
 Open access Journal Article DOI:10.1109/TNN.2011.2157521

$\ell_{p}-\ell_{q}$ Penalty for Sparse Linear and Sparse Multiple Kernel Multitask
Learning — Source link

Alain Rakotomamonjy, Rémi Flamary, G. Gasso, Stéphane Canu

Institutions: University of Rouen

Published on: 01 Aug 2011 - IEEE Transactions on Neural Networks (IEEE Press)

Topics: Multiple kernel learning, Multi-task learning and Support vector machine

Related papers:

 Convex multi-task feature learning

 Regression Shrinkage and Selection via the Lasso

 Exact Reconstruction of Sparse Signals via Nonconvex Minimization

 Model selection and estimation in regression with grouped variables

 Regularized multi--task learning

Share this paper:

View more about this paper here: https://typeset.io/papers/ell-p-ell-q-penalty-for-sparse-linear-and-sparse-multiple-
4b18tevjmi

https://typeset.io/
https://www.doi.org/10.1109/TNN.2011.2157521
https://typeset.io/papers/ell-p-ell-q-penalty-for-sparse-linear-and-sparse-multiple-4b18tevjmi
https://typeset.io/authors/alain-rakotomamonjy-3yo9txhv4n
https://typeset.io/authors/remi-flamary-2hb7chmhig
https://typeset.io/authors/g-gasso-55wufog27w
https://typeset.io/authors/stephane-canu-1r3hc2o49p
https://typeset.io/institutions/university-of-rouen-289lzuup
https://typeset.io/journals/ieee-transactions-on-neural-networks-2pup5gfv
https://typeset.io/topics/multiple-kernel-learning-363i0xck
https://typeset.io/topics/multi-task-learning-3gsomn3f
https://typeset.io/topics/support-vector-machine-gc9ia0ms
https://typeset.io/papers/convex-multi-task-feature-learning-3e1h1fn4a3
https://typeset.io/papers/regression-shrinkage-and-selection-via-the-lasso-6mx35txfr5
https://typeset.io/papers/exact-reconstruction-of-sparse-signals-via-nonconvex-3vqcdap7fb
https://typeset.io/papers/model-selection-and-estimation-in-regression-with-grouped-45w0oq79ry
https://typeset.io/papers/regularized-multi-task-learning-13f3zxoz9e
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/ell-p-ell-q-penalty-for-sparse-linear-and-sparse-multiple-4b18tevjmi
https://twitter.com/intent/tweet?text=$%5Cell_%7Bp%7D-%5Cell_%7Bq%7D$%20Penalty%20for%20Sparse%20Linear%20and%20Sparse%20Multiple%20Kernel%20Multitask%20Learning&url=https://typeset.io/papers/ell-p-ell-q-penalty-for-sparse-linear-and-sparse-multiple-4b18tevjmi
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/ell-p-ell-q-penalty-for-sparse-linear-and-sparse-multiple-4b18tevjmi
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/ell-p-ell-q-penalty-for-sparse-linear-and-sparse-multiple-4b18tevjmi
https://typeset.io/papers/ell-p-ell-q-penalty-for-sparse-linear-and-sparse-multiple-4b18tevjmi

1

ℓp − ℓq penalty for Sparse Linear and Sparse

Multiple Kernel Multi-Task Learning
Alain Rakotomamonjy⋆, Rémi Flamary, Gilles Gasso, Stéphane Canu

LITIS, EA 4108 - INSA / Université de Rouen

Avenue de l’Université - 76801 Saint-Etienne du Rouvray Cedex

firstname.lastname@insa-rouen.fr

Abstract—Recently, there has been a lot of interest around
multi-task learning (MTL) problem with the constraints that
tasks should share a common sparsity profile. Such a problem
can be addressed through a regularization framework where the
regularizer induces a joint-sparsity pattern between task decision
functions. We follow this principled framework and focus on
ℓp−ℓq (with 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2) mixed-norms as sparsity-
inducing penalties. Our motivation for addressing such a larger
class of penalty is to adapt the penalty to a problem at hand
leading thus to better performances and better sparsity pattern.
For solving the problem in the general multiple kernel case,
we first derive a variational formulation of the ℓ1 − ℓq penalty
which helps up in proposing an alternate optimization algorithm.
Although very simple, the latter algorithm provably converges to
the global minimum of the ℓ1 − ℓq penalized problem. For the
linear case, we extend existing works considering accelerated
proximal gradient to this penalty. Our contribution in this
context is to provide an efficient scheme for computing the
ℓ1− ℓq proximal operator. Then, for the more general case when
0 < p < 1, we solve the resulting non-convex problem through
a majorization-minimization approach. The resulting algorithm
is an iterative scheme which, at each iteration, solves a weighted
ℓ1 − ℓq sparse MTL problem. Empirical evidences from toy
dataset and real-word datasets dealing with BCI single trial EEG
classification and protein subcellular localization show the benefit
of the proposed approaches and algorithms.

Index Terms—Multi-task learning, multiple kernel learning,
sparsity, mixed-norm, Support Vector Machines

I. INTRODUCTION

Multi-Task Learning (MTL) is a statistical learning frame-

work which seeks at learning several models in a joint manner.

The idea behind this paradigm is that, when the tasks to

be learned are similar enough or are related in some sense,

it may be advantageous to take into account these relations

between tasks. For instance, when the number of samples

for learning are small, transferring some knowledge from one

task to another while learning can be advantageous in term

of generalization performances. Several works have provided

empirical evidence on the benefit of such a framework [9],

[15], [23], [35]. Application domains that have been shown

to benefit from multi-task learning are medical diagnosis [5],

drug therapy prediction [6], vaccine design [21] or conjoint

analysis [1].

However, the notion of relatedness between tasks is vague

and depends on the problem at hand. For instance, one can

consider that models resulting from related tasks should be

similar to a single model [15], [23]. In other works, task’s

relatedness is represented through a probabilistic model [52].

Prior knowledge on tasks are then translated into an appropri-

ate regularization term or into a hierarchical Bayesian model

that can be handled by a learning algorithm [14], [50], [20].

In this work, we consider that tasks to be learned share

a common subset of features or kernel representation. This

means that while learning the tasks, we jointly look for

features or kernels that are useful for all tasks. In this context

of joint feature selection with multiple related tasks, several

works have already been carried out. For instance, Jebara et

al. [22] has introduced a maximum entropy discrimination for

solving such a problem. Some other works cast the problem

into a probabilistic framework which uses automatic relevance

determination and a hierarchical Bayesian model for selecting

the relevant features [5], [49]. Another trend considers a regu-

larization principle and thus minimizes a regularized empirical

risk with a regularization term that favors a common sparsity

profile for all tasks. Such an approach has been investigated

by Argyriou et al. [2] and Obozinski et al. [33]. In these

latter works, the authors propose a ℓ1− ℓ2 regularization term

which can be interpreted as a convex extension of the sparsity-

inducing ℓ1 norm in single task learning.

As made clear in the sequel, our contribution in this paper

lies in between multi-task and multiple kernel learning. Indeed,

we provide a methodological framework for learning each task

decision functions while these functions use an optimal, in

some sense, linear combination of only few kernels. This point

highlights the relation between our contribution and multiple

kernel learning. Imposing that the few selected kernels are

similar across the tasks is the point that defines task’s related-

ness. Following Obozinski et al. [33] and Argyriou et al. [2],

we induce this sparsity in joint kernel representation through

a regularization principle where the regularization term is a

mixed-norm penalty.

In practice and in theory as proved by the works of Lounici

et al. [31], a fixed non-adaptive penalty like the ℓ1 − ℓ2
mixed norm, is beneficial with respects to other penalties only

under certain situations. Hence, it seems natural that different

penalties may suit better to different data structures. This

motivates us to investigate the use of a larger class of mixed-

norm penalty that can be adapted to the data at hand. We

focus here on the class of ℓp − ℓq mixed-norm penalty where

0 ≤ p ≤ 1 and 1 ≤ q ≤ 2. Our objective in using p < 1 is to

make the kernel representation across tasks sparser than using

p = 1; such an increased sparsity profile being valuable in a

2

presence a large amount of noisy features or irrelevant kernels.

Furthermore, the sparser representation induced by p < 1
is expected to enhance models interpretability and improve

evaluation computational efficiency. Varying q between 1 and

2 allows the task decision functions to adapt themselves to the

importance of the task relatedness. Indeed, it would be clear in

the following that q = 1 makes the task learning independent

while q > 1 ties them through the mixed-norm. Rationales on

why we have not investigated cases where 2 < q < ∞ will

also be discussed.

Our aim in this paper is to present a simple algorithm

for handling the optimization problem resulting of the use of

ℓp− ℓq mixed-norms regularizers in the multi-task framework

and to provide empirical evidences that making the choice of p
and q adaptive with respects to the data at hand works as good

as or better than a fixed ℓ1 − ℓ2 penalty in various situations.

Algorithmically, we first show that, for the general multiple

kernel case, a variational formulation of the ℓ1 − ℓq mixed-

norm can be obtained. Such a novel formulation helps us in

deriving a simple alternate algorithm for solving the sparse

ℓ1− ℓq multi-task problem which provably converges towards

the solution of the problem. For the linear case, as such an

algorithm may not be efficient, we extend existing works [11]

on accelerated proximal gradient to handle the case of ℓ1− ℓq
norm. We essentially provide a novel way for computing the

proximal operator of this mixed-norm. At a second stage, we

address the case of the non-convex ℓp − ℓq (0 < p < 1)

regularization term. The difficulty raised by this non-convex

problem is tackled via a Majorization-Minimization (MM)

approach [19]. This leads to an iterative scheme which solves

at each iteration, a reweighted ℓ1 − ℓq multi-task learning

problem.

