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1 Introduction

After it was understood in [1]! how to apply localization techniques [3, 4] to perform exact
computations of partition functions and vacuum expectation values of supersymmetric op-
erators in supersymmetric quantum field theories defined on compact Euclidean manifolds,

!See also [2] for related earlier work.



a wealth of exact computations in theories defined on a variety of geometries in a variety
of dimensions has become available, see for example [5-33]. Such exact, non-perturbative
results can be put to excellent use in precision tests of various non-perturbative dualities,
but their applications are much richer. Indeed, recently a lot of research has been con-
ducted on interpreting and applying the wide variety of exact results available, resulting
in an impressive list of both physical and mathematical developments. To name a few, the
N = (2,2) S? partition function [5, 6] computes the exact Kiihler potential on the quantum
Kihler moduli space of Calabi-Yau manifolds [34-36], the N = 2 S partition function [11-
14] is essential in the F-theorem [37], and the partition function of four-dimensional ' = 2
theories placed on an ellipsoid [1, 22] equals, for theories of class S, a Liouville/Toda cor-
relator [38, 39], while for superconformal theories it also computes the Kéhler potential on
the superconformal manifold [36, 40].

Localization computations are based on the observation that in the path integral of a
supersymmetric theory one can add Q-exact? deformations to the action without changing
the resulting partition function. For a positive semi-definite such deformation, one can
then easily argue that a one-loop computation around its zeros is exact. The canonical
choice of deformation term has as its zeros certain configurations involving the (bosonic)
vector multiplet fields, while all matter multiplet fields are set to zero. Typically, these
configurations take the form of arbitrary constant values for the vector multiplet scalars or
holonomies around circles.® The path integral then collapses to a finite-dimensional matrix
integral over this classical Coulomb branch, hence the localization based on the canonical
deformation term is called Coulomb branch localization.

Upon choosing a particular additional deformation term (or equivalently, by changing
the integration contour of the auxiliary fields in complexified field space) and if certain
conditions on the parameters of the theory hold, the localization locus instead consists
of a finite number of discrete Higgs vacua, where matter multiplet scalars can acquire a
vacuum expectation value solving the D-term equations, accompanied by infinite towers
of non-perturbative point-like Higgs branch configurations — e.g., vortices or Seiberg-
Witten monopoles — located at special points in the geometry. Such a Higgs branch
localization computation was first performed in NV = (2, 2) theories on the two-dimensional
sphere [5, 6], and later applied in and extended to two [7], three [41, 42], four [43] and
five [44] dimensional theories.*

In this paper, we apply the Higgs branch localization technique to N' = 2 supersym-
metric theories placed on compact Euclidean manifolds. We derive the general localization
equations and subsequently study their solutions in detail on the four-sphere S*. On this

2Here Q denotes a particular supercharge of the theory, which in general is not nilpotent. Then the
precise statement is that one add to the supersymmetric action S a deformation term f QV, for some
fermionic functional V satisfying [ Q*V =o.

3In the presence of homological two-cycles in the manifold, also a sum over magnetic fluxes will occur.
The integration over holonomies around circles is a particular instance of the more general case which entails
integration/summation over the space of flat connections. In higher-dimensional examples, also (point-like)
instanton configurations will appear as zeros of the canonically chosen deformation term.

4These results are closely related to the factorization results initiated in [45], and extended and gener-
alized in [46-52].



geometry, the Higgs branch localization locus is given by vortex-like configurations and
singular Seiberg-Witten monopoles centered at the north and south pole of S*. The ap-
pearance of the latter can be understood intuitively as follows: locally around the north
and south pole, the theory looks like the (anti-) topologically twisted theory with hyper-
multiplets. The localization locus of the latter theory is described by the Seiberg-Witten
monopole equations (or their non-abelian version, i.e., the generalized monopole equa-
tions), which follows immediately by imposing the D-term equations. In the localization
computation on the four-sphere, the effect of the additional deformation term is precisely
to impose the D-term equations, while the gauge symmetry is generically broken to the
maximal torus by one of the other BPS equations. Finally, we compute the resulting Higgs
branch localized ellipsoid partition function. As a byproduct, we formulate a prediction
for an interesting relationship between the instanton partition function and the Seiberg-
Witten partition function, which capture the equivariant volume of the instanton moduli
space and Seiberg-Witten moduli space respectively.

The rest of this paper is organized as follows. In section 2 we derive the general Higgs
branch localization equations of N' = 2 supersymmetric theories. In section 3 we find
various classes of solutions on S*. Next, in section 4, we compute the Higgs branch local-
ized partition function. Finally, in section 5, we match the Coulomb branch and Higgs
branch localized results in a simple example. Appendices A and B summarize our con-
ventions and recall the generalized Killing spinor equations and supersymmetry multiplets
and variations. Appendix C studies the locally almost complex structure one can define
using the Killing spinor solutions. Appendix D finally contains some useful specifics about
the ellipsoid.

