

## **lOTV: A Sparse Optimization Method** for Impulse Noise Image Restoration

| Item Type      | Article                                                                                                                                                                                                                                                                                                                                                             |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Authors        | Yuan, Ganzhao; Ghanem, Bernard                                                                                                                                                                                                                                                                                                                                      |
| Citation       | Yuan G, Ghanem B (2017) l0TV: A Sparse Optimization Method for Impulse Noise Image Restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence: 1–1. Available: http://dx.doi.org/10.1109/TPAMI.2017.2783936.                                                                                                                                       |
| Eprint version | Post-print                                                                                                                                                                                                                                                                                                                                                          |
| DOI            | 10.1109/TPAMI.2017.2783936                                                                                                                                                                                                                                                                                                                                          |
| Publisher      | Institute of Electrical and Electronics Engineers (IEEE)                                                                                                                                                                                                                                                                                                            |
| Journal        | IEEE Transactions on Pattern Analysis and Machine Intelligence                                                                                                                                                                                                                                                                                                      |
| Rights         | (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. |
| Download date  | 05/08/2022 06:43:35                                                                                                                                                                                                                                                                                                                                                 |
| Link to Item   | http://hdl.handle.net/10754/626401                                                                                                                                                                                                                                                                                                                                  |

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

# $\ell_0$ TV: A Sparse Optimization Method for Impulse Noise Image Restoration

Ganzhao Yuan, Bernard Ghanem

Abstract—Total Variation (TV) is an effective and popular prior model in the field of regularization-based image processing. This paper focuses on total variation for removing impulse noise in image restoration. This type of noise frequently arises in data acquisition and transmission due to many reasons, e.g. a faulty sensor or analog-to-digital converter errors. Removing this noise is an important task in image restoration. State-of-the-art methods such as Adaptive Outlier Pursuit(AOP) [57], which is based on TV with  $\ell_{02}$ -norm data fidelity, only give sub-optimal performance. In this paper, we propose a new sparse optimization method, called  $\ell_0 TV$ -PADMM, which solves the TV-based restoration problem with  $\ell_0$ -norm data fidelity. To effectively deal with the resulting non-convex non-smooth optimization problem, we first reformulate it as an equivalent biconvex Mathematical Program with Equilibrium Constraints (MPEC), and then solve it using a proximal Alternating Direction Method of Multipliers (PADMM). Our  $\ell_0 TV$ -PADMM method finds a desirable solution to the original  $\ell_0$ -norm optimization problem and is proven to be convergent under mild conditions. We apply  $\ell_0 TV$ -PADMM to the problems of image denoising and deblurring in the presence of impulse noise. Our extensive experiments demonstrate that  $\ell_0 TV$ -PADMM outperforms state-of-the-art image restoration methods.

Index Terms—Total Variation, Image Restoration, MPEC,  $\ell_0$  Norm Optimization, Proximal ADMM, Impulse Noise.

#### 1 Introduction

Image restoration is an inverse problem, which aims at estimating the original clean image  $\mathbf{u}$  from a blurry and/or noisy observation  $\mathbf{b}$ . Mathematically, this problem is formulated as:

$$\mathbf{b} = ((\mathbf{K}\mathbf{u}) \odot \boldsymbol{\varepsilon}_m) + \boldsymbol{\varepsilon}_a, \tag{1}$$

where **K** is a linear operator,  $\varepsilon_m$  and  $\varepsilon_a$  are the noise vectors, and  $\odot$  denotes an elementwise product. Let **1** and **0** be column vectors of all entries equal to one and zero, respectively. When  $\varepsilon_m = \mathbf{1}$  and  $\varepsilon_a \neq \mathbf{0}$  (or  $\varepsilon_m \neq \mathbf{0}$  and  $\varepsilon_a = \mathbf{0}$ ), (1) corresponds to the additive (or multiplicative) noise model. For convenience, we adopt the vector representation for images, where a 2D  $M \times N$  image is column-wise stacked into a vector  $\mathbf{u} \in \mathbb{R}^{n \times 1}$  with  $n = M \times N$ . So, for completeness, we have  $\mathbf{1}, \mathbf{0}, \mathbf{b}, \mathbf{u}, \varepsilon_a, \varepsilon_m \in \mathbb{R}^n$ , and  $\mathbf{K} \in \mathbb{R}^{n \times n}$ . Before proceeding, we present an image restoration example on the well-known 'barbara' image using our proposed method for solving impulse noise removal in Figure 1.

- Ganzhao Yuan (yuanganzhao@gmail.com) is with School of Data and Computer Science, Sun Yat-sen University (SYSU), China.
- Bernard Ghanem is with Visual Computing Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.

Manuscript received April 19, 2005; revised August 26, 2015.

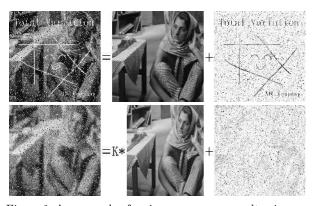



Figure 1: An example of an image recovery result using our proposed  $\ell_0$ TV-PADMM method. Left column: corrupted image. Middle column: recovered image. Right column: absolute residual between these two images.

In general image restoration problems,  $\mathbf{K}$  represents a certain linear operator, e.g. convolution, wavelet transform, etc., and recovering  $\mathbf{u}$  from  $\mathbf{b}$  is known as image deconvolution or image deblurring. When  $\mathbf{K}$  is the identity operator, estimating  $\mathbf{u}$  from  $\mathbf{b}$  is referred to as image denoising [48]. The problem of estimating  $\mathbf{u}$  from  $\mathbf{b}$  is called a linear inverse problem which, for most scenarios of practical interest, is ill-posed due to the singularity and/or the ill-conditioning of  $\mathbf{K}$ . Therefore, in order to stabilize the recovery of  $\mathbf{u}$ , it is necessary to incorporate prior-enforcing regularization on the solution.

Table 1: Data Fidelity Models

| Data Fidelity Function                                                                                                                                         | Noise and References              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| $\ell_2(\mathbf{K}\mathbf{u}, \mathbf{b}) = \ \mathbf{K}\mathbf{u} - \mathbf{b}\ _2^2$                                                                         | add. Gaussian noise [12], [45]    |  |  |
| $\ell_1(\mathbf{K}\mathbf{u}, \mathbf{b}) = \ \mathbf{K}\mathbf{u} - \mathbf{b}\ _1$                                                                           | add. Laplace noise [21], [58]     |  |  |
| $\ell_{\infty}(\mathbf{K}\mathbf{u}, \mathbf{b}) = \ \mathbf{K}\mathbf{u} - \mathbf{b}\ _{\infty}$                                                             | add. uniform noise [20], [49]     |  |  |
| $\ell_p(\mathbf{K}\mathbf{u}, \mathbf{b}) = \langle \mathbf{K}\mathbf{u} - \mathbf{b} \odot \log(\mathbf{K}\mathbf{u}), 1 \rangle$                             | mul. Poisson noise [34], [47]     |  |  |
| $\ell_g(\mathbf{K}\mathbf{u}, \mathbf{b}) = \langle \log(\mathbf{K}\mathbf{u}) + \mathbf{b} \odot \frac{1}{\mathbf{K}\mathbf{u}}, 1 \rangle$                   | mul. Gamma noise [3], [51]        |  |  |
| $\ell_r(\mathbf{K}\mathbf{u}, \mathbf{b}) = \langle \log(\mathbf{K}\mathbf{u}) + \mathbf{b} \odot \mathbf{b} \odot \frac{1}{2\mathbf{K}\mathbf{u}}, 1 \rangle$ | mul. Rayleigh noise [2], [46]     |  |  |
| $\ell_{02}(\mathbf{K}\mathbf{u}, \mathbf{b}) = \ \mathbf{K}\mathbf{u} - \mathbf{b} + \mathbf{z}\ _{2}^{2}, s.t. \ \mathbf{z}\ _{0} \le k$                      | mixed Gaussian impulse noise [57] |  |  |
| $\ell_0(\mathbf{K}\mathbf{u}, \mathbf{b}) = \ \mathbf{K}\mathbf{u} - \mathbf{b}\ _0$                                                                           | add./mul. impulse noise [ours]    |  |  |

Therefore, image restoration can be modelled globally as the following optimization problem:

$$\min_{\mathbf{u}} \ell(\mathbf{K}\mathbf{u}, \mathbf{b}) + \lambda \Omega(\nabla_x \mathbf{u}, \nabla_y \mathbf{u}),$$
 (2)

where  $\ell(\mathbf{Ku}, \mathbf{b})$  measures the data fidelity between  $\mathbf{Ku}$  and the observation  $\mathbf{b}$ ,  $\nabla_x \in \mathbb{R}^{n \times n}$  and  $\nabla_y \in \mathbb{R}^{n \times n}$  are two suitable linear transformation matrices such that  $\nabla_x \mathbf{u} \in \mathbb{R}^n$  and  $\nabla_y \mathbf{u} \in \mathbb{R}^n$  compute the discrete gradients of the image  $\mathbf{u}$  along the x-axis and y-axis, respectively<sup>1</sup>,  $\Omega(\nabla_x \mathbf{u}, \nabla_y \mathbf{u})$  is the regularizer on  $\nabla_x \mathbf{u}$  and  $\nabla_y \mathbf{u}$ , and  $\lambda$  is a positive parameter used to balance the two terms for minimization. Apart from regularization, other prior information such as bound constraints [5], [68] or hard constraints can be incorporated into the general optimization framework in (2).

#### 1.1 Related Work

This subsection presents a brief review of existing TV methods, from the viewpoint of data fidelity models, regularization models and optimization algorithms.

**Data Fidelity Models:** The fidelity function  $\ell(\cdot, \cdot)$  in (2) usually penalizes the difference between **Ku** and **b** by using different norms/divergences. Its form depends on the assumed distribution of the noise model. Some typical noise models and their corresponding fidelity terms are listed in Table 1. The classical TV model [45] only considers TV minimization involving the squared  $\ell_2$ -norm fidelity term for recovering images corrupted by additive Gaussian noise. However, this model is far from optimal when the noise is not Gaussian. Other works [21], [58] extend classical TV to use the  $\ell_1$ -norm in the fidelity term. Since the  $\ell_1$ -norm fidelity term coincides with the probability density function of Laplace distribution, it is suitable for image restoration in the presence of Laplace noise. Moreover, additive uniform noise [20], [49], multiplicative Poisson noise [34], and multiplicative

1. In practice, one does not need to compute and store the matrices  $\nabla_x$  and  $\nabla_y$  explicitly. Since the adjoint of the gradient operator  $\nabla$  is the negative divergence operator -div, i.e.,  $\langle \mathbf{r}, \nabla_x \mathbf{u} \rangle = \langle -\text{div}_x \mathbf{r}, \mathbf{u} \rangle$ ,  $\langle \mathbf{s}, \nabla_y \mathbf{u} \rangle = \langle -\text{div}_y \mathbf{s}, \mathbf{u} \rangle$  for any  $\mathbf{r}, \mathbf{s} \in \mathbb{R}^n$ , the inner product between vectors can be evaluated efficiently. Fore more details on the computation of  $\nabla$  and div operators, please refer to [4], [12], [49].

Table 2: Regularization Models

| Regularization Function                                                                                                                                                                                                                                                                                                                                                        | Description and References |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| $\Omega_{\mathrm{tik}}(\mathbf{g}, \mathbf{h}) = \sum_{i=1}^{n} \mathbf{g}_{i}^{2} + \mathbf{h}_{i}^{2}$                                                                                                                                                                                                                                                                       | Tikhonov-like [1]          |  |  |
| $\Omega_{\text{tv}_2}(\mathbf{g}, \mathbf{h}) = \sum_{i=1}^{n} (\mathbf{g}_i^2 + \mathbf{h}_i^2)^{\frac{1}{2}}$                                                                                                                                                                                                                                                                | Isotropic [45], [51]       |  |  |
| $\Omega_{\text{tv}_1}(\mathbf{g}, \mathbf{h}) = \sum_{i=1}^{n}  \mathbf{g}_i  +  \mathbf{h}_i $                                                                                                                                                                                                                                                                                | Anisotropic [48], [58]     |  |  |
| $\Omega_{\text{stv}}(\mathbf{g}, \mathbf{h}) = \sum_{i=1}^{n} (\mathbf{g}_i^2 + \mathbf{h}_i^2 + \epsilon^2)^{\frac{1}{2}}$                                                                                                                                                                                                                                                    | smooth TV [16], [49]       |  |  |
| $\Omega_{\text{pot}}(\mathbf{g}, \mathbf{h}) = \sum_{i=1}^{n}  \mathbf{g}_{i} _{0} +  \mathbf{h}_{i} _{0}$                                                                                                                                                                                                                                                                     | Potts model [54], [55]     |  |  |
| $\Omega_{\text{hub}}(\mathbf{g}, \mathbf{h}) = \sum_{i=1}^{n} \varphi(\mathbf{g}_{i}; \mathbf{h}_{i}),$ $\varphi(\mathbf{g}_{i}; \mathbf{h}_{i}) = \begin{cases} \varepsilon \ \mathbf{g}_{i}; \mathbf{h}_{i}\ _{2}^{2}/2; \ \mathbf{g}_{i}; \mathbf{h}_{i}\ _{2} \leq 1/\varepsilon \\ \ \mathbf{g}_{i}; \mathbf{h}_{i}\ _{2} - \varepsilon/2; \text{ otherwise} \end{cases}$ | Huber-Like [44]            |  |  |
| $\ \mathbf{g}_i; \mathbf{n}_i\ _2 = \varepsilon/2$ ; otherwise                                                                                                                                                                                                                                                                                                                 |                            |  |  |

Gamma noise [51] have been considered in the literature. Recently, a sparse noise model using an  $\ell_{02}$ -norm for data fidelity has been investigated in [57] to remove impulse and mixed Gaussian impulse noise. Some extensions have been made to deal with mixed Rayleigh impulse noise and mixed Poisson impulse noise in [2]. In this paper, we consider  $\ell_0$ -norm data fidelity and show that it is particularly suitable for reconstructing images corrupted with additive/multiplicative <sup>2</sup> impulse noise.

Regularization Models: Several regularization models have been studied in the literature (see Table 2). The Tikhonov-like regularization [1] function  $\Omega_{tik}$  is quadratic and smooth, therefore it is relatively inexpensive to minimize with first-order smooth optimization methods. However, since this method tends to overly smooth images, it often erodes strong edges and texture details. To address this issue, the total variation (TV) regularizer was proposed by Rudin, Osher and Fatemi in [45] for image denoising. Several other variants of TV have been extensively studied. The original TV norm  $\Omega_{\rm tv_2}$  in [45] is isotropic, while an anisotropic variation  $\Omega_{tv_1}$  is also used. From a numerical point of view,  $\Omega_{tv_2}$  and  $\Omega_{tv_1}$  cannot be directly minimized since they are not differentiable. A popular method is to use their smooth approximation  $\Omega_{\rm stv}$  and  $\Omega_{\rm hub}$  (see [44] for details). Very recently, the Potts model  $\Omega_{\rm pot}$  [7], [27], [40], which is based on the  $\ell_0$ -norm, has received much attention. It has been shown to be particularly effective for image smoothing [54] and motion deblurring [55].

Optimization Algorithms: The optimization problems involved in TV-based image restoration are usually difficult due to the non-differentiability of the TV norm and the high dimensionality of the image data. In the past several decades, a plethora of approaches have been proposed, which include PDE methods based on the Euler-Lagrange equation [45], the interior-point method [16], the semi-smooth Newton method [43], the second-order cone optimization method [29], the splitting Bregman method [30], [67], the fixed-point iterative method [19], Nesterov's first-order optimal method [5],

2. The impulse noise has a discrete nature (corrupted or uncorrupted), thus it can be viewed as additive noise or multiplicative noise. [42], and alternating direction methods [18], [48], [51]. Among these methods, some solve the TV problem in its primal form [48], while others consider its dual or primal-dual forms [16], [21]. In this paper, we handle the TV problem with  $\ell_0$ -norm data fidelity using a primal-dual formulation, where the resulting equality constrained optimization is solved using proximal Alternating Direction Method of Multipliers (PADMM). It is worthwhile to note that the Penalty Decomposition Algorithm (PDA) in [37] can also solve our problem, however, it lacks numerical stability. This motivates us to design a new  $\ell_0$ -norm optimization algorithm in this paper.

#### 1.2 Contributions and Organization

The main contributions of this paper are two-fold. (1)  $\ell_0$ -norm data fidelity is proposed to address the TV-based image restoration problem<sup>3</sup>. Compared with existing models, our model is particularly suitable for image restoration in the presence of impulse noise. (2) To deal with the resulting NP-hard  $^4$   $\ell_0$  norm optimization, we propose a proximal ADMM to solve an equivalent MPEC form of the problem. A preliminary version of this paper appeared in [61].

The rest of the paper is organized as follows. Section 2 presents the motivation and formulation of the problem for impulse noise removal. Section 3 presents the equivalent MPEC problem and our proximal ADMM solution. Section 4 discusses the connection between our method and prior work. Section 5 provides extensive and comparative results in favor of our  $\ell_0$ TV method. Finally, Section 6 concludes the paper.

#### 2 Motivation and Formulations

#### 2.1 Motivation

This work focuses on image restoration in the presence of impulse noise, which is very common in data acquisition and transmission due to faulty sensors or analog-to-digital converter errors, etc. Moreover, scratches in photos and video sequences can be also viewed as a special type of impulse noise. However, removing this kind of noise is not easy, since corrupted pixels are randomly distributed in the image and the intensities at corrupted pixels are usually indistinguishable from those of their neighbors. There are two main types of impulse noise in the literature [21], [33]: random-valued and salt-and-pepper impulse noise. Let  $[u_{\min}, u_{\max}]$  be the dynamic range of an image, where  $u_{\min} = 0$  and  $u_{\max} = 1$  in this paper. We also denote the original and

corrupted intensity values at position i as  $\mathbf{u}_i$  and  $\mathcal{T}(\mathbf{u}_i)$ , respectively.