In the next section, we present the general formulation of

the sparse MTL problem as well as a brief review of closely

spirit-related works. Algorithmic developments are presented

in Section III. Then, some empirical results that illustrate the

behavior of our algorithms are given in Section IV while

some concluding remarks are drawn in Section V. For a

sake of reproducibility, the Matlab code used for this paper

is available at http://asi.insa-rouen.fr/enseignants/∼arakotom/

code/SparseMTL.html

II. MULTI-TASK FEATURE/KERNEL SELECTION

FRAMEWORK

This section introduces our sparse MTL framework and

discusses related works available in the literature.

A. Framework

Suppose we are given T classification tasks to be learned

from T different datasets (xi,1, yi,1)
n1

i=1, · · · , (xi,T , yi,T)
nT

i=1,

where any xi,· ∈ X and yi,· ∈ {+1,−1} and ni denotes the i-
th dataset size. For a given task t, we are looking for a decision

function of the form:

ft(x) =

M
∑

k=1

ft,k(x) + bt ∀t ∈ {1, · · · , T } (1)

where a function f·,k belongs to a Reproducing Kernel Hilbert

Space (RKHS) Hk of kernel Kk, bt is a bias term and M
is the number of basis kernels provided. Depending on the

input space X , Hk can take different forms. For instance, if

X = R
d, Hk can be a subset of R

d built from a single or

several dimensions. In some other situations, Hk can be also

an infinite dimension space defined implicitly by its kernel

(e.g a Gaussian kernel).

The objective of this work is to learn the decision function

ft for each task under the constraints that all these functions

share a common sparsity profile of their kernel representation.

Hence, the pursued hope is to build a learning algorithm able

to yield many vanishing functions ft,k for all t.
For achieving this goal, we cast our problem as the follow-

ing optimization problem:

min
f1,··· ,fT

C ·
∑

t,i

L(ft(xi,t), yi,t) + Ω(f1, · · · , fT) (2)

where L(ft(x), y) is a loss function, Ω a sparsity-inducing

penalty term involving all functions ft and C a trade-off

parameter that balances both antagonist objectives. Hereafter,

we will focus on a Hinge loss function, denoted as H(f(x), y),
although our algorithm can be straightforwardly applied to

other losses.

B. Joint sparsity-inducing penalty

Since few years now, there has been a large interest around

sparse models. While different approaches are possible for

generating sparse methods [17], [26], sparsity are usually

induced by a penalty function [10] or a proper type of Bayesian

modeling [46], [47].

For a single task empirical minimization problem, sparse

models are usually induced by the use of a ℓ1-norm regularizer

[45]. For a Multi-Task Learning problem, this approach can

be properly generalized by the use of appropriate norm. For

instance, Obozinski et al. and Argyriou et al. [2], [33] propose

a regularizer of the form :

Ω(f1, · · · , fT) =

M
∑

k=1

(

T
∑

t=1

‖ft,k‖
2
Hk

)1/2

.

This latter regularizer is a ℓ1 block-norm that tends to produce

sparse kernel solutions. For single task problem, such a reg-

ularizer has been used for sparse kernel selection in multiple

kernel learning problem [3]. For single task linear problem,

this regularizer is equivalent to a ℓ1-norm penalty.

In order to be more data-adaptive, this regularizer can be

generalized as :

Ωp,q(f1, · · · , fT) =

M
∑

k=1

(

T
∑

t=1

‖ft,k‖
q
Hk

)p/q

(3)

where typically 0 ≤ p ≤ 1 and q ≥ 1. For this regularizer, a ℓq
norm is applied to the vector of all task norms in Hk and then

a ℓp norm or pseudo-norm is applied to the resulting vector.

The ℓq norm in the regularizer controls the weights of each

task for the space Hk and how this kernel representation will

be shared across tasks. For instance, large value of q (such as

3

q =∞) means that as soon as ‖ft,k‖Hk
is non-zero, another

task t′ can have a non-zero norm for ft′,k without increasing

significantly the regularizer Ωp,q. Note that for p = 1 and

q = 1, the regularizer can be decoupled and thus the learning

problem boils down to be T independent problems. The ℓp
pseudo-norm controls the sparsity of the kernel representation

for all tasks. For p < 1, regularizer (3) is expected to produce

sparser solutions than for p = 1, hence using such a mixed-

norm penalty is expected to be more efficient in presence of

many irrelevant variables or kernels. Note that this kind of

mixed-norm regularizer has already been proposed for single

task learning for achieving composite absolute penalization

[53] or for composite kernel learning [44].

However, in the context of multi-task learning, only some

particular cases of the mixed-norm Ωp,q have been considered.

Obozinski et al. [33] use p = 1 and q = 2 while Liu et al.

[27], [28], Quattoni et al. [37], [36] and Chen et al. [11] have

considered the use of p = 1 and q =∞. For all these works,

the authors have focused on convex situations since Ωp,q is

known to be convex whenever p, q ≥ 1 and non-convex for

p < 1 and q ≥ 1. Recently, several works on learning single

sparse models have stressed the need of non-convex penalties

for achieving better sparsity profile. For instance, Knight et al.

[25] suggested the use of the so-called Bridge penalty which

simply consists in replacing the ℓ1 norm with a ℓp pseudo-

norm with 0 < p < 1. In our multi-task learning framework,

this can be naturally generalized by using the regularizer given

in Equation (3) with 0 < p < 1. For instance, two very

recent works have focused on theoretical properties of the

mixed-norm Ωp,1 and Ω1,q for variable selection in multiple

regression problems [18], [29].

As we can see, there are a lot of algorithmic works that

address the case where p = 1 and q ∈ {2,∞}. These

works usually aim at developing efficient algorithms in the

linear decision function. The novelty of our contribution lies

in considering a larger class (p ≤ 1 and 1 ≤ q ≤ 2) of

mixed-norm penalties while keeping the kernel framework.

By choosing p and q in these intervals, we aim a better

adaptivity of the penalty to the datasets at hand. However,

in this paper, we only focus on algorithms for solving the

resulting optimization problems, while the task of efficiently

selecting p and q has been left for future works. Furthermore,

although we have focused on the use of Hinge loss function,

the algorithms we propose in the sequel are generic enough

to handle different type of loss functions in the optimization

problem as well as heterogeneous loss functions.

As we have stated, we do not consider in this paper cases

where 2 < q < ∞. There is a main reason for this.

Indeed, we believe that as q becomes greater than 2, the

ℓ1 − ℓq regularizer rapidly becomes numerically equivalent to

a ℓ1,∞ one. This point can be made clear from the relation

(
∑

i |ai|
q)1/q = |ak|

(

∑

i |
ai

ak
|q
)1/q

where k is the index of

the largest |ai|. Hence, since there already exists efficient

method for ℓ1,∞ sparse multi-task learning [36], we have not

addressed this case in this present work. However, we still

plan in a forthcoming work, to provide a better analysis of the

use of these ℓ1 − ℓq penalties so as to understand in which

situations they may perform better than the ℓ1 − ℓ∞ penalty.

III. ALGORITHMS FOR JOINTLY SPARSE MULTI-TASK SVM

In this section, we propose some algorithms for solving

the sparse multi-task SVM problem when using Ωp,q as a

regularizer with values p ≤ 1 and 1 ≤ q ≤ 2. At first, we

consider the convex case when p = 1 and then we introduce

an algorithm which solves the problem for p < 1.

A. A smooth formulation of ℓ1 − ℓq regularized problem

The algorithm we propose is based on a variational formu-

lation of the mixed-norm Ω1,q(·). The following proposition

extends the one of Michelli et al. [32] to mixed-norm. Similar

propositions have been derived for multiple and composite

kernel learning [38], [44]. Here and in what follows, u/v is

defined as u/0 =∞ if u 6= 0 and 0/0 = 0.

Proposition 1: if s > 0 and {at,k ∈ R : k ∈
[1, · · · ,M], t ∈ [1, · · · , T]} such that at least one |at,k| > 0,

then the following minimization problem over elements dt,k
admits a unique minimum

min
{dt,k}







∑

k,t

|at,k|
2

dt,k
: dt,k ≥ 0,

∑

k

(

∑

t

d
1/s
t,k

)s

≤ 1







=





∑

k

(

∑

t

|at,k|
q

)1/q




2

(4)

where q = 2
s+1 . Furthermore, at optimality, we have:

d⋆t,k =
|at,k|

2s
s+1

(

∑

u |au,k|
2

s+1

)
1−s
2

∑

v

(

∑

u |au,v|
2

s+1

)
s+1
2

(5)

Proof: (Sketch) The proof proceeds by writing down

the Lagrangian of the minimization problem and deriving the

optimality condition wrt to dt,k. Then, we get

d
1/s
t,k = λ−1/(s+1)|at,k|

2/(s+1)

(

∑

u

d
1/s
u,k

)
1−s
1+s

where λ is the Lagrangian multiplier associated to the mixed-

norm constraint. From these optimality conditions, we derive
∑

u d
1/s
u,k =

(

λ−1
(
∑

u |au,k|
2/s+1

)s+1
)1/2s

. Then since at

optimality, the mixed-norm inequality becomes an equality,

we have λ =
(

∑

k

(
∑

t |at,k|
2/s+1

)(s+1)/2
)2

. Plugging all

these equations into the optimality conditions of dt,k proves

the above proposition.

Hence, by setting at,k = ‖ft,k‖Hk
, the above proposition

gives a variational formulation of Ω1,q(·)
2. It is interesting

to note how the mixed-norm on functions ft,k transfers to

another mixed-norm on the weights dt,k. We can see that

for q = 1, this latter mixed-norm decouples. When q → 2,

which correspond to multiple kernel learning for a single task

[3], we have s → 0 and the mixed-norm on the weight

becomes a mixed supnorm. This means that at optimality,

all the weights {d.,k} associated to non-zero {a·,k} should

4

have similar values. Indeed, suppose that for tasks t and t′,
dt′,k < dt,k and at,k, at′,k are non-zero, then the objective

value can be decreased by setting dt′,k = dt,k. For this case,

it would have been preferable to consider a single weight dk
associated to each RKHS Hk.