Note. There has recently appeared a paper on the arXiv claiming to perform Higgs
branch localization on Sy [53]. Our results are significantly different from theirs. Through-
out the paper we will point out the major points of disagreement.

2 BPS equations

In localization computations, the path integral is localized to the zeros of a positive semi-
definite deformation term Sger. = [ QV satisfying [ Q?V = 0. In this section we introduce
the relevant deformation terms and derive the resulting BPS equations characterizing their
zeros for N' = 2 theories placed on manifolds admitting solutions to the generalized Killing
spinor equation (B.1) and auxiliary equation (B.2). We restrict our attention to Killing
spinors satisfying the orthogonality conditions (B.23) guaranteeing that no scale or U(1),
transformations appear in Q2. We also indicate how the equations simplify for the case of
the ellipsoid Sg‘ .

2.1 Vector multiplet
The canonical deformation Lagrangian for the vector multiplet is given by [1, 22]°
LY = QT [(Qua) N+ (@XDIAF | = L3N] =Tr [(QAra) Qi +(QX)1 QN
' (2.1)

5The supersymmetry transformations are summarized in appendix B.



where one considers the reality properties of various fields as in (B.5). We further introduce
the notation ¢o = ¢ — ¢ = 2Rep = —2Re ¢, ¢y = idp + i) = —2Im ¢ = —2Tm ¢.

With the reality properties (B.5), QA; and QA7 do not satisfy the symplectic-Majorana
condition, but can be decomposed in “real” and “imaginary” pieces which do:

O\ =Re QA +iIlmQ)\;, QA =ReQA;+ilmQ)\;. (2.2)

Explicitly, one finds

Re Q\; = %0’“’&( — 4¢9(Tyw + Suw)) + Dpdacé;

Im QAr = 261 (S — Tyw) 0*€1 — (D) o*E1 + 261[¢, ] — iDps€”
Re QA = 55" & (Fy + 40T + §yu)) — (D) 96

Im QA = 201 (S — Tpw)3"" &1 — (D) 661 — 261[6, 0] — iDrs€7

(2.3)

where the tensor fields SW,SW,TW, and T, w, are introduced in appendix B (see (B.1)
and (B.24)). The bosonic part of the deformation Lagrangian then becomes

‘C def.

=T [(Re QA Re O\;)+(Im QX Tm QA7)+ (Re QAr Re QA ) + (Im QA; Im QM) .
(2.4)

Using Fierz identities one can straightforwardly obtain (see (A.8))

T |:S—|-$
bos. SS

+48 (Re QXMV) + 45 (]Im QXMV) + 45 (Re QX,U/V) + 4§ (I[m QX,U/V) I (25)

‘C def.

((R*Dy2)? +(R!Dyu1)?) = (s+5) b1, ¢

where we defined X, = (670, A1), Xy = (€16, A7) and used that Re Q. = 10, Re A
and similarly for Im Qx,., Re Qx,,Im QX . Here we used the bilinears s = (€1¢p),5 =
(£€7) and R® = (¢16%€;). One finds concretely

Re Qxpw = —25(F,, — 402(Tyw + Suv)) + 2 (5 AN dag2),, (2.6)
Im Q. = 88<z>1< = Suw) = 2 (5 Adadr),, —iOL Dy (2.7)
Re QX = —25(Fy1, + 4¢2(Tyw + Suw)) — 2 (5 A dada) (2.8)
Im QX = 8501 (T — Suw) — 2 (K A dA¢1) + ZGUDIJ, (2.9)

where G)U = (&10%%¢5), @U = (é’[&“béj), the one-form x has components x,, = g, R", and
d 4 is the gauge covariant exterior derivative. At this point, the general vector multiplet BPS
equations can be read off as the arguments of the squares (with square rooted prefactors)
n (2.5).

To perform Higgs branch localization, we add an additional deformation Lagrangian

- 1 1 P D
,Cé{effJ_QTI‘ |:HIJ <(§(]AJ))_(§(IAJ)))} :ZQTI' |:HIJ <_SXNV@7J+§X”V@?J>:| s (210)



in terms of a generic adjoint valued, SU(2)r triplet functional of the hypermultiplet
scalars H'/| satisfying the reality property (Hy;)" = ¢/Ke/lHyp. The second equality
follows straightforwardly from a Fierz identity. The bosonic piece of the deformation La-
grangian (2.10) is not positive semi-definite. However, when added to (2.5), the auxiliary
fields Dy, which appear quadratically without derivatives, can be integrated out exactly
by performing the Gaussian integral. Equivalently, one substitutes the Dj; field equation