Random-valued impulse noise: A certain percentage of pixels are altered to take on a uniform random number  $d_i \in [u_{\min}, u_{\max}]$ :

$$\mathcal{T}(\mathbf{u}_i) = \begin{cases} d_i, & \text{with probability } r_{rv}; \\ (\mathbf{K}\mathbf{u})_i, & \text{with probability } 1 - r_{rv}. \end{cases}$$
(3)

Salt-and-pepper impulse noise: A certain percentage of pixels are altered to be either  $u_{\min}$  or  $u_{\max}$ :

$$\mathcal{T}(\mathbf{u}_i) = \begin{cases} u_{\min}, & \text{with probability } r_{sp}/2; \\ u_{\max}, & \text{with probability } r_{sp}/2; \\ (\mathbf{K}\mathbf{u})_i, & \text{with probability } 1 - r_{sp}. \end{cases} \tag{4}$$

The above definition means that impulse noise corrupts a portion of pixels in the image while keeping other pixels unaffected. Expectation maximization could be used to find the MAP estimate of  $\mathbf{u}$  by maximizing the conditional posterior probability  $p(\mathbf{u}|\mathcal{T}(\mathbf{u}))$ , the probability that  $\mathbf{u}$  occurs when  $\mathcal{T}(\mathbf{u})$  is observed. By the Bayes' theorem, we have that

$$p(\mathbf{u}|\mathcal{T}(\mathbf{u})) = p(\mathbf{u}) \cdot p(\mathcal{T}(\mathbf{u})|\mathbf{u}) / p(\mathcal{T}(\mathbf{u})).$$

Taking the negative logarithm of the above equation, the estimate is a solution of the following minimization problem:

$$\max_{\mathbf{u}} \log p(\mathcal{T}(\mathbf{u})|\mathbf{u}) + \log p(\mathbf{u}). \tag{5}$$

We now focus on the two terms in (5). (i) The expression  $p(\mathcal{T}(\mathbf{u})|\mathbf{u})$  can be viewed as a fidelity term measuring the discrepancy between the estimate  $\mathbf{u}$  and the noisy image  $\mathcal{T}(\mathbf{u})$ . The choice of the likelihood  $p(\mathcal{T}(\mathbf{u})|\mathbf{u})$  depends upon the property of noise. From the definition of impulse noise given above, we have that

$$p(\mathcal{T}(\mathbf{u})|\mathbf{u}) = 1 - r = 1 - \|\mathcal{T}(\mathbf{u}) - \mathbf{b}\|_0 / n$$

where r is the noise density level as defined in (3) and (4) and  $\|\cdot\|_0$  counts the number of non-zero elements in a vector. (ii) The term  $p(\mathbf{u})$  in (5) is used to regularize a solution that has a low probability. We use a prior which has the Gibbs form:  $p(\mathbf{u}) = \frac{1}{\vartheta} \exp(-E(\mathbf{u}))$  with  $E(\mathbf{u}) = \sigma \cdot \Omega_{\text{tv}}(\nabla_x \mathbf{u}, \nabla_y \mathbf{u})$ . Here,  $E(\mathbf{u})$  is the TV prior energy functional,  $\vartheta$  is a normalization factor such that the TV prior is a probability, and  $\sigma$  is the free parameter of the Gibbs measure. Replacing  $p(\mathcal{T}(\mathbf{u})|\mathbf{u})$  and  $p(\mathbf{u})$  into (5) and ignoring a constant, we obtain the following  $\ell_0 TV$  model:

$$\min_{\mathbf{u}} \|\mathbf{K}\mathbf{u} - \mathbf{b}\|_0 + \lambda \sum_{i=1}^n \left[ |(\nabla_x \mathbf{u})_i|^p + |(\nabla_y \mathbf{u})_i|^p \right]^{1/p},$$

where  $\lambda$  is a positive number related to n,  $\sigma$  and r. The parameter p can be 1 (anisotropic TV) or 2 (isotropic TV), and  $(\nabla_x \mathbf{u})_i$  and  $(\nabla_y \mathbf{u})_i$  denote the ith

<sup>3.</sup> We are also aware of Ref. [17] where  $\ell_0$ -norm data fidelity is considered. However, their interpretation from the MAP viewpoint is not correct.

<sup>4.</sup> The  $\ell_0$  norm problem is known to be NP-hard [41], since it is equivalent to NP-complete subset selection problems.

component of the vectors  $\nabla_x \mathbf{u}$  and  $\nabla_y \mathbf{u}$ , respectively. For convenience, we define  $\forall \mathbf{x} \in \mathbb{R}^{2n}$ :

$$\|\mathbf{x}\|_{p,1} \triangleq \sum_{i=1}^{n} (|\mathbf{x}_i|^p + |\mathbf{x}_{n+i}|^p)^{\frac{1}{p}}; \ \nabla \triangleq \begin{bmatrix} \nabla_x \\ \nabla_y \end{bmatrix} \in \mathbb{R}^{2n \times n}.$$

In order to make use of more prior information, we consider the following box-constrained model:

$$\min_{\mathbf{0} < \mathbf{u} < \mathbf{1}} \| \mathbf{o} \odot (\mathbf{K}\mathbf{u} - \mathbf{b}) \|_0 + \lambda \| \nabla \mathbf{u} \|_{p,1},$$
 (6)

where  $\mathbf{o} \in \{0,1\}^n$  is specified by the user. When  $\mathbf{o}_i$  is 0, it indicates the pixel in position i is an outlier, while when  $\mathbf{o}_i$  is 1, it indicates the pixel in position i is a potential outlier. For example, in our experiments, we set  $\mathbf{o} = \mathbf{1}$  for the random-valued impulse noise and  $\mathbf{o}_i = \begin{cases} 0, & \mathbf{b}_i = u_{\min} \text{ or } u_{\max} \\ 1, & \text{otherwise} \end{cases}$  for the salt-and-pepper impulse noise. In what follows, we focus on optimizing the general formulation in (6).

#### 2.2 Equivalent MPEC Reformulations

In this section, we reformulate the problem in (6) as an equivalent MPEC from a primal-dual viewpoint. First, we provide the variational characterization of the  $\ell_0$ -norm using the following lemma.

**Lemma 1.** For any given  $\mathbf{w} \in \mathbb{R}^n$ , it holds that

$$\|\mathbf{w}\|_0 = \min_{\mathbf{0} \le \mathbf{v} \le 1} \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle, \ s.t. \ \mathbf{v} \odot |\mathbf{w}| = \mathbf{0},$$
 (7)

and  $\mathbf{v}^* = \mathbf{1} - \operatorname{sign}(|\mathbf{w}|)$  is the unique optimal solution of the problem in (7). Here, the standard signum function sign is applied componentwise, and  $\operatorname{sign}(0) = 0$ .

Proof. The total number of zero elements in  $\mathbf{w}$  can be computed as  $n - \|\mathbf{w}\|_0 = \max_{\mathbf{v} \in \{0,1\}} \sum_{i=1}^n \mathbf{v}_i$ ,  $s.t. \mathbf{v} \in \Phi$ , where  $\Phi \triangleq \{\mathbf{v} \mid \mathbf{v}_i \cdot | \mathbf{w}_i| = 0, \ \forall i \in [n]\}$ . Note that when  $\mathbf{w}_i = 0$ ,  $\mathbf{v}_i = 1$  will be achieved by maximization, when  $\mathbf{w}_i \neq 0$ ,  $\mathbf{v}_i = 0$  will be enforced by the constraint. Thus,  $\mathbf{v}_i^* = 1 - \mathrm{sign}(|\mathbf{w}_i|)$ . Since the objective function is linear, maximization is always achieved at the boundaries of the feasible solution space. Thus, the constraint of  $\mathbf{v}_i \in \{0,1\}$  can be relaxed to  $0 \leq \mathbf{v}_i \leq 1$ , we have:  $\|\mathbf{w}\|_0 = n - \max_{0 \leq \mathbf{v} \leq 1, \ \mathbf{v} \in \Phi} \sum_{i=1}^n \mathbf{v}_i = \min_{0 \leq \mathbf{v} \leq 1, \ \mathbf{v} \in \Phi} \langle 1, 1 - \mathbf{v} \rangle$ .

The result of Lemma 1 implies that the  $\ell_0$ -norm minimization problem in (6) is equivalent to

$$\min_{\mathbf{0} \le \mathbf{u}, \mathbf{v} \le \mathbf{1}} \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle + \lambda \| \nabla \mathbf{u} \|_{p,1} 
\text{s.t.} \quad \mathbf{v} \odot |\mathbf{o} \odot (\mathbf{K} \mathbf{u} - \mathbf{b})| = \mathbf{0}.$$
(8)

If  $\mathbf{u}^*$  is a global optimal solution of (6), then  $(\mathbf{u}^*, \mathbf{1} - \operatorname{sign}(|\mathbf{K}\mathbf{u}^* - \mathbf{b}|))$  is globally optimal to (8). Conversely, if  $(\mathbf{u}^*, \mathbf{1} - \operatorname{sign}(|\mathbf{K}\mathbf{u}^* - \mathbf{b}|))$  is a global optimal solution of (8), then  $\mathbf{u}^*$  is globally optimal to (6).

Although the MPEC problem in (8) is obtained by increasing the dimension of the original  $\ell_0$ -norm problem in (6), this does not lead to additional local

optimal solutions. Moreover, compared with (6), (8) is a non-smooth non-convex minimization problem and its non-convexity is only caused by the complementarity constraint  $\mathbf{v} \odot |\mathbf{o} \odot (\mathbf{K}\mathbf{u} - \mathbf{b})| = \mathbf{0}$ .

Such a variational characterization of the  $\ell_0$ -norm is proposed in [23], [25], [32], but it is not used to develop any optimization algorithms for  $\ell_0$ -norm problems. We argue that, from a practical perspective, improved solutions to (6) can be obtained by reformulating the  $\ell_0$ -norm in terms of complementarity constraints [38], [61], [62], [63], [64], [65]. In the following section, we will develop an algorithm to solve (8) based on proximal ADMM and show that such a "lifting" technique can achieve a desirable solution of the original  $\ell_0$ -norm optimization problem.

#### 3 Proposed Optimization Algorithm

This section is devoted to the solution of (8). This problem is rather difficult to solve, because it is neither convex nor smooth. Our solution is based on the proximal ADM method, which iteratively updates the primal and dual variables of the augmented Lagrangian function of (8).

First, we introduce two auxiliary vectors  $\mathbf{x} \in \mathbb{R}^{2n}$  and  $\mathbf{y} \in \mathbb{R}^n$  to reformulate (8) as:

$$\min_{\mathbf{0} \leq \mathbf{u}, \mathbf{v} \leq \mathbf{1}, \ \mathbf{x}, \ \mathbf{y}} \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle + \lambda \|\mathbf{x}\|_{p,1}$$
s.t.  $\nabla \mathbf{u} = \mathbf{x}, \ \mathbf{K}\mathbf{u} - \mathbf{b} = \mathbf{y}, \ \mathbf{v} \odot \mathbf{o} \odot |\mathbf{y}| = \mathbf{0}.$ 

Let  $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^{2n} \times \mathbb{R}^n \times \mathbb{R}^{2n} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  be the augmented Lagrangian function of (9).

$$\mathcal{L}(\mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y}, \boldsymbol{\xi}, \boldsymbol{\zeta}, \boldsymbol{\pi}) := \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle + \lambda \|\mathbf{x}\|_{p,1} + \langle \nabla \mathbf{u} - \mathbf{x}, \boldsymbol{\xi} \rangle + \frac{\beta}{2} \|\nabla \mathbf{u} - \mathbf{x}\|^2 + \langle \mathbf{K}\mathbf{u} - \mathbf{b} - \mathbf{y}, \boldsymbol{\zeta} \rangle + \frac{\beta}{2} \|\mathbf{K}\mathbf{u} - \mathbf{b} - \mathbf{y}\|^2 + \langle \mathbf{v} \odot \mathbf{o} \odot |\mathbf{y}|, \boldsymbol{\pi} \rangle + \frac{\beta}{2} \|\mathbf{v} \odot \mathbf{o} \odot |\mathbf{y}|\|^2,$$

where  $\boldsymbol{\xi}$ ,  $\boldsymbol{\zeta}$  and  $\boldsymbol{\pi}$  are the Lagrange multipliers associated with the constraints  $\nabla \mathbf{u} = \mathbf{x}$ ,  $\mathbf{K}\mathbf{u} - \mathbf{b} = \mathbf{y}$  and  $\mathbf{v} \odot \mathbf{o} \odot |\mathbf{y}| = 0$ , respectively, and  $\beta > 0$  is the penalty parameter. The detailed iteration steps of the proximal ADM for (9) are described in Algorithm 1. In simple terms, ADM updates are performed by optimizing for a set of primal variables at a time, while keeping all other primal and dual variables fixed. The dual variables are updated by gradient ascent on the resulting dual problem.

Next, we focus our attention on the solutions of the subproblems in (10) and (11) arising in Algorithm 1. We will show that the computation required in each iteration of Algorithm 1 is insignificant.

(i)  $(\mathbf{u}, \mathbf{v})$ -subproblem. Proximal ADM introduces a convex proximal term to the objective. The specific form of  $\mathbf{D}$  is chosen to expedite the computation of the closed form solution. The introduction of  $\mu$  is to guarantee strongly convexity of the subproblems.

### Algorithm 1 ( $\ell_0 TV$ -ADMM) A Proximal ADMM for Solving the Biconvex MPEC Problem (8)

(S.0) Choose a starting point  $(\mathbf{u}^0, \mathbf{v}^0, \mathbf{x}^0, \mathbf{y}^0, \boldsymbol{\xi}^0, \boldsymbol{\zeta}^0)$ . Set k = 0. Select step size  $\gamma \in (0, 2), \, \mu > 0, \, \beta = 1$ , and  $L = \mu + \beta \|\mathbf{\nabla}\|^2 + \beta \|\mathbf{K}\|^2$ .

(S.1) Solve the following minimization problems with  $\mathbf{D} := L\mathbf{I} - (\beta \nabla^T \nabla + \beta \mathbf{K}^T \mathbf{K})$  and  $\mathbf{E} := \mu \mathbf{I}$ :

$$\begin{bmatrix} \mathbf{u}^{k+1} \\ \mathbf{v}^{k+1} \end{bmatrix} = \underset{\mathbf{0} \le \mathbf{u}, \mathbf{v} \le \mathbf{1}}{\arg \min} \mathcal{L}(\mathbf{u}, \mathbf{v}, \mathbf{x}^k, \mathbf{y}^k, \boldsymbol{\xi}^k, \boldsymbol{\zeta}^k, \boldsymbol{\pi}^k)$$

$$+ \frac{1}{2} \|\mathbf{u} - \mathbf{u}^k\|_{\mathbf{D}}^2 + \frac{1}{2} \|\mathbf{v} - \mathbf{v}^k\|_{\mathbf{E}}^2$$
(10)

$$\begin{bmatrix} \mathbf{x}^{k+1} \\ \mathbf{y}^{k+1} \end{bmatrix} = \underset{\mathbf{x}, \mathbf{y}}{\operatorname{arg min}} \mathcal{L}(\mathbf{u}^{k+1}, \mathbf{v}^{k+1}, \mathbf{x}, \mathbf{y}, \boldsymbol{\xi}^k, \boldsymbol{\zeta}^k, \boldsymbol{\pi}^k)$$
(11)

(S.2) Update the Lagrange multipliers:

$$\boldsymbol{\xi}^{k+1} = \boldsymbol{\xi}^k + \gamma \beta (\boldsymbol{\nabla} \mathbf{u}^k - \mathbf{x}^k), \tag{12}$$

$$\boldsymbol{\zeta}^{k+1} = \boldsymbol{\zeta}^k + \gamma \beta (\mathbf{K} \mathbf{u}^k - \mathbf{b} - \mathbf{y}^k), \tag{13}$$

$$\boldsymbol{\pi}^{k+1} = \boldsymbol{\pi}^k + \gamma \beta(\mathbf{o} \odot \mathbf{v}^k \odot |\mathbf{y}^k|).$$
 (14)

**(S.3)** if (k is a multiple of 30), then  $\beta = \beta \times \sqrt{10}$ 

(S.4) Set k := k + 1 and then go to Step (S.1).

 ${\bf u}$ -subproblem in (10) reduces to the following minimization problem:

$$\mathbf{u}^{k+1} = \arg\min_{\mathbf{0} \le \mathbf{u} \le \mathbf{1}} \frac{\beta}{2} \| \nabla \mathbf{u} - \mathbf{x}^k + \boldsymbol{\xi}^k / \beta \|^2 + \frac{\beta}{2} \| \mathbf{K} \mathbf{u} - \mathbf{b} - \mathbf{y}^k + \boldsymbol{\zeta}^k / \beta \|^2 + \frac{1}{2} \| \mathbf{u} - \mathbf{u}^k \|_{\mathbf{D}}^2.$$
(15)

After an elementary calculation, subproblem (15) can be simplified as

$$\mathbf{u}^{k+1} = \arg\min_{\mathbf{0} \leq \mathbf{u} \leq \mathbf{1}} \tfrac{1}{2} \|\mathbf{u} - (\mathbf{u}^k - \mathbf{g}^k/L)\|^2$$

with  $\mathbf{g}^k = \mathbf{\nabla}^T \xi^k + \mathbf{K}^T \zeta^k + \beta \mathbf{\nabla}^T (\mathbf{x}^k - \mathbf{\nabla} \mathbf{u}^k) + \beta \mathbf{K}^T (\mathbf{b} + \mathbf{y}^k - \mathbf{K} \mathbf{u}^k)$ . Then, the solution  $\mathbf{u}^k$  of (10) has the following closed form expression:

$$\mathbf{u}^{k+1} = \min(\mathbf{1}, \max(\mathbf{0}, \mathbf{u}^k - \mathbf{g}^k / L)).$$

Here the parameter L depends on the spectral norm of the linear matrices  $\nabla$  and  $\mathbf{K}$ . Using the definition of  $\nabla$  and the classical finite differences that  $\|\nabla_y\| \leq 2$  and  $\|\nabla_y\| \leq 2$  (see [4], [12], [68]), the spectral norm of  $\nabla$  can be computed by:  $\|\nabla\| = \|\begin{pmatrix} \nabla_x \\ \mathbf{0} \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ \nabla_y \end{pmatrix}\| \leq \|\begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}\| + \|\begin{pmatrix} \mathbf{0} \\ \nabla_y \end{pmatrix}\| = \|\nabla_x\| + \|\nabla_y\| \leq 4$ .

**v**-subproblem in (10) reduces to the following minimization problem:

$$\mathbf{v}^{k+1} = \arg\min_{\mathbf{0} \leq \mathbf{v} \leq \mathbf{1}} \ \tfrac{1}{2} \sum_{i=1}^n \mathbf{s}_i^k \mathbf{v}_i^2 + \langle \mathbf{v}, \mathbf{c}^k \rangle,$$

where  $\mathbf{c}^k = o \odot \boldsymbol{\pi}^k \odot |\mathbf{y}^k| - 1 - \mu \mathbf{v}^k$ ,  $\mathbf{s}^k = \beta \mathbf{o} \odot \mathbf{y}^k \odot \mathbf{y}^k + \mu$ . Therefore, the solution  $\mathbf{v}^k$  can be computed as:

$$\mathbf{v}^{k+1} = \min(\mathbf{1}, \max(\mathbf{0}, -\frac{\mathbf{c}^k}{\mathbf{s}^k})).$$

(iii)  $(\mathbf{x}, \mathbf{y})$ -subproblem. Variable  $\mathbf{x}$  in (11) is updated by solving the following problem:

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^{2n}} \ \frac{\beta}{2} \|\mathbf{x} - \mathbf{h}^k\|^2 + \lambda \|\mathbf{x}\|_{p,1},$$

where  $\mathbf{h}^k := \nabla \mathbf{u}^{k+1} + \boldsymbol{\xi}^k / \beta$ . It is not difficult to check that for p = 1,

$$\mathbf{x}^{k+1} = \operatorname{sign}(\mathbf{h}^k) \odot \max(|\mathbf{h}^k| - \lambda/\beta, 0),$$

and when p=2,

$$\left[\begin{array}{c} \mathbf{x}_i^{k+1} \\ \mathbf{x}_{i+n}^{k+1} \end{array}\right] = \left(\max(0, 1 - \frac{\lambda/\beta}{\|(\mathbf{h}_i^k; \mathbf{h}_{i+n}^k)\|})\right) \left[\begin{array}{c} \mathbf{h}_i^k \\ \mathbf{h}_{i+n}^k \end{array}\right]$$

Variable  $\mathbf{y}$  in (11) is updated by solving the following problem:

$$\mathbf{y}^{k+1} = \arg\min_{\mathbf{y}} \frac{\beta}{2} \|\mathbf{y} - \mathbf{q}^k\|^2 + \frac{\beta}{2} \|\mathbf{w}^k \odot |\mathbf{y}| + \pi^k / \beta \|^2,$$

where  $\mathbf{q}^k = \mathbf{K}\mathbf{u}^{k+1} - \mathbf{b} + \boldsymbol{\zeta}^k/\beta$  and  $\mathbf{w}^k = \mathbf{o} \odot \mathbf{v}^{k+1}$ . A simple computation yields that the solution  $\mathbf{y}^k$  can be computed in closed form as:

$$\mathbf{y}^{k+1} = \operatorname{sign}(\mathbf{q}^k) \odot \max \left(0, \frac{|\mathbf{q}^k| - \boldsymbol{\pi}^k \odot \mathbf{w}^k / \beta}{1 + \mathbf{v}^k \odot \mathbf{w}^k}\right),$$

Proximal ADM has excellent convergence in practice. The global convergence of ADM for convex problems was given by He and Yuan in [18], [31] under the variation inequality framework. However, since our optimization problem in (8) is non-convex, the convergence analysis for ADM needs additional conditions. By imposing some mild conditions, Wen et al. [50] managed to show that the sequence generated by ADM converges to a KKT point. Along a similar line, we establish the convergence property of proximal ADM. Specifically, we have the following convergence result.

