
Ellipsoid decomposition of 3D-models

Stephan Bischoff Leif Kobbelt

Computer Graphics Group

RWTH Aachen, Germany

Abstract

In this paper we present a simple technique to approximate

the volume enclosed by a given triangle mesh with a set of

overlapping ellipsoids. This type of geometry representa-

tion allows us to approximately reconstruct 3D-shapes from

a very small amount of information being transmitted. The

two central questions that we address are: how can we com-

pute optimal fitting ellipsoids that lie in the interior of a given

triangle mesh and how do we select the most significant

(least redundant) subset from a huge number of candidate

ellipsoids. Our major motivation for computing ellipsoid de-

compositions is the robust transmission of geometric objects

where the receiver can reconstruct the 3D-shape even if part

of the data gets lost during transmission.

1 Introduction

Today the most common representation for 3D objects are

polygon meshes. They are flexible enough to approximate

arbitrary shapes and the complexity of their processing in-

creases linearly with the number of polygons but is inde-

pendent from the structural or topological complexity of the

object. There is a huge body of literature about various tech-

niques for the generation, modification, storage, transmis-

sion, and display of polygonal models [6, 21, 22, 20, 23].

Although polygons, i.e. piecewise linear surfaces have

approximation properties that are sufficient for most graph-

ics applications it turns out that realistic models still require

up to several millions of triangles. This is why hierarchical

models and multiresolution representations have been intro-

duced into computer graphics [9, 11, 20]. The basic obser-

vation here is that a coarse approximation of a surface can

already be obtained with a surprisingly small number of tri-

angles [10, 18, 19]. If we use more triangles, the approxima-

tion gets better and better but the efficiency, i.e., the quality

gain per polygon is quickly decreasing. Progressive meshes

exploit this effect by storing very coarse base meshes plus

a sequence of refinement operations [7, 12, 15]. Any prefix

the transmitted sequence this sequence allows the receiver to

reconstruct an approximation of the original mesh and the

representation is progressive in the sense that the most im-

portant shape features show up very early in the sequence

while the big number of less important details follow later in

the sequence.

One drawback of polygon meshes — even in their hier-

archical or progressive representation — are the strict topo-

logical consistency requirements. If we lose one percent of

the mesh data then it might become impossible to reconstruct

any part of the surface from the remaining 99 percent. This

is mostly due to the necessary cross references between faces

and vertices and can be solved only by introducing a high de-

gree of redundancy into the representation. This observation

motivates the investigation of robust transmission schemes

which allow the receiver to reconstruct most of the geomet-

ric information even if a certain percentage of the data is lost

during transmission.

The key to robust transmission is to divide the geom-

etry into independent chunks of information (e.g. single

points) which allow the receiver to reconstruct the mani-

fold neighborhood relation without relying on indexing or

explicit inter-vertex reference information. In order to avoid

complex algorithms for general surface reconstruction from

point clouds on the receiver’s side, earlier approaches to ro-

bust transmission assumed that at least the global surface

topology can be transmitted losslessly [5]. Once this coarse

shape information is known, the receiver can insert addi-

tional points into the mesh based on spatial proximity (cf.

Fig. 1 and Fig. 2).

In this paper we want to extend this earlier approach such

that the coarse shape information can be transmitted robustly

as well. The general approach is to approximate the vol-

ume enclosed by the given polygon mesh with a set of over-

lapping ellipsoids. These ellipsoids represent independent

pieces of geometric information and each ellipsoid defines its

own part of the geometry. Redundancy is introduced by the

fact that the ellipsoids overlap each other. Hence the over-

all shape and especially the surface topology will not change



Figure 1: In order to avoid that the robust transmission becomes as complicated as the general surface reconstruction problem

from point clouds, the sender (who knows the original mesh) provides additional information to the receiver which simplifies

the reconstruction (hinted reconstruction). In this case the sender provides a coarse base mesh to convey the global surface

topology. All other mesh vertices are sent without any connectivity information. The receiver can approximately reconstruct

the orignal shape by inserting the vertices into the mesh based on spatial proximity.