L1y 4id

DY =_ZH
2 543§

OL(TH — 51) — BLI(TH — §m)] . (2.11)

To derive this result, we made use of the fact that 1017 (x A N = %(:)‘“”U(m AN
for arbitrary one-form A thanks to a Fierz identity. Note also that we have effectively
taken Dy away from its purely imaginary integration contour. Substituting back (2.11)
n (2.5)+(2.10), we find the following new sum of squares

s+ 5 ~
Lot + Lok’ |, 5 ((R*Dyd2)* + (R Dyd1)?) — (s + 5)[o1, d2]? (2.12)
+ Z(Re Qi EHU@{LW 4~<Re Qpw + HU@LDQ
_ 1 o 2
+ 1s |:—2 (kA qubl)'uV + ¢1@fu{ <U)[J T §(S wry+ S U}]J)>:|

2
1 (8 w1J+§QI)]J)>:| ,

1 + 510 (- 1
where we used the convenient tensors
4 R Ty ~
wryg = ;@IJ(THV_SUV)’ wrjg = _EGIJ(TNV_S:U’V)' (213)

2.2 Hypermultiplet

The canonical deformation Lagrangian for the hypermultiplet is given by

LEY = Q [(Qan) Vo + (QUF) ¢A} = [’def

= [(Qvan) Quan + (QU%) QU4

(2.14)
One can split QY4 and Q@ZJ?{ into “real” and “imaginary” pieces, with respect to complex
conjugation as in (B.8), using the canonical reality properties for gy4, but anti-canonical
ones for Fra (see (B.9), with (B.15))°

Re Qipa = —20"E'Dyyqra — 0" Dyl qra — 2i€ da - qra (2.15)
Im Qipa = —2i (§I¢1 “qra — CIIFI/A) (2.16)
Re Qs = 26" Dyqra — 6" D€l qra + 2i€ ¢o - qra (2.17)
TIm Qi = —2i <§~I¢>1 “qra — CH/FI/A) ; (2.18)

@ ”

5The hypermultiplet transformation rules can be found in appendix B. The notation is also explained

there.



which are set to zero to obtain the BPS equations. Multiplying the BPS equations following
from the imaginary pieces with £¥, 5 respectively, and taking their sum and difference
using (B.14), one obtains

N 1 N e
(s+38)¢p1-qa=0, —1(3 —5)¢1 - qﬁf ==5F 4, (2.19)

where 2K = (¢K¢') = ({Kff’) Similarly, the real equations imply that
0=2¢""R*Dyqra + 4 (@ﬁ{ SH— 6 5’“) gra+ie’ (s = 8)pa - qra. (2.20)

2.3 BPS equations on ellipsoid

For the specific case of the ellipsoid Sgl, one can use the fact that (see appendix D)
s+s=1, wry = WyyJj, (2.21)

to simplify the deformation Lagrangian (2.12) to

1
E\Sfé\gef'—i—ﬁggéef"bos - (DH¢1)2+£(RMDH¢2)2_ [¢1a ¢2]2 (222)
1 B B )
+ @ <—28(Fuu_4¢2(Tuu+Suu))+2 (KJ A dAd)Q)/W_QHIJ@;ILi)

1 ~ _ ~ ) ) )
+ o <—23(FL+4¢2(TW+SW))—2 (kA dA¢2):u+2HIJ@£i> ‘

2 2
Here we also used that X (R*D,¢1)? + 1 [(K, A qubl);V} +1 {(m A dA(;Sl):V} = (Duo1)2

S S

The arguments of the squares in (2.22) are the ellipsoid BPS equations, which are supple-
mented by the Dj; equation of motion (2.11), which simplifies to

1
D7 = —§H” —iggw!’ . (2.23)

The hypermultiplet equations are given by

0=—20"¢"Dyqra — 0" Dy qra — 2i" ¢a - qra (2.24)
0=—25"¢"Dyqra — "Dy qra +2i€ ¢ - qra (2.25)
0=¢1-q14 (2.26)
0=Fpy. (2.27)

Equation (2.20) also still holds.

3 BPS solutions

In this section, we study the solutions to the ellipsoid BPS equations derived in subsec-
tion 2.3. Depending on the choice of Hyy, we find different classes of solutions. For sim-
plicity, we work on the round four-sphere S*; the generalization to the ellipsoid is expected
to be straightforward, but technically somewhat involved.



3.1 Coulomb branch

Let us start by recalling the standard Coulomb branch localization locus, obtained by
solving the BPS equations for H;; = 0. It was argued in [1, 22] that the solution sets all
hypermultiplet fields to zero, while the smooth vector multiplet solution reads

0=¢o=A,, ¢ =a, Drj = —iawyy, (3.1)

for a a constant, which can be chosen to lie in the Cartan subