use to ensure absence

of deadlocks. The statement sort(lock less, lk1..k) sorts the

lock variables, i.e., swaps their values as needed, using the

sort procedure. Next, the procedure acquires the locks in as-

cending order (we use spin locks), thus avoiding deadlocks.

Then, the procedure reads the node and edge attributes from

the graph and evaluates the guard. If the guard holds the

update expressions are evaluated and used to update the at-

tributes in the graph. Finally, the locks are released.

Since operators do not morph the graph checkShape does

not require any synchronization. The procedure checkGuard

is synchronized using the same strategy as apply.

def apply[relaxEdge](mu : record [a , b]) =

a := mu[a]; b := mu[b];

lk 1 := a; lk 2 := b;

if lock less ( lk 2 , lk 1 ) // inline sort

swap(lk 1, lk 2 ) ;

lock( lk 1 ) ; lock ( lk 2 ) ;

ad := get( dist , a) ; bd := get( dist , b) ;

w := get(wt, a , b) ;

if ad + w < bd // test guard

set ( dist , b, ad + w);

unlock(lk 1) ; unlock ( lk 2 ) ;

Figure 6: Code([[relaxEdge]]).

Fig. 6 shows the code we emit for Code([[relaxEdge]]).

4.2 Synthesizing EXPAND

Let R be a pattern and v1..m ⊆ V R and vm+1..k = V R \
v1..m be two complementing subsets of its nodes such that

v1..m induces a connected subgraph of R. We now develop a

procedure that accepts a matching µ ∈ D → V G, where

D is any superset of v1..m, and computes all matchings

µ′ ∈ V R → V G such that µ(vi) = µ′(vi) for i = 1..m.

We can bind the variables vm+1..k to graph nodes in dif-

ferent orders, but it is more efficient to choose an order that

enables scanning the edges incident to nodes that are already

bound. The alternative way requires scanning the entire set

of graph nodes for each unbound pattern node and check-

ing whether it is a neighbor of some bound node, which

is too inefficient. We represent an efficient order by a per-

mutation of vm+1..k, um+1..k, and by an auxiliary sequence

T (R, vm+1..k) = (um+1, wm+1, dirm+1), . . . , (uk, wk, dirk)
where each tuple defines the connection between an un-

bound node uj and a previously bound node wj and the

direction of the edge between them — forward for false and

reverse otherwise. More formally, for every j = m+1..k we

have that wj ∈ v1..j and if dirj = false then (uj , wj) ∈ ER

and otherwise (wj , uj) ∈ ER.

The procedure expand, shown in Fig. 7, first updates

µ′ for 1..m and then uses T (R, vm+1..k) to bind nodes

vm+1..k. Each node is bound to all possible values by a loop

using the procedure expandEdge, which handles one tuple

in (uj , wj , dirj). The loops are nested to enumerate over all

combinations of bindings.

We note that a matching computed by the enumeration

does not necessarily satisfy the shape constraints of R as

some of the pattern nodes may be bound to the same graph

node and not all edges in R may be present between the

corresponding pairs of bound nodes. It is possible to filter out

matchings that do not satisfy the shape constraint or guard

by testing a matching with checkShape and checkGuard,

respectively.

We use expand to define Code(RDX[[op]](G,µ)) in Fig. 8.
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def expand[op, v1..m, T : record[nm+1..k]]
(mu : record[n1..k],
f : record[n1..k] ⇒ unit) =

mu′ := record[n1..k] // expanded matching

static for i = 1..m {mu′[vi] := mu[vi]}
expandEdge[m+ 1,
expandEdge[m+ 2,
. . .

expandEdge[k, f(mu′)] . . .]

// Inner function

def expandEdge[i, code] =
[si, di, diri] := T [i]
if diri = true

for s ∈ succs(mu[vs])
mu′[vi] := s
code // inline code

else // d = in
for p ∈ preds(mu[vd])

mu′[vi] := p
code // inline code

Figure 7: Code for computing EXPAND[[op, v1..m]](G,µ)
and applying a function f to each matching.

def redexes[op](f : record[n1..k] ⇒ unit) =

for v ∈ nodes

mu := record[n1]
expand[op, n1, T (R,n2..k)](mu, f ′)

def f ′(mu : record[n1..k]) =
if checkShape[op](mu) ∧ checkGuard[op](mu)
f(mu)

Figure 8: Code for computing RDX[[op]](G,µ) and applying

a function f to each redex.

4.3 Synthesizing DELTA via Automatic Reasoning

We now explain how to automatically obtain an overap-

proximation of DELTA[[op, op′]] (G,µ) for any two operators

op = [R,Gd] → [Upd] and op′ = [R′,Gd′] → [Upd′] and

matching µ, and how to emit the corresponding code.

The definition of DELTA given in Sec. 3 is global in

the sense that it requires searching for redexes in the entire

graph, which is too inefficient. We observe that we can

redefine DELTA by localizing it to a subgraph affected by

the application of the operator, as we explain next.

For the rest of this subsection, we will associate match-

ings with the corresponding patterns using the notational

convention µR.

Let µR and µR′ be two matchings corresponding to the

operators above. We say that µR and µR′ overlap, written

µR f µR′ , if the matched subgraphs overlap: µR(V
R) ∩

µR′(V R′

) 6= ∅. Then, the following equality holds:

DELTA[[op, op′]] (G,µR) =
let G′ = [[op]](G,µR)
in {µR′ | µR′ f µR,

(G,µR′) 6|= Rop,Gdop,

(G′, µR′) |= Rop,Gdop} .

We note that any overapproximation of DELTA can be

used in correctly computing the operational semantics of an

iterate statement. However, tighter approximations lead

to reduction in useless work. We proceed by developing an

overapproximation of the local definition of DELTA.

Given a matching µR, the set of overlapping matchings

µR′ can be classified into statically-defined equivalence

classes, defined as follows. If µR′ f µR then the overlap

between µR(V
R) and µR′(V R′

) induces a partial function

ρ : V R′

⇀ V R defined as ρ(x) = y if µR′(x) = µR(y).
We call the function ρ the influence function of R and R′ and

denote the domain of ρ by ρdom. Two matchings µ1
R′ and µ2

R′

are equivalent if they induce the same influence function ρ.

We denote the equivalence class of an influence function by

[ρ]. We can compute the class [ρ] by

[ρ] = EXPAND[[op′, ρdom]](G,µR) .

Let infs(op, op′) = ρ1..k denote the influence functions

for the redex patterns Rop and Rop′ . We define the function

shift : Match(×V R′

→ V R) → Match, which accepts a

matching µR and an influence function ρ and returns the part

of a matching µR′ identifying on

shift(µR, ρ)
def

= {(x, v) | x ∈ ρdom, v = µR(ρ(x))} .

The first overapproximation we obtain is

DELTA
1[[op, op′]] (G,µR)

def

=
⋃

ρ∈infs(op,op′)

EXPAND[[op′, ρdom]](G, shift(µR, ρ))

An obvious way to obtain a tighter approximation still

is to filter out matchings not satisfying the shape and value

constraints of ρ.

We say that an influence function ρ is useless if for all

graphs G and all matchings µR′ the following holds: for

G′ = [[op]](G,µR) either (G,µR′) |= Rop′ ,Gdop′ , mean-

ing that an active element elem〈op′, µR′〉 has already been

scheduled, or (G′, µR′) 6|= Rop′ ,Gdop′ , meaning that the ap-

plication of op to (G,µR) does not modify the graph in a

way that makes µR′(G′) a redex. Otherwise we say that ρ

is useful. We denote the set of useful influence functions

by useInfs(op, op′) We can obtain a tighter approximation

DELTA
2[[op, op′]] (G,µR) via useful influence functions.

DELTA
2[[op, op′]] (G,µR)

def

=
⋃

ρ∈useInfs(op,op′)

EXPAND[[op′, ρdom]](G, shift(µR, ρ)) .

We use automated reasoning to find the set of useful

influence functions.

Influence Patterns. For every influence function ρ, we

define an influence pattern and construct it as follows.

1. Start with the redex pattern Rop and a copy R′ of Rop′

where all variables have been renamed to fresh names.
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2. Identify the nodes of R′ with R and rename node attribute

variables in R′ to the variables used in the corresponding

nodes of R, and similarly renamed edges attributes for

identified edges.

Example 4.1 (Influence Patterns). Fig. 9 shows the six in-

fluence patterns for operator relaxEdge (for now, ignore the

text below the graphs). Here Rop consists of the nodes a and

b (and the connecting edge) and R′ consists of the nodes c

and d (and the connecting edge). We display identified nodes

by showing both names.

Intuitively, the patterns determine that candidate redexes

are one of the following types: a successor edge of b, a

successor edge of a, a predecessor edge of a, a predecessor

edge of b, an edge from b to a, and the edge from a to b itself.

Query Programs. To detect useless influence functions,

we generate a straight-line program over the variables of

the corresponding influence pattern, which has the following

form:

assume ( Guard )

assume ! ( Guard ’ ) / / comment o u t i f i d e n t i t y p a t t e r n

u p d a t e (C)

a s s e r t ! ( Guard ’ )

Intuitively, the program constructs the following verifi-

cation condition: (i) if the guard of R, Guard, holds (first

assume); and (ii) the guard of R′, Guard’, does not hold

(second assume); and (iii) the updates assign new values;

then (iv) the guard R′ does not hold for the updated val-

ues. Proving the verification condition means that the corre-

sponding influence function is useless.

The case of op = op′ and the identity influence function

is special. The compiler needs to check whether the guard

is strong, and otherwise emit an error message. This is done

by constructing a query program where the second assume

statement is removed.

We pass these programs to a program verification tool (we

use Boogie [6] and Z3 [12]) asking it to prove the last asser-

tion. This amounts to checking satisfiability of a proposi-

tional (single conjunction in fact) formula over the theories

corresponding to the attributes types in our language — in-

teger arithmetic and set theory. When the verifier is able to

prove the condition, we remove the corresponding influence

function. If the verifier is unable to prove the condition or a

timeout is reached, we conservatively consider the function

as useful.

Example 4.2 (Query Programs). Fig. 9 shows the query pro-

grams generated by the compiler for each influence pattern.

Out of the six influence patterns, the verifier is able to rule

out all except (a) and (e), which together represent the edges

outgoing from the destination node, with the special case

where an outgoing edge links back to the source node. Also,

the verifier is able to prove that the guard is strong for (f).

This results with the tightest approximation of DELTA.

def delta2[op, op′, ρ1..m](mu : record[n1..k],
f : record[n1..k] ⇒ unit) =

static for i = 1..m
// mu′ = shift(mu)
mu′ = record[n1..k]
forj = 1..k

mu′[inv rho[j]] = mu[j]
Code(EXPAND[[op′, ρi dom]](G,µ′))

def f ′(mu : record[n1..k]) =
if checkShape[op′](mu) ∧ checkGuard[op′](mu)
f(mu)

Figure 10: Code for computing DELTA
2[[op, op′]] (G,µ) and

applying a function f to each matching.

We note that if the user specifies positive edges weights

(weight : unsigned int) then case (e) is discovered to

be spurious.

Fig. 10 shows the code we emit for DELTA
2. We represent

influence functions by appropriate records and supply an

inverse function inv rho for every influence function rho.

4.3.1 Optimizations

Our compiler applies a few useful optimizations, which are

not shown in the procedures above.

Reducing Overheads in checkShape. The procedure ex-

pand uses the auxiliary data structure T to compute potential

matchings. In doing so it is checking a portion of the shape

constraint — the edges of the redex pattern that are included

in T . The compiler omits checking these edges. Often, T in-

cludes all of the pattern edges; in such a case we specialize

checkShape to only check the one-to-one condition.

Reusing Potential Matchings. In cases when two opera-

tors have the same shape, expand reuses the matchings it

computes for both of them.

4.4 Synthesizing Unordered Statements

We implement the operational semantics defined in Sec. 3.3.3

by utilizing the Galois system runtime, which enables one to:

(i) automatically construct a concurrent worklist from a dy-

namic scheduling expression, and (i) process the elements in

the worklist in parallel by a given function. We use the latter

capability by passing the code we synthesize for operator ap-

plication followed by the code for DELTA
2[[op, op′]] (G,µ),

which inserts the found elements to the worklist for further

processing.

4.5 Synthesizing Ordered Statements

Certain algorithms, such as [5, 19], have additional proper-

ties that enable optimizations over the baseline ordered par-

allelization scheme discussed in Sec. 3.4. For example, in

the case of Breadth-First-Search (BFS), one can show that

when processing work at priority level i, all new work is at

priority level i+1. This allows us to optimize the implemen-

tation to contain only two buckets: Bc that holds work items
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b,c d

dist=bd dist=dd

a

dist=ad
wt=w wt=w2

b

d

dist=bd

dist=dd

a,c

dist=ad
wt=w

wt=w2

bc

dist=bddist=cd

a,d

dist=ad
wt=w2 wt=w

assume ( ad + w < bd )

assume ! ( bd + w2 < dd )

new bd = ad + w

a s s e r t ! ( new bd + w2 < dd )

assume ( ad + w < bd )

assume ! ( ad + w2 < dd )

new bd = ad + w

a s s e r t ! ( ad + w2 < dd )

assume ( ad + w < bd )

assume ! ( cd + w2 < ad )

new bd = ad + w

a s s e r t ! ( cd + w2 < ad )

(a) (b) (c)

b,d

c

dist=bddist=ad
wt=w

wt=w2

a

dist=cd

b,c

dist=bd

a,d

dist=ad
wt=w

wt=w2
b,d

dist=bd

a,c

dist=ad
wt=w

assume ( ad + w < bd )

assume ! ( cd + w2 < bd )

new bd = ad + w

a s s e r t ! ( cd + w2 < new bd )

assume ( ad + w < bd )

assume ! ( bd + w2 < ad )

new bd = ad + w

a s s e r t ! ( new bd + w2 < ad )

/ / check whe the r gua rd i s s t r o n g

assume ( ad + w < bd )

new bd = ad + w

a s s e r t ! ( ad + w < new bd )

(d) (e) (f)

Figure 9: Influence patterns and corresponding query programs for relaxEdge. (b), (c), (d), and (f) are spurious patterns.

at the current priority level, and Bn that holds work items

at the next priority level. Hence, we can avoid the overheads

associated with the generic scheme, which supports an un-

bounded number of buckets. Additionally, since Bc is effec-

tively read-only when operating on work at level i, we can

exploit this to synthesize efficient load-balancing schemes

when distributing the work contained in Bi to the worker

threads. Currently Elixir uses these two insights to synthe-

size specialized dynamic schedulers (using utilities from the

OpenMP library) for problems such as breadth-first search.

4.5.1 Automating the Optimizations

We now discuss how we use automated reasoning to enable

the above optimizations. What we have to show is that if

the priority of active elements at the current level has some

arbitrary value k, then all new active elements have the

same priority k + s, where s ≥ l. We heuristically guess

values of s by taking all constant numeric values appearing

in the program s = C1, . . . , Cn. We illustrate this process

through the BFS example. In the case of BFS the worklist

delta consists only of a case similar to that of Fig. 9(a) with

all weights equal to one. The query program we construct

is shown in Fig. 11. The program checks that the difference

between the priority of the shape resulting from the operator

application and the shape prior to the operator application

is an existentially quantified positive constant. Additionally,

we must guarantee that when we initialize the worklist all

work is at the same priority level. Our compiler emits a

simple check on the priority value on each item inserted

in the worklist during initialization to guarantee that this

condition is satisfied.

assume ( ad == k )

assume ( s == C i )

assume ( ad + 1 < bd )

new bd = ad + 1

assume ( cd == new bd )

assume ( cd + 1 < dd )

a s s e r t ( ad == k & new bd == k + s )

Figure 11: Query program to enable leveled worklist opti-

mization. C i stands for a heuristically guessed value of s.

Dimension Value Range

Worklist (WL) {CF, CL, OBM, BS, LGEN, LOMP}
Group (GR) {a, b, NONE}

Unroll Factor (UF) {0, 1, 2, 10, 20, 30}
VC Check (VC) {ALL,NONE,LOCAL}
SC Check (SC) {ALL,NONE}

Table 1: Dimensions explored by our synthesized algo-

rithms.

5. Design Space Exploration

Elixir makes it possible to automatically generate a large

number of program variants for solving an irregular problem

like SSSP, and evaluate which one performs best on a given

input and architecture. Tab. 1 shows the dimensions of the

design space supported in Elixir, and for each dimension, the

range of values explored in our evaluations.

Worklist Policy (WL): The dynamic scheduler is imple-

mented by a worklist data structure. To implement the LIFO,

FIFO, and approx metric policies, Elixir uses worklists

from the Galois system [20, 23]. These worklists can be

composed to provide more complex policies. To reduce
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overhead, they manipulate chunks of work-items. We re-

fer to the chunked versions of FIFO/LIFO as CF/LF and to

the (approximate) metric ordered worklist composed with

a CL as OBM. We implemented a worklist (LGEN) to sup-

port general, level-by-level execution (metric policy). For

some programs, Elixir can prove that only two levels are

active at any time. In these cases, it can synthesize an opti-

mized, application-specific scheduler using OpenMP prim-

itives (LOMP). Alternatively, it can use a bulk-synchronous

worklist (BS) provided by the Galois library.

Grouping: In the case of the SSSP relaxEdge operator,

we can group either on a, or b, creating a “push-based” or

a “pull-based” version of the algorithm. Additionally, Elixir

uses grouping to determine the type of worklist items. For

example, worklist items for SSSP can be edges (a,b), but if

the group b directive is used, it is more economical to use

node a as the worklist item. In our benchmarks, we consider

using either edges or nodes as worklist items, since this is

the choice made in all practical implementations.

Unroll Factor: Unrolling produces a composite operator.

This operator explores the subgraph in a depth-fist order.

Shape/Value constraint checks (VC/SC): We consider the

following class of heuristics to optimize the worklist manip-

ulation. After the execution of an operator op, the algorithm

may need to insert into the worklist a number of matchings

µ, which constitute the delta of op. Before inserting each

such µ, we can check whether the shape constraint (SC)

and/or the value constraint (VC) is satisfied by µ, and if it is

not, avoid inserting it, thus reducing overhead. Eliding such

checks at this point is always safe, with the potential cost of

populating the worklist with useless work.

In practice, there are many more choices such as the

order of checking constraints and whether these constraints

are checked completely or partially. In certain cases, eliding

check ci may be more efficient since performing ci may

require holding locks longer. Elixir allows the user to specify

which SC/VC checks should be performed and provides

three default, useful polices: ALL for doing all checks, NONE

for doing no checks, and LOCAL for doing only checks that

can be performed by using graph elements already accessed

by the currently executing operator. The last one is especially

useful in the context of parallel execution. In cases where

both VC and SC are applied, we always check them in the

order SC, V C.

6. Empirical Evaluation

To evaluate the effectiveness of Elixir, we perform studies on

three problems: single-source shortest path (SSSP), breadth-

first-search (BFS), and betweenness centrality (BC). We use

Elixir to automatically enumerate and synthesize a number

of program variants for each problem, and compare the per-

formance of these programs to the performance of existing

hand-tuned implementations. In the SSSP comparison, we

use a hand-parallelized code from the Lonestar benchmark

suite [18]. In the BFS comparison, we use a hand-parallelized

code from Leiserson and Schardl [19], and for BC, we use

a hand-parallelized code from Bader and Madduri [5]. In

all cases, our synthesized solutions perform competitively,

and in some cases, they outperform the hand-optimized im-

plementations. More importantly, these solutions were pro-

duced through a simple enumeration-based exploration strat-

egy of the design space, and do not rely on expert knowledge

from the user’s part to guide the search.

Elixir produces both serial and parallel C++ implementa-

tions. It uses graph data structures from the Galois library but

all synchronization is done by the code generated by Elixir,

so the synchronization code built into Galois graphs is not

used. The Galois graph classes use a standard graph API,

and it is straightforward to use a different graph class if this

is desirable. Implementations of standard collections such as

sets and vectors are taken from the C++ standard library. In

our experiments, we use the following input graph classes:

Road networks: These are real-world, road network graphs

of the USA from the DIMACS shortest paths chal-

lenge [1]. We use the full USA network (USA-net) with

24M nodes and 58M edges, the Western USA network

(USA-W) with 6M nodes and 15M edges,and the Florida

network (FLA) with 1M nodes and 2.7M edges.

Scale-free graphs: These are scale-free graphs that were

generated using the tools provided by the SSCA v2.2

benchmark [3]. The generator is based on the Recur-

sive MATrix (R-MAT) scale-free graph generation al-

gorithm [10]. The size of the graphs is controlled by a

SCALE parameter; a graph contains N = 2SCALE nodes,

M = 8 × N edges, with each edge having strictly pos-

itive integer weight with maximum value C = 2SCALE .

For our experiments we removed multi-edges from the

generated graphs. We denote a graph of SCALE = X as

rmatX .

Random graphs: These graphs contain N = 2k nodes and

M = 4 × N edges. There are N − 1 edges connect-

ing nodes in a circle to guarantee the existence of a con-

nected component and all the other edges are chosen ran-

domly, following a uniform distribution, to connect pairs

of nodes. We denote a graph with k = X as randX .

We ran our experiments on an Intel Xeon machine run-

ning Ubuntu Linux 10.04.1 LTS 64-bit. It contains four 6-

core 2.00 GHz Intel Xeon E7540 (Nehalem) processors. The

CPUs share 128 GB of main memory. Each core has a 32 KB

L1 cache and a unified 256 KB L2 cache. Each processor has

an 18 MB L3 cache that is shared among the cores. For SSSP

and BC the compiler used was GCC 4.4.3. For BFS, the com-

piler used was Intel C++ 12.1.0. All reported running times

are the minimum of five runs. The chunk sizes in all our ex-

periments are fixed to 1024 for CF and 16 for CL.
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Dimension Value Ranges

Group {a, b, NONE}
Worklist {CF, OBM, LGEN}

Unroll Factor {0, 1, 2, 10, 20, 30}
VC check {ALL,NONE}
SC check {ALL,NONE}

Table 2: Dimensions explored by our synthetic SSSP vari-

ants.

Variant GR WL UF VC SC fPr

v50 b OBM 2 X X ad/∆
v62 b OBM 2 × X ad/∆
v63 b OBM 10 × X ad/∆
dsv7 b LGEN 0 X X ad/∆

Table 3: Chosen values and priority functions (fPr) for best

performing SSSP variants (Xdenotes ALL, × denotes NONE).

One aspect of our implementation that we have not opti-

mized yet is the initialization of the worklist, before the exe-

cution of a parallel loop. Our current implementation simply

iterates over the graph, checks the operator guards and pop-

ulates the worklist appropriately when a guard is satisfied. In

most algorithms, the optimal worklist initialization is much

simpler. For example, in SSSP we just have to initialize the

worklist with the source node (when we have nodes as work-

list items). A straightforward way to synthesize this code is

to ask the user for a predicate that characterizes the state

before each parallel loop. For SSSP, this predicate would as-

sert that the distance of the source is zero and the distance

of all other nodes is infinity. With this assertion, we can use

our delta inference infrastructure to synthesize the optimal

worklist initialization code. This feature is not currently im-

plemented, so the running times that we report (both for our

programs and programs that we compare against) exclude

this part and include only the parallel loop execution time.

6.1 Single-Source Shortest Path

We synthesize both ordered and unordered versions of SSSP.

In Tab. 2, we present the range of explored values in each

dimension for the synthetic SSSP variants. In Tab. 3, we

present the combinations that lead to the three best perform-

ing asynchronous SSSP variants (v50, v62, v63) and the best

performing delta-stepping variant (dsv7). In Fig. 12a and

Fig. 12b we compare their running times with that of an

asynchronous, hand-optimized Lonestar implementation on

the FLA and USA-W road networks. We observe that in both

cases the synthesized versions outperform the hand-tuned

implementation, with the leveled version also having com-

petitive performance.

All algorithms are parallelized using the Galois infras-

tructure, they use the same worklist configuration, with ∆ =
16384, and the same graph data-structure implementation.

The value of ∆ was chosen through enumeration and gives

the best performance for all variants. The Lonestar version is

a hand-tuned lock-free implementation, loosely based on the

classic delta-stepping formulation [22]. It maintains a work-

list of pairs [v, dv∗], where v is a node and dv∗ is an approxi-

mation to the shortest path distance of v (following the orig-

inal delta-stepping implementation). The Lonestar version

does not implement any of our static scheduling transfor-

mations. All synthetic variants perform fine grained locking

to guarantee atomic execution of operators, checking of the

VC and evaluation of the priority function. For the synthetic

delta-stepping variant dsv7 Elixir uses LGEN since new work

after the application of an operator can be distributed in var-

ious (lower) priority levels. An operator in dsv7 works over

a source node a and its incident edges (a, b), which belong

to the same priority level.

In Fig. 12c we present the runtime distribution of all syn-

thetic SSSP variants on the FLA network. Here we summa-

rize a couple of interesting observations from studying the

runtime distributions in more detail. By examining the ten

variants with the worst running times, we observed that they

all use a CF (chunked FIFO) worklist policy and are either

operating on a single edge or the immediate neighbors of a

node (through grouping), whereas the ten best performing

variants all use OBM. This is not surprising, since by using

OBM there are fewer updates to node distances and the algo-

rithm converges faster. To get the best performance though,

we must combine OBM with the static scheduling transforma-

tions. Interestingly, combining the use of CF with grouping

and aggressive unrolling (by a factor of 20) produces a vari-

ant that performs only two to three times worse than the best

performing variant on both input graphs.

6.2 Breadth-First Search

We experiment with both ordered and unordered versions

of the BFS. In Tab. 4 and Tab. 5, we present the range of ex-

plored values for the synthetic BFS variants and the combina-

tions that give the best performance, respectively. In Fig. 13,

we present a runtime comparison between the three best-

performing BFS variants (both asynchronous and leveled),

and two highly optimized, handwritten, lock-free parallel

BFS implementations. The first handwritten implementation

is from the Lonestar benchmark suite and is parallelized

using the Galois system. The second is an implementation

from Leiserson and Schardl [19], and is parallelized using

Cilk++. We experiment with three different graph types. For

the rmat20 and rand23 graphs, the synthetic variants per-

form competitively with the other algorithms For the USA-

net graph, they outperform the hand-written implementa-

tions at high thread counts (for 20 and 24 threads).

To understand these results, we should consider the struc-

ture of the input graphs and the nature of the algorithms.

Leveled BFS algorithms try to balance exposing parallelism

and being work-efficient by working on one level at a time.

If the amount of available work per level is small, then they

do not exploit the available parallel resources effectively.
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(c) FLA runtime distribution
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Figure 12: Runtime comparison of SSSP algorithms on FLA,USA-W inputs and runtime distribution of synthetic variants on

FLA input.

Asynchronous BFS algorithms try to overcome this problem

by being more optimistic. To expose more parallelism, they

speculatively work across levels. By appropriately picking

the priority function, and efficiently engineering the algo-

rithm, the goal is reduce the amount of mis-speculation in-

troduced by eagerly working on multiple levels. Focusing on

the graph structure, we observe that scale-free graphs exhibit

the small-world phenomenon; most nodes are not neighbors

of one another, but most nodes can be reached from every

other by a small number of “hops”. This means that the di-

ameter of the graph and the number of levels is small (12 for

rmat20). The random graphs that we consider also have a

small diameter (17 for rand23). On the other hand, the road

networks, naturally, have a much larger diameter (6261 for

USA-net). The smaller the diameter of the graph the larger

the number of nodes per level, and therefore the larger the

amount of available work to be processed in parallel. Our

experimental results support the above intuitions. For low

diameter graphs we see that the best performing synthetic

variants are, mostly, leveled algorithms (v17,v18, v19). For

USA-net which has a large diameter, the per-level paral-

lelism is small, which makes the synthetic asynchronous

algorithms (v11, v12, v14) more efficient than others. In

fact, at higher thread counts (above 20) they manage to,

marginally, outperform even the highly tuned hand-written

implementations. For all three variants we use ∆ = 8. This

effectively, merges a small number of levels together and al-

lows for a small amount of speculation, which allows the al-

gorithms to mine more parallelism. Notice that, similarly to

SSSP, all three asynchronous variants combine some static

scheduling (small unroll factor plus grouping) with a good

dynamic scheduling policy to achieve the best performance.

The main take-away message from these experiments is

that no one algorithm is best suited for all inputs, especially

in the domain of irregular graph algorithms. This validates

Dimension Value Ranges

Group {b, NONE}
Worklist {OBM, LOMP, BS}

Unroll Factor {0, 1, 2}
VC check {ALL,NONE}
SC check {ALL,NONE}

Table 4: Dimensions explored by our synthetic BFS variants.

our original assertion that a single solution for an irregular

problem may not be adequate, so it is desirable to have a

system that can synthesize competitive solutions tailored to

the characteristics of the particular input.

For level-by-level algorithms, there is also a spectrum of

interesting choices for the worklist implementation. Elixir

can deduce that BFS under the metric ad scheduling policy

can have only two simultaneously active priority levels, as

we discussed in Sec. 4.5. Therefore, it can use a customized

worklist in which a bucket Bk holds work for the current

level and a bucket Bk+1 holds work for the next. Hence, we

can avoid the overheads associated with LGEN, which sup-

ports an unbounded number of buckets. BS is a worklist that

can be used to exploit this insight. Additionally, since no new

work is added to Bk while working on level k, threads can

scan the bucket in read-only mode, further reducing over-

heads. Elixir exploits both insights by synthesizing a cus-

tom worklist LOMP using OpenMP primitives. LOMP is pa-

rameterized by an OpenMP scheduling directive to explore

load-balancing policies for the threads querying Bk (in our

experiments we used the STATIC policy).

6.3 Betweenness Centrality

The betweenness centrality (BC) of a node is a metric that

captures the importance of individual nodes in the overall

network structure. Informally, it is defined as follows. Let

G = (V,E) be a graph and let s, t be a fixed pair of graph
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Figure 13: Runtime comparison of BFS algorithms.

Variant GR WL UF VC SC fPr

v11 b OBM 1 X X ad/∆
v12 b OBM 2 X X ad/∆
v14 b OBM 1 X × ad/∆
v16 b OBM 0 X × ad/∆
v17 b BS 0 X X ad
v18 b LOMP 0 X X ad
v19 b BS 0 X × ad

Table 5: Chosen values and priority functions for BFS vari-

ants. We chose ∆ = 8. (Xdenotes ALL, × denotes NONE.)

nodes. The betweenness score of a node u is the percent-

age of shortest paths between s and t that include u. The

betweenness centrality of u is the sum of its betweenness

scores for all possible pairs of s and t in the graph. The most

well known algorithm for computing BC is Brandes’ algo-

rithm [7]. In short, Brandes’ algorithm considers each node

s in a graph as a source node and computes the contribution

due to s to the betweenness value of every other node u in the

graph as follows: In a first phase, it starts from s and explores

the graph forward building a DAG with all the shortest path

predecessors of each node. In a second phase it traverses the

graph backwards and computes the contribution to the be-

tweenness of each node. These two steps are performed for

all possible sources s in the graph. For space efficiency, prac-

tical approaches to parallelize BC (e.g. [5]) focus on process-

ing a single source node s at a time, and parallelize the above

two phases for each such s. Additionally, since it is compu-

tationally expensive to consider all graph nodes as possible

source nodes, they consider only a subset of source nodes (in

practice this provides a good approximation of betweenness

values for real-world graphs [4]).

In Tab. 6 and Tab. 7, we present the range of explored val-

ues for the synthetic BC variants and the combinations that

give the best performance, respectively. We synthesized so-

lutions that perform a leveled parallelization of the forward

Dimension
Forward Phase Backward Phase

Ranges Ranges

Group {a, b, NONE} {a}
Worklist {LOMP, BS} {CF}

Unroll Factor {0} {0}
VC check {ALL,NONE} {LOCAL}
SC check {ALL,NONE} {ALL,NONE}

Table 6: Dimensions explored by the forward and backward

phase in our synthetic BC variants.

Variant GR WL UF VC SC fPr

v1 NONE BS 0 (X,L) (X,X) ad
v14 b LOMP 0 (X,L) (X,X) ad
v15 b BS 0 (X,L) (×,×) ad
v16 b LOMP 0 (X,L) (×,×) ad
v24 b LOMP 0 (×,L) (×,×) ad

Table 7: Chosen values and priority functions for BC variants

(Xdenotes ALL, × denotes NONE, L denotes LOCAL). For the

backward phase there is a fixed range of values for most

parameters (see Tab. 6). In the SC column the pair (F,B)
denotes that F is used in the forward phase and B in the

backward phase. fPr is the priority function of the forward

phase.

phase and an asynchronous parallelization of the backward

phase. In Fig. 14 we present a runtime comparison between

the three best performing BC variants, and a hand-written,

OpenMP parallel BC implementation by Bader and Mad-

duri [5], which is publicly available in the SSCA benchmark

suite [3]. All algorithms perform the computation outlined

above for the same five source nodes in the graph, i.e. they

execute the forward and backward phases five times. The re-

ported running times are the sum of the individual running

times of all parallel loops.

17 2012/8/6



We observe that in the case of the USA-W road network

our synthesized versions manage to outperform the hand-

written code, while in the case of rmat20 graph the hand-

written implementation outperforms our synthesized ver-

sions. We believe this is mainly due to the following reason.

During the forward phase, both the hand-written and synthe-

sized versions build a shortest path DAG by recording for

each node u, a set p(u) of shortest path predecessors of u.

The set p(u) therefore contains a subset of the immediate

neighbors of u. In the second phase of the algorithm, the

hand-written version walks the DAG backward to update the

values of each node appropriately. For each node u, it iterates

over the contents of p(u) and updates each w ∈ p(u) appro-

priately. Our synthetic codes instead examine all incoming

edges to u and use p(u) to dynamically identify the appropri-

ate subset of neighbors and prune out all other in-neighbors.

In the case of rmat graphs, we expect that the in-degree of

authority nodes to be large, while in the road network case

the maximum in-degree is much smaller. We expect there-

fore our iteration pattern to be a bottleneck in the first class

of graphs. A straight-forward way to handle this problem is

to add support in our language for multiple edge types in the

graph. By having explicit predecessor edges in the graph in-

stead of considering p(u) as yet another attribute of u, our

delta inference algorithm will be able to infer the more opti-

mized iteration pattern. We plan to add this support in future

extensions of our work.

7. Related Work

We discuss related work in program synthesis, term and

graph rewriting, and finite-differencing.

Synthesis Systems: The SPIRAL system uses recursive

mathematical formulas to generate divide-and-conquer im-

plementations of linear transforms [29]. Divide-and-conquer

is used in the Pochoir compiler [34], which generates code

for finite-difference computations, given a finite-difference

stencil, and in the synthesis of dynamic programming al-

gorithms [28]. This approach cannot be used for synthe-

sizing high-performance implementations of graph algo-

rithms since most graph algorithms cannot be expressed

using mathematical identities; furthermore, the divide-and-

conquer pattern is not useful because the divide step requires

graph partitioning, which usually takes longer than solving

the problem itself. Green-Marl [16] is an orchestration lan-

guage for graph analysis. Basic routines like BFS and DFS

are assumed to be primitives written by expert programmers,

and the language permits the composition of such traversals.

Elixir gives programmers a finer level of control and pro-

vides a richer set of scheduling policies; in fact, BFS is one

of the applications presented in this paper for which Elixir

can automatically generate multiple parallel variants, com-

petitive with handwritten third-party code. There is also a

greater degree of automation in Elixir since the system can
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Figure 14: Runtime comparison of BC algorithms.

explore large numbers of scheduling policies automatically.

Green-Marl provides support for nested parallelism, which

Elixir currently does not support. In [23] Nguyen et al. de-

scribes a synthesis procedure for building high performance

worklists. Elixir uses their worklists for dynamic scheduling,

and adds static scheduling and synthesis from a high-level

specification of operators.

Another line of work focuses on synthesis from logic

specifications [17, 33]. The user writes a logical formula and

a system synthesizes a program from that. These specifica-

tions are at a much higher level of abstraction than in Elixir.

Another line of work that focuses on concurrency is Sketch-

ing [32] and Paraglide [35]. There, the goal is to start from a

(possibly partial) sequential implementation of an algorithm

and infer synchronization to create a correct concurrent im-

plementation. Automation is used to prune out a large part

of the state space of possible solutions or to verify the cor-

rectness of each solution [36].

Term and Graph Rewriting: Term and graph rewriting [30]

are well-established research areas. Systems such as Gr-

Gen [14], PROGRES [31] and Graph Programming (GP) [26]

are using graph rewriting techniques for problem solving.

The goals however are different than ours, since in that set-
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ting the goal is to find a schedule of actions that leads to a

correct solution. If a schedule does not lead to a solution,

it fails and techniques such as backtracking are employed

to continue the search. In our case, every schedule is a solu-

tion and we are interested in schedules that generate efficient

solutions. Additionally, none of these systems is focused on

concurrency and the optimization of concurrency overheads.

Graph rewriting systems try to perform efficient incre-

mental graph pattern matching using techniques such as Rete

networks [8, 15]. In a similar spirit, systems that are based

on dataflow constraints are trying to efficiently perform in-

cremental computations using runtime techniques [13]. Un-

like Elixir, none of these approaches focuses on parallel ex-

ecution. In addition, Elixir tries to synthesize efficient incre-

mental computations using compile-time techniques to infer

high quality deltas.

Finite-differencing: Finite differencing [24] has been used

to automatically derive efficient data structures and algo-

rithms from high level specifications [9, 21]. This work

is not focused on parallelism. Differencing can be used to

come up with incremental versions of fixpoint computa-

tions [9]. Techniques based on differencing rely on a set of

rules, which are most often supplied manually, to incremen-

tally compute complicated expressions. Elixir automatically

infers a sound set of rules for our problem domain, tailored

for a given program, using an SMT solver.

8. Conclusion and Future Work

In this paper we present Elixir, a system that is the first step

towards synthesizing high performance, parallel implemen-

tations of graph algorithms. Elixir starts from a high-level

specification with two main components: (i) a set of oper-

ators that describe how to solve a particular problem, and

(ii) a specification of how to schedule these operators to pro-

duce an efficient solution. Elixir synthesizes efficient paral-

lel implementations with guaranteed absence of concurrency

bugs, such as data-races and deadlocks. Using Elixir, we au-

tomatically enumerated and synthesized a large number of

solutions for interesting graph problems and showed that our

solutions perform competitively against highly tuned hand-

parallelized implementations. This shows the potential of

our solution for improving the practice of parallel program-

ming in the complex field of irregular graph algorithms.

As mentioned in the introduction, there are two main re-

strictions in the supported specifications. First, Elixir sup-

ports only operators for which neighborhoods contain a fixed

number of nodes and edges. Second, Elixir does not support

mutations on the graph structure. We believe Elixir can be

extended to handle such algorithms, but we leave this for

future work.

Another interesting open question is how to integrate

Elixir specifications within the context of a larger project

that mixes other code fragments with a basic graph algorithm

code. Currently Elixir allows the user to insert inside an op-

erator fragments of uninterpreted C++ code. This way, appli-

cation specific logic can be embedded into the algorithmic

kernel easily, under the assumption that the uninterpreted

code fragment does not affect the behavior of the graph ker-

nel. Assessing the effectiveness of the above solution and

checking that consistency is preserved by transitions to the

uninterpreted mode is the subject of future work.
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1 Graph [ nodes(node : Node dist : int

2 sigma : double delta : double

3 nsuccs : int preds : set [Node],

4 bc : double bcapprox : double)

5 edges(src : Node dst : Node dist : int )

6 ]

7

8 source : Node

9

10 // Shortest path rule .

11 SP = [ nodes(node a, dist ad)

12 nodes(node b, dist bd, sigma sigb , preds pb, nsuccs nsb)

13 edges(src a, dst b)

14 (bd > ad + 1) ] →
15 [ bd = ad + 1

16 sigb = 0

17 nsb = 0

18 ]

19

20 // Record predecessor rule .

21 RP = [ nodes(node a, dist ad, sigma sa , nsuccs nsa)

22 nodes(node b, dist bd, sigma sb, preds pb)

23 edges(src a, dst b, dist ed)

24 (bd == ad + 1) & (ed != ad) ] →
25 [ sb = sb + sa

26 pb = pb + a

27 nsa = nsa + 1

28 ed = ad

29 ]

30

31 // Update BC rule .

32 updBC = [ nodes(node a, nsuccs nsa , delta dela , sigma sa)

33 nodes(node b, nsuccs nsb, preds pb, bc bbc,

34 bcapprox bbca, delta delb , sigma sb)

35 edges(src a, dst b)

36 (nsb == 0 & a in pb) ] →
37 [ nsa = nsa - 1

38 dela = dela + sa / sb ∗ (1 + delb)

39 bbc = bbc - bbca + delb

40 bbca = delb

41 pb = pb - a

42 ]

43

44 backwardInv :

∀a : Node, b : Node : : a ∈ preds(b) =⇒ ¬(b ∈ preds(a))
45 Forward = iterate (SP or RP) ≫ metric ad ≫ fuse ≫ group b

46 Backward = iterate {backwardInv} updBC ≫ group a

47 main = Forward; Backward

Figure 15: Elixir program for betweenness centrality.

A. Betweenness Centrality

Fig. 15 shows an Elixir program for solving the betweenness-

centrality problem.

The Elixir language allows a programmer to specify in-

variants (in first-order logic) and use them to annotate ac-

tions, as shown in lines 44 and 45. (We avoided discussing

annotations until this point to simplify the presentation of

statements.) Our compiler adds these invariants as con-

straints to the query programs to further optimize the in-

ference of useful influence patterns. Additionally, we could

use these invariants to optimize the redexes procedure in

order to avoid scanning the entire graph to find redexes. In

all of our benchmarks this optimization would reduce the

search for redexes to just those including the source node.
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