Figure 2: If in a robust transmission scheme vertices are re-

ceived without any connectivity information, they are sim-

ply inserted into the nearest triangle. In order to preserve the

mesh quality at all stages, every vertex insertion is followed

by edge-flipping operations in order improve the valence bal-

ance or the aspect ratio of the triangles.

if only a few ellipsoids are missing. The redundancy does

not significantly increase the storage requirements since an

ellipsoid can be defined with only 9 scalar values. This corre-

sponds to the storage requirements of one vertex in a shared-

vertex triangle mesh representation1.

The paper is organized as follows: in the next section we

describe the main steps of our robust transmission procedure.

Then we explain the details of our optimal ellipsoid fitting

technique in Section 3. Finally we discuss results and future

application scenarios in Section 4.

1Every vertex requires 3 coordinate values, each triangle 3 vertex in-

dices. Since there are twice as many triangles as vertices, we have 9 values

per vertex.

2 Robust geometry transmission

For robust transmission we have to guarantee that whenever

a part of the geometry information gets lost, the remaining

portion of the data can be used to reconstruct at least a good

approximation of the object, i.e., the approximation quality

slowly degrades with an increasing percentage of lost data.

Our basic idea is to decompose the geometric shape into a

set of ellipsoids representing the coarse shape of the object

plus a set of independent sample points which represent the

fine detail.

The ellipsoids are generated such that they completely fill

out the interior of the object, the set of sample points is sim-

ply the set of original mesh vertices.

The robust transmission procedure works as follows: First

the ellipsoids are transmitted. Since they are given implicitly

by a symmetric 4
�

4 matrix Q, normalized such that xT Qx ✁
0 for exterior and xT Qx ✂ 0 for interior points x, it is easy to

collect their shape information in a spatial distance field. For

this we define a sufficiently fine spatial grid of scalar values

which is initialized to ✄ 1 everywhere. When a new ellipsoid

Q is received, we compute its bounding box and evaluate

the implicit function xT Qx at all the grid-points within that

box. The grid values are updated if the new function value is

smaller than the current grid value.

When all ellipsoids are received, we extract the zero-

surface from the spatial scalar field by applying the march-

ing cubes algorithm [3, 4]. Obviously the method still works

even if some of the ellipsoids are dropped. The extracted

surface will not change its topology as long as the remain-

ing ellipsoids are still overlapping. Moreover, if the mutual

overlap is strong enough, the loss of a small portion of the el-

lipsoids will not affect the reconstructed shape significantly.

Once we have generated an initial mesh, we start inserting

the sample points which are the original mesh vertices. The



details of this procedure are described in [5]. All we need

is a good
☎

initial surface approximation and then mesh recon-

struction based on vertex insertion and edge flipping works

robustly. To increase the quality of the final result, we have

to eventually eliminate those mesh vertices which have been

generated by the marching cubes algorithm since they are not

part of the original mesh geometry.

3 Ellipsoid decomposition

The problem of covering the volume in the interior of a given

polygon mesh is not well-defined since, obviously, there are

many different possible ellipsoid decompositions. Our al-

gorithm is designed to find one candidate among this multi-

tude of decompositions that is locally optimal with respect to

shape, orientation and distribution of the ellipsoids. A local

optimum in this context means that we check a finite number

of configurations and search for the best one by some greedy

optimization scheme.

3.1 Ellipsoid fitting

Fitting ellipsoids to a given volume is not easy—even much

simpler problems like e.g. finding the smallest enclosing

sphere are mathematically involved [17]. In a first attempt

to fit ellipsoids to the volume bounded by a polygon mesh,

one might pick a random seed point in the interior, determine

three orthogonal principal axes and then grow the ellipsoid

along these axes until it touches the mesh. However, there

are several critical drawbacks in this straightforward proce-

dure.

First, random distribution of seed samples in the interior

does not take the global shape of the 3D object into account.

For example if we have a large convex shape with some long

and thin feature peeking out (cf. Fig 3) then the random

distribution will pick seed points with a very high probabil-

ity in the convex region of the object. Seed samples in the

thin feature a very unlikely since the relative volume is too

small. Nevertheless this small feature carries a significant

visual and geometrical information and hence it is more im-

portant than an accurate approximation of the convex part.