**Theorem 1.** Convergence of Algorithm 1. Let  $X \triangleq (\mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y}), Y \triangleq (\boldsymbol{\xi}, \boldsymbol{\zeta}, \boldsymbol{\pi}) \text{ and } \{X^k, Y^k\}_{k=1}^{\infty} \text{ be the sequence generated by Algorithm 1. Assume that } \{Y^k\}_{k=1}^{\infty} \text{ is bounded and satisfies } \sum_{k=0}^{\infty} \|Y^{k+1} - Y^k\|_F^2 < \infty. \text{ Then any accumulation point of sequence satisfies the KKT conditions of (9).}$ 

*Proof.* Please refer to **Appendix A**. 
$$\Box$$

Remark 1. The condition  $\sum_{k=0}^{\infty} \|Y^{k+1} - Y^k\|_F^2 < \infty$  holds when the multiplier does not change in two consecutive iterations. By the boundedness of the penalty parameter  $\beta$  and Eqs (12-14), this condition also indicates that the equality constraints in (9) are satisfied. This assumption can be checked by measuring the violation of the equality constraints. Theorem 1 indicates that when the equality constraint holds, PADMM converges to a KKT point. Though not satisfactory, it provides some assurance on the convergence of Algorithm 1.

**Remark 2.** Two reasons explain the good performance of our method. (i) It targets a solution to the original problem in (6). (ii) It has monotone and self-penalized

properties owing to the complimentarity constraints brought on by the MPEC. Our method directly handles the complimentary constraints in (9):  $\mathbf{v} \odot \mathbf{o} \odot |\mathbf{y}| = \mathbf{0}$  with  $\mathbf{v} \geq \mathbf{0}$ . These constraints are the only sources of non-convexity for the optimization problem and they characterize the optimality of the KKT solution of (6). These special properties of MPEC distinguish it from general nonlinear optimization [62], [63], [64], [65]. We penalize the complimentary error of  $\mathbf{v} \odot \mathbf{o} \odot |\mathbf{y}|$  (which is always non-negative) and ensure that the error is decreasing in every iteration.

#### 4 Connection with Existing Work

In this section, we discuss the connection between the proposed method  $\ell_0 TV$ -PADM and prior work.

#### 4.1 Sparse Plus Low-Rank Matrix Decomposition

Sparse plus low-rank matrix decomposition [33], [52] is becoming a powerful tool that effectively corrects large errors in structured data in the last decade. It aims at decomposing a given corrupted image  $\mathbf{B}$  (which is of matrix form) into its sparse component ( $\mathbf{S}$ ) and low-rank component ( $\mathbf{L}$ ) by solving:  $\min_{\mathbf{B},\mathbf{L}} \|\mathbf{S}\|_0 + \lambda \operatorname{rank}(\mathbf{L})$ , s.t.  $\mathbf{B} = \mathbf{L} + \mathbf{S}$ . Here the sparse component represents the foreground of an image which can be treated as outliers or impulse noise, while the low-rank component corresponds to the background, which is highly correlated. This is equivalent to the following optimization problem:

$$\min_{\mathbf{L}} \|\mathbf{B} - \mathbf{L}\|_0 + \lambda \ rank(\mathbf{L}),$$

which is also based on  $\ell_0$ -norm data fidelity. While they consider the low-rank prior in their objective function, we consider the Total Variation (TV) prior in ours.

#### **4.2** Convex Optimization Method $\ell_1 TV$

The goal of image restoration in the presence of impulse noise has been pursued by a number of authors (see, e.g., [21], [58]) using  $\ell_1 TV$ , which can be formulated as follows:

$$\min_{\mathbf{0} < \mathbf{u} < \mathbf{1}} \| \mathbf{K} \mathbf{u} - \mathbf{b} \|_1 + \lambda \| \nabla \mathbf{u} \|_{p,1}. \tag{16}$$

It is generally believed that  $\ell_1 TV$  is able to remove the impulse noise properly. This is because  $\ell_1$ -norm provides the tightest convex relaxation for the  $\ell_0$ -norm over the unit ball in the sense of  $\ell_{\infty}$ -norm. It is shown in [10] that the problem of minimizing  $\|\mathbf{K}\mathbf{u} - \mathbf{b}\|_1$  is equivalent to  $\|\mathbf{K}\mathbf{u} - \mathbf{b}\|_0$  with high probability under the assumptions that (i)  $\mathbf{K}\mathbf{u} - \mathbf{b}$  is sparse at the optimal solution  $\mathbf{u}^*$  and (ii)  $\mathbf{K}$  is a random Gaussian matrix and sufficiently "incoherent" (i.e., number of rows in  $\mathbf{K}$  is greater than its number of columns). However, these two assumptions

required in [10] do not necessarily hold true for our  $\ell_0 TV$  optimization problem. Specifically, when the noise level of the impulse noise is high,  $\mathbf{K}\mathbf{u} - \mathbf{b}$  may not be sparse at the optimal solution  $\mathbf{u}^*$ . Moreover, the matrix  $\mathbf{K}$  is a square identity or ill-conditioned matrix. Generally,  $\ell_1 TV$  will only lead to a sub-optimal solution.

#### 4.3 Adaptive Outlier Pursuit Algorithm

Very recently, Yan [57] proposed the following new model for image restoration in the presence of impulse noise and mixed Gaussian impulse noise:

$$\min_{\mathbf{u}, \mathbf{z}} \chi \|\mathbf{K}\mathbf{u} - \mathbf{b} - \mathbf{z}\|_{2}^{2} + \|\nabla \mathbf{u}\|_{p, 1}, \ s.t. \ \|\mathbf{z}\|_{0} \le k, \ (17)$$

where  $\chi > 0$  is the regularization parameter. They further reformulate the problem above into  $\min_{\mathbf{u}, \mathbf{v}} \| \mathbf{v} \odot (\mathbf{K}\mathbf{u} - \mathbf{b}) \|_2^2 + \lambda \| \nabla \mathbf{u} \|_{p,1}, \ s.t. \ \mathbf{0} \leq \mathbf{v} \leq \mathbf{1}, \ \langle \mathbf{v}, \mathbf{1} \rangle \leq n - k$  and then solve this problem using an Adaptive Outlier Pursuit(AOP) algorithm. The AOP algorithm is actually an alternating minimization method, which separates the minimization problem over  $\mathbf{u}$  and  $\mathbf{v}$  into two steps. By iteratively restoring the images and updating the set of damaged pixels, it is shown that AOP algorithm outperforms existing state-of-the-art methods for impulse noise denoising, by a large margin.

Despite the merits of the AOP algorithm, we must point out that it incurs three drawbacks, which are unappealing in practice. First, the formulation in (17) is only suitable for mixed Gaussian impulse noise, i.e. it produces a sub-optimal solution when the observed image is corrupted by pure impulse noise. (ii) Secondly, AOP is a multiple-stage algorithm. Since the minimization sub-problem over  $\mathbf{u}^5$  needs to be solved exactly in each stage, the algorithm may suffer from slow convergence. (iii) As a by-product of (i), AOP inevitably introduces an additional parameter (that specifies the Gaussian noise level), which is not necessarily readily available in practical impulse denoising problems.

In contrast, our proposed  $\ell_0$ TV method is free from these problems. Specifically, (i) as have been analyzed in Section 2, i.e. our  $\ell_0$ -norm model is optimal for impulse noise removal. Thus, our method is expected to produce higher quality image restorations, as seen in our results. (ii) Secondly, we have integrated  $\ell_0$ -norm minimization into a unified proximal ADM optimization framework, it is thus expected to be faster than the multiple stage approach of AOP. (iii) Lastly, while the optimization problem in (17) contains two parameters, our model only contains one single parameter.

#### 4.4 Other $\ell_0$ -Norm Optimization Techniques

Actually, the optimization technique for the  $\ell_0$ -norm regularization problem is the key to removing impulse

5. It actually reduces to the  $\ell_2 TV$  optimization problem.

noise. However, existing solutions are not appealing. The  $\ell_0$ -norm problem can be reformulated as a 0-1 mixed integer programming [6] problem which can be solved by a tailored branch-and-bound algorithm but it involves high computational complexity. The simple projection methods are inapplicable to our model since they assume the objective function is smooth. Similar to the  $\ell_1$  relaxation, the convex methods such as k-support norm relaxation [39], k-largest norm relaxation [60], QCQP and SDP relaxations [13] only provide loose approximation of the original problem. The non-convex methods such as Schatten  $\ell_p$  norm [26], [35], re-weighted  $\ell_1$  norm [11],  $\ell_{1-2}$ norm DC (difference of convex) approximation [59], the Smoothly Clipped Absolute Deviation (SCAD) penalty method [66], the Minimax Concave Plus (MCP) penalty method [24] only produce sub-optimal results since they give approximate solutions for the  $\ell_0 TV$  problem or incur high computational overhead. For example, the  $\ell_n$ norm method may suffer two issues. First, it involves an additional hyper-parameter p which may not be appealing in practice. Second, the  $\ell_p$  regularized norm problem for general p could be difficult to solve. This includes the iterative re-weighted least square method [36] and proximal point method. The former approximates  $\|\mathbf{x}\|_p^p$  by  $\sum_{i=1}^n (\mathbf{x}_i^2 + \epsilon)^{p/2}$  with a small parameter  $\epsilon$  and solves the resulting re-weighted least squares subproblem which reduces to a weighted  $\ell_2 TV$  problem. The latter needs to evaluate a relatively expensive proximal operator  $\Pi(\mathbf{a}) = \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{a}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{p}^{p}$  in general, except that it has a closed form solution for some special values such as  $p = \frac{1}{2}$  and  $p = \frac{2}{3}$  [56].

Recently, Lu et al. propose a Penalty Decomposition Algorithm (PDA) for solving the  $\ell_0$ -norm optimization algorithm [37]. As has been remarked in [37], direct ADM on the  $\ell_0$  norm problem can also be used for solving  $\ell_0 TV$  minimization simply by replacing the quadratic penalty functions in the PDA by augmented Lagrangian functions. Nevertheless, as observed in our preliminary experiments and theirs, the practical performance of direct ADM is worse than that of PDA.

Actually, in our experiments, we found PDA is unstable. The penalty function can reach very large values ( $\geq 10^8$ ), and the solution can be degenerate when the minimization problem of the augmented Lagrangian function in each iteration is not exactly solved. This motivates us to design a new  $\ell_0$ -norm optimization algorithm in this paper. We consider a proximal ADM algorithm to the MPEC formulation of  $\ell_0$ -norm since it has a primal-dual interpretation. Extensive experiments have demonstrated that proximal ADM for solving the "lifting" MPEC formulation for  $\ell_0 TV$  produces better image restoration qualities.

#### 5 Experimental Validation

In this section, we provide empirical validation for our proposed  $\ell_0 TV$ -PADMM method by conducting extensive image denoising experiments and performing a thorough comparative analysis with the state-of-the-art.

In our experiments, we use 5 well-known test images of size  $512 \times 512$ . All code is implemented in MATLAB using a 3.20GHz CPU and 8GB RAM. Since past studies [9], [19] have shown that the isotropic TV model performs better than the anisotropic one, we choose p=2 as the order of the TV norm here. In our experiments, we apply the following algorithms:

- (i) BM3D is an image denoising strategy based on an enhanced sparse representation in transform-domain. The enhancement of the sparsity is achieved by grouping similar 2D image blocks into 3D data arrays [22].
- (ii) MFM, Median Filter Methods. We utilize adaptive median filtering to remove salt-and-pepper impulse noise and adaptive center-weighted median filtering to remove random-valued impulse noise.
- (iii)  $\ell_1 TV$ -SBM, the Split Bregman Method (SBM) of [30], which has been implemented in [28]. We use this convex optimization method as our baseline implementation.
- (iv) TSM, the Two Stage Method [8], [14], [15]. The method first detects the damaged pixels by MFM and then solves the TV image inpainting problem.
- (v)  $\ell_p TV$ -ADMM (direct). We directly use ADMM (Alternating Direction Method of Multipliers) to solve the non-smooth non-convex  $\ell_p$  problem with proximal operator being computed analytically. We only consider  $p = \frac{1}{2}$  in our experiments [56].
- (vi)  $\ell_{02}TV$ -AOP, the Adaptive Outlier Pursuit (AOP) method described in [57]. We use the implementation provided by the author. Here, we note that AOP iteratively calls the  $\ell_1TV$ -SBM procedure, mentioned above.
- (vii)  $\ell_0 TV$ -PDA, the Penalty Decomposition Algorithm (PDA) [37] for solving the  $\ell_0 TV$  optimization problem in (6).
- (viii)  $\ell_0 TV$ -PADMM, the proximal ADMM described in Algorithm 1 for solving the  $\ell_0 TV$  optimization problem in (6). We set the relaxation parameter to 1.618 and the strongly convex parameter  $\mu$  to 0.01. All MATLAB codes to reproduce the experiments of this paper are available online at the authors' research webpages.

#### 5.1 Experiment Setup

For the denoising and deblurring test, we use the following strategies to generate artificial noisy images.

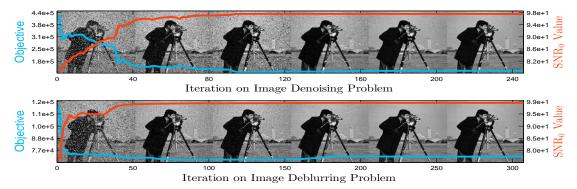



Figure 2: Asymptotic behavior for optimizing (6) to denoise and deblur the corrupted 'cameraman' image. We plot the value of the objective function (solid blue line) and the SNR value (dashed red line) against the number of optimization iterations. At specific iterations (i.e. 1, 10, 20, 40, 80, and 160), we also show the denoised and deblurred image. Clearly, the corrupting noise is being effectively removed throughout the optimization process.

- (a) Denoising problem. We corrupt the original image by injecting random-value, salt-and-pepper noise, and mixed noise (half random-value and half salt-and-pepper) with different densities (10% to 90%) to the images.
- (b) Deblurring problem. Although blurring kernel estimation has been pursued by many studies (e.g. [53]), here we assume that the blurring kernel is known beforehand. We blur the original images with a  $9 \times 9$  Gaussian blurring kernel and add impulse noise with different densities (10% to 90%). We use the following MATLAB scripts to generate a blurring kernel of radius r (r is set to 7 in the experiments):

$$[x,y] = meshgrid \ (-r:r, -r:r),$$
 
$$K = double(x.^2 + y.^2 <= r.^2), \ P = K/sum(K(:)).$$
 (18)

We run all the previously mentioned algorithms on the generated noisy and blurry images. For  $\ell_{02}TV$ -AOP, we adapt the author's image denoising implementation to the image deblurring setting. Since both BM3D and Median Filter Methods (MFM) are not convenient to solve the deblurring problems, we do not test them in the deblurring problem. We terminate  $\ell_0TV$ -PADMM whenever  $\|\nabla \mathbf{u}^k - \mathbf{x}^k\|_2 \leq \frac{1}{255}$  and  $\|\mathbf{K}\mathbf{u}^k - \mathbf{b} - \mathbf{y}^k\|_2 \leq \frac{1}{255}$  and  $\|\mathbf{o} \odot \mathbf{v}^k \odot |\mathbf{y}^k|\|_2 \leq \frac{1}{255}$ . For  $\ell_pTV$ -PADMM,  $\ell_0TV$ -PDA, and  $\ell_0TV$ -PADMM, we use the same stopping criterion to terminate the optimization. For  $\ell_1TV$ -SBM and  $\ell_{02}TV$ -AOP, we adopt the default stopping conditions provided by the authors. For the regularization parameter  $\lambda$ , we swept over  $\{0.1, 0.6, 1.1, ..., 9.6\}$ . For the regularization parameter  $\chi$  in  $\ell_{02}TV$ -AOP, we swept over  $\{10, 50, 100, 500, 1000, 5000, 10000, 50000\}$  and set k to the number of corrupted pixels.

To evaluate these methods, we compute their Signal-to-Noise Ratios (SNRs). Since the corrupted pixels follow a Bernoulli-like distribution, it is generally hard to measure the data fidelity between the original images and the recovered images. Therefore, we consider three ways to measure SNR.

$$SNR_{0}(\boldsymbol{u}) \triangleq \frac{n - \|\boldsymbol{u}^{0} - \boldsymbol{u}\|_{0-\epsilon}}{n - \|\boldsymbol{u}^{0} - \boldsymbol{u}^{0}\|_{0-\epsilon}} \times 100,$$

$$SNR_{1}(\boldsymbol{u}) \triangleq 10 \log_{10} \frac{\|\boldsymbol{u}^{0} - \bar{\boldsymbol{u}}\|_{1}}{\|\boldsymbol{u} - \bar{\boldsymbol{u}}\|_{1}},$$

$$SNR_{2}(\boldsymbol{u}) \triangleq 10 \log_{10} \frac{\|\boldsymbol{u}^{0} - \bar{\boldsymbol{u}}\|_{2}^{2}}{\|\boldsymbol{u} - \bar{\boldsymbol{u}}\|_{2}^{2}},$$

where  $\boldsymbol{u}^0$  is the original clean image and  $\bar{\boldsymbol{u}}$  is the mean intensity value of  $\boldsymbol{u}^0$ , and  $\|\cdot\|_{0-\epsilon}$  is the soft  $\ell_0$ -norm which counts the number of elements whose magnitude is greater than a threshold  $\epsilon$ . We adopt  $\epsilon = \frac{20}{255}$  in our experiments.

#### 5.2 Convergence of $\ell_0 TV$ -PADMM

Here, we verify the convergence property of our  $\ell_0 TV$ -PADMM method on denoising and deblurring problems by considering the 'cameraman' image subject to 30% random-valued impulse noise. We set  $\lambda=8$  for this problem. We record the objective and SNR values for  $\ell_0 TV$ -PADMM at every iteration k and plot these results in Figure 2.

We make two important observations from these results. (i) The objective value (or the SNR value) does not necessarily decrease (or increase) monotonically, and we attribute this to the non-convexity of the optimization problem and the dynamic updates of the penalty factor in Algorithm 1. (ii) The objective and SNR values stabilize after the 120th iteration, which means that our algorithm has converged, and the increase of the SNR value is negligible after the 80th iteration. This implies that one may use a looser stopping criterion without sacrificing much restoration quality.

#### 5.3 General Image Denoising Problems

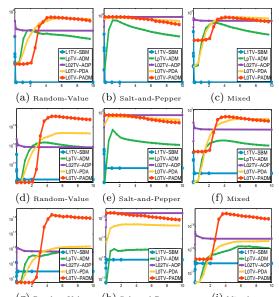

In this subsection, we compare the performance of all 6 methods on general denoising problems. Table 3 shows image recovery results when random-value or salt-and-pepper or mixed impulse noise is added. Figure 3 shows

Table 3: General denoising problems. The results separated by '/' are  $SNR_0$ ,  $SNR_1$  and  $SNR_2$ , respectively. The  $1^{st}$ ,  $2^{nd}$ , and  $3^{rd}$  best results are colored with **red**, blue and green, respectively.

| Alg.                     |              |                            |                  |                              |                       |                              |                     |                              |
|--------------------------|--------------|----------------------------|------------------|------------------------------|-----------------------|------------------------------|---------------------|------------------------------|
| Img.                     | BM3D         | $\ell_1 TV - SBM$          | MFM              | TSM                          | $\ell_{02}TV$ - $AOP$ | $\ell_P TV - PADMM$          | $\ell_0 TV - PDA$   | $\ell_0 TV\text{-}PADM$      |
| ring.                    |              |                            |                  |                              |                       |                              |                     |                              |
|                          |              |                            |                  | m-Value Impulse              |                       |                              |                     |                              |
| walkbridge+10%           | 93/7.1/11.0  | 95/12.3/15.6               | 92/7.7/12.3      | 95/11.8/12.9                 | 96/12.8/16.6          | 95/12.1/13.8                 | 97/14.1/16.9        | <b>97</b> /13.8/15.9         |
| walkbridge+30%           | 76/3.7/7.1   | 89/8.6/11.0                | 82/6.1/10.3      | 85/5.8/7.8                   | 89/8.4/12.1           | 89/7.8/11.5                  | 91/9.6/12.8         | <b>91</b> /9.5/11.9          |
| walkbridge+50%           | 59/2.2/4.3   | 76/4.9/5.7                 | 67/4.1/7.0       | 69/2.7/4.8                   | 76/5.4/8.1            | 79/5.4/8.7                   | 84/7.0/10.1         | 85/7.0/9.2                   |
| walkbridge+70%           | 42/1.0/1.9   | 56/2.0/1.7                 | 45/2.0/3.3       | 50/1.3/2.2                   | 53/2.5/4.0            | 59/3.0/5.0                   | 65/4.0/6.2          | 76/5.1/7.0                   |
| walkbridge+90%           | 26/-0.1/-0.1 | 32/-0.2/-1.1               | 28/0.3/0.5       | 30/0.0/-0.0                  | 31/0.4/0.8            | 30/0.4/0.8                   | 34/0.7/1.3          | 57/2.7/3.9                   |
| pepper+10%               | 67/5.0/9.9   | 99/19.1/21.5               | 99/15.0/22.2     | 97/13.5/15.8                 | 74/5.4/11.3           | 99/13.6/20.3                 | 100/20.2/24.6       | 99/18.0/21.0                 |
| pepper+30%               | 55/3.7/7.0   | 96/12.3/13.6<br>85/6.7/6.7 | 96/11.4/16.3     | 87/6.3/9.5                   | 72/5.2/10.7           | 98/12.0/16.8<br>94/9.7/13.1  | 98/15.1/19.7        | 98/14.6/18.3<br>96/11.6/14.4 |
| pepper+50%               | 44/2.4/4.5   | 85/6.7/6.7                 | 85/7.0/9.7       | 71/3.5/5.5                   | 65/4.5/8.9            | 94/9.7/13.1                  | 96/11.8/15.7        | 96/11.6/14.4                 |
| pepper+70%               | 33/1.2/2.1   | 63/2.8/2.1                 | 59/3.1/4.4       | 52/1.6/2.4                   | 51/2.7/4.7            | 79/5.2/6.2                   | 84/6.8/8.9          | 93/9.0/11.4                  |
| pepper+90%               | 24/0.2/0.1   | 35/0.1/-1.0                | 30/0.6/0.6       | 31/0.3/0.1                   | 28/0.7/1.1            | 35/0.9/1.0                   | 39/1.3/1.7          | 76/4.2/4.8                   |
| mandrill+10%             | 74/3.3/6.0   | 89/8.1/9.0                 | 92/6.9/6.9       | 93/9.6/9.6                   | 84/3.7/7.4            | 93/9.6/9.6                   | 95/11.1/11.5        | 95/10.8/10.3                 |
| mandrill+30%             | 63/2.0/3.6   | 83/5.9/6.6                 | 76/3.8/5.9       | 83/4.7/4.9                   | 73/3.0/5.5            | 85/5.8/6.8                   | 87/6.8/7.4          | 86/6.4/6.5                   |
| mandrill+50%             | 50/1.1/2.2   | 73/3.6/3.7                 | 65/2.9/4.6       | 69/2.0/3.4                   | 61/2.2/4.0            | 74/3.6/5.0                   | 77/4.6/5.6          | <b>78</b> /4.4/4.6           |
| mandrill+70%             | 36/0.4/0.8   | 57/1.4/0.6                 | 51/1.5/2.4       | 52/0.9/1.5                   | 47/1.2/2.2            | 62/2.3/3.4                   | 64/2.9/3.9          | 70/3.1/3.5                   |
| mandrill+90%             | 28/-0.3/-0.6 | 36/-0.6/-1.9               | 37/0.2/0.4       | 34/-0.1/-0.4                 | 33/0.1/0.3            | 39/0.5/0.9                   | 42/0.8/1.2          | 58/1.9/2.5                   |
|                          |              |                            |                  |                              |                       | 98/14.3/19.2                 |                     |                              |
| lake+10%                 | 92/6.9/12.5  | 98/16.9/21.3               | 96/11.3/17.7     | 97/14.0/15.0                 | 97/8.7/16.1           |                              | 98/17.2/21.1        | 98/16.7/19.5                 |
| lake+30%                 | 75/4.3/8.1   | 93/11.3/13.9               | 91/9.3/14.4      | 86/7.1/10.0                  | 92/7.9/13.9           | <b>95</b> /10.5/15.0         | 95/12.7/16.7        | <b>95</b> /12.0/14.3         |
| lake+50%                 | 58/2.6/4.9   | 79/6.5/7.2                 | 71/5.9/9.4       | 69/3.7/5.9                   | 78/6.2/10.2           | 88/8.3/11.7                  | 91/10.0/13.7        | 90/9.5/11.5                  |
| lake+70%                 | 41/1.3/2.3   | 54/2.9/2.6                 | 42/2.5/4.1       | 47/1.8/2.8                   | 43/2.8/4.6            | 60/4.7/7.0                   | 68/5.8/8.6          | 84/7.4/9.0                   |
| lake+90%                 | 24/0.3/0.3   | 26/0.5/-0.4                | 25/0.6/0.8       | 26/0.5/0.4                   | 24/0.6/1.0            | 13/0.7/1.1                   | 26/1.1/1.7          | 62/4.2/5.3                   |
| jetplane+10%             | 39/2.5/6.1   | 99/17.5/21.0               | 98/11.5/17.5     | 98/12.8/13.3                 | 39/3.4/8.3            | 99/13.1/19.1                 | 99/17.0/20.0        | 98/15.6/17.0                 |
| jetplane+30%             | 32/0.7/2.6   | 95/10.3/11.5               | 94/9.0/13.3      | 87/5.0/7.3                   | 38/3.2/7.5            | <b>97</b> /10.4/15.0         | 97/12.4/15.7        | <b>97</b> /11.5/12.6         |
| jetplane+50%             | 27/-0.6/-0.1 | 80/4.5/4.0                 | 75/4.2/6.7       | 69/1.5/2.8                   | 34/2.4/5.2            | 92/7.9/10.6                  | 94/9.3/12.2         | 94/9.0/10.0                  |
| jetplane+70%             | 22/-1.7/-2.4 | 53/0.6/-0.7                | 42/0.2/0.9       | 47/-0.5/-0.5                 | 23/-0.6/-0.3          | 67/3.2/4.8                   | 74/4.4/6.4          | 90/6.7/7.4                   |
| jetplane+90%             | 18/-2.5/-4.1 | 25/-1.8/-3.6               | 25/-1.7/-2.5     | 26/-1.8/-2.9                 | 18/-2.3/-3.4          | 14/-1.6/-2.2                 | 26/-1.2/-1.5        | 74/3.4/3.7                   |
|                          |              |                            |                  | d-Pepper Impulse             |                       |                              | . , ,               |                              |
| 11.1 . 1 . 1 . 2 . 2 . 2 | 00/5 4/0 0   | 00/100/1=0                 |                  |                              |                       | 00/150/100                   | 00/18/0/22/8        | 00/18 = /00 =                |
| walkbridge+10%           | 90/5.4/9.9   | 96/12.9/17.3               | 90/7.6/12.4      | 98/15.8/19.9                 | 98/16.3/20.7          | 98/15.8/19.9                 | 99/17.2/22.7        | 99/17.5/23.2                 |
| walkbridge+30%           | 71/3.0/4.5   | 94/10.4/14.3               | 83/6.3/9.8       | 96/11.7/16.4                 | 94/10.5/15.2          | 96/11.7/16.4                 | 96/12.0/17.1        | 97/12.3/17.5                 |
| walkbridge+50%           | 51/-0.1/-1.7 | 89/8.1/11.4                | 71/4.0/5.4       | 92/9.3/14.0                  | 88/7.8/11.8           | 92/9.3/13.9                  | 92/9.2/13.8         | 93/9.5/14.3                  |
| walkbridge+70%           | 32/-2.0/-4.6 | 82/6.1/8.7                 | 49/1.4/2.7       | <b>87</b> /7.3/11.5          | 69/4.4/6.9            | <b>87</b> /7.3/11.5          | 85/6.9/11.0         | 87/7.4/11.6                  |
| walkbridge+90%           | 15/-3.2/-6.2 | 67/3.7/5.1                 | 26/0.2/0.6       | 73/4.8/7.8                   | 36/0.9/1.6            | 73/4.8/7.7                   | 56/3.3/5.8          | 74/4.8/7.8                   |
| pepper+10%               | 68/4.9/9.6   | 99/14.8/20.1               | 99/15.0/21.8     | 100/20.5/24.9                | 74/5.4/11.4           | 100/20.5/24.9                | 100/23.2/30.5       | 100/23.9/31.0                |
| pepper+30%               | 52/3.1/4.8   | 98/14.6/18.3               | 95/10.8/13.6     | 99/16.8/22.9                 | 73/5.4/11.2           | 99/16.8/22.9                 | 99/17.7/24.8        | 100/18.5/25.6                |
| pepper+50%               | 38/0.3/-1.1  | 97/12.9/16.1               | 84/6.1/7.0       | 99/14.9/21.5                 | 71/5.2/10.6           | 99/14.8/21.5                 | 99/14.5/21.1        | 99/15.4/22.4                 |
| pepper+70%               | 25/-1.5/-3.9 | 95/10.6/13.3               | 57/2.1/3.4       | 98/12.5/18.5                 | 61/3.9/7.4            | 98/12.5/18.5                 | 96/11.4/16.9        | 98/12.7/18.7                 |
| pepper+90%               | 14/-2.7/-5.5 | 89/7.2/8.5                 | 27/0.4/0.6       | 93/8.8/12.7                  | 32/1.2/1.9            | 93/8.8/12.5                  | 75/4.8/7.9          | 93/9.0/12.9                  |
| mandrill+10%             | 77/2.7/4.9   | 93/9.8/11.3                | 90/4.5/6.9       | 97/13.1/14.3                 | 87/4.2/9.2            | 97/13.1/14.3                 | 98/14.4/17.1        | 98/14.5/17.2                 |
| mandrill+30%             | 61/1.5/2.3   | 90/7.8/9.0                 | 75/4.0/5.9       | 92/8.9/10.7                  | 79/3.6/7.2            | 92/8.9/10.7                  | <b>93</b> /9.3/11.8 | 93/9.4/11.9                  |
| mandrill+50%             | 44/-0.9/-2.8 | 84/5.7/6.6                 | 67/2.7/3.3       | 87/6.6/8.5                   | 68/2.8/5.2            | 87/6.6/8.5                   | 87/6.7/8.8          | 88/6.8/8.8                   |
| mandrill+70%             | 27/-2.7/-5.6 | 76/3.8/4.3                 | 48/1.1/1.9       | 80/4.9/6.5                   | 54/2.0/3.6            | 80/4.9/6.5                   | 79/4.8/6.6          | 80/4.9/6.5                   |
| mandrill+90%             | 10/-3.8/-7.2 | 63/2.0/1.9                 | 36/0.3/0.6       | 69/3.1/4.3                   | 35/0.4/0.8            | 69/3.1/4.3                   | 59/2.4/3.8          | 69/3.1/4.4                   |
| lake+10%                 | 91/6.6/11.9  | 99/16.4/22.9               | 96/11.3/17.6     | 99/19.6/25.9                 | 99/9.0/17.2           | 99/19.6/25.7                 | 100/20.3/27.5       | 100/20.6/27.9                |
| lake+30%                 | 71/3.9/5.6   | 97/13.6/18.7               | 90/9.1/12.8      | 98/15.0/21.4                 | 97/8.6/16.0           | 98/15.0/21.3                 | 98/15.1/21.7        | 99/15.4/22.3                 |
| lake+50%                 | 52/1.2/-0.4  | 94/11.2/15.3               | 76/5.7/6.8       | 97/12.5/18.3                 | 91/7.7/13.6           | 97/12.5/18.2                 | 96/12.2/17.9        | 97/12.7/18.6                 |
| lake+70%                 | 33/-0.5/-3.0 | 90/9.0/12.1                | 52/2.4/3.7       | 93/10.4/15.2                 | 63/5.0/8.2            | 93/10.4/15.2                 | 91/9.7/14.4         | 94/10.4/15.2                 |
| lake+90%                 | 18/-1.6/-4.5 | 80/6.2/7.5                 | 26/0.5/0.9       | 84/7.3/10.1                  | 25/1.1/1.9            | 83/7.3/10.1                  | 51/4.3/7.3          | 84/7.4/10.2                  |
|                          | 49/2.5/6.0   | 100/17.0/23.4              | 98/11.6/17.3     | 100/20.4/26.8                | 39/3.4/8.5            | 100/20.4/26.8                | 100/20.7/28.0       | 100/21.3/29.2                |
| jetplane+10%             | 49/2.5/6.0   | 100/17.0/23.4              | 98/11.6/17.3     | 100/20.4/26.8                | 39/3.4/8.5            | 100/20.4/26.8                | 100/20.7/28.0       | 100/21.3/29.2                |
| jetplane+30%             | 39/0.6/1.2   | 98/13.6/17.9               | 93/8.3/10.4      | 99/15.5/21.9                 | 40/3.4/8.3            | 99/15.5/21.9                 | 99/15.3/21.6        | 99/15.9/22.7                 |
| jetplane+50%             | 33/-1.4/-4.1 | 96/10.9/14.1               | 79/4.0/5.1       | 98/12.7/18.4<br>96/10.2/14.6 | 39/3.1/7.2            | 98/12.7/18.4<br>96/10.2/14.6 | 98/12.1/17.3        | 98/12.9/18.5                 |
| jetplane+70%             | 30/-2.8/-6.4 | 93/8.5/10.5                | 53/0.3/1.2       | 90/10.2/14.6                 | 32/1.2/3.0            | 90/10.2/14.6                 | 94/9.2/13.3         | 96/10.3/14.6                 |
| jetplane+90%             | 28/-3.7/-7.9 | 87/5.6/6.0                 | 26/-1.7/-2.1     | 89/6.6/8.6                   | 29/-1.9/-2.8          | 89/6.6/8.6                   | 54/2.4/4.8          | 89/6.8/8.7                   |
|                          |              | Mixed Impulse              | Noise (Half Rand | om-Value Noise a             | nd Half Salt-and-     | Pepper Noise)                |                     |                              |
| walkbridge+10%           | 91/6.1/10.1  | 93/10.6/14.7               | 91/7.5/12.3      | 96/12.6/13.3                 | 96/12.5/16.0          | 96/12.6/13.3                 | 98/14.8/17.8        | 98/15.1/17.9                 |
| walkbridge+30%           | 73/3.6/6.7   | 90/8.4/11.8                | 83/6.3/10.3      | 88/6.6/8.3                   | 89/8.6/12.2           | 92/8.6/12.2                  | 93/10.2/13.5        | 93/10.2/12.9                 |
| walkbridge+50%           | 55/1.5/1.9   | 81/5.7/7.0                 | 70/4.3/6.8       | 76/3.5/5.7                   | 78/5.7/8.7            | 85/6.3/10.0                  | 86/7.6/10.8         | 87/7.6/10.1                  |
| walkbridge+70%           | 37/-0.5/-1.8 | 63/2.4/1.9                 | 50/2.0/2.9       | 58/1.9/3.2                   | 56/2.8/4.9            | 72/4.4/7.2                   | 74/5.1/ <b>7.9</b>  | 80/5.7/7.9                   |
| walkbridge+90%           | 21/-1.9/-4.0 | 34/-0.6/-2.1               | 30/0.1/0.4       | 34/0.3/0.5                   | 31/0.6/1.3            | 38/1.2/2.0                   | 40/1.3/2.3          | 63/3.3/4.9                   |
| pepper+10%               | 68/5.0/9.7   | 98/13.9/19.5               | 99/15.0/22.0     | 98/14.3/16.0                 | 74/5.4/11.3           | 99/14.4/19.9                 | 100/21.0/25.6       | 99/19.9/23 4                 |
| pepper+30%               | 54/3.7/6.8   | 97/12.7/16.0               | 96/11.4/15.4     | 91/7.5/10.8                  | 72/5.3/10.8           | 98/12.8/18.5                 | 99/15.8/20.7        | 99/19.9/23.4<br>98/14.9/18.4 |
| pepper+50%               | 41/1.8/2.3   | 92/8.5/8.6                 | 86/7.0/8.9       | 80/4.5/7.0                   | 68/4.8/9.5            | 97/11.2/16.1                 | 97/12.6/17.1        | 97/12.6/15.7                 |
| pepper+70%               | 29/-0.1/-1.2 | 73/3.6/2.4                 | 62/3.0/3.6       | 63/2.5/3.8                   | 54/3.3/5.9            | 90/8.1/10.7                  | 92/9.1/12.5         | 94/10.1/12.8                 |
| pepper+90%               | 19/-1.4/-3.4 | 39/-0.2/-2.0               | 33/0.4/0.5       | 37/0.6/0.7                   | 31/1.0/1.5            | 53/2.1/2.5                   | 49/2.2/2.9          | 82/5.6/6.6                   |
| mandrill+10%             | 76/3.0/5.3   | 86/6.8/8.3                 | 91/5.5/6.8       | 95/10.4/10.1                 | 83/3.6/7.3            | 95/10.5/10.3                 | 96/12.1/12.4        | 06/11 7/11 0                 |
|                          | 63/1.8/3.4   | 82/5.4/6.6                 | 74/3.9/6.0       | 85/5.3/5.1                   | 73/2.9/5.3            | 99/65/74                     | 89/7.3/8.1          | 96/11.7/11.2<br>89/7.3/7.5   |
| mandrill+30%             |              | 82/5.4/6.6<br>75/3.7/4.0   |                  |                              | 13/2.9/3.3            | 88/6.5/7.4                   |                     | 09/7.3/7.5                   |
| mandrill+50%             | 47/0.6/0.6   |                            | 67/3.0/4.4       | 74/2.5/3.8                   | 61/2.2/3.9            | 78/4.4/5.6                   | 80/5.0/5.9          | 81/5.0/5.3                   |
| mandrill+70%             | 32/-1.0/-2.6 | 60/1.3/0.2                 | 53/1.5/1.8       | 58/1.3/2.1                   | 48/1.4/2.6            | 68/2.9/4.2                   | 69/3.3/ <b>4.3</b>  | 73/3.5/3.9                   |
| mandrill+90%             | 20/-2.4/-4.9 | 35/-1.2/-3.3               | 36/0.3/0.5       | 37/0.2/0.1                   | 33/0.3/0.6            | 46/1.1/1.8                   | 45/1.0/1.3          | 62/2.2/2.8                   |
| lake+10%                 | 91/6.8/12.0  | 98/14.6/20.5               | 96/11.3/17.7     | 98/15.0/15.5                 | 97/8.7/16.1           | 98/15.0/19.4                 | 99/18.0/22.2        | 99/17.9/21.2                 |
| lake+30%                 | 73/4.3/7.6   | 95/11.7/15.7<br>87/7.9/9.0 | 91/9.3/13.7      | 90/8.0/10.5                  | 92/7.9/13.8           | 96/11.0/16.4                 | 96/13.1/17.2        | <b>96</b> /12.8/15.6         |
| lake+50%                 | 55/2.3/2.7   | 87/7.9/9.0                 | 75/6.1/8.6       | 78/4.8/7.2                   | 82/6.6/11.0           | <b>92</b> /9.3/13.1          | 92/10.4/14.1        | <b>92</b> /10.0/12.2         |
| lake+70%                 | 37/0.6/-0.6  | 66/3.7/3.1                 | 44/2.8/3.7       | 58/2.6/4.1                   | 48/3.7/6.2            | 82/7.0/9.8                   | 83/7.7/10.8         | <b>87/7.9/</b> 9.4           |
| lake+90%                 | 22/-0.6/-2.7 | 34/0.4/-1.1                | 20/0.6/0.7       | 30/0.8/1.0                   | 24/0.8/1.5            | 22/1.5/2.4                   | 33/2.0/3.1          | 74/5.3/6.0                   |
| jetplane+10%             | 44/2.6/6.0   | 99/15.4/20.8               | 98/11.6/17.5     | 99/13.9/13.3                 | 39/3.4/8.3            | 99/13.9/19.3                 | 99/17.6/20.8        | 99/16.8/18.5                 |
| jetplane+30%             | 36/0.8/2.5   | 97/11.6/14.2               | 94/8.8/12.3      | 91/6.3/8.2                   | 38/3.2/7.7            | 98/11.0/16.6                 | 98/13.1/16.4        | 98/12.6/14.1                 |
| jetplane+50%             | 30/-0.8/-1.6 | 90/6.6/6.2                 | 79/4.5/5.8       | 79/2.8/4.2                   | 37/2.8/6.1            | <b>95</b> /9.0/12.7          | 95/10.0/13.0        | 95/9.7/10.7                  |
| jetplane+70%             | 25/-2.1/-4.5 | 68/1.7/-0.1                | 45/0.6/0.5       | 60/0.4/0.9                   | 25/0.7/1.9            | 88/6.3/7.9                   | 87/6.6/ <b>8.8</b>  | 91/7.3/8.0                   |
| jetplane+90%             | 22/-3.1/-6.4 | 34/-1.8/-4.4               | 19/-1.8/-2.4     | 30/-1.5/-2.3                 | 16/-2.1/-3.0          | 19/-0.8/-0.9                 | 32/-0.2/-0.1        | 79/4.2/4.4                   |
|                          | . , , ,      | ,                          | , -, -           |                              |                       |                              | , , , -             |                              |

image recovery results with varying the regularization parameter  $\lambda$ . For  $\ell_{02}TV$  model in (17), the parameter  $\chi$  is scaled to the range [0, 10] for better visualization. We make the following interesting observations. (i) The  $\ell_{02}TV$ -AOP method greatly improves upon  $\ell_1TV$ -SBM, MFM and TSM, by a large margin. These results are consistent with the reported results in [57]. (ii) The  $\ell_0TV$ -PDA method outperforms  $\ell_{02}TV$ -AOP in most test cases because it adopts the  $\ell_0$ -norm in the data

fidelity term. (iii) In the case of random-value impulse noise, our  $\ell_0 TV$ -PADMM method is better than  $\ell_0 TV$ -PDA in  $SNR_0$  value while it is comparable to  $\ell_0 TV$ -PDA in  $SNR_1$  and  $SNR_2$ . On the other hand, when salt-and-pepper impulse noise is added, we find that  $\ell_0 TV$ -PADMM outperforms  $\ell_0 TV$ -PDA in most test cases. Interestingly, the performance gap between  $\ell_0 TV$ -PADMM and  $\ell_0 TV$ -PDA grows larger, as the noise level increases. (iv) For the same noise level,  $\ell_0 TV$ -PADMM



(g) Random-Value (h) Salt-and-Pepper (i) Mixed Figure 3: Image denoising with varying the tuning parameter  $\lambda$  in (6) on 'cameraman' image. First row: noise level = 50%. Second row: noise level = 70%. Third row: noise level = 90%.

achieves better recovery performance in the presence of salt-and-pepper impulse noise than random-valued impulse noise. This is primarily due to the fact that random-valued noise can take any value between 0 and 1, thus, making it more difficult to detect which pixels are corrupted.

#### 5.4 General Image Deblurring Problems

In this subsection, we demonstrate the performance of all methods with their optimal regularization parameters on general deblurring problems. Table 4 shows the recovery results for random-valued impulse noise, salt-and-pepper impulse noise, and mixed impulse noise, respectively. Figure 4 shows image recovery results with varying the regularization parameter. We have the following interesting observations. (i)  $\ell_{02}TV$ -AOP significantly outperforms  $\ell_1 TV$ -SBM, and the performance gap becomes larger as the noise level increases. This is because the key assumption in the  $\ell_1$  model is that Ku - b is sparse at the optimal solution  $u^*$ . This does not hold when the noise level is high. (ii)  $\ell_0 TV$ -PDA outperforms  $\ell_{02}TV$ -AOP for high level ( $\geq 30\%$ ) random-valued impulse noise. However, for salt-and-pepper impulse noise,  $\ell_0 TV$ -PDA gives worse performance than  $\ell_{02} TV$ -AOP in most cases. This phenomenon indicates that the Penalty Decomposition Algorithm is not stable for deblurring problems. (iii) By contrast, our  $\ell_0 TV$ -PADMM consistently outperforms all methods, especially when the noise level is large. We attribute this result to

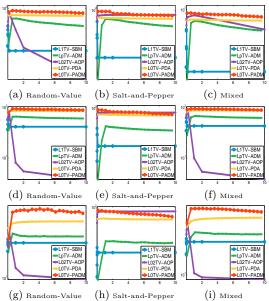
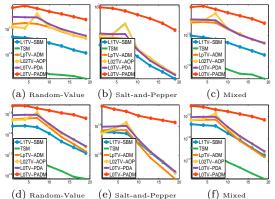




Figure 4: Image deblurring with varying the tuning parameter  $\lambda$  in (6) on 'cameraman' image. First row: noise level = 50%. Second row: noise level = 70%. Third row: noise level = 90%.



(d) Random-Value (e) Salt-and-Pepper (f) Mixed Figure 5: Image deblurring with varying the radius parameter r in (18). First row: 'cameraman' image. Second row: 'barbara' image.

the "lifting" technique that is used in our optimization algorithm.

Finally, we also report the performance of all methods with sweeping the radius parameter r as in (18) over  $\{1, 4, 7, ..., 20\}$  in Figure 5. We notice that the restoration quality degenerates as the radius of the kernel increases for all methods. However, our method consistently gives the best performance.

#### 5.5 Scratched Image Denoising Problems

In this subsection, we demonstrate the superiority of the proposed  $\ell_0 TV$ -PADMM in real-world image restoration problems. Specifically, we corrupt the images with

Table 4: General deblurring problems. The results separated by '/' are  $SNR_0$ ,  $SNR_1$  and  $SNR_2$ , respectively. The  $1^{st}$ ,  $2^{nd}$ , and  $3^{rd}$  best results are colored with **red**, blue and green, respectively.

| Alg.                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8-                                                                                                                                                                                                                                                                                                                                                                                                   | Corrupted                                                                                                                                                                                                                                                                                                                                                                                                                            | $\ell_1 TV - SBM$                                                                                                                                                                                                                                                                                                                                                                                                                    | TSM                                                                                                                                                                                                                                                                                                                                                                                                                              | $\ell_p TV - PADMM$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\ell_{02}TV$ - $AOP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\ell_0 TV$ - $PDA$                                                                                                                                                                                                                                                                                                                                                                      | $\ell_0 TV$ - $PADM$                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      | Random-Valued                                                                                                                                                                                                                                                                                                                                                                                                                    | Impulse Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11.1.1.1.1.1.007                                                                                                                                                                                                                                                                                                                                                                                     | T 00 /0 0 /0 /                                                                                                                                                                                                                                                                                                                                                                                                                       | T = 1/1 0/0 0                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01/80/101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T = 0 / 5 0 / 0 0                                                                                                                                                                                                                                                                                                                                                                        | 0.1 (= 0.110.0                                                                                                                                                                                                                                                                                                                                                                                                                              |
| walkbridge+10%                                                                                                                                                                                                                                                                                                                                                                                       | 63/2.9/3.4                                                                                                                                                                                                                                                                                                                                                                                                                           | 74/4.8/8.6                                                                                                                                                                                                                                                                                                                                                                                                                           | 72/4.6/8.2                                                                                                                                                                                                                                                                                                                                                                                                                       | 77/5.1/9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81/5.6/10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76/5.0/9.0                                                                                                                                                                                                                                                                                                                                                                               | 91/7.0/13.2                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| walkbridge+30%                                                                                                                                                                                                                                                                                                                                                                                       | 52/1.1/0.0                                                                                                                                                                                                                                                                                                                                                                                                                           | 72/4.6/8.1                                                                                                                                                                                                                                                                                                                                                                                                                           | 61/3.7/6.8                                                                                                                                                                                                                                                                                                                                                                                                                       | 75/4.9/8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79/5.4/9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74/4.8/8.7                                                                                                                                                                                                                                                                                                                                                                               | 86/6.4/11.7                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| walkbridge $+50\%$                                                                                                                                                                                                                                                                                                                                                                                   | 42/-0.2/-1.9                                                                                                                                                                                                                                                                                                                                                                                                                         | 63/3.8/6.9                                                                                                                                                                                                                                                                                                                                                                                                                           | 46/2.4/4.6                                                                                                                                                                                                                                                                                                                                                                                                                       | 71/4.5/8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75/4.9/8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73/4.7/8.3                                                                                                                                                                                                                                                                                                                                                                               | 84/6.0/11.0                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| walkbridge+70%                                                                                                                                                                                                                                                                                                                                                                                       | 31/-1.2/-3.2                                                                                                                                                                                                                                                                                                                                                                                                                         | 46/2.1/3.8                                                                                                                                                                                                                                                                                                                                                                                                                           | 33/1.1/2.3                                                                                                                                                                                                                                                                                                                                                                                                                       | 55/2.9/5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65/3.3/4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69/4.3/7.7                                                                                                                                                                                                                                                                                                                                                                               | 81/5.6/10.1                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| walkbridge+90%                                                                                                                                                                                                                                                                                                                                                                                       | 21/-2.0/-4.2                                                                                                                                                                                                                                                                                                                                                                                                                         | 28/0.3/0.8                                                                                                                                                                                                                                                                                                                                                                                                                           | 25/0.2/0.5                                                                                                                                                                                                                                                                                                                                                                                                                       | 31/0.6/1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33/0.4/0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42/1.7/3.0                                                                                                                                                                                                                                                                                                                                                                               | 67/3.7/5.8                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| pepper+10%                                                                                                                                                                                                                                                                                                                                                                                           | 81/4.9/4.5                                                                                                                                                                                                                                                                                                                                                                                                                           | 94/9.3/14.7                                                                                                                                                                                                                                                                                                                                                                                                                          | 93/8.3/13.6                                                                                                                                                                                                                                                                                                                                                                                                                      | 70/5.1/10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96/9.7/15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94/9.0/14.7                                                                                                                                                                                                                                                                                                                                                                              | 99/11.1/19.8                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pepper+30%                                                                                                                                                                                                                                                                                                                                                                                           | 66/2.1/0.3                                                                                                                                                                                                                                                                                                                                                                                                                           | 92/8.5/13.3                                                                                                                                                                                                                                                                                                                                                                                                                          | 82/5.7/9.9                                                                                                                                                                                                                                                                                                                                                                                                                       | 68/4.9/9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96/9.7/15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93/8.8/14.1                                                                                                                                                                                                                                                                                                                                                                              | 98/10.7/18.8                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pepper+50%                                                                                                                                                                                                                                                                                                                                                                                           | 52/0.4/-1.8                                                                                                                                                                                                                                                                                                                                                                                                                          | 83/6.4/9.9                                                                                                                                                                                                                                                                                                                                                                                                                           | 58/3.4/6.0                                                                                                                                                                                                                                                                                                                                                                                                                       | 65/4.6/8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95/9.3/14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92/8.5/13.5                                                                                                                                                                                                                                                                                                                                                                              | 98/10.4/17.8                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pepper+70%                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58/3.1/4.7                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52/3.0/5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82/5.1/5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90/7.8/12.1                                                                                                                                                                                                                                                                                                                                                                              | 97/9.8/16.4                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                      | 37/-0.8/-3.2                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37/1.6/2.9                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/7.8/12.1                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| pepper+90%                                                                                                                                                                                                                                                                                                                                                                                           | 23/-1.8/-4.3                                                                                                                                                                                                                                                                                                                                                                                                                         | 29/0.6/1.0                                                                                                                                                                                                                                                                                                                                                                                                                           | 24/0.4/0.7                                                                                                                                                                                                                                                                                                                                                                                                                       | 29/0.9/1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38/0.9/0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54/2.5/3.5                                                                                                                                                                                                                                                                                                                                                                               | 85/6.1/7.2                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mandrill+10%                                                                                                                                                                                                                                                                                                                                                                                         | 59/1.6/1.3                                                                                                                                                                                                                                                                                                                                                                                                                           | 67/2.9/4.7                                                                                                                                                                                                                                                                                                                                                                                                                           | 65/2.7/4.3                                                                                                                                                                                                                                                                                                                                                                                                                       | 54/2.1/3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68/3.0/4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68/3.1/5.0                                                                                                                                                                                                                                                                                                                                                                               | 78/4.3/7.3                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mandrill+30%                                                                                                                                                                                                                                                                                                                                                                                         | 50/0.0/-1.7                                                                                                                                                                                                                                                                                                                                                                                                                          | 66/2.9/4.6                                                                                                                                                                                                                                                                                                                                                                                                                           | 60/2.3/3.9                                                                                                                                                                                                                                                                                                                                                                                                                       | 52/2.1/3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68/3.0/4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67/3.0/4.8                                                                                                                                                                                                                                                                                                                                                                               | 76/4.0/6.8                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mandrill+50%                                                                                                                                                                                                                                                                                                                                                                                         | 40/-1.1/-3.4                                                                                                                                                                                                                                                                                                                                                                                                                         | 64/2.7/4.3                                                                                                                                                                                                                                                                                                                                                                                                                           | 50/1.6/2.9                                                                                                                                                                                                                                                                                                                                                                                                                       | 51/2.0/3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68/2.9/4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66/2.9/4.6                                                                                                                                                                                                                                                                                                                                                                               | 73/3.6/6.0                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mandrill+70%                                                                                                                                                                                                                                                                                                                                                                                         | 30/-2.0/-4.7                                                                                                                                                                                                                                                                                                                                                                                                                         | 53/1.8/3.1                                                                                                                                                                                                                                                                                                                                                                                                                           | 40/0.9/1.7                                                                                                                                                                                                                                                                                                                                                                                                                       | 46/1.6/2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64/2.5/3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65/2.7/4.4                                                                                                                                                                                                                                                                                                                                                                               | 70/3.3/5.4                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mandrill+90%                                                                                                                                                                                                                                                                                                                                                                                         | 21/-2.7/-5.6                                                                                                                                                                                                                                                                                                                                                                                                                         | 38/0.5/0.9                                                                                                                                                                                                                                                                                                                                                                                                                           | 36/0.3/0.6                                                                                                                                                                                                                                                                                                                                                                                                                       | 34/0.4/0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42/0.6/0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49/1.5/2.5                                                                                                                                                                                                                                                                                                                                                                               | 65/2.7/4.2                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| lake+10%                                                                                                                                                                                                                                                                                                                                                                                             | 71/4.8/4.9                                                                                                                                                                                                                                                                                                                                                                                                                           | 84/7.6/11.6                                                                                                                                                                                                                                                                                                                                                                                                                          | 83/7.3/11.3                                                                                                                                                                                                                                                                                                                                                                                                                      | 83/6.7/11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89/8.6/13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84/7.7/12.1                                                                                                                                                                                                                                                                                                                                                                              | 96/10.0/17.4                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lake+30%                                                                                                                                                                                                                                                                                                                                                                                             | 59/2.6/1.2                                                                                                                                                                                                                                                                                                                                                                                                                           | 81/7.1/10.8                                                                                                                                                                                                                                                                                                                                                                                                                          | 65/5.2/8.9                                                                                                                                                                                                                                                                                                                                                                                                                       | 80/6.4/10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89/8.5/13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83/7.4/11.6                                                                                                                                                                                                                                                                                                                                                                              | 94/9.5/15.9                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lake+50%                                                                                                                                                                                                                                                                                                                                                                                             | 46/1.1/-0.7                                                                                                                                                                                                                                                                                                                                                                                                                          | 68/5.5/8.8                                                                                                                                                                                                                                                                                                                                                                                                                           | 35/3.2/5.6                                                                                                                                                                                                                                                                                                                                                                                                                       | 76/6.0/9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86/7.9/11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82/7.2/11.1                                                                                                                                                                                                                                                                                                                                                                              | 92/9.1/15.1                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lake+70%                                                                                                                                                                                                                                                                                                                                                                                             | 34/0.0/-2.1                                                                                                                                                                                                                                                                                                                                                                                                                          | 35/2.6/4.5                                                                                                                                                                                                                                                                                                                                                                                                                           | 22/1.6/2.9                                                                                                                                                                                                                                                                                                                                                                                                                       | 39/3.3/5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66/4.3/5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79/6.7/10.2                                                                                                                                                                                                                                                                                                                                                                              | 89/8.5/13.8                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lake+90%                                                                                                                                                                                                                                                                                                                                                                                             | 22/-0.9/-3.1                                                                                                                                                                                                                                                                                                                                                                                                                         | 22/0.6/1.0                                                                                                                                                                                                                                                                                                                                                                                                                           | 16/0.4/0.8                                                                                                                                                                                                                                                                                                                                                                                                                       | 22/0.7/1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21/0.6/0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31/2.1/3.5                                                                                                                                                                                                                                                                                                                                                                               | 74/5.6/7.2                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| jetplane+10%                                                                                                                                                                                                                                                                                                                                                                                         | 76/3.3/2.1                                                                                                                                                                                                                                                                                                                                                                                                                           | 88/6.7/9.9                                                                                                                                                                                                                                                                                                                                                                                                                           | 88/6.1/9.7                                                                                                                                                                                                                                                                                                                                                                                                                       | 63/2.8/6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93/7.9/12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89/6.8/10.5                                                                                                                                                                                                                                                                                                                                                                              | 98/9.1/16.6                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| jetplane+30%                                                                                                                                                                                                                                                                                                                                                                                         | 63/0.7/-1.9                                                                                                                                                                                                                                                                                                                                                                                                                          | 86/6.2/9.1                                                                                                                                                                                                                                                                                                                                                                                                                           | 68/3.2/6.3                                                                                                                                                                                                                                                                                                                                                                                                                       | 66/2.7/6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93/7.8/12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88/6.6/10.0                                                                                                                                                                                                                                                                                                                                                                              | 97/8.8/15.6                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                      | 40/00/20                                                                                                                                                                                                                                                                                                                                                                                                                             | 74/20/66                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50/2.1/0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01/7.0/0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| jetplane+50%                                                                                                                                                                                                                                                                                                                                                                                         | 49/-0.9/-3.9                                                                                                                                                                                                                                                                                                                                                                                                                         | 74/3.9/6.6                                                                                                                                                                                                                                                                                                                                                                                                                           | 34/0.9/2.6                                                                                                                                                                                                                                                                                                                                                                                                                       | 55/2.5/5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91/7.0/9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87/6.3/9.4                                                                                                                                                                                                                                                                                                                                                                               | 95/8.4/14.2                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| jetplane+70%                                                                                                                                                                                                                                                                                                                                                                                         | 36/-2.1/-5.3                                                                                                                                                                                                                                                                                                                                                                                                                         | 37/0.3/1.3                                                                                                                                                                                                                                                                                                                                                                                                                           | 22/-0.7/-0.3                                                                                                                                                                                                                                                                                                                                                                                                                     | 35/-0.1/0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64/1.5/1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84/5.8/8.5                                                                                                                                                                                                                                                                                                                                                                               | 93/7.8/12.4                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| jetplane+90%                                                                                                                                                                                                                                                                                                                                                                                         | 23/-3.0/-6.3                                                                                                                                                                                                                                                                                                                                                                                                                         | 23/-1.7/-2.3                                                                                                                                                                                                                                                                                                                                                                                                                         | 14/-1.9/-2.5                                                                                                                                                                                                                                                                                                                                                                                                                     | 16/-2.2/-3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20/-1.7/-2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30/0.0/0.6                                                                                                                                                                                                                                                                                                                                                                               | 80/4.5/5.1                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      | Salt-and-Pepper                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| walkbridge+10%                                                                                                                                                                                                                                                                                                                                                                                       | 61/2.0/0.8                                                                                                                                                                                                                                                                                                                                                                                                                           | 73/4.8/8.5                                                                                                                                                                                                                                                                                                                                                                                                                           | 80/5.6/10.1                                                                                                                                                                                                                                                                                                                                                                                                                      | 76/5.1/9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80/5.6/10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76/5.0/9.0                                                                                                                                                                                                                                                                                                                                                                               | 94/7.4/14.3                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| walkbridge+30%                                                                                                                                                                                                                                                                                                                                                                                       | 48/-0.5/-3.2                                                                                                                                                                                                                                                                                                                                                                                                                         | 71/4.5/7.9                                                                                                                                                                                                                                                                                                                                                                                                                           | 79/5.4/9.7                                                                                                                                                                                                                                                                                                                                                                                                                       | 74/4.8/8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79/5.4/9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75/4.9/8.8                                                                                                                                                                                                                                                                                                                                                                               | 92/7.2/13.7                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                      | 46/-0.5/-5.2                                                                                                                                                                                                                                                                                                                                                                                                                         | 71/4.5/7.9                                                                                                                                                                                                                                                                                                                                                                                                                           | 79/5.4/9.7                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79/5.4/9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73/4.9/6.6                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| walkbridge+50%                                                                                                                                                                                                                                                                                                                                                                                       | 35/-2.1/-5.3                                                                                                                                                                                                                                                                                                                                                                                                                         | 67/4.1/7.3                                                                                                                                                                                                                                                                                                                                                                                                                           | 77/5.2/9.3                                                                                                                                                                                                                                                                                                                                                                                                                       | 72/4.5/8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77/5.2/9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73/4.8/8.5                                                                                                                                                                                                                                                                                                                                                                               | 90/6.8/12.9                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| walkbridge+70%                                                                                                                                                                                                                                                                                                                                                                                       | 22/-3.3/-6.7                                                                                                                                                                                                                                                                                                                                                                                                                         | 53/2.8/5.2                                                                                                                                                                                                                                                                                                                                                                                                                           | 75/5.0/8.8                                                                                                                                                                                                                                                                                                                                                                                                                       | 61/3.5/6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75/4.9/8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71/4.5/8.1                                                                                                                                                                                                                                                                                                                                                                               | 86/6.4/11.8                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| walkbridge+90%                                                                                                                                                                                                                                                                                                                                                                                       | 8/-4.2/-7.7                                                                                                                                                                                                                                                                                                                                                                                                                          | 31/0.6/1.0                                                                                                                                                                                                                                                                                                                                                                                                                           | 73/4.7/8.3                                                                                                                                                                                                                                                                                                                                                                                                                       | 34/0.9/1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73/4.7/8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59/3.4/6.3                                                                                                                                                                                                                                                                                                                                                                               | 79/5.4/9.9                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| pepper+10%                                                                                                                                                                                                                                                                                                                                                                                           | 79/3.6/1.3                                                                                                                                                                                                                                                                                                                                                                                                                           | 94/8.9/14.2                                                                                                                                                                                                                                                                                                                                                                                                                          | 96/9.7/15.8                                                                                                                                                                                                                                                                                                                                                                                                                      | 69/5.0/10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96/9.6/15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94/9.1/14.8                                                                                                                                                                                                                                                                                                                                                                              | 99/11.4/20.3                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pepper+30%                                                                                                                                                                                                                                                                                                                                                                                           | 62/0.2/-3.2                                                                                                                                                                                                                                                                                                                                                                                                                          | 92/8.5/13.2                                                                                                                                                                                                                                                                                                                                                                                                                          | 96/9.6/15.7                                                                                                                                                                                                                                                                                                                                                                                                                      | 69/4.9/9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96/9.6/15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94/8.9/14.4                                                                                                                                                                                                                                                                                                                                                                              | 99/11.2/19.7                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pepper+50%                                                                                                                                                                                                                                                                                                                                                                                           | 45/-1.7/-5.4                                                                                                                                                                                                                                                                                                                                                                                                                         | 87/7.3/11.2                                                                                                                                                                                                                                                                                                                                                                                                                          | 95/9.4/15.4                                                                                                                                                                                                                                                                                                                                                                                                                      | 66/4.7/9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95/9.4/15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93/8.6/13.8                                                                                                                                                                                                                                                                                                                                                                              | 99/10.9/19.1                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pepper+70%                                                                                                                                                                                                                                                                                                                                                                                           | 28/-3.0/-6.8                                                                                                                                                                                                                                                                                                                                                                                                                         | 70/4.3/6.5                                                                                                                                                                                                                                                                                                                                                                                                                           | 95/9.2/14.8                                                                                                                                                                                                                                                                                                                                                                                                                      | 56/3.7/6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95/9.2/14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91/8.3/13.0                                                                                                                                                                                                                                                                                                                                                                              | 98/10.3/18.2                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bebber ± 10%                                                                                                                                                                                                                                                                                                                                                                                         | 11/-4.1/-7.9                                                                                                                                                                                                                                                                                                                                                                                                                         | 33/0.8/1.1                                                                                                                                                                                                                                                                                                                                                                                                                           | 94/8.8/14.1                                                                                                                                                                                                                                                                                                                                                                                                                      | 32/1.1/1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94/8.8/14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79/5.6/8.8                                                                                                                                                                                                                                                                                                                                                                               | 96/9.5/15.8                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| pepper+90%                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mandrill+10%                                                                                                                                                                                                                                                                                                                                                                                         | 58/0.7/-1.3                                                                                                                                                                                                                                                                                                                                                                                                                          | 67/2.9/4.7                                                                                                                                                                                                                                                                                                                                                                                                                           | 67/2.9/4.4                                                                                                                                                                                                                                                                                                                                                                                                                       | 53/2.1/3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67/2.9/4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68/3.1/5.0                                                                                                                                                                                                                                                                                                                                                                               | 86/5.2/9.5                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mandrill+30%                                                                                                                                                                                                                                                                                                                                                                                         | 45/-1.7/-5.2                                                                                                                                                                                                                                                                                                                                                                                                                         | 65/2.8/4.4                                                                                                                                                                                                                                                                                                                                                                                                                           | 67/2.9/4.5                                                                                                                                                                                                                                                                                                                                                                                                                       | 52/2.1/3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67/2.9/4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68/3.0/4.9                                                                                                                                                                                                                                                                                                                                                                               | 83/4.9/8.7                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mandrill+50%                                                                                                                                                                                                                                                                                                                                                                                         | 32/-3.2/-7.2                                                                                                                                                                                                                                                                                                                                                                                                                         | 64/2.6/4.2                                                                                                                                                                                                                                                                                                                                                                                                                           | 66/2.8/4.4                                                                                                                                                                                                                                                                                                                                                                                                                       | 51/2.0/3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66/2.8/4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67/3.0/4.7                                                                                                                                                                                                                                                                                                                                                                               | 80/4.5/7.9                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mandrill+70%                                                                                                                                                                                                                                                                                                                                                                                         | 19/-4.4/-8.6                                                                                                                                                                                                                                                                                                                                                                                                                         | 56/2.0/3.3                                                                                                                                                                                                                                                                                                                                                                                                                           | 65/2.7/4.2                                                                                                                                                                                                                                                                                                                                                                                                                       | 48/1.8/3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65/2.7/4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66/2.8/4.5                                                                                                                                                                                                                                                                                                                                                                               | 75/4.0/6.7                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mandrill+90%                                                                                                                                                                                                                                                                                                                                                                                         | 7/-5.2/-9.6                                                                                                                                                                                                                                                                                                                                                                                                                          | 39/0.5/0.8                                                                                                                                                                                                                                                                                                                                                                                                                           | 65/2.7/4.2                                                                                                                                                                                                                                                                                                                                                                                                                       | 35/0.5/1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65/2.7/4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60/2.4/3.9                                                                                                                                                                                                                                                                                                                                                                               | 70/3.3/5.3                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| lake+10%                                                                                                                                                                                                                                                                                                                                                                                             | 69/3.9/2.4                                                                                                                                                                                                                                                                                                                                                                                                                           | 83/7.4/11.4                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/8.7/13.8                                                                                                                                                                                                                                                                                                                                                                                                                      | 82/6.6/11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90/8.7/13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85/7.7/12.1                                                                                                                                                                                                                                                                                                                                                                              | 98/10.3/18.5                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lake+30%                                                                                                                                                                                                                                                                                                                                                                                             | 54/1.0/-1.8                                                                                                                                                                                                                                                                                                                                                                                                                          | 81/7.1/10.6                                                                                                                                                                                                                                                                                                                                                                                                                          | 89/8.5/13.4                                                                                                                                                                                                                                                                                                                                                                                                                      | 80/6.3/10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89/8.5/13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84/7.6/11.8                                                                                                                                                                                                                                                                                                                                                                              | 97/10.1/17.9                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lake+50%                                                                                                                                                                                                                                                                                                                                                                                             | 38/-0.7/-3.9                                                                                                                                                                                                                                                                                                                                                                                                                         | 76/6.4/9.6                                                                                                                                                                                                                                                                                                                                                                                                                           | 87/8.2/12.9                                                                                                                                                                                                                                                                                                                                                                                                                      | 77/6.0/9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87/8.2/12.8<br>86/7.9/12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82/7.3/11.3                                                                                                                                                                                                                                                                                                                                                                              | 96/9.8/17.0                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lake+70%                                                                                                                                                                                                                                                                                                                                                                                             | 23/-1.9/-5.3                                                                                                                                                                                                                                                                                                                                                                                                                         | 49/3.9/6.3                                                                                                                                                                                                                                                                                                                                                                                                                           | 86/7.9/12.2                                                                                                                                                                                                                                                                                                                                                                                                                      | 56/4.4/7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86/7.9/12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81/7.0/10.7                                                                                                                                                                                                                                                                                                                                                                              | 94/9.3/15.9                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lake+90%                                                                                                                                                                                                                                                                                                                                                                                             | 8/-2.8/-6.4                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21/10/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                      | 0/-2.0/-0.4                                                                                                                                                                                                                                                                                                                                                                                                                          | 24/0.9/1.4                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/1.4/11.2                                                                                                                                                                                                                                                                                                                                                                                                                      | 21/1.0/1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84/7.5/11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63/5.0/8.1                                                                                                                                                                                                                                                                                                                                                                               | 88/8.2/13.3                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ietplane+10%                                                                                                                                                                                                                                                                                                                                                                                         | 75/2.3/-0.4                                                                                                                                                                                                                                                                                                                                                                                                                          | 24/0.9/1.4<br>88/6.5/9.7                                                                                                                                                                                                                                                                                                                                                                                                             | 83/7.4/11.2<br>93/8.0/12.6                                                                                                                                                                                                                                                                                                                                                                                                       | 21/1.0/1.8<br>67/2.8/6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84/7.5/11.1<br>93/8.0/12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                          | 88/8.2/13.3<br>99/9.5/17.8                                                                                                                                                                                                                                                                                                                                                                                                                  |
| jetplane+10%                                                                                                                                                                                                                                                                                                                                                                                         | 75/2.3/-0.4                                                                                                                                                                                                                                                                                                                                                                                                                          | 88/6.5/9.7                                                                                                                                                                                                                                                                                                                                                                                                                           | 93/8.0/12.6                                                                                                                                                                                                                                                                                                                                                                                                                      | 67/2.8/6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93/8.0/12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89/6.9/10.6                                                                                                                                                                                                                                                                                                                                                                              | 88/8.2/13.3<br>99/9.5/17.8                                                                                                                                                                                                                                                                                                                                                                                                                  |
| jetplane+10%<br>jetplane+30%                                                                                                                                                                                                                                                                                                                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8                                                                                                                                                                                                                                                                                                                                                                                                          | 88/6.5/9.7<br>86/6.2/9.0                                                                                                                                                                                                                                                                                                                                                                                                             | 93/8.0/12.6<br>93/7.7/11.9                                                                                                                                                                                                                                                                                                                                                                                                       | 67/2.8/6.5<br>64/2.7/6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93/8.0/12.6<br>92/7.6/11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89/6.9/10.6<br>88/6.7/10.2                                                                                                                                                                                                                                                                                                                                                               | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2                                                                                                                                                                                                                                                                                                                                                                                                   |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%                                                                                                                                                                                                                                                                                                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0                                                                                                                                                                                                                                                                                                                                                                                          | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8                                                                                                                                                                                                                                                                                                                                                                                               | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4                                                                                                                                                                                                                                                                                                                                                                                        | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7                                                                                                                                                                                                                                                                                                                                                 | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2                                                                                                                                                                                                                                                                                                                                                                                    |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%                                                                                                                                                                                                                                                                                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4                                                                                                                                                                                                                                                                                                                                                                          | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8                                                                                                                                                                                                                                                                                                                                                                                 | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7                                                                                                                                                                                                                                                                                                                                                                         | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0                                                                                                                                                                                                                                                                                                                                   | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9                                                                                                                                                                                                                                                                                                                                                                     |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%                                                                                                                                                                                                                                                                                                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5                                                                                                                                                                                                                                                                                                                                                           | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8                                                                                                                                                                                                                                                                                                                                                                 | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7                                                                                                                                                                                                                                                                                                                                                           | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1                                                                                                                                                                                                                                                                                                                     | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2                                                                                                                                                                                                                                                                                                                                                                                    |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%                                                                                                                                                                                                                                                                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5                                                                                                                                                                                                                                                                                                                                                           | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>red Impulse Noise (I                                                                                                                                                                                                                                                                                                                                         | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value                                                                                                                                                                                                                                                                                                                                      | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>e Noise and Half Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>lt-and-Pepper Nois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1                                                                                                                                                                                                                                                                                                                     | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8                                                                                                                                                                                                                                                                                                                                                      |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%                                                                                                                                                                                                                                                                                                       | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mix                                                                                                                                                                                                                                                                                                                                                    | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1<br>74/4.8/8.5                                                                                                                                                                                                                                                                                                                           | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2                                                                                                                                                                                                                                                                                                                        | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>lt-and-Pepper Nois<br>81/5.6/10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0                                                                                                                                                                                                                                                                                                 | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8                                                                                                                                                                                                                                                                                                                                                      |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%                                                                                                                                                                                                                                                                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5                                                                                                                                                                                                                                                                                                                                                           | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>red Impulse Noise (I                                                                                                                                                                                                                                                                                                                                         | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2                                                                                                                                                                                                                                                                                                                        | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>e Noise and Half Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1                                                                                                                                                                                                                                                                                                                     | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8                                                                                                                                                                                                                                                                                                                                                      |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%                                                                                                                                                                                                                                                                                                       | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mix                                                                                                                                                                                                                                                                                                                                                    | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1<br>74/4.8/8.5                                                                                                                                                                                                                                                                                                                           | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value                                                                                                                                                                                                                                                                                                                                      | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7                                                                                                                                                                                                                                                                                   | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8                                                                                                                                                                                                                                                                                                                                                      |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%                                                                                                                                                                                                                                                                   | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mix<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9                                                                                                                                                                                                                                                                                                       | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ced Impulse Noise (I<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9                                                                                                                                                                                                                                                                                               | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5                                                                                                                                                                                                                                                                                            | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3                                                                                                                                                                                                                                                                     | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0                                                                                                                                                                                                                                                                                                         |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%                                                                                                                                                                                                                                                 | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mix<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3                                                                                                                                                                                                                                                                                       | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4                                                                                                                                                                                                                                                                                | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2                                                                                                                                                                                                                                                                              | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8                                                                                                                                                                                                                                                       | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0                                                                                                                                                                                                                                                                                                         |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>walkbridge+90%                                                                                                                                                                                                                               | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mix<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3                                                                                                                                                                                                                                                                       | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ked Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0                                                                                                                                                                                                                                                                  | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>55/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9                                                                                                                                                                                                                                                                | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4                                                                                                                                                                                                                                                                                                                                                                                                                      | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7                                                                                                                                                                                                                                         | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2                                                                                                                                                                                                                                                                            |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+70%<br>walkbridge+70%<br>walkbridge+90%<br>pepper+10%                                                                                                                                                                                                                 | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6                                                                                                                                                                                                                                                         | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5                                                                                                                                                                                                                                                   | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7                                                                                                                                                                                                                                                 | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>69/5.1/10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9                                                                                                                                                                                                                                                                                                                                                                                                       | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7                                                                                                                                                                                                                          | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8                                                                                                                                                                                                                                                                           |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>walkbridge+90%<br>pepper+10%<br>pepper+30%                                                                                                                                                                                                   | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8                                                                                                                                                                                                                                                          | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0                                                                                                                                                                                                                                    | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>55/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9                                                                                                                                                                                                                                  | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9                                                                                                                                                                                                                                                                                                                                                                                        | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1                                                                                                                                                                                                           | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>84/6.1/11.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3                                                                                                                                                                                                                                            |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+50%<br>walkbridge+50%<br>walkbridge+90%<br>pepper+10%<br>pepper+30%<br>pepper+50%                                                                                                                                                                                                       | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9                                                                                                                                                                                                                          | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2                                                                                                                                                                                                                     | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5                                                                                                                                                                                                                    | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.4/15.0                                                                                                                                                                                                                                                                                                                                                                                        | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.1<br>93/8.8/14.1<br>92/8.5/13.5                                                                                                                                                                                            | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2                                                                                                                                                                                                                            |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>walkbridge+90%<br>pepper+10%<br>pepper+30%<br>pepper+50%                                                                                                                                                                                     | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mix<br>62/2.4/1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4                                                                                                                                                                                                                         | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2                                                                                                                                                                                                       | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0                                                                                                                                                                                                                    | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.8<br>96/9.4/15.0<br>94/8.4/11.4                                                                                                                                                                                                                                                                                                                                                          | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2                                                                                                                                                                             | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>171/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8                                                                                                                                                                                                                          |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>walkbridge+90%<br>pepper+10%<br>pepper+30%<br>pepper+50%<br>pepper+70%<br>pepper+70%                                                                                                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4                                                                                                                                                                                                         | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3                                                                                                                                                                                          | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>55/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2                                                                                                                                                                                        | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5                                                                                                                                                                                                                                                                                                                                            | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2                                                                                                                                                                             | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7                                                                                                                                                                                             |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>walkbridge+90%<br>pepper+10%<br>pepper+30%<br>pepper+50%<br>pepper+70%<br>pepper+70%                                                                                                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4                                                                                                                                                                                                         | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3                                                                                                                                                                                          | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>55/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2                                                                                                                                                                                        | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5                                                                                                                                                                                                                                                                                                                                            | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2                                                                                                                                                                             | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7                                                                                                                                                                                             |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+50%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+90%<br>pepper+10%<br>pepper+30%<br>pepper+50%<br>pepper+50%<br>pepper+50%<br>pepper+50%                                                                                                                                                             | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2                                                                                                                                                                            | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ced Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7                                                                                                                                                                           | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3                                                                                                                                                                          | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>83/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.8<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5                                                                                                                                                                                                                                                                                                                                                           | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0                                                                                                                                                 | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4                                                                                                                                                               |
| jetplane+10%<br>jetplane+30%<br>jetplane+30%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>walkbridge+90%<br>pepper+10%<br>pepper+30%<br>pepper+50%<br>pepper+90%<br>mandrill+10%<br>mandrill+30%                                                                                                                                       | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7                                                                                                                                                           | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5                                                                                                                                                             | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0                                                                                                                                                            | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.8<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6                                                                                                                                                                                                                                                                                                                | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8                                                                                                                                                  | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8                                                                                                                                                                 |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+90%<br>pepper+10%<br>pepper+30%<br>pepper+50%<br>pepper+90%<br>mandrill+10%<br>mandrill+10%<br>mandrill+50%                                                                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.77/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7                                                                                                                                          | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2                                                                                                                                               | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3                                                                                                                                              | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.8<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6<br>68/3.0/4.6                                                                                                                                                                                                                                                                                                                 | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6                                                                                                                                   | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3                                                                                                                                                   |
| jetplane+10%<br>jetplane+30%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+50%<br>walkbridge+70%<br>pepper+10%<br>pepper+30%<br>pepper+70%<br>pepper+70%<br>pepper+90%<br>mandrill+10%<br>mandrill+30%<br>mandrill+50%                                                                                                           | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0                                                                                                                           | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2                                                                                                                                 | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>55/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2                                                                                                                                              | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9<br>96/9.7/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6<br>68/2.9/4.6                                                                                                                                                                                                                                                                                                  | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6                                                                                                                     | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>84/6.1/11.0<br>171/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/94<br>76/4.0/6.8<br>74/3.7/6.3<br>71/3.4/5.4                                                                                                                      |
| jetplane+10%<br>jetplane+30%<br>jetplane+30%<br>jetplane+70%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+70%<br>walkbridge+70%<br>walkbridge+70%<br>pepper+30%<br>pepper+30%<br>pepper+30%<br>pepper+70%<br>pepper+90%<br>mandrill+10%<br>mandrill+30%<br>mandrill+70%<br>mandrill+70%                                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1                                                                                                           | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7                                                                                                                    | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>55/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8                                                                                                                  | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1<br>35/0.5/0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>55/2.1/3/1.4                                                                                                                                                                                                                                                                                  | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>66/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6<br>65/2.7/4.4<br>48/1.0/1.1                                                                                                       | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3<br>71/3.4/5.4<br>66/2.8/4.3                                                                                                                       |
| jetplane+10% jetplane+30% jetplane+50% jetplane+50% jetplane+90% walkbridge+10% walkbridge+30% walkbridge+50% walkbridge+70% walkbridge+70% walkbridge+70% walkbridge+70% pepper+10% pepper+30% pepper+30% pepper+70% pepper+70% mandrill+10% mandrill+50% mandrill+50% mandrill+50% mandrill+90%                                                                                                    | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5                                                                                             | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5                                                                                                    | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4                                                                                                   | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1<br>35/0.5/0.9<br>82/6.6/11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>81/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.8<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6<br>68/2.9/4.6<br>67/2.8/4.2<br>50/1.3/1.4<br>89/8.6/13.8                                                                                                                                                                                                                                                                      | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>9<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6<br>65/2.7/4.4<br>48/1.0/1.1<br>84/7.7/12.1                                                                           | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/11.1/19.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3<br>71/3.4/5.4<br>66/2.8/4.3<br>97/10.0/17.9                                                                                                                                       |
| jetplane+10%<br>jetplane+30%<br>jetplane+30%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>yepper+10%<br>pepper+30%<br>pepper+30%<br>pepper+70%<br>pepper+50%<br>mandrill+10%<br>mandrill+10%<br>mandrill+50%<br>mandrill+70%<br>mandrill+90%<br>lake+10%<br>lake+10%<br>lake+30%                                                       | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5<br>56/1.7/-0.5                                                                              | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5<br>80/7.0/10.6                                                                                     | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>25/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4<br>74/5.8/9.6                                                                                                   | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>2 Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1<br>35/0.5/0.9<br>82/6.6/11.3<br>80/6.3/10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9<br>96/9.7/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>88/8.6/13.8<br>88/8.4/13.3                                                                                                                                                                                                                                        | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6<br>65/2.7/4.4<br>48/1.0/1.1<br>84/7.7/12.1<br>83/7.5/11.6                                                                          | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.3/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3<br>91/13.4/5.4<br>66/2.8/4.3<br>97/10.0/17.9<br>94/9.5/16.2                                                                                       |
| jetplane+10%<br>jetplane+30%<br>jetplane+30%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>yepper+10%<br>pepper+30%<br>pepper+30%<br>pepper+70%<br>pepper+50%<br>mandrill+10%<br>mandrill+10%<br>mandrill+50%<br>mandrill+70%<br>mandrill+90%<br>lake+10%<br>lake+10%<br>lake+30%                                                       | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5<br>56/1.7/-0.5                                                                              | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5<br>80/7.0/10.6                                                                                     | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>25/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4<br>74/5.8/9.6                                                                                                   | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>2 Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1<br>35/0.5/0.9<br>82/6.6/11.3<br>80/6.3/10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>81/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.8<br>96/9.7/15.8<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6<br>68/3.0/4.6<br>68/3.0/4.6<br>68/3.0/4.8<br>88/8.4/13.3<br>88/8.4/13.8                                                                                                                                                                                                                                        | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6<br>65/2.7/4.4<br>48/1.0/1.1<br>84/7.7/12.1<br>83/7.5/11.6                                                                          | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.3/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3<br>91/13.4/5.4<br>66/2.8/4.3<br>97/10.0/17.9<br>94/9.5/16.2                                                                                       |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+50%<br>jetplane+90%<br>jetplane+90%<br>walkbridge+30%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>walkbridge+90%<br>pepper+10%<br>pepper+30%<br>pepper+70%<br>pepper+70%<br>mandrill+10%<br>mandrill+50%<br>mandrill+70%<br>mandrill+90%<br>lake+10%<br>lake+30%<br>lake+50%                                                   | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5<br>56/1.7/-0.5<br>42/0.1/-2.6                                                                | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ced Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5<br>80/7.0/10.6<br>73/6.0/9.3                                                                       | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Talf Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4<br>74/5.8/9.6<br>45/4.0/7.0                                                                       | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>52/2.1/3.8<br>52/2.1/3.8<br>52/2.1/3.8<br>52/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>81/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.8<br>96/9.7/15.8<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6<br>68/3.0/4.6<br>68/3.0/4.6<br>68/3.0/4.8<br>88/8.4/13.3<br>88/8.4/13.8                                                                                                                                                                                                                                        | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>65/2.7/4.4<br>48/1.0/1.1<br>83/7.5/11.6<br>82/7.2/11.1                                                                         | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>66/2.8/4.3<br>97/10.0/17.9<br>94/9.5/16.2<br>92/9.1/15.1                                                                                                                                |
| jetplane+10%<br>jetplane+30%<br>jetplane+30%<br>jetplane+50%<br>jetplane+70%<br>jetplane+90%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+50%<br>walkbridge+90%<br>pepper+30%<br>pepper+30%<br>pepper+70%<br>pepper+90%<br>mandrill+30%<br>mandrill+50%<br>mandrill+50%<br>mandrill+90%<br>lake+10%<br>lake+50%<br>lake+50%<br>lake+50%                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5<br>56/1.7/-0.5<br>42/0.1/-2.6                                                               | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5<br>80/7.0/10.6<br>73/6.0/9.3<br>40/2.9/5.1                                                         | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/82<br>25/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4<br>74/5.8/9.6<br>45/4.0/7.0<br>27/2.3/4.0                                                                        | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1<br>35/0.5/0.9<br>82/6.6/11.3<br>80/6.3/10.6<br>77/6.0/9.8<br>51/4.1/6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9<br>96/9.7/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>67/2.8/4.2<br>50/1.3/1.4<br>89/8.6/13.8<br>88/8.4/13.3<br>88/8.4/11.8                                                                                                                                                                                                           | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6<br>65/2.7/4.4<br>48/1.0/1.1<br>84/7.7/12.1<br>83/7.5/11.6<br>82/7.2/11.1                                            | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3<br>71/3.4/5.4<br>66/2.8/4.3<br>97/10.0/17.9<br>94/9.5/16.2<br>92/9.1/15.1<br>89/8.5/13.5                                           |
| jetplane+10% jetplane+30% jetplane+30% jetplane+70% jetplane+70% jetplane+90%  walkbridge+10% walkbridge+30% walkbridge+50% walkbridge+70% walkbridge+70% walkbridge+70% pepper+30% pepper+30% pepper+30% pepper+40% mandrill+10% mandrill+10% mandrill+10% mandrill+50% mandrill+70% mandrill+70% mandrill+90% lake+10% lake+10% lake+10% lake+50% lake+70% lake+70% lake+70%                       | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/-6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5<br>56/1.7/-0.5<br>42/0.1/-2.6<br>29/-1.0/-4.0<br>15/-2.0/-5.0                                | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5<br>80/7.0/10.6<br>73/6.0/9.3<br>40/2.9/5.1<br>18/0.7/1.2                                           | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4<br>74/5.8/9.6<br>45/4.0/7.0<br>27/2.3/4.0<br>17/0.7/1.3                                           | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1<br>35/0.5/0.9<br>82/6.6/11.3<br>80/6.3/10.6<br>77/6.0/9.8<br>51/4.1/6.8<br>18/0.9/1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>88/8.4/13.3<br>88/8.1/11.8<br>88/8.4/13.8<br>88/8.1/11.8<br>84/7.4/10.8<br>32/1.4/15.5                                                                                                                                                                            | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>65/2.7/4.4<br>48/1.0/1.1<br>84/7.7/12.1<br>83/7.5/11.6<br>82/7.2/11.1<br>79/6.8/10.3<br>55/3.8/5.4                             | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>71/3.4/5.4<br>66/2.8/4.3<br>97/10.0/17.9<br>94/9.5/16.2<br>92/9.1/15.1<br>89/8.5/13.5<br>81/6.8/9.8                                                          |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+90%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>walkbridge+70%<br>pepper+30%<br>pepper+30%<br>pepper+70%<br>pepper+70%<br>pepper+90%<br>mandrill+10%<br>mandrill+10%<br>mandrill+90%<br>lake+30%<br>lake+70%<br>lake+90%<br>lake+90%                                                         | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5<br>56(1.7/-0.5<br>42/0.1/-2.6<br>29/-1.0/-4.0<br>15/-2.0/-5.0                                              | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5<br>80/7.0/10.6<br>73/6.0/9.3<br>40/2.9/5.1<br>18/0.7/1.2<br>88/6.7/9.9                              | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>25/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4<br>74/5.8/9.6<br>45/4.0/7.0<br>27/2.3/4.0<br>17/0.7/1.3<br>89/6.4/9.8                                           | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1<br>35/0.5/0.9<br>82/6.6/11.3<br>80/6.3/10.6<br>77/6.0/9.8<br>51/4.1/6.8<br>18/0.9/1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.8<br>96/9.7/15.8<br>96/9.7/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>88/8.4/13.3<br>88/8.1/11.8<br>88/8.1/11.8<br>83/1.4/10.8<br>32/1.4/1.5<br>93/7.9/12.5                                                                                                                                                                             | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6<br>65/2.7/4.4<br>48/1.0/1.1<br>83/7.5/11.6<br>82/7.2/11.1<br>79/6.8/10.3<br>55/3.8/5.4<br>89/6.8/10.5               | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/11.1/19.8<br>99/11.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3<br>71/10.0/17.9<br>94/9.5/16.2<br>92/9.1/15.1<br>89/8.5/13.5<br>81/6.8/9.8<br>98/9.1/16.6                                                                         |
| jetplane+10% jetplane+30% jetplane+30% jetplane+50% jetplane+70% jetplane+90%  walkbridge+10% walkbridge+30% walkbridge+50% walkbridge+70% walkbridge+70% walkbridge+90% pepper+30% pepper+30% pepper+70% pepper+70% pepper+70% mandrill+10% mandrill+10% mandrill+50% mandrill+50% mandrill+90% lake+10% lake+10% lake+50% lake+50% lake+50% lake+90% jetplane+10% jetplane+30%                     | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5<br>56/1.7/-0.5<br>42/0.1/-2.6<br>29/-1.0/-4.0<br>15/-2.0/-5.0<br>76/2.8/0.6<br>60/-0.2/-3.6 | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5<br>80/7.0/10.6<br>73/6.0/9.3<br>40/2.9/5.1<br>18/0.7/1.2<br>88/6.7/9.9<br>86/6.2/8.9               | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>25/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4<br>74/5.8/9.6<br>45/4.0/7.0<br>27/2.3/4.0<br>17/0.7/1.3<br>89/6.4/9.8<br>79/4.1/7.5                             | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>2 Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1<br>35/0.5/0.9<br>82/6.6/11.3<br>80/6.3/10.6<br>67/6.0/9.8<br>51/4.1/6.8<br>18/0.9/1.6<br>66/2.8/6.5<br>66/2.7/6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9<br>96/9.7/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>88/8.4/13.3<br>88/8.4/13.8<br>88/8.4/13.8<br>88/8.4/13.9<br>83/7.9/12.5<br>93/7.9/12.5                                                                                                                                                                            | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6<br>65/2.7/4.4<br>48/1.0/1.1<br>84/7.7/12.1<br>83/7.5/11.6<br>82/7.2/11.1<br>79/6.8/10.3<br>55/3.8/5.4<br>89/6.8/10.5<br>88/6.6/9.9 | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3<br>71/3.4/5.4<br>66/2.8/4.3<br>97/10.0/17.9<br>94/9.5/16.2<br>92/9.1/15.1<br>89/8.5/13.5<br>81/6.8/9.8<br>98/9.1/16.6<br>97/8.8/15.6              |
| jetplane+10%<br>jetplane+30%<br>jetplane+50%<br>jetplane+90%<br>jetplane+90%<br>walkbridge+10%<br>walkbridge+30%<br>walkbridge+50%<br>walkbridge+70%<br>walkbridge+70%<br>walkbridge+70%<br>pepper+30%<br>pepper+30%<br>pepper+30%<br>pepper+30%<br>mandrill+10%<br>mandrill+50%<br>mandrill+70%<br>mandrill+50%<br>lake+50%<br>lake+50%<br>lake+90%<br>jetplane+10%<br>jetplane+10%<br>jetplane+50% | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5<br>56/1.7/-0.5<br>42/0.1/-2.6<br>29/-1.0/-4.0<br>15/-2.0/-5.0<br>60/-0.2/-3.6<br>45/-1.9/-5.7              | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5<br>80/7.0/10.6<br>73/6.0/9.3<br>40/2.9/5.1<br>18/0.7/1.2<br>88/6.7/9.9<br>88/6.2/8.9<br>81/5.0/7.5 | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>65/3.9/7.2<br>52/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4<br>74/5.8/9.6<br>45/4.0/7.0<br>27/2.3/4.0<br>17/0.7/1.3<br>89/6.4/9.8<br>79/4.1/7.5<br>44/1.9/4.2 | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>53/2.1/3.8<br>5 | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>81/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.8<br>96/9.7/15.8<br>96/9.4/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>66/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>63/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>67/2.8/4.2<br>50/1.3/1.4<br>89/8.6/13.8<br>88/8.4/13.3<br>88/8.4/13.3<br>88/8.4/13.3<br>88/8.4/13.3<br>88/8.4/13.8<br>83/1.4/1.5<br>93/7.9/12.5<br>93/7.8/11.8<br>91/7.1/10.3 | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>93/8.8/14.1<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6<br>65/2.7/4.4<br>48/1.0/1.1<br>79/6.8/10.3<br>55/3.8/5.4<br>89/6.8/10.5<br>88/6.6/9.9<br>87/6.4/9.5                 | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/11.1/19.8<br>99/11.3/6.3<br>71/0.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3<br>71/3.4/5.4<br>66/2.8/4.3<br>97/10.0/17.9<br>94/9.5/16.2<br>92/9.1/15.1<br>89/8.5/13.5<br>81/6.8/9.8<br>98/9.1/16.6<br>97/8.8/15.6<br>95/8.4/14.1 |
| jetplane+10% jetplane+30% jetplane+30% jetplane+50% jetplane+70% jetplane+90%  walkbridge+10% walkbridge+30% walkbridge+50% walkbridge+70% walkbridge+70% walkbridge+90% pepper+30% pepper+30% pepper+70% pepper+70% pepper+70% mandrill+10% mandrill+10% mandrill+50% mandrill+50% mandrill+90% lake+10% lake+10% lake+50% lake+50% lake+50% lake+90% jetplane+10% jetplane+30%                     | 75/2.3/-0.4<br>58/-0.9/-4.8<br>42/-2.7/-7.0<br>25/-3.9/-8.4<br>8/-4.9/-9.5<br>Mis<br>62/2.4/1.9<br>50/0.2/-1.9<br>38/-1.3/-3.9<br>27/-2.3/-5.3<br>15/-3.2/-6.3<br>80/4.2/2.6<br>64/1.0/-1.8<br>49/-0.8/-3.9<br>33/-2.1/-5.4<br>17/-3.1/-6.4<br>58/1.1/-0.2<br>47/-0.9/-3.7<br>36/-2.3/-5.7<br>25/-3.3/-7.0<br>14/-4.2/-8.1<br>70/4.3/3.5<br>56/1.7/-0.5<br>42/0.1/-2.6<br>29/-1.0/-4.0<br>15/-2.0/-5.0<br>76/2.8/0.6<br>60/-0.2/-3.6 | 88/6.5/9.7<br>86/6.2/9.0<br>82/5.4/7.8<br>48/1.9/3.8<br>24/-1.3/-1.8<br>ted Impulse Noise (1)<br>74/4.8/8.5<br>71/4.5/7.9<br>64/3.8/6.9<br>48/2.4/4.4<br>29/0.5/1.0<br>94/9.1/14.5<br>91/8.4/13.0<br>84/6.7/10.2<br>61/3.5/5.2<br>31/0.9/1.3<br>67/2.9/4.7<br>66/2.8/4.5<br>64/2.6/4.2<br>54/1.9/3.2<br>38/0.4/0.7<br>83/7.5/11.5<br>80/7.0/10.6<br>73/6.0/9.3<br>40/2.9/5.1<br>18/0.7/1.2<br>88/6.7/9.9<br>86/6.2/8.9               | 93/8.0/12.6<br>93/7.7/11.9<br>91/7.5/11.4<br>90/7.1/10.7<br>89/6.7/9.7<br>Half Random-Value<br>72/4.6/8.2<br>25/2.9/5.5<br>38/1.6/3.2<br>27/0.4/0.9<br>93/8.5/13.7<br>87/6.4/10.9<br>68/4.2/7.5<br>43/2.3/4.0<br>27/0.7/1.2<br>65/2.7/4.3<br>62/2.4/4.0<br>54/1.9/3.3<br>43/1.1/2.2<br>36/0.4/0.8<br>83/7.4/11.4<br>74/5.8/9.6<br>45/4.0/7.0<br>27/2.3/4.0<br>17/0.7/1.3<br>89/6.4/9.8<br>79/4.1/7.5                             | 67/2.8/6.5<br>64/2.7/6.1<br>54/2.5/5.7<br>39/1.2/2.9<br>21/-1.9/-2.8<br>2 Noise and Half Sa<br>77/5.1/9.2<br>74/4.8/8.6<br>71/4.5/8.0<br>59/3.3/6.0<br>33/0.8/1.6<br>69/5.1/10.0<br>68/4.9/9.6<br>66/4.7/9.1<br>54/3.4/6.3<br>32/1.1/1.8<br>53/2.1/3.8<br>52/2.1/3.7<br>51/2.0/3.4<br>47/1.7/3.1<br>35/0.5/0.9<br>82/6.6/11.3<br>80/6.3/10.6<br>67/6.0/9.8<br>51/4.1/6.8<br>18/0.9/1.6<br>66/2.8/6.5<br>66/2.7/6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93/8.0/12.6<br>92/7.6/11.8<br>91/7.5/11.5<br>90/7.1/10.6<br>89/6.7/9.9<br>It-and-Pepper Nois<br>81/5.6/10.1<br>79/5.4/9.6<br>78/5.2/8.8<br>74/4.5/7.1<br>43/1.1/1.4<br>96/9.7/15.9<br>96/9.7/15.9<br>96/9.7/15.0<br>94/8.4/11.4<br>55/2.0/1.5<br>67/2.9/4.6<br>68/3.0/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>68/2.9/4.6<br>88/8.4/13.3<br>88/8.4/13.8<br>88/8.4/13.8<br>88/8.4/13.9<br>83/7.9/12.5<br>93/7.9/12.5                                                                                                                                                                            | 89/6.9/10.6<br>88/6.7/10.2<br>87/6.5/9.7<br>86/6.1/9.0<br>72/3.6/6.1<br>e)<br>76/5.0/9.0<br>74/4.8/8.7<br>73/4.7/8.3<br>70/4.4/7.8<br>50/2.3/3.7<br>94/9.0/14.7<br>92/8.5/13.5<br>90/7.9/12.2<br>60/3.2/4.9<br>68/3.1/5.0<br>67/3.0/4.8<br>66/2.9/4.6<br>65/2.7/4.4<br>48/1.0/1.1<br>84/7.7/12.1<br>83/7.5/11.6<br>82/7.2/11.1<br>79/6.8/10.3<br>55/3.8/5.4<br>89/6.8/10.5<br>88/6.6/9.9 | 88/8.2/13.3<br>99/9.5/17.8<br>99/9.4/17.2<br>98/9.0/16.2<br>96/8.7/14.9<br>92/7.2/11.8<br>93/7.4/14.0<br>87/6.5/12.0<br>84/6.1/11.0<br>81/5.6/10.1<br>71/4.3/7.2<br>99/11.1/19.8<br>99/10.9/19.3<br>98/10.5/18.2<br>97/10.0/16.8<br>92/8.2/11.7<br>85/5.0/9.4<br>76/4.0/6.8<br>74/3.7/6.3<br>71/3.4/5.4<br>66/2.8/4.3<br>97/10.0/17.9<br>94/9.5/16.2<br>92/9.1/15.1<br>89/8.5/13.5<br>81/6.8/9.8<br>98/9.1/16.6<br>97/8.8/15.6              |