Now let us consider the optimization problem related to our

sparse multi-task learning problem for p = 1 and 1 ≤ q ≤ 2 :

min
f1,··· ,fT

C ·
∑

t,i

H(ft(xi,t), yi,t) + Ω1,q(f1, · · · , fT)
2 (6)

Since the penalty term is convex and the square function is

strictly monotonically increasing function on R+, squaring the

penalty term in the objective function as above, leads to an

equivalent optimization problem without the squaring. Here

the equivalence is understood as for any hyperparameter value

C, there exists a hyperparameter C′ related to the optimization

problem without the squaring term (as in Equation 2) so that

the solutions of both problems are equal (a more formal proof

of this claim is detailed in the appendix). Then, owing to the

variational formulation of Ω1,q(f1, · · · , fT)
2, we can rewrite

the optimization problem related to a sparse multi-task SVM

as

min
f1,··· ,fT ,d

C
∑

t,iH(ft(xi,t), yi,t) +
∑

t,k
‖ft,k‖

2

dt,k

s.t
∑

k

(

∑

t d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t
(7)

with s = 2−q
q . We can note that the objective function of

this optimization problem is smooth and convex and that the

feasible domain is convex if s ≤ 1. After, re-arranging the

sums, we have the following equivalent optimization problem:

min
d

J(d) =
∑

t Jt(d)

s.t
∑

k

(

∑

t d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t
(8)

with

Jt(d) = min
ft

C
∑

i

H(ft(xi,t), yi,t) +
∑

k

‖ft,k‖
2

dt,k

= − min
0≤αt≤C,αT

t y=0

1

2
αT
t Gt(d)αt − αT

t 1 (9)

where [Gt(d)]i,j = yi,tyj,t
∑

k dt,kKk(xi,t, xj,t) and {αt}
are the vectors of Lagrangian multipliers related to the Hinge

loss in problem Jt(d). The second equality of equation 9 is

due to Lagrangian duality and the strong duality of an SVM

problem. We can note from these equations that for a fixed

matrix d (matrix with entries dt,k), each task can be trained

independently.

This latter formulation shows how our sparse multi-task

SVM problem is related to Multiple Kernel Learning (MKL)

problem. At first, we remark that Equations (8-9) boil down to

be the MKL problem when only one single task is considered

[38]. When several tasks are in play, the matrix d makes

explicit that tasks are linked through their shared sparse kernel

representation. Equations (8-9) suggest the use of similar

algorithms than those proposed for solving MKL problem,

for instance a reduced gradient algorithm as in SimpleMKL

[38] or a Semi-Infinite programming approach as proposed by

Sonnenburg et al. [42]. Instead of adapting these methods to

our problem, we present in the sequel a simple approach for

solving problem (8).

B. An alternate optimization algorithm for the ℓ1 − ℓq case

We introduce one of our contribution of this work which is

a simple iterative algorithm based on block-coordinate descent

for solving the ℓ1−ℓq problem. We show that such a coordinate

descent approach boils down to an alternate optimization

scheme which provably converges to the minimizer of the

problem.

At first let us define the objective function of our problem

(7) as

R(d, f) = C
∑

t,i

H(ft(xi,t), yi,t) +
∑

t,k

‖ft,k‖
2

dt,k
(10)

where f defines the set of all functions {ft,k} After appropriate

initialization of the weight matrix d, our block-coordinate

descent algorithm consists in alternatively minimizing :

(i) problem (10) with respects to {f} while keeping the

matrix d fixed. This step simply consists in solving T
single-task SVM problems which, at step v, results in

the following decision function for task t :

f
(v)
t (·) =

∑

i,k

α
(v)
i,t yi,td

(v−1)
t,k Kk(xi,t, ·) + b

(v)
t

with

α
(v)
t =











argmin
αi,t

1
2

∑

i,j αi,tαj,tGi,j,t −
∑

i αi,t

s.t
∑

i αi,tyi,t = 0,
0 ≤ αi,t ≤ C ∀i

where Gi,j,t = yi,tyj,t
∑

k d
(v−1)
t,k Kk(xi,t, xj,t).

(ii) problem (7) with respects to d with {f} being fixed.

Because of the relation between the {α
(v)
t } and the

{f
(v)
t,k (·) =

∑

i α
(v)
i,t yi,td

(v−1)
t,k Kk(xi,t, ·)}, this problem

is equivalent to solve (4) with, at step v

at,k = ‖f
(v)
t,k ‖Hk

= d
(v−1)
t,k

√

∑

i,j

α
(v)
i,t α

(v)
j,t yi,tyj,tKk(xi,t, xj,t)

= d
(v−1)
t,k

√

α
(v)T
t K̃k,tα

(v)
t

where [K̃k,t]i,j = yi,tyj,tKk(xi,t, xj,t). According to

proposition (1), we have a closed-form solution d
(v)
t,k of

this problem given by equation (5) which now writes as :

d
(v)
t,k =

‖f
(v)
t,k ‖

2s
s+1

Hk

(

∑

u ‖f
(v)
u,k‖

2
s+1

Hk

)
1−s
2

∑

u′

(

∑

u ‖f
(v)
u,u′‖

2
s+1

Hk

)
s+1
2

(11)

Owing to the convexity and the smoothness of the objective

function, such an algorithm should converge towards the

minimizer of problem (8). In what follows, we give more

details on the descent and convergence properties of this

algorithm.

5

Proposition 2: Suppose that all the Gram matrices Kk,t (the

matrix of general term Kk(xi,t, xj,t)) for all tasks are strictly

positive definite, given d
(v−1) with ∀t, k, d

(v−1)
t,k 6= 0, at each

iteration v > 1 of the alternate scheme, if d(v) 6= d
(v−1) then

the cost function strictly decreases

R(d(v), f (v)) < min
f

R(d(v−1), f) < R(d(v−1), f (v−1)) (12)

and we have d
(v)
t,k > 0.

Proof: The proof proceeds by considering that the right

and the left inequalities respectively derive from the optimality

of the α(v) in step (i) and the d
(v) in step (ii) of the alternating

scheme. The details are given in the appendix.

The above proposition makes clear that as iteration goes,

the objective value decreases if the algorithm is properly

initialized to a matrix with non-zero elements Furthermore,

since the objective function is bounded from below, the iterates

of the objective value converge. This proposition also suggests

that our algorithm can get stuck into a fixed point. However

as made clear in the following proposition, the sequence of

{f (v)} and {d(v)} also converge and eventually such a fixed

point would be the minimizer of our problem.

Proposition 3: For v ∈ N
∗, for 1 ≤ q ≤ 2, under the

hypothesis that all Gram matrices Kk,t are strictly positive

definite and d
(1) 6= 0, the sequence {d(v), f (v)} converges to

the minimizer of R(d, f) subject to the constraints on d :

∑

k

(

∑

t

d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t

Proof: For a sake of clarity, the proof of this proposition

has been postponed to the appendix. Globally, it follows

the same lines of the convergence proof of the alternate

optimization algorithm proposed by Argyriou et al. [2].

A key point for the convergence of the algorithm is that

the weight matrix should be initialized to non-zero value.

However, if so, as iteration goes, a given weight d
(v)
t,k does not

strictly vanish. This can be interpreted as a weak point for an

algorithm that should provide sparse solutions. However, along

the iteration, d
(v)
t,k may rapidly converge towards zero and can

rapidly reach a neglectable value. Details on how we have

evaluated solution’s sparseness are given in the experimental

section.

The computational complexity of this algorithm is difficult

to evaluate. However, we know that at each iteration, T SVM

trainings and the weight matrix d computation are needed.

Each SVM training scales in O(n3
t,sv) while computing d is

about O(T ·M ·n2
t,sv) with nt,sv being the number of support

vectors related to task t. In practice, we take advantage of

warm-start techniques when solving the quadratic program-

ming associated to each SVM task, making the algorithm very

efficient even compared to gradient descent techniques coupled

with warm-starting [13] similar to those used in SimpleMKL.

Numerical experiments given in the sequel will support such

a claim.

Many previous works on joint-sparse multi-task learning

have been carried to in a linear framework thus leading

to efficient algorithms. Here, by considering a kernelized

framework, our algorithm still relies on a sequence of SVM

trainings. This can be considered as very time-consuming.

However, according to very recent works on multiple kernel

learning [43], [24], using such a wrapper approach (which

first solves an SVM then update the weights d) is still

competitive compared to other algorithms. Hence, although

we have not carried out extensive comparisons, we believe

that our approach is relatively efficient (and at least is

better than gradient descent techniques as proved in the

experimental section). Note that in a linear framework i.e

each Hk is associated to one dimension of R
d, the kernel

matrix Kk is a rank one matrix and our algorithm wastes

many computational efforts in computing
∑

t dt,kKk (see

step (i)). Hence, instead of computing these kernels, we can

directly compute this sum through the inner product of the

data. We have implemented this simple trick and named this

version of our approach, in the experiments, as the linear

alternate optimization. We will see that some interesting gain

in computational effort can be obtained.

Although we have focused on SVM and the Hinge loss

function, our approach can be applied to any convex loss

function as long as the problem with fixed d can be easily

solved. For instance, with a square-loss function, minimizing

problem (10) boils down to be a weighted kernel rigde

regression. Furthermore, our approach can handle situations

where the loss functions for each task are heterogeneous.

Indeed, in such cases, we would like to solve

min
f1,··· ,fT ,d

C
∑

t,i Lt(ft(xi,t), yi,t) +
∑

t,k
‖ft,k‖

2

dt,k

s.t
∑

k

(

∑

t d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t
(13)

where each loss function Lt(·, ·) depends on each task and

can be either related to a regression or classification problem.

This framework has been very recently investigated by Yang

et al. and is motivated by applications in genetic association

mapping [51]. Our algorithm straightforwardly applies to these

problems. Indeed, in our alternate optimization algorithm, the

loss functions are taken into account only in the first step,

where d is kept fixed. Thus each task learning decouples and

the heterogeneity of loss functions does not pose difficulty.

C. A proximal method for the linear ℓ1 − ℓq case

Recently, several works have proposed efficient algorithms

for penalized linear multi-task learning with ℓ1 − ℓ2 or ℓ1 −
ℓ∞ norms [30], [11]. These approaches are essentially based

on accelerated proximal gradient (APG) method [4]. We have

extended these algorithms to the case of ℓ1− ℓq norms. Since

we have exactly followed the same steps of Chen et al. [11], we

only detail how we have numerically computed the proximal

operator of the ℓ1 − ℓq norm.

Let us consider each linear classifier related to a task t as

ft(x) = wT
t x+bt and the matrix W = [w1, · · · , wT] ∈ R

d×T .

At each iteration of the AGP algorithm, one has to use the so-

called proximal operator which maps a matrix V ∈ R
d×T to

6

the unique minimizer of

min
X∈Rd×T

1

2
‖X − V ‖2F + λ

d
∑

k=1

‖Xk,·‖q

This problem can be decomposed in d independent problems

which consist of

min
x∈RT

1

2
‖x− v‖2 + λ‖x‖q (14)

for each dimension of the problem. For q = {1, 2,∞}, this

problem has a closed-form solution which makes the global

APG algorithm very efficient. Unfortunately, for 1 < q < 2,

one has to numerically solve this problem. However, con-

sidering a q′ such that 1/q + 1/q′ = 1, it can still be

shown that if ‖v‖q′ ≤ λ then the solution is 0. In the other

case, we have considered subgradient descent method and

iterative reweighted least-square (IRLS) [41]. Since we found

out that the latter is more efficient due to the simple structure

of the problem, our numerical implementation uses such an

approach. It is simple to show by writing the optimality

conditions of problem 14 that the IRLS algorithm consists

at each iteration (z) in updating x according to the formula

x(z) = [P (z)]−1v with

P (z) = diag

(

1 +
λ

‖x(z−1)‖q−1
q

|x(z−1)|q−2

)

which is just a componentwise vector multiplication.

An important remark is that the accelerated proximal algo-

rithm considered here present a fast convergence rate when

the loss function is continuously differentiable with Lipschitz

gradient (for instance logistic or square loss). In our case, the

Hinge loss is non-smooth therefore, we cannot guarantee any

convergence rate. However as Chen et al. [11] also noticed,

considering the subgradient of the Hinge loss instead of the

gradient leads to very good computational efficiency. As we

will show in the experimental section, this AGP algorithm

is indeed very fast for q = 2. For 1 < q < 2, although

we do not have a closed-form solution of problem (14), the

numerical scheme we propose is still very efficient. Regarding

sparsity, unlike the alternate optimization algorithm, the solu-

tion provided by this proximal approach is exactly sparse up

to numerical precision.

D. The non-convex ℓp − ℓq case

Now that we are able to solve the sparse MTL problem

using a ℓ1− ℓq mixed-norms, we propose an algorithm which

solves the non-convex case where ℓp − ℓq (with 0 < p < 1
and 1 ≤ q ≤ 2). For this novel situation, let us rewrite the

regularization term as

Ωp,q =

M
∑

k=1

g(‖f·,k‖q) with ‖f·,k‖q =

(

∑

t

‖ft,k‖
q
Hk

)1/q

(15)

for the linear case, ‖f·,k‖q = (
∑

t |Wk,t|
q)1/q , and where

the upper level penalty function is g(u) = up, u > 0 with

p < 1. Clearly, this function is non-convex. To address this

issue, we investigate the use of majorization-minimization

(MM) algorithms [19] which form a general framework for

optimizing non-convex objective functions. For our multi-

task problem, we propose a majorization that enables us to

take advantage of the ℓ1 − ℓq MTL solver that we proposed

above. Indeed, since g(u) is concave in its positive orthant, we

consider the following linear majorization of g(·) at a given

point u0 :

∀u > 0, g(u) ≤ up
0 + pup−1

0 (u− u0)

Note that this linear majorization can also be obtained from

the Fenchel inequality related to the Legendre-Fenchel trans-

formation of the differentiable function g(u) [40]. We could

have proposed a tighter majorization of g(·) by using for

instance a local quadratic approximation. However, the main

advantage of a linear majorization is that it leads to a simple

algorithm. Indeed, at iteration z, applying this linear majoriza-

tion of g(‖f·,k‖q), around a ‖f
(z)
·,k ‖q yields to a majorization-

minimization algorithm for ℓp − ℓq multi-task learning which

consists at a given (z + 1)th iteration, in solving :

min
f1,··· ,fT

C
∑

t,i

H(ft(xi,t), yi,t) +
∑

k

p
‖f·,k‖q

‖f
(z)
·,k ‖

1−p
q

This latter equation shows that, in order to solve the non-

convex ℓp − ℓq problem using a MM approach, one needs to

iteratively solve a weighted ℓ1 − ℓq multi-task problem :

min
f1,··· ,fT

C
∑

t,i

H(ft(xi,t), yi,t) +

M
∑

k=1

βk‖f·,k‖q (16)

where βk are some coefficients that depend on the current

functions ft,k. They are defined at the z-th iteration as:

βk =
p

‖f
(z)
·,k ‖

1−p
, ∀ k = 1, · · · ,M (17)

This definition of the βk implicitly requires the strict positivity

of ‖f·,k‖. To ensure this condition, a small term ǫ is added

to ‖f·,k‖ in (15). Hence, we use βk = p

ǫ+‖f
(z)
·,k

‖1−p
. This trick

suggested as well by [8] avoids numerical instabilities and

overall prevents from having an infinite regularization term for

‖f·,k‖. In some other context, this ǫ term can play a smoothing

role if chosen adaptively [12]. However, in this work, we have

kept it fixed at ǫ = 0.001.

Now, the equivalent optimization problem with smooth

regularization term is :

min
f1,··· ,fT ,d

C
∑

t,iH(ft(xi,t), yi,t) +
∑

t,k β
2
k
‖ft,k‖

2

dt,k

s.t
∑

k

(

∑

t d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t

(18)

where s = 2−q
q . Note that the optimality conditions of this

problem with respects to ft,k is simply given by the expression

ft,k(·) =
dt,k

β2
k

∑

i αi,tyi,tKk(xi,t, ·). Consequently, at each

MM iteration, we have to solve a weighted sparse MTL

problem, where the weights are applied to the basis kernels.

Hence, problem (18) can be solved using the ℓ1−ℓq algorithm

just by replacing the kernel Kk(x, x
′) with 1

β2
k

Kk(x, x
′).

Details of the ℓp−ℓq problem solver are given in Algorithm

1. About its complexity, we can state that since the ℓp − ℓq

7

Algorithm 1 ℓp − ℓq sparse MTL solver.

βk = 1 for k = 1, · · · ,M
Compute Kk,t kernel matrices for all tasks

repeat

Kβ
k,t ←

Kk,t

β2
k

for all k

Solve ℓ1 − ℓq MTL problem with kernels Kβ
k,t

Update βk using Equation (17)

until convergence of the β’s

algorithm is based on niter iterations of the ℓ1− ℓq algorithm

(after appropriate rescaling of the kernels), its complexity can

be approximated as niter times the ℓ1−ℓq algorithm complex-

ity. However, here again, we can speed-up the convergence of

ℓp − ℓq, algorithm by warm-starting the ℓ1 − ℓq with results

from previous iteration. Empirical experiments have shown

that niter are typically lower than 10.

The local convergence of Algorithm 1 is guaranteed. Indeed,

the MM programming approach proceeds by surrogating the

concave part of the objective function with its affine ma-

jorization at each iteration. Therefore, the minimized function

decreases until convergence to at least a local minimum [19].

IV. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments that

demonstrate the utility of using a ℓp − ℓq penalty instead of

a ℓ1 − ℓ2 one. They have been carried out on a toy dataset

and on real datasets concerning BCI electro-encephalogram

signals classification and protein subcellular localization.

Before delving into the experimental details, we provide

some remarks on how we have evaluated the sparsity of our

algorithm’s output. Let us denote the vector s of components

sk =
∑

t dt,k or sk =
∑

t |Wk,t| depending on the used

algorithm. We define the set S = {k ∈ 1, · · · ,M : sk > γ}
where γ is a threshold that allows us to neglect non-zero

components due to numerical errors (diagonal loading of

kernels to as to make them positive definite has been set to

1e−6). For the toy problem, we have set γ = 1e−5 which we

believe is small enough so as to provide rather pessimistic

estimation of the vector sparseness. We have also consid-

ered an heuristic for adaptively setting γ for our alternate

optimization algorithm which provides dense although small

outputs. In such a case, we have set γ = 0.01 · maxk(sk).
The rationale behind this heuristic is that kernels or variables

that have weights significantly smaller than the largest one do

not influence the decision function. As a numerical criterion

for sparsity evaluation, for the toy problem, since we know

the true relevant variables S⋆, we have considered the F-

measure between S and S⋆. For the other problems, we have

evaluated the cardinality of S using the adaptive threshold.

All performances reported are evaluated based on kernels and

variables in the set S.

A. Toy dataset

Our aim throughout this first experiment is first to analyze

the convergence of our alternate optimization algorithm and

TABLE I
COMPARING THE COMPUTATIONAL EFFICIENCY (IN SECONDS) OF

DIFFERENT LINEAR APPROACHES FOR ℓ1 − ℓq PENALTY. THE

EXPERIMENTAL SET-UP IS d = 100, r = 4, T = 4 AND n = 100.

ℓ1,q penalty

Methods q = 2 q = 4

3

Kernel Altern. Opt 1.02 ± 0.20 1.08± 0.20
Linear Altern. Opt 0.59 ± 0.06 0.64± 0.08
Proximal Descent 0.06 ± 0.01 0.10± 0.20

then to compare an ℓ1 − ℓ2 and an ℓp − ℓ2 (with p < 1)

penalties in term of classification performance.

The toy problem is the same as the one used by Obozinski

et al. [33]. Each task is a binary classification problem in R
d.

Among these d variables, only r of them define a subspace

of R
d in which classes can be discriminated. For these r

relevant variables, the two classes follow a Gaussian pdf with

mean respectively µ and −µ and covariance matrices randomly

drawn from a Wishart distribution. µ has been randomly drawn

from {−1,+1}r. The other d−r non-relevant variables follow

an i.i.d Gaussian probability distribution with zero mean and

unit variance for both classes. In this experiment, we are

interested in feature selection, thus, for any k, Hk is the finite

dimension subspace built from the kth component of Rd. We

have respectively sampled n, nv and nt number of examples

for training, validation and testing. For some experiments, n
is varying, but we have always set nv = n and nt = 5000.

Before learning, the training set has been normalized to zero

mean and unit variance and the validation and test sets have

been rescaled accordingly.

1) Comparing convergence for ℓ1−ℓ2 penalty: To evaluate

the quality of the solution provided by our alternate optimiza-

tion algorithm when considering a ℓ1 − ℓ2 penalty, we have

compared it to the solution obtained by a reduced gradient

algorithm similar to the one used for SimpleMKL [38]. Both

algorithms are wrapper algorithms which in a inner loop solve

several SVM problems with fixed kernel and in a outer loop

optimize the weights d. The main difference between the two

approaches is the way the matrix d is updated. Note that in our

comparison, both methods take advantage of warm-start tech-

niques for successive SVM retrainings. The stopping criterion

we have used are the following. For our alternate optimization

methods, we stop when max(|d(v+1)−d
(v)|) < 0.001 (where

the max is considered componentwisely). For the reduced

gradient approach, since we can check the KKT conditions

without additional computational cost [38], we also imposed

that before stopping, the KKT conditions should be satisfied

up to a tolerance of 0.1 for each dt,k. Here, the comparison

has been carried out for a hyperparameter C = 100 and for

T = 4 tasks.

Figure 1 presents the results of this comparison. On the

left, we have plotted an example of how the objective value

decreases with respects to the CPU time. All the computations

have been carried out on a single core of a Bi-Xeon machine

with 24 Gb of memory. Source codes are in Matlab. We remark

that for a given computational time, using the update equations

of d given in Equation (5) yields to a faster convergence.

Such a finding is corroborated by quantitative evaluation

8

10
−1

10
0

10
1

10
2

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

CPU time (s)

O
b

je
c
ti
v
e

 v
a

lu
e

Gradient

Alternate

dt,k initialization

Uniform Random

Time Grad Desc (s) 19.8± 7.8 23.8± 5.8
Time Altern. Opt. (s) 1.39± 0.2 1.5± 0.2
Diff. Obj (10−4) 1.43± 0.7 1.3± 0.8
‖∆d‖∞(10−3) 2.1± 1.5 2.1± 1.3

Fig. 1. Comparing our block-coordinate descent algorithm in its kernel version with a gradient descent approach similar to the one used for multiple kernel
learning in SimpleMKL. The left panel shows an example of how the objective value varies with respects to the CPU time. The right table summarizes the
time needed for the gradient descent algorithm and for our method before convergence. Relative difference of objective value and the maximal difference
between the weights returned by the two algorithms are also reported. All the criteria are averaged over 10 different training sets and with a fixed uniform
and random non-zero initializations. The experimental set-up is d = 100, r = 4, T = 4 and n = 100 with C = 100.

performances given in the right of Figure 1. We show in

that table, that for very similar objective values and matrix

d, our alternate optimization algorithm converges faster than

the reduced gradient approach. The gained factor is about 15.

Table I compares the computational efficiency of several

algorithms for solving a linear toy problem. We have compared

the kernelized and linear versions of our alternate optimization

algorithm as well as the proximal gradient algorithm which is

stopped when the variation of its objective value is smaller

than 0.001. Here, we have chosen algorithm hyperparameters

so as to perfectly recover the sparsity pattern.

Firstly, we can see that in the linear case, the simple trick

which consists in directly computing the sum
∑

k dt,kKk from

the examples, yields in a substantial saving of computational

efforts for our algorithm (regardless of q). When q = 2,

the proximal algorithm is very efficient with a gain factor

of about 10. For q = 4
3 , the method we proposed for

numerically computing the proximal operator still yield to

efficient algorithm with gain of about 6.
2) Comparing performance: In this experiment, we aim

at showing that by using a ℓp − ℓ2 penalty which provides

a more aggressive sparsity pattern, we are able to reduce

test error compared to a ℓ1 − ℓ2 penalty. We also provide

empirical evidence that for this toy problem, the variables that

are recovered using the ℓp− ℓ2 penalty are more relevant than

those recovered by the ℓ1− ℓ2 one. As a baseline comparison,

we have also considered sparse separated SVM (each single

SVM is trained according to its task data) and a sparse pooled

SVM (a single SVM is trained according to all task data).

Since the problem is linear, we have used the accelerated

gradient algorithm but we have also checked how the linear

version of our alternate optimization approach behaves.

The two penalties have been compared through different

experimental situations where we have varied some parameters

of the toy problem e.g the number of tasks, the number of

training examples, the number of relevant variables. Model

selection have been included into the comparison. Hence,

hyperparameters have been tuned by means of a validation set

and a validation error. For both ℓ1−ℓ2 and ℓp−ℓ2 sparse MTL,

hyperparameters λ (proximal algorithm) and C (alternate opti-

mization) have been respectively selected among 10 different

values logarithmically sampled from the interval [3, · · · , 60]

and [0.01, · · · , 100]. For the ℓp−ℓ2 penalty, sparsity parameter

p has also been selected among the value [0.2, 0.5, 0.75, 0.9].
For each experimental situations, trials have been replicated

20 times.

Results are summarized in Figure 2. The figure shows that

regardless the experimental situations considered, a ℓp − ℓ2
penalty leads to better performances than the ℓ1 − ℓ2 one and

the ℓ1 separated SVM (results of the pooled models have not

been reported since they are always worse than 0.20). The

statistical significance of this claim has been evaluated using

a Wilcoxon signed rank test. The test shows that the difference

in performance is significant at a level of 0.05 except in

few situations (e.g first marker of the second and fourth

plots from left to right). One can also see that the alternate

optimization and the proximal algorithm lead to statistically

equivalent performances when using ℓp − ℓ2 penalty except

for few cases when the number of training example is small.

We have checked that this is due to a model selection problem :

the proximal algorithm seems to be more sensitive to the

choice of λ. Figure 3 gives a rationale on why the ℓp − ℓ2
penalty performs better. We have evaluated the F-measure

of S compared to the true relevant variables. The ℓp − ℓ2
penalty does a better job in recovering relevant variables (even

when the ℓ1− ℓq algorithm is our non-exactly sparse alternate

optimization algorithm). The use of an adaptive threshold also

lead to good estimation of relevant variables. Missing models

in the plots have F-measures always lower than 0.3. This

means for instance that an ℓ1 − ℓ2 penalty trained with an

alternate optimization algorithm have too many weights so that
∑

t dt,k > 1e − 5. As the number r of true relevant variable

increases, the gap of performance between ℓ1− ℓ2 and ℓp− ℓ2
penalties tends to reduce. This can be easily justified since in

this case, the ℓp−ℓ2 penalty becomes too aggressive and tends

to discard relevant variables. We can thus conclude that the use

of an ℓp − ℓ2 penalty is more adapted to situations where the

number of relevant variables is small compared to the problem

dimensionality. This point is also illustrated in Figure 4. We

can note there that the model selection procedure tends to

choose larger value of p as the number of relevant variables

increases. This clearly shows that if no prior knowledge on the

sparsity level is available, adaptive data-driven penalty norms

9

0 20 40 60 80 100 120
0.05

0.1

0.15

0.2

Nb Training examples

T
e
s
t
E

rr
o
r

r=4, d=100, T=4

3

3

4
2

L
1
−L

2
 Prox

L
p
−L

2
 Prox

L
p
−L

2
 Altern

L
1
 SepSVM

0 20 40 60 80 100 120
0.05

0.1

0.15

0.2

Dimension d

T
e
s
t
E

rr
o
r

r=4, T=4, n=100

4
2

2 2

L
1
−L

2
 Prox

L
p
−L

2
 Prox

L
p
−L

2
 Altern

L
1
 SepSVM

0 5 10 15 20
0.05

0.1

0.15

0.2

Nb of relevant variables r

T
e
s
t
E

rr
o
r

d=100, T=4, n=100

2

3 3
2

5

2

4
L

1
−L

2
 Prox

L
p
−L

2
 Prox

L
p
−L

2
 Altern

L
1
 SepSVM

0 2 4 6 8 10 12
0.05

0.1

0.15

0.2

Nb Tasks

T
e

s
t

E
rr

o
r

(%
)

r=4, d=100, n=100

5

7
2

1 1
1

L
1
−L

2
 Prox

L
p
−L

2
 Prox

L
p
−L

2
 Altern

L
1
 SepSVM

Fig. 2. Performance (test error) comparisons between ℓ1 − ℓ2 (red, dash-dotted), ℓp − ℓ2 (blue, solid) multi-task models trained with proximal algorithms,
ℓp−ℓ2 trained with alternate optimization (black, dotted) and ℓ1 separated models (green, dashed) for different experimental situations. For each experimental
situation, we have kept fixed all except one of parameters : (from left to right) number of training examples n, problem dimension d, number of relevant
variables r, number of tasks T . The number given next each marker represents the number of times (out of 20) the ℓ1 − ℓ2 penalty provides a better
performance than the ℓp − ℓ2 penalty both trained with proximal algorithms.

0 20 40 60 80 100 120
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nb Training examples

F
−

m
e

a
s
u

re

d=100, T=4, n=100

0

1

1

2

L
p
−L

2
 Prox

L
p
−L

2
 Altern

L
p
−L

2
 Altern Ad

L
1
−L

2
 Prox

0 5 10 15 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nb of relevant variables r

F
−

m
e

a
s
u

re

d=100, T=4, n=100

2

2

0
0

2 0 0

L
p
−L

2
 Prox

L
p
−L

2
 Altern

L
p
−L

2
 Altern Ad

L
1
−L

2
 Prox

L
1
−L

2
 Altern Ad

Fig. 3. Evaluation of the recovered sparsity pattern through the F-measure of retrieved variables. (left) F-measure wrt number of training examples. (right)
F-measure wrt the number of relevant variables. Prox, Altern and Altern Ad respectively stand for models trained with proximal and alternate optimization
and alternate optimization with adaptive thresholding for sparsity evaluation. When an algorithm exactly recovers the set of true relevant variables, F-measure
should be equal to 1.

0.20 0.50 0.75 0.90
0

2

4

6

8

10

12

p

N
b

 o
f

s
e

le
c
ti
o

n
 o

v
e

r
2

0
 t

ri
a

ls

Nb of relevant variables = 4

0.20 0.50 0.75 0.90
0

2

4

6

8

10

12

p

N
b

 o
f

s
e

le
c
ti
o

n
 o

v
e

r
2

0
 t

ri
a

ls

Nb of relevant variables = 20

Fig. 4. Illustration of how when using an ℓp − ℓ2 penalty, the learned decision functions adapt themselves to the data at hand (d = 100, T = 4 and
n = 100). The two plots show the number of times a given p has been selected by validation. On the left, the number of relevant variables r is equal to 4
while on the right plot, we have r = 20. We note that as the number of relevant variables increases, the model selection procedure tends to choose a larger p.

are valuable.

B. BCI P300 single trial problem

We also illustrate the usefulness of sparse Multi-Task learn-

ing on a Brain-Computer Interface problem. Indeed, sparse

MTL can be very relevant to BCI because of the need for chan-

nel/variable selection and because of the data variability with

respects to different subjects. Our objective here is to show that

sharing information between subjects through sparse multi-

task learning can lead to improvement in performance while

reducing the number of variables involved in the recognition

task. The dataset we consider is the BCI P300 Speller dataset

used by Hoffmann et al. [16]. For this BCI paradigm, a subject

is presented a six-symbol matrix where symbols are flashed in

random order. A large P300 evoked potential can be recorded

in the electro-encephalogram (EEG) signals recorded from the

subject’s scalp in response to the intensification of the desired

symbol. Each trial corresponds to the EEG signals related to

the response of a given flash. Hence, the classification task is

to recognize whether this trial contains or not a P300 evoked

potential. The datasets involve 9 subjects including disabled

ones. All preprocessing steps we used are those described by

Hoffmann et al. The steps include : referencing, band-pass

filtering, downsampling, single trial extraction, windsorizing,

scaling and feature vector construction. In our experiments,

we have restricted ourselves to a 8 channel configuration (Fz,

Cz, Pz, Oz, P7, P3, P4, P8) which leads after downsampling

10

TABLE II
AVERAGE AUC PERFORMANCES OF 7 DIFFERENT ALGORITHMS ON THE BCI DATASET. THE NUMBER OF VARIABLES THAT HAVE BEEN KEPT IN THE

DECISION FUNCTION IS ALSO GIVEN. SEPSVM AND SEP ℓ1 SVM RESPECTIVELY DENOTE A SVM AND A SPARSE SVM CLASSIFIER TRAINED ON

ISOLATED DATASETS FOR EACH SUBJECT. FULLSVM AND FULL ℓ1 SVM ARE THE CLASSIFIERS TRAINED ON ALL EXAMPLES. TOP) n = 300. BOTTOM)
n = 400.

MTL1,2 MTLp,2 MTL1,q SepSVM Sep ℓ1 SVM Full SVM Full ℓ1 SVM

AUC 76.5 ± 0.6 76.1 ± 0.5 76.5 ± 0.6 75.6 ± 0.8 73.4 ± 1.3 67.1 ± 0.6 67.0 ± 0.6

Var 191 ± 26 134 ± 33 201 ± 23 256 118 ± 30 256 238 ± 7

p-val 0.00019 0.00897 0.00014 - 0.00006 0.00006 0.00006

MTL1,2 MTLp,2 MTL1,q SepSVM Sep ℓ1 SVM FullSVM Full ℓ1 SVM

AUC 78.2 ± 0.6 77.8 ± 0.7 78.3 ± 0.6 77.4 ± 0.9 75.1 ± 1.3 67.9 ± 0.6 67.9 ± 0.6

Var 205 ± 18 150 ± 35 209 ± 16 256 149 ± 32 256 249 ± 2

p-val 0.00009 0.007 0.00009 - 0.00009 0.00009 0.00009

to a feature vector of size 256. The number of single trials

available for each subject is about 3300. Note that the datasets

and the preprocessing algorithms are available on the EPFL

BCI group website (http://bci.epfl.ch/p300).

Instead of training a classifier separately on each subject as

in Hoffmann et al., we have trained linear classifiers, using our

alternate optimization algorithm, for all subjects all-together

using our multi-task approach (one task = one subject). Three

types of penalty for the multi-task learning are considered :

an ℓ1− ℓ2, an ℓp− ℓ2 and a ℓ1− ℓq penalty. As a comparison,

we have also learned a sparse and a classical SVM trained

on a single subject, and a sparse and a classical SVM trained

on all subject data. Sparse SVM has been obtained using a

ℓ1 multiple kernel learning approach where each feature is

related to a kernel [38]. For selecting the hyperparameter of

all algorithms, we have considered a validation approach. For

all subjects, we have randomly split the available examples in

3 sets : n examples for training and validation and the rest for

testing. For the experiment, we have set the training set size to

n = 300 and n = 400. C and p have been selected from the

same sets as the previous experiments while q ∈ { 43 ,
5
3 ,

20
11}.

Note that using a small part of the examples for training is

motivated by the use of ensemble of SVM (that we do not

consider here) [39] at a later stage of the EEG classification

procedure. The performance is measured by AUC, due to

the post-processing that is done throughout repetitions in the

P300 : as the final decision regarding letters is taken after

several trials, the correct row and column should receive high

scores to correctly identify the letter.

Results averaged over 10 trials are presented in Table II.

The baseline performance is the one provided by a classical

SVM trained on a single subject (SepSVM). When comparing

performance of a given approach to that baseline, a Wilcoxon

sign-rank test has been evaluated and the p-value being re-

ported. We remark that training with all examples lead to

significantly worse performances compared to the baseline.

However, when learning through a multi-task approach, we

achieve a slight but significant increase of performance. Inter-

estingly, the three multitask approaches yield a significant di-

mensionality reduction while slightly improving performances.

When comparing performances of the three different multitask

penalties, we see that AUC scores are equivalent but the ℓp−ℓ2
penalty need far fewer variables.

C. Protein subcellular localization

This last real-world experiment further highlights the utility

of our approach in a kernel selection context. Indeed, we

consider here two datasets for bacterial protein localization :

the PSORT+ dataset contains four classes and 541 examples

and the other, called PSORT-, has five classes with 1444
examples. For each datasets, 69 kernels have been computed

and they are publicly available on http://www.fml.tuebingen.

mpg.de/raetsch/suppl/protsubloc. This website also provides

some information about the post-processing for performance

evaluations. This classification problem is actually a multiclass

problem that we address through pairwise binary classification.

In order to reduce the number of kernels to compute, we are

interested in joint kernel selection for all pairwise problems.

Hence, we have considered a one-against-all framework where

each one-against-all problem is a task. Note that we could

have also considered that each task is related to a one-against-

one pairwise problem, but in order to be compliant with

the experimental setting of Zien and Ong and the way they

evaluate performances, we have considered the one-against-all

framework.

In our experiments, we have compared sparse MTL with

ℓ1− ℓ2 and sparse MTL with ℓp − ℓ2 and ℓ1 − ℓq. Due to the

multiclass nature of the problem, comparisons with pooled

and independent models are not possible. Data permutations

as well as the 80% − 20% splitting into training and testing

sets are also provided by Zien and Ong [54]. Hyperparameters

C, p anq q have been selected through a validation method by

randomly splitting the training set then training and validating

on the resulting splits. C has been selected from 10 values

logarithmically sampled from the interval [0.01, 100] while

p and q are respectively chosen from {0.5, 0.75, 0.9} and

{ 43 ,
5
3 ,

20
11}

Averaged over 10 trials results are given in Figure 5. We

have also given the performance achieved by the multiclass

MKL algorithm of Zien and Ong [54]. This MKL algorithm

learns a linear combination of kernels that is jointly optimal

for all winner-takes-all decision functions. Hence, their method

is very similar to our sparse MTL learning with a ℓ1 − ℓ2
penalty. Results show that our algorithms and the different

penalties yield to similar accuracy performances (according to

a Wilcoxon sign-rank test) and they are competitive with the

multiclass MKL of Zien and Ong. However, once again using

11

TABLE III
EXAMPLES OF AVERAGE TIME NEEDED FOR OUR ALTERNATE

OPTIMIZATION ALGORITHM, THE GRADIENT DESCENT APPROACH AND

PROXIMAL DESCENT FOR PRODUCING A SOLUTION OF A ℓ1 − ℓq MTL
PROBLEM. NOTE THAT FOR PSORT PROBLEMS, LINEAR ALGORITHMS

ARE NOT CONSIDERED SINCE WE ARE DEALING WITH KERNELS ON

STRUCTURED DATA. FOR THE BCI PROBLEM, n = 300.