Consequently it makes more sense to place the random seed

points on the surface of the polygon mesh and to grow the

ellipsoids into the interior.

The second problem is that it is almost impossible to de-

termine a good choice for the principal directions at a point

in the interior. For cylindric shapes, e.g., we would like to

align one principal direction to the cylinder axis. This, how-

ever is difficult to tell for a point lying in the interior of the

mesh. We could use a variant of the medial axis transform

and local distance field information to optimize the principal

axis orientation but estimating the medial axis of a polygon

mesh is computationally complex and prone to numerical in-

stabilities.

Figure 3: A large convex object with a small feature. Vol-

umetric random samples hit the feature with a very small

probability while random surface samples are more likely to

hit.

Again, starting the ellipsoid growth on the boundary sim-

plifies the situation: We can start growing an ellipsoid from a

random point p on the boundary until it touches another sur-

face point q. Then growth is continued into the direction(s)

orthogonal to the axis pq until a third point r is found. Fi-

nally we grow in the orthogonal direction to the plane pqr.

3.2 Ellipsoid growth strategy

The ellipsoid growth starting from a surface point p is now

described in more detail. We begin with the estimation of a

normal vector np at p. This is easy no matter if p lies in the

interior of a triangular face, on an edge, or coincides with a

vertex of the mesh. We define a sphere Q1

✆
r ✝ with radius r

whose center is cr ✞ p ✄ rnp such that it touches the point

p. Then we increase the value of r until it touches a second

surface point q.

To determine the optimal r we first compute for each ver-

tex x the radius r
✆
x ✝ of the sphere defined by the interpolation

conditions x, p and the normal np

r
✆
x ✝ ✞ ✟✠✟

x ✡ p
✟☛✟

2

2
✆
x ✡ p ✝ T np

Then we set

ropt ✞ min ☞ r
✆
x ✝ ✟✌✆

x ✡ p ✝ T np ✁ 0 ✍
After we found the largest inscribed sphere Q1

✆
r ✝ with the

two contact points p and q we continue growing in orthogo-

nal direction to the axis pq. For this we re-write the quadric



n
✆
q ✝

nqp p p

Figure 4: Left: Ellipsoid growth is impossible if triangles instead of vertices are testet for intersection. Middle: Ellipsoid

normal n
✆
q ✝ and mesh normal nq do not have to agree. Right: A small offset enables a significant ellipsoid growth.

Q1

✆
r ✝ as a 4

�
4 matrix:✎✏✏✏✑ 1 0 0 ✡ cr ✒ x ✓

0 1 0 ✡ cr ✒ y ✓
0 0 1 ✡ cr ✒ z ✓✡ cr ✒ x ✓✔✡ cr ✒ y ✓✕✡ cr ✒ z ✓ cr ✒ x ✓ 2 ✄ cr ✒ y ✓ 2 ✄ cr ✒ z ✓ 2 ✡ r2

✖✘✗✗✗✙
such that ✒ x;1 ✓ T Q1 ✒ x;1 ✓ ✞ 0 implicitly defines the sphere.

Based on the normal vectors np ✞ c ✡ p and nq : ✞ c ✡ q
we define another quadric Q2 which is the product of the two

tangent planes at p and q respectively.

Q2 :
✆
x ✡ p ✝ T np ✚ ✆ q ✡ x ✝ T nq ✞ 0

Again, we re-write Q2 as a 4
�

4 matrix Q2 ✞ ✆
N ✄ NT ✝✜✛ 2

where N is given as✢✣✣✣✤✦✥ np ✧ x ★ nq ✧ x ★ ✥ np ✧ x ★ nq ✧ y ★ ✥ np ✧ x ★ nq ✧ z ★ np ✧ x ★✪✩ nT
q q ✫✥ np ✧ y ★ nq ✧ x ★ ✥ np ✧ y ★ nq ✧ y ★ ✥ np ✧ y ★ nq ✧ z ★ np ✧ y ★✪✩ nT
q q ✫✥ np ✧ z ★ nq ✧ x ★ ✥ np ✧ z ★ nq ✧ y ★ ✥ np ✧ z ★ nq ✧ z ★ np ✧ z ★✪✩ nT
q q ✫

nq ✧ x ★✪✩ nT
p p ✫ nq ✧ y ★✬✩ nT

p p ✫ nq ✧ z ★✬✩ nT
p p ✫ ✥ ✩ nT

p p ✫✭✩ nT
q q ✫

✮✰✯✯✯✱
Since both quadrics Q1 and Q2 are touching the two points

p and q with the corresponding normal vectors np and nq,

the same is true for all linear combinations [1, 2]

Q1 ✄ α Q2 (1)

Hence we can use the coefficient α to continue growing our

ellipsoid. With increasing value α the ellipsoid will stretch

within the wedge defined by the two tangent planes at p and

q (cf. Fig 5). As long as α stays below some threshold α0 the

resulting quadric will still be of the ellipsoid type (and not a

paraboloid or hyperboloid). We can check the type of the

quadric during the algorithm by computing the eigenvalues

of the upper left 3
�

3 sub-matrix: If all three eigenvalues

are positive, the quadric is of ellipsoid type. To compute the

optimal α we observe that an arbitrary point x lies within the

ellipsoid defined by Q1 ✄ α Q2 if and only if

xT
✆
Q1 ✄ α Q2 ✝ x ✞ xT Q1x ✄ α xT Q2x ✂ 0

If α is positive, xT Q2x ✂ 0 is a necessary condition for x to

lie within Q1 ✄ α Q2 and hence we find

α ✁✲✡ xT Q1x
xT Q2x ✞ : α

✆
x ✝ (2)

p

q

r

s
Q1

q

r

s

Q1 ✄ αQ2

q

r

s

Q1 ✄ αQ2 ✄ βQ3

q

r

s

Figure 5: Ellipsoid growth strategy: Starting out at a single

vertex p (upper left, on top of pyramid) the ellipsoid growth

algorithm searches in normal direction for the biggest empty

sphere Q1 until it touches the vertex q (upper right). Next

the sphere is extended to an ellipsoid by equation (1) until it

touches a third point r (lower left). The three contact points

p ✳ q ✳ r determine an ellipse E on the ellipsoid (lower right,

black line) which serves as profile curve of the cylinder Q3.

Finally the ellipsoid is elongated along the cylinder by equa-

tion (3) until a fourth point s is touched (lower right).

The optimal α is easily computed as

αopt ✞ min ☞ α ✆ x ✝ ✟ xT Q2x ✂ 0 ✍
By growing α we eventually find a third touching point

r. In cylindrical parts of the mesh model the three points p,

q, and r have a high probability of lying in a plane which is

approximately perpendicular to the cylinder axis (cf. Fig 5).

Hence we can find a cigar-shaped fitting ellipsoid by growing

into the direction orthogonal to the plane spanned by p, q,

and r.



Figure 6: Upper left: Original horse model consisting of about 49000 vertices. Upper right: Horse model reduced to 200

vertices by Garland and Heckbert’s error-quadric decimation algorithm [10]. Lower row, left to right: Ellipsoid approximations

consisting of 100, 200 and 400 ellipsoids (3600, 7200 and 14400 bytes) respectively. Note the much improved detail comparing

the 200 ellipsoid model to the memory-wise equivalent 200 vertices reduced model (7200 bytes).

The simplest solution would be to define another quadric

Q3 and to grow the current ellipsoid by finding the maximum

β for which

Q1 ✄ α Q2 ✄ βQ3 (3)

lies completely in the interior volume of the mesh and is still

of the ellipsoid type. However, as it turns out, we cannot

use the same technique as above since now we have three

touching points and tangent planes and these interpolation

constraints uniquely define a single quadric such that there is

no more degree of freedom.

We therefore use another heuristic to define the third

quadric Q3: Let the plane that contains the three touching

points p, q, and r be given in parameteric form by

x
✆
u ✳ v ✝ ✞ u

✆
q ✡ p ✝✴✄ v

✆
r ✡ p ✝✴✄ p ✵ (4)

The intersection of this plane with the quadric Q̄ : ✞ Q1 ✄
αQ2 is an ellipse E in the

✆
u ✳ v ✝ -parameter space. E is given

by a 3
�

3 matrix

E ✞✷✶ q ✡ p r ✡ p p
0 0 1 ✸ T

Q̄ ✶ q ✡ p r ✡ p p
0 0 1 ✸ ✵

For this ellipse we can find the
✆
u ✳ v ✝ -coordinates of the cen-

ter by solving

E

✎✑ u

v

1

✖✙ ✞ 0

and we find the
✆
u ✳ v ✝ -coordinates for the two principal axes

and corresponding radii by computing the eigenvectors and

eigenvalues of the upper left 2
�

2-submatrix of E . Finally

we transform the center, axes, and radii from the
✆
u ✳ v ✝ pa-

rameter space into world coordinates by using (4).

The above construction gives us a planar ellipse E in 3-

space around the center a0 with two principal axes a1 and a2

and the corresponding radii r1 and r2. We define Q3 to be the

elliptic cylinder that contains E and has a3 ✞ a1
� a2 as its

main axis. This cylinder contains all points x for which the

following equation holds:✒ ✆ x ✡ a0 ✝ T a1 ✓ 2
r2

1

✄ ✒ ✆ x ✡ a0 ✝ T a2 ✓ 2
r2

2

✞ 1 ✵
We can easily find a 4

�
4 matrix representation of Q3 by

factoring out the above equation. Once we have this repre-

sentation, we can proceed the ellipsoid growing process with



respect to the β parameter in (3) analogously to the determi-

nation✹ of the α parameter.

As we will demonstrate in Section 4, this ellipsoid grow-

ing procedure induces a good alignment of the principal axes

to the main axes of the enclosed volume.

Remark When implementing the above ellipsoid fitting

procedure there are some difficulties which arise from the

fact that polygon meshes do not have a continuous normal

field and hence a sphere or ellipsoid can touch the mesh at

a surface point q while the surface normal n
✆
q ✝ and ellip-

soid normal nq do not necessarily agree. This can lead to a

locking situation where the ellipsoid cannot grow anymore

although some local ε modification would enable substantial

growth (Figure 4).

To take this into account we modifed the above construc-

tion slightly in our implementation. Instead of using the

exact touching points p, q, and r we use the points p ✺ , q ✺ ,
and r ✺ which are obtained by shifting the original points by

some small offset ε in normal direction into the interior of

the mesh. This provides some additional flexibility for the

determination of the coefficients α and β.

3.3 Ellipsoid selection

We apply the above construction to generate an extreme

over-representation of the interior volume of a given poly-

gon mesh. Since the computation of the growing ellipsoids is

quite fast we can, e.g., compute a fitting ellipsoid for a mod-

erately complex polygon mesh by placing a seed point on

every vertex. Even though these ellipsoids will be strongly

overlapping we do not increase the total memory require-

ments because, as we discussed in the introduction, a collec-

tion of n ellipsoids requires the same amount of storage as a

triangle mesh with n vertices.

To reduce the redundancy of the ellipsoid decomposition

we select the most significant ones from the set of candidates

generated in the initialization phase. For this we use a rather

simple greedy optimization. We start with the largest ellip-

soid, i.e., with the ellipsoid that has the largest volume. Then

in every step we include that ellipsoid which adds the most

to the total volume of the overlapping ellipsoids. If there

are several ellipsoids contributing approximately the same

additional volume, we select the one that has the smallest

minimum radius.

The only computationally expensive task in the ellipsoid

selection process is the computation of the volume contri-

bution of the individual ellipsoids. In every selection step

we have the set of earlier included ellipsoids E1 ✳✜✵✻✵✜✵✜✳ Ek and

for every new candidate we have to estimate the difference

volume

V ✞ Enew ✼ ✆
E1 ✽ ✵✜✵✻✵ ✽ Ek ✝✾✵

We solved this problem by computing an approximation over

a spatial grid of binary voxels. Whenever an ellipsoid is

added to the selection set, we rasterize it and flag all vox-

els the fall inside it as covered. Then when we test a new

candidate, we also rasterize the ellipsoid and count the num-

ber of uncovered voxels to obtain an estimate of the volume

increase V . This greedy candidate selection scheme is eas-

ily implemented by a heap data structure. All ellipsoids are

sorted in the heap according to their volume contribution. On

popping an ellipsoid from the top of the heap we re-calculate

the volume contribution of all the intersecting ellipsoids and

rebuild the heap. This technique can further be improved

by just flagging the volume contribution of intersecting el-

lipsoids as invalid. Each time an element is moved to the

top of the heap, we check whether its volume contribution

is still valid. If not, we re-calculate the volume and rebuild

the heap. Using this “lazy evaluation” technique keeps re-

dundant rasterization steps at a minimum und substantially

speeds up the selection algorithm.

4 Results and future work

In this section we demonstrate the effectiveness of our ap-

proach by applying it to some of the standard polygon mesh

datasets in the graphics commmunity.

4.1 Ellipsoid decomposition

Figure 6 shows the results of applying our algorithm to the

well-known horse model. The original mesh contains about

49000 vertices. In order to avoid ellipsoid growth being re-

stricted by the immediate neighboring vertices (1-ring), we

smoothed the mesh in a preprocessing step. Then we ran-

domly selected 2500 seed vertices and applied our ellipsoid

growth algorithm (ε ✞ 0 ✵ 1) (see remark in section 3.2). The

computation of the ellipsoids took only a few seconds. Fi-

nally we reorded the ellipsoids according to their volume

contributions using a 100
�

100
�

100 voxel grid as described

in the previous section. This last step took about half an hour,

but note that these are off-line preprocessing timings.

4.2 Robust transmission

Figure 7 depicts a typical reconstruction sequence. First the

server transmits the base geometry and topology by sending

a number of ellipsoids. The client may already render these

ellipsoids as a first approximation of the final model. Then

the client extracts a triangle mesh from the ellipsoid approx-

imation, by e.g. a marching cubes algorithm [3] or by some

kind of shrink-wrapping approach [8]. Because of the pre-

smoothing and the offset ε, the resulting mesh will slightly

shrink compared to the original mesh. Hence we have to

adapt the reconstruction scheme in the following way: Each

progressively received vertex is first projected onto the cur-

rent mesh and then inserted into the closest triangle via a 1-

to-3 split operation. A local edge flipping heuristic restores

a generalized Delauny-criterion to preserve the tesselation



Figure 7: The sequence above depicts a typical reconstruction sequence: From the ellipsoid model of the bunny (upper left,

300 ellipsoids) the reconstruction algorithm extracts a marching cubes mesh (upper middle, 10000 vertices). The first chunk

of received vertices is projected onto the mesh and then inserted into the mesh (upper right, 5000 vertices inserted). After that

the points of the marching cubes mesh are removed by a decimation algorithm. The remaining vertices are shifted back to their

original positions (lower left, 5000 vertices). Finally the remaining vertices are inserted into the mesh (lower middle, 10000

vertices inserted, lower right 30000 vertices inserted).

quality of the mesh. A detailed description of this scheme

and its efficient implementation using space partitioning can

be found in [5].

Since the vertices that were created by the marching cubes

step are not part of the original geometry and they have to be

removed as soon as a sufficient number of other vertices are

received to maintain the coarse mesh geometry. The removal

is done by a simple mesh decimation scheme, the remaining

vertices are then shifted back to their original positions. Now

the rest of the vertices can be inserted as before. Since no

inter-vertex/face references are necessary, this scheme is ro-

bust in the sense that a certain percentage of ellipsoid/vertex

loss is tolerated by the reconstruction algorithm.

4.3 Future work

We plan a more detailed investigation of various selection

criteria to determine the optimal ellipsoid decomposition.

The selection has to guarantee sufficient overlap between the

ellipsoids but on the other hand it has to lead to a significant

redundancy reduction.

A possible future application could be the automatic shape

recognition. Deriving some statistical measures from the set

of ellipsoids, like the average and standard deviation of ellip-

soid radii and their ratio could be an identifyer that is invari-

ant under various shape modifications. This will be a topic

of future research.

5 Acknowledgement
This work was supported by the Deutsche Forschungsge-

meinschaft under grant KO2064/1-1, “Distributed Process-

ing and Delivery of Digital Documents”.

References

[1] W.Boehm, H.Prautzsch. Geometric Concepts for Geometric

Design. AK Peters, 1994

[2] H.S.M.Coxeter. Introduction to Geometry. Wiley & Sons,

1961

[3] W.E.Lorensen, H.E.Cline. Marching Cubes: a high resolu-

tion 3D surface reconstruction algorithm. SIGGRAPH 87

Proceedings, 163–169



[4] L.Kobbelt, M.Botsch, U.Schwanecke, H.-P.Seidel. Feature

Sensitive Surface Extraction from Volume Data. SIGGRAPH

01 Proceedings, 57–66

[5] S.Bischoff, L.Kobbelt, Towards Robust Broadcasting of Ge-

ometry Data, to appear in Computers & Graphics

[6] H.Hoppe, T.DeRose, T.Duchamp, J.McDonald, W.Stuetzle.

Surface Reconstruction from Unorganized Points. SIG-

GRAPH 92 Proceedings, 71–78

[7] H.Hoppe. Progressive Meshes. SIGGRAPH 96 Proceedings,

99–108

[8] L.Kobbelt, J.Vorsatz, U.Labsik, H.-P.Seidel. A Shrink Wrap-

ping Approach to Remeshing Polygonal Surfaces. Computer

Graphics Forum, 18(3):199 – 130, 1999

[9] Lee, Sweldens, Schröder, Cowsar, Dobkin. MAPS: Multires-

olution Adaptive Parameterization of Surfaces. SIGGRAPH

98 proceedings, 95–104

[10] M.Garland, P.S.Heckbert. Surface Simplification Using

Quadric Error Metrics. SIGGRAPH 97 proceedings

[11] L.Kobbelt, S.Campagna, J.Vorsatz, H.-P.Seidel. Interac-

tive Multi-Resolution Modeling on Arbitrary Meshes. SIG-

GRAPH 98 proceedings, 105–114

[12] P.Alliez, M.Desbrun.Progressive encoding for lossless trans-

mission of 3D meshes. SIGGRAPH 01 proceedings

[13] G.Turk. Re–tiling polygonal surfaces. Computer Graphics

SIGGRAPH 92 Proceedings, 55–64

[14] D.Zorin et al.Subdivision for Modeling and Animation. SIG-

GRAPH 00 Course Notes

[15] G.Taubin, A.Gueziec, W.Horn, F.Lazarus. Progressive For-

est Split Compression. SIGGRAPH 98 Proceedings, 123–

132

[16] J.C.Carr, T.J.Mitchell, R.K.Beatson, J.B.Cherrie, W.R.

Fright, B.C.McCallum, T.R.Evans. Reconstruction and Re-

presentation of 3D Objects With Radial Basis Functions.

SIGGRAPH 01 Proceedings

[17] E.Welzl. Smallest enclosing disks. New Results and New

Trends in Computer Science, Springer, 1991, 359–370

[18] P.Lindstroem, G.Turk. Fast and memory efficient polygonal

simplification. IEEE Visualization 98 Conference Proceed-

ings, 279–286, 1998

[19] A.Ciampalini, P.Cignoni, C.Montani, R.Scopigno. Multires-

olution decimation based on global error. The Visual Com-

puter, 13(5):228-246, 1997

[20] D.Zorin, P.Schröder, W.Sweldens. Interactive multiresolu-

tion mesh editing. SIGGRAPH 97 Proceedings, 256-268

[21] L.Kobbelt et al. Geometric Modeling Based on Polyognal

Meshes. Eurographics 2000 Tutorial

[22] D.Zorin et al. Subdivision for Modeling and Animation, SIG-

GRAPH 00 Course Notes

[23] C.Touma, C.Gotsman. Triangle mesh compression. Proceed-

ings of Graphics Interface 98, 26-34