scratches which can be viewed as impulse noise<sup>6</sup>, see Figure 6. We only consider recovering images using  $\ell_{02}TV$ -AOP,  $\ell_0TV$ -PDA and  $\ell_0TV$ -PADMM. We show the recovered results in Figure 7. For better visualization of the images recovered by all methods, we also show auxiliary images  $\mathbf{c}$  in Figure 8, which show the complement

6. Note that this is different from the classical image inpainting problem that assumes the mask is known. In our scratched image denoising problem, we assume the mask is unknown.

of the absolute residual between the recovered image  $\mathbf{u}$  and the corrupted image  $\mathbf{b}$  (i.e.,  $\mathbf{c} = \{\mathbf{1} - |\mathbf{b} - \mathbf{u}|\}$ ). Note that when  $\mathbf{c}_i$  is approximately equal to 1, the color of the corresponding pixel at position i in the image is white. A conclusion can be drawn that our method  $\ell_0 TV$ -PADMM generates more 'white' images  $\mathbf{c}$  than the other two methods, since it can identify the 'right' outliers in the corrupted image and make the correction using their neighborhood information.



Figure 6: Sample images in scratched image denoising problems.



Figure 7: Recovered images in scratched image denoising problems. First column:  $\ell_{02}TV$ -AOP, second column:  $\ell_{0}TV$ -PDA, third column:  $\ell_{0}TV$ -PADMM.

#### 5.6 Colored Image Denoising Problems

Our proposed method can be directly extended to its color version. Since color total variation is not the main theme of this paper, we only provide a basic implementation of it. Specifically, we compute the color total variation channel-by-channel, and take a  $\ell_1$ -norm of the resulting vectors. Suppose we have RGB channels, then we have the following optimization problem:

$$\min_{\mathbf{0} \leq \mathbf{u}^1, \mathbf{u}^2, \mathbf{u}^3 \leq \mathbf{1}} \sum_{k=1}^3 (\|\mathbf{o}^k \odot (\mathbf{K}\mathbf{u}^k - \mathbf{b}^k)\|_0 + \lambda \|\nabla \mathbf{u}^k\|_{p,1}),$$

where  $\mathbf{o}^k$  and  $\mathbf{u}^k$  are the prior and the solution of the kth channel. The grayscale proximal ADM algorithm in Algorithm 1 can be directly extended to solve the optimization above. We demonstrate its applicability in colored image denoising problems in Figure 9. The regularization parameter  $\lambda$  is set to 8 for the three images in our experiments.

#### 5.7 Running Time Comparisons

We provide some running time comparisons for the methods  $\ell_1 TV$ -SBM, TSM,  $\ell_p TV$ -ADMM,  $\ell_{02} TV$ -AOP,  $\ell_0 TV$ -PDA, and  $\ell_0 TV$ -PADMM on grayscale image 'cameraman' corrupted by 50% random-value impulse

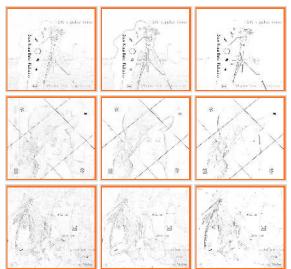



Figure 8: Absolute residual (between scratched image and recovered image) in scratched image denoising problems. First column:  $\ell_{02}TV$ -AOP, second column:  $\ell_{0}TV$ -PDA, third column:  $\ell_{0}TV$ -PADMM.



(a) clean 'lenna' (b) corrupted 'lenna' (c) recovered 'lenna' Figure 9: Colored image denoising problems.

noise. For RGB color images, the running time is three times the amount of grayscale images since the colored image recovery problem can be decomposed into dependent subproblems. Table 5 shows the average CPU time for five runs. Generally, our method is efficient and comparable with existing solutions. This is expected since our method is an alternating optimization algorithm.

Table 5: CPU time (in seconds) comparisons. First row: image denoising; second row: image deblurring.

| $\ell_1 TV$ - | TSM        | $\ell_p TV$ - | $\ell_{02}TV$ - | $\ell_0 TV$ - | $\ell_0 TV$ - |
|---------------|------------|---------------|-----------------|---------------|---------------|
| SBM           |            | ÁDMM          | AOP             | PDA           | PADMM         |
| 5±4           | $6\pm 4$   | 15±4          | $30\pm 5$       | 17±3          | 14±4          |
| $15 \pm 8$    | $16 \pm 7$ | $38 \pm 8$    | $62 \pm 4$      | $39 \pm 7$    | $35 \pm 8$    |

#### 6 Conclusions

In this paper, we propose a new method for image restoration based on total variation (TV) with  $\ell_0$ -norm data fidelity, which is particularly suitable for removing impulse noise. Although the resulting optimization model is non-convex, we design an efficient and effective

proximal ADM method for solving the equivalent MPEC problem of the original  $\ell_0$ -norm minimization problem. Extensive numerical experiments indicate that the proposed  $\ell_0 TV$  model significantly outperforms the state-of-the-art in the presence of impulse noise. In particular, our proposed proximal ADM solver is more effective than the penalty decomposition algorithm used for solving the  $\ell_0 TV$  problem [37].

Acknowledgments. We would like to thank Prof. Shaohua Pan for her helpful discussions on this paper. We also thank Prof. Ming Yan for sharing his code with us. This work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research and, in part, by the NSF-China (61772570, 61402182).

#### References

- V. A. A. Tikhonov. Solution of ill-posed problems. Winston, Washington, DC, 1977.
- M. V. Afonso and J. M. Raposo Sanches. Blind inpainting using and total variation regularization. *IEEE Transactions on Image Processing*, 24(7):2239–2253, 2015.
- [3] G. Aubert and J.-F. Aujol. A variational approach to removing multiplicative noise. SIAM Journal on Applied Mathematics, 68(4):925–946, 2008.
- [4] J.-F. Aujol. Some first-order algorithms for total variation based image restoration. *Journal of Mathematical Imaging* and Vision, 34(3):307–327, 2009.
- [5] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. *IEEE Transactions on Image Processing*, 18(11):2419–2434, 2009.
- [6] D. Bienstock. Computational study of a family of mixed-integer quadratic programming problems. Mathematical programming, 74(2):121–140, 1996.
  [7] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
- [7] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. The IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 23(11):1222–1239, 2001.
- [8] J.-F. Cai, R. H. Chan, and M. Nikolova. Fast twophase image deblurring under impulse noise. *Journal of Mathematical Imaging and Vision*, 36(1):46–53, 2010.
- J.-F. Cai, B. Dong, S. Osher, and Z. Shen. Image restoration: Total variation, wavelet frames, and beyond. *Journal* of the American Mathematical Society, 25(4):1033–1089, 2012.
- [10] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203–4215, 2005.
- [11] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted  $\ell_1$  minimization. *Journal of Fourier Analysis and Applications*, 14(5-6):877–905, 2008.
- [12] A. Chambolle. An algorithm for total variation minimization and applications. *Journal of Mathematical Imaging*
- and Vision, 20(1-2):89-97, 2004.
  [13] A. B. Chan, N. Vasconcelos, and G. R. G. Lanckriet.
  Direct convex relaxations of sparse sym. In *International Conference on Machine Learning*, pages 145-153, 2007.
- [14] R. H. Chan, C. Ho, and M. Nikolova. Salt-and-pepper noise removal by median-type noise detectors and detailpreserving regularization. *IEEE Transactions on Image Processing*, 14(10):1479–1485, 2005.
- [15] R. H. Chan, C. Hu, and M. Nikolova. An iterative procedure for removing random-valued impulse noise. *IEEE Signal Processing Letters*, 11(12):921–924, 2004.

- [16] T. F. Chan, G. H. Golub, and P. Mulet. A nonlinear primaldual method for total variation-based image restoration. SIAM Journal on Scientific Computing, 20(6):1964–1977, 1999.
- [17] R. Chartrand and V. Staneva. A quasi-newton method for total variation regularization of images corrupted by non-gaussian noise. *IET Image Processing*, 2:295–303, 2008.
- [18] C. Chen, B. He, and X. Yuan. Matrix completion via an alternating direction method. IMA Journal of Numerical Analysis, 32(1):227–245, 2011.
- [19] D.-Q. Chen, H. Zhang, and L.-Z. Cheng. A fast fixed point algorithm for total variation deblurring and segmentation. *Journal of Mathematical Imaging and Vision*, 43(3):167– 179, 2012.
- [20] C. Clason.  $\ell_{\infty}$  fitting for inverse problems with uniform noise. *Inverse Problems*, 28(10):104007, 2012.
- [21] C. Clason, B. Jin, and K. Kunisch. A duality-based splitting method for ℓ<sub>1</sub>-tv image restoration with automatic regularization parameter choice. SIAM Journal Scientific Computing, 32(3):1484–1505, 2010.
- [22] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. *IEEE Transactions on Image Processing*, 16(8):2080–2095, 2007.
- 16(8):2080–2095, 2007.
  [23] A. d'Aspremont. A semidefinite representation for some minimum cardinality problems. In *IEEE Conference on Decision and Control*, volume 5, pages 4985–4990, 2003.
- [24] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American Statistical Association*, 96(456):1348–1360, 2001.
- [25] M. Feng, J. E. Mitchell, J.-S. Pang, X. Shen, and A. Wächter. Complementarity formulations of ℓ0-norm optimization problems. 2013.
  [26] D. Ge, X. Jiang, and Y. Ye. A note on the complexity of
- [26] D. Ge, X. Jiang, and Y. Ye. A note on the complexity of ℓ<sub>p</sub> minimization. Mathematical Programming, 129(2):285– 299, 2011.
- [27] S. GEMAN and D. GEMAN. Stochastic relaxation, gibbs distributions and the bayesian restoration of images. The IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721-741, 1984.
- [28] P. Getreuer. tvreg v2: Variational imaging methods for denoising, deconvolution, inpainting, and segmentation, matlab code: http://www.mathworks.com/matlabcentral/ fileexchange/29743. 2010.
- [29] D. Goldfarb and W. Yin. Second-order cone programming methods for total variation-based image restoration. SIAM Journal on Scientific Computing, 27(2):622–645, 2005.
- [30] T. Goldstein and S. Osher. The split bregman method for 11-regularized problems. SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.
- [31] B. He and X. Yuan. On the O(1/n) convergence rate of the douglas-rachford alternating direction method. SIAM Journal on Numerical Analysis, 50(2):700-709, 2012.
- [32] J. Hu. On linear programs with linear complementarity constraints. pages 1–129, 2008.
- [33] H. Ji, S. Huang, Z. Shen, and Y. Xu. Robust video restoration by joint sparse and low rank matrix approximation. SIAM Journal on Imaging Sciences, 4(4):1122–1142, 2011.
- [34] T. Le, R. Chartrand, and T. J. Asaki. A variational approach to reconstructing images corrupted by poisson noise. *Journal of Mathematical Imaging and Vision*, 27(3):257–263, 2007.
- [35] C. Lu, J. Tang, S. Yan, and Z. Lin. Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm. *IEEE Transactions Image Processing*, 25(2):829– 839, 2016.
- [36] Z. Lu. Iterative reweighted minimization methods for  $\ell_p$  regularized unconstrained nonlinear programming. Mathematical Programming, 147(1):277–307, 2014.

- [37] Z. Lu and Y. Zhang. Sparse approximation via penalty decomposition methods. SIAM Journal on Optimization, 23(4):2448–2478, 2013.
- [38] Z.-Q. Luo, J.-S. Pang, and D. Ralph. Mathematical programs with equilibrium constraints. Cambridge University Press, 1996.
- [39] A. M. McDonald, M. Pontil, and D. Stamos. Spectral k-support norm regularization. In Neural Information Processing Systems, pages 3644–3652, 2014.
- [40] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5):577–685, 1989.
- [41] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2):227–234, Apr. 1995.
- [42] Y. E. Nesterov. Introductory lectures on convex optimization: a basic course, volume 87 of Applied Optimization. Kluwer Academic Publishers, 2003.
- [43] M. K. Ng, L. Qi, Y.-F. Yang, and Y.-M. Huang. On semismooth newton's methods for total variation minimization. Journal of Mathematical Imaging and Vision, 27(3):265–276, 2007.
- [44] M. Nikolova and M. K. Ng. Analysis of half-quadratic minimization methods for signal and image recovery. SIAM Journal on Scientific Computing, 27(3):937–966, 2005.
- [45] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. *Physica D:* Nonlinear Phenomena, 60(1):259–268, 1992.
- [46] J. Seabra, J. Xavier, and J. Sanches. Convex ultrasound image reconstruction with log-euclidean priors. In *Inter*national Conference of the IEEE Engineering in Medicine and Biology Society, 2008.
- [47] G. Steidl and T. Teuber. Removing multiplicative noise by douglas-rachford splitting methods. *Journal of Mathematical Imaging and Vision*, 36(2):168–184, 2010.
  [48] Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new
- [48] Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences, 1(3):248–272, 2008.
- [49] P. Weiss, G. Aubert, and L. Blanc-Féraud. Some application of  $\ell_{\infty}$  constraints in image processing. *INRIA Research Report*, 6115, 2006.
- [50] Z. Wen, C. Yang, X. Liu, and S. Marchesini. Alternating direction methods for classical and ptychographic phase retrieval. *Inverse Problems*, 28(11):115010, 2012.
- [51] H. Woo and S. Yun. Proximal linearized alternating direction method for multiplicative denoising. SIAM Journal on Scientific Computing, 35(2):B336–B358, 2013.
- [52] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In *Neural Information Processing Systems*, pages 2080–2088, 2009.
- [53] L. Xu and J. Jia. Two-phase kernel estimation for robust motion deblurring. In European Conference on Computer Vision, pages 157–170. Springer, 2010.
- [54] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via  $\ell_0$  gradient minimization. *ACM Transactions on Graphics*, 30(6):174, 2011.
- [55] L. Xu, S. Zheng, and J. Jia. Unnatural  $\ell_0$  sparse representation for natural image deblurring. In *Computer Vision and Pattern Recognition*, 2013.
- [56] Z. Xu, X. Chang, F. Xu, and H. Zhang.  $l_{1/2}$  regularization: A thresholding representation theory and a fast solver. *IEEE Transactions on Neural Networks and Learning Systems*, 23(7):1013–1027, 2012.
- [57] M. Yan. Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting. SIAM Journal on Imaging Sciences, 6(3):1227-1245, 2013.
  [58] J. Yang, Y. Zhang, and W. Yin. An efficient tvl1 algorithm
- [58] J. Yang, Y. Zhang, and W. Yin. An efficient tvl1 algorithm for deblurring multichannel images corrupted by impulsive

- noise. SIAM Journal on Scientific Computing, 31(4):2842–2865, 2009.
- [59] P. Yin, Y. Lou, Q. He, and J. Xin. Minimization of ℓ<sub>1-2</sub> for compressed sensing. SIAM Journal on Scientific Computing, 37(1), 2015.
- [60] J. Yu, A. Eriksson, T.-J. Chin, and D. Suter. An adversarial optimization approach to efficient outlier removal. In International Conference on Computer Vision, pages 399– 406, 2011.
- [61] G. Yuan and B. Ghanem. ℓ<sub>0</sub>tv: A new method for image restoration in the presence of impulse noise. In Computer Vision and Pattern Recognition, pages 5369–5377, 2015.
- [62] G. Yuan and B. Ghanem. Binary optimization via mathematical programming with equilibrium constraints. arXiv preprint, 2016.
- [63] G. Yuan and B. Ghanem. A proximal alternating direction method for semi-definite rank minimization. In *Proceedings* of the AAAI Conference on Artificial Intelligence, 2016.
- [64] G. Yuan and B. Ghanem. Sparsity constrained minimization via mathematical programming with equilibrium constraints. arXiv preprint, 2016.
- [65] G. Yuan and B. Ghanem. An exact penalty method for binary optimization based on mpec formulation. In AAAI, pages 2867–2875, 2017.
- [66] C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38(2):894–942, 2010.
- [67] X. Zhang, M. Burger, X. Bresson, and S. Osher. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 3(3):253–276, 2010.
- 68) W. Zuo and Z. Lin. A generalized accelerated proximal gradient approach for total-variation-based image restoration. *IEEE Transactions on Image Processing*, 20(10):2748– 2759, 2011.



Ganzhao Yuan was born in Guangdong, China. He received his Ph.D. in School of Computer Science and Engineering, South China University of Technology (SCUT) in 2013. He is currently a research associate professor at School of Data and Computer Science in Sun Yat-sen University (SYSU). His research interests primarily center around large-scale nonlinear optimization and its applications in computer vision and machine learning. He has published papers

in ICML, SIGKDD, AAAI, CVPR, VLDB, and ACM Transactions on Database System (TODS).



Bernard Ghanem was born in Betroumine, Lebanon. He received his Ph.D. in Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign (UIUC) in 2010. He is currently an assistant professor at King Abdullah University of Science and Technology (KAUST), where he leads the Image and Video Understanding Lab (IVUL). His research interests focus on designing, implementing, and analyzing approaches to address

computer vision problems (e.g. object tracking and action recognition/detection in video), especially at large-scale.