Altern. Opt

Data Linear Kernel Gradient Proximal

BCI, q = 2 18.8 ± 0.8 71.8 ± 4.2 309 ± 190 0.98 ± 0.17

BCI, q = 4
3 14.8 ± 0.7 46.8 ± 2.3 - 4.1 ± 0.5

PSORT +, q = 2 - 57.4 ± 6 110 ± 35 -

PSORT +, q = 4
3 - 62.2 ±4 127 ± 41 -

PSORT -, q = 2 - 350.5 ± 18 1450 ± 400 -

PSORT -, q = 4
3 - 364.5 ± 32 1480 ± 300 -

an adaptive value of p or q compared to a pre-defined choice of

p = 1 and q = 2 leads to significantly fewer selected kernels

(up to a level of 0.05). We can also point out that the validation

approach tends to select a value of p and q respectively of

0.9 and 4
3 . By using a value of p slightly smaller than 1, we

thus achieve a substantial reduction of the number of selected

kernels (compared to ℓ1− ℓ2). Right plot of Figure 5 gives an

example of the resulting weights dt,k for different penalties

for the PSORT+ problem. We remark that some kernels (e.g

the third, seventh and eighth) have been selected by the ℓ1−ℓ2
and ℓ1 − ℓq penalties but have been discarded by the ℓp − ℓ2
one.

D. Computational efficiency on the real-world problems

In order to have an idea on the computational efficiency

of our algorithms for ℓ1 − ℓq multi-task problems, we have

reported in Table III, the time they need for converging.

we also provide results for gradient descent approach (when

q = 2) and proximal gradient descent for linear problems

such as the BCI problem. Stopping criterion are the same

as those used for the toy dataset problem. Note that while

our alternate optimization and the gradient descent algorithms

solve the same problem, the proximal algorithm solves an

equivalent one. However, since it is hard to find the closed-

form relation between the hyperparameters producing the same

solution, for a relatively fair comparison, we have chosen these

hyperparameters so as to have a similar level of sparsity. The

results we obtain are on the same lines of those obtained for

the toy problem. Regardless of the situation, gradient descent

is the less efficient approach. When compared to the kernel

version of the alternate optimization algorithm, the loss in

computational effort is from 2 to 4. When comparing linear

methods, proximal descent is the most efficient method with

a gain in computation of the order of 3 in the worst case.

V. CONCLUSION

In this paper, we investigated the use of mixed-norms for

multi-task SVM with joint sparsity constraint. We went beyond

convexity and proposed a large class of mixed-norm penalty

based on ℓp − ℓq norm, (with p ≤ 1 and 1 ≤ q ≤ 2). For

solving the resulting optimization problem, we first derive a

general algorithm which addresses the convex case p = 1 and

the use of multiple kernels. For the linear case, a more efficient

proximal algorithm have been investigated. For the case p < 1,

we fitted the optimization problem into the Majorization-

Minimization framework, and proposed an iterative reweighted

version of the ℓ1 − ℓq algorithm. Experimental results on

toy data set brought evidence that ℓp − ℓq penalties lead to

enhanced performance and better sparsity pattern compared

to a ℓ1 − ℓ2 penalty especially in situations where a large

number of variables are in play. Then, results on real-world

datasets from various domains have shown the potential (in

terms of accuracy and variable selection) of our approach on

applications where variable or kernel selections are of primary

importance.

Now we plan to extend our efforts in the following direc-

tions. While this paper is essentially a proof of concept that

adapting the penalty to the problem at hand is an interesting

approach, up to now we have dealt with this adaptivity only

through validation methods and grid search on p and q. Now,

for addressing efficiently such an adaptivity, we will focus on

algorithmic methods that would allow us to jointly select p
and q. Notably, we project to investigate regularization path

and continuation methods. Furthermore, we will also consider

faster algorithms that can handle large-scale problems. Then,

future works will also aim at theoretically analyzing the

consistency of our ℓp − ℓq approach for variable selection.

VI. APPENDIX

A. Equivalence between problems (2) and (6)

The equivalence between these two problems comes from

two properties : i) the equivalence between constrained and

regularized convex optimization problem and ii) the equiv-

alence of optimization problems when objective functions

or constraints are transformed through the composition of a

monotonically increasing function.

Here we give the proof for a simple case without loss of

generality. Let us consider the following optimization prob-

lems with F (·) and G(·) being two strictly convex functions

of Rd,

(R) : min
x∈Rd

F (x) + λG(x) and (C) : min
x∈Rd,G(x)≤τ

F (x)

with λ and τ some parameters. These two problems are

equivalent in the sense that for any λ, there exists a τ such

that the minimizers of (R) and (C) are the same [48]. Now,

according to the same notion of equivalence, problem (C) is

also equivalent to

(C2) : min
x∈Rd,G(x)2≤τ2

F (x)

owing to the monotonically increasing transformation of the

constraints [7]. Since (C2) is equivalent to

(R2) : min
x∈Rd

F (x) + λ2G(x)2

where λ2 is another parameter. We thus have equivalence

between (R) and (R2).

12

Data MTL1,2 MTLp,2 MTL1,q MCMKL

PSORT + 93.87 ± 2.82 93.62 ± 3.04 93.88 ± 2.73 93.8

Kernels 15.4 ± 1.17 7.4 ± 1.42 15.9 ± 1.05 18

PSORT - 95.92 ± 1.35 95.90 ± 1.12 96.02 ± 1.33 96.1

Kernels 12.9 ± 0.31 7.5 ± 0.85 12.8 ± 0.42 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

Kernels

W
e

ig
h

ts
 d

t,
k

L
1
−L

2

L
p
−L

2

L
1
−L

q

Fig. 5. (left) Average F1 score and number of selected kernels using our algorithms with different penalties on protein subcellular localization problems.
Scores of the multiclass MKL of Zien and Ong. [54] have also been reported. (right) Example of kernel weights resulting from the different penalties for the
PSORT+ problem. For a sake of clarity, we have restricted the plot to the 20 first kernels. We note that different penalties lead to different sets of selected
variables and for some variables that have been selected by all three models, the weighting can largely differ. The number of kernels selected by Zien and
Ong’s method has not been explicitly reported and we have extrapolated them from one of their figure in [34].

B. Descent property of the ℓ1 − ℓq algorithm

For the right strict inequality, positive definiteness of Gt

implies strict convexity and the solution’s uniqueness of the

minimization problem in ft related to all tasks. Besides,

f
(v)
t = f

(v−1)
t would imply according to Equation (11) that

d
(v) = d

(v−1). Hence, since by hypothesis d(v) 6= d
(v−1), we

have f
(v)
t 6= f

(v−1)
t . These points lead to the strict inequality :

min
f

R(d(v−1), f) < R(d(v−1), f (v−1))

Before showing the left strict inequality, the properties relating

d
(v) and d

(v−1) are proved. We can first note that if d
(v−1)
t,k =

0 then d
(v)
t,k = 0. But if d

(v−1)
t,k > 0 then strict positivity of d

(v)
t,k

stems from the positive definiteness of matrices Kk,t. Indeed,

since we have

‖f
(v)
t,k ‖

2 = [d
(v−1)
t,k]2α

(v)T
t Kk,tα

(v)
t > 0

which, according to Equation (11) yields to d
(v)
t,k > 0.

Now, since d
(v−1)
t,k > 0, the left strict inequality of equa-

tion (12) naturally comes from the strict convexity and the

solution’s uniqueness of problem (4).

C. Convergence of the ℓ1 − ℓq algorithm

Here we present the proof of convergence of our algorithm

which follows the lines of the one of Argyriou et al. [2].
Let us define

S(f) := R(d(f), f)

= C
∑

t,i

H(ft(xi,t), yi,t) +





∑

t

(

∑

k

‖ft,k‖
q
Hk

)1/q




2

The second equality in the definition of S(f) naturally stems

from Proposition 1 since d(1) 6= 0. For q so that 1 ≤ q ≤ 2, the

mixed-norm regularizer term
∑

t

(
∑

k ‖ft,k‖
q
Hk

)1/q
is convex

as a sum of convex functions. The composition with a strictly

increasing and strictly convex function (the square term) on

R+ makes the overall regularizer strictly convex. Thus, even

though the loss function H(·, ·) is just convex, S(f) is still

strictly convex and admits an unique minimizer.

Now let us introduce

g(f) := min
u
{R(d(f),u)} (19)

we show in the sequel that the function g(f) is continuous.

This comes from the fact that the function :

G(d) := min
u

R(d,u)

is continuous and differentiable. Indeed, for a given d, the

optimization problem defining G(d) is just T independent

SVM problems; each task being related to each SVM problem

with a kernel
∑

k dt,kKt,k. Results from multiple kernel

learning have shown that each SVM objective value, for a task

t, is a continuous and differentiable function [38] with respects

to {dt,k}. From this point, we can conclude that G(d) is also

continuous and differentiable. Thus g(f) is continuous as a

composition of continuous functions.

Now let us show that the sequence {S(f (v)) : v ∈ N}
converges. We can observe that since S(f) = R(d(f), f) and

d(f) minimizes R(·, f), we have the following inequalities :

S(f (v+1)) ≤ g(f (v)) ≤ S(f (v)).

Hence, the sequence {S(f (v)) : v ∈ N} is not increasing

and since the loss function H is bounded from below, it

is bounded. Thus as v goes to ∞, the sequence S(f (v))
converges to a value S⋆. From the continuity and boundedness

of S(f (v)), we can also deduce that the mixed-norm regularizer

and the sequence {f (v)} are bounded where boundedness of

{f (v)} is understood according to some norm (e.g the norm

induced by the inner product 〈f , f〉 =
∑

t,k〈ft,k, ft,k〉Hk
). As

a consequence, there exists a subsequence {f (vi) : i ∈ N} that

converges towards f
⋆.

Now, we show that f⋆ is a minimizer of R(·, ·). Consider

any convergent subsequence {f (vi) : i ∈ N} of {f (v) : v ∈ N}.
Since S(f (vi+1)) ≤ g(f (vi)) ≤ S(f (vi)), g(f (vi)) converges

towards S⋆. By the continuity of functions S(f) and g(f), we

thus have g(f⋆) = S(f⋆). This implies that f⋆ is a minimizer

of R(d(f⋆), ·) because R(d(f⋆), f⋆) = S(f⋆). Furthermore,

d(f⋆) is the minimizer of R(·, f⋆) subject to constraints on d.

Thus, since the objective function R(·, ·) is smooth and strictly

convex, the pair (d(f⋆), f⋆) is a stationary point of R(·, ·) and

thus its unique minimizer.

At this point, we have shown that any convergent subsequent

of {f (v) : v ∈ N} converges to the minimizer of R(·, ·). Then

since S(f) is continuous and {f (v) : v ∈ N} is bounded,

it follows that the whole sequence converges towards the

minimizer of R(·, ·).

13

REFERENCES

[1] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature learning,”
in Advances in Neural Information Processing Systems, 2007.

[2] ——, “Convex multi-task feature learning,” Machine Learning, vol. 73,
no. 3, pp. 243–272, 2008.

[3] F. Bach, G. Lanckriet, and M. Jordan, “Multiple kernel learning,
conic duality, and the SMO algorithm,” in Proceedings of the 21st

International Conference on Machine Learning, 2004, pp. 41–48.

[4] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, pp. 183–202, 2009.

[5] J. Bi, T. Xiong, S. Yi, M. Dundar, and B. Rao, “An improved multi-
task learning approach with applications in medical diagnosis,” in
Proceedings of the 18th European Conference on Machine Learning,
2008.

[6] S. Bickel, J. Bogojeska, T. Lengauers, and T. Scheffer, “Multi-task
learning for hiv therapy screening,” in ICML ’08: Proceedings of the
25th international conference on Machine learning. New York, NY,
USA: ACM, 2008, pp. 56–63.

[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[8] E. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted
ℓ1 minimization,” J. Fourier Analysis and Applications, vol. 14, pp.
877–905, 2008.

[9] R. Caruana, “Multi-task learning,” Machine Learning, vol. 28, pp. 41–
75, 1997.

[10] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Journal Scientific Comput., vol. 20, no. 1, pp. 33–61,
1999.

[11] X. Chen, W. Pan, J. Kwok, and J. Carbonell, “Accelerated gradient
method for multi-task sparse learning problem,” in Proceedings of the

International Conference on Data Mining, 2009.

[12] I. Daubechies, R. DeVore, M. Fornasier, and S. Gunturk, “Iteratively
reweighted least squares minimization for sparse recovery,” Commun.

Pure Appl. Math, vol. to appear, 2009.
[13] D. DeCoste and K. Wagstaff., “Alpha seeding for support vector ma-

chines,” in International Conference on Knowledge Discovery and Data

Mining, 2000.
[14] D. Dunson, Y. Xue, and L. Carin, “The matrix stick-breaking process :

flexible bayes meta analysis,” Journal of American Statistical Associa-

tion, vol. 103, no. 481, pp. 317–327, 2008.
[15] T. Evgeniou and M. Pontil, “Regularized multi-task learning,” in Pro-

ceedings of the tenth Conference on Knowledge Discovery andData

minig, 2004.
[16] U. Hoffmann, J. Vesin, T. Ebrahimi, and K. Diserens, “An efficient

p300-based brain-computer interface for disabled subjects,” Journal of
Neuroscience Methods, vol. 167, no. 1, pp. 115–125, 2008.

[17] M. Hu, Y. Chen, and J. Kwok, “Building sparse multi-kernel svm
classifiers,” IEEE Trans. On Neural Networks, vol. 20, no. 5, pp. 827–
839, 2009.

[18] J. Huang, S. Ma, H. Xie, and C. Zhang, “A group bridge approach for
variable selection,” Biometrika, vol. 96, no. 2, pp. 339–355, 2009.

[19] D. Hunter and K. Lange, “A tutorial on MM algorithms,” The American

Statistician, vol. 58, pp. 30–37, 2004.
[20] H. D. III, “Bayesian multitask learning with latent hierarchies,” in

Proceedings of the Conference on Uncertainty in Artificial Intelligence,
2009.

[21] L. Jacob, F. Bach, and J.-P. Vert, “Clustered multi-task learning,” in
Advances in Neural Information Processing Systems, 2008.

[22] T. Jebara, “Multi-task feature and kernel selection for svms,” in Proceed-

ing of the 21st International Conference on Machine Learning, 2004.
[23] T. Kato, H. Kashima, M. Sugiyama, and K. Asai, “Multi-task learning

via conic programming,” in Advances in Neural Information Processing

Systems, 2008.
[24] M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and

A. Zien, “Efficient and accurate lp-norm multiple kernel learning,” in
Advances in neural information processing systems 22, 2009.

[25] K. Knight and W. Fu, “Asymptotics for lasso-type estimators,” Annals

of Statistics, vol. 28, pp. 1356–1378, 2000.
[26] D. Lee, K.-H. jung, and J. Lee, “Constructing sparse kernel machines

using attractors,” IEEE Trans. On Neural Networks, vol. 20, no. 4, pp.
721–729, 2009.

[27] H. Liu, J. Lafferty, and L. Wasserman, “Non parametric regression and
classification with joint sparsity constraints,” in Advances in Neural In-
formation Processing Systems 21, D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, Eds., 2009.

[28] H. Liu, M. Palatucci, and J. Zhang, “Blockwise coordinate descent
procedures for the multi-task lasso, with applications to neural seman-
tic basis discovery,” in Proceedings of the Twenty-sixth International

Conference on Machine Learning, 2009.
[29] H. Liu and J. Zhang, “On the estimation and variable selection con-

sistency of the sum of q-norm regularized regression,” Department of
Statistics, Carnegie Mellon University, Tech. Rep., 2009.

[30] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient ℓ2,1-
norm minimization,” in Proceedings of the Twenty-fifth Conference on

Uncertainty in Artificial Intelligence, 2009.
[31] K. Lounici, A. Tsybakov, M. Pontil, and S. V. de Geer, “Taking advan-

tage of sparsity in multi-task learning,” in Proceedings of Computational

Learning Theory, 2009.
[32] C. Micchelli and M. Pontil, “Learning the kernel function via regular-

ization,” Journal of Machine Learning Research, vol. 6, pp. 1099–1125,
2005.

[33] G. Obozinski, B. Taskar, and M. Jordan, “Joint covariate selection and
joint subspace selection for multiple classification problems,” Statistics
and Computing, vol. to appear, 2009.

[34] C. Ong and A. Zien, “An automated combination of kernels for predict-
ing protein subcellular localization,” in Proceedings of the 8th Workshop

on Algorithms in Bioinformatics (WABI 2008), 2008, pp. 186–197.
[35] S. Ozawa, A. Roy, and D. Roussinov, “A multitask learning model for

online pattern recognition,” IEEE Trans. on Neural Networks, vol. 20,
no. 3, pp. 430–445, 2009.

[36] A. Quattoni, X. Carreras, M. Collins, and T. Darrell, “An efficient pro-
jection for ℓ1,∞ regularization,” in Proceedings of the 26th International

Conference on Machine Learning, 2009.
[37] A. Quattoni, M. Collins, and T. Darrell, “Transfer learning for image

classification with sparse prototype representations,” in Proceedings of

CVPR, 2008.
[38] A. Rakotomamonjy, F. Bach, Y. Grandvalet, and S. Canu, “SimpleMKL,”

Journal of Machine Learning Research, vol. 9, pp. 2491–2521, 2008.
[39] A. Rakotomamonjy and V. Guigue, “BCI competition III: Dataset II

- ensemble of SVMs for BCI P300 speller,” IEEE Trans. Biomedical

Engineering, vol. 55, no. 3, pp. 1147–1154, 2008.
[40] R. Rockafellar, Convex Analysis. Princeton University Press, 1996.
[41] R. Saab, R. Chartrand, and Özgür Yilmaz, “Stable sparse approxima-

tions via nonconvex optimization,” in 33rd International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), 2008.
[42] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, “Large scale

multiple kernel learning,” Journal of Machine Learning Research, vol. 7,
no. 1, pp. 1531–1565, 2006.

[43] T. Suzuki and R. Tomioka, “Spicymkl,” arXiv, Tech. Rep. 0909.5026,
2009.

[44] M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy, “Composite
kernel learning,” in Proceedings of the 22nd International Conference
on Machine Learning, 2008.

[45] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-

nal of the Royal Statistical Society, vol. 46, pp. 267–288, 1996.
[46] M. Tipping, “Sparse Bayesian Learning and the Relevance Vector

Machine,” Journal of Machine Learning Research, vol. 1, pp. 211–244,
2001.

[47] D. Tzikas, A. Likas, and N. Galatsanos, “Sparse bayesian modeling with
adaptive kernel learning,” IEEE Trans. on Neural Networks, vol. 20,
no. 6, pp. 926–937, 2009.

[48] P. Weiss, “Algorithmes rapides d’optimisation convexe. applications à
la reconstruction d’images et à la détection de changements.” Ph.D.
dissertation, Université de Nice Sophia-Antipolis, 2008.

[49] T. Xiong, J. Bi, B. Rao, and V. Cherkassky, “Probabilistic joint feature
selection for multi-task learning,” in Proceedings of SIAM International
Conference on Data Mining, 2006.

[50] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram, “Multi-task learning for
classification with dirichlet process priors,” Journal of Machine Learning

Research, 2007.
[51] X. Yang, S. Kim, and E. Xing, “Heterogeneous multitask learning with

joint sparsity constraints,” in Advances in neural information processing

systems 22, 2009.
[52] K. Yu, V. Tresp, and A. Schwaighofer, “Learning gaussian processes

from multiple tasks,” in Proceeding of the 22nd International Conference

on Machine Learning, 2005.
[53] P. Zhao, G. Rocha, and B. Yu, “The composite absolute penalties family

for grouped and hierarchical variable selection,” Annals of Statistics, to
appear.

[54] A. Zien and C. Ong, “Multiclass Multiple Kernel Learning,” in Proceed-
ings of the 24th International Conference on Machine Learning (ICML

2007), 2007, pp. 1191–1198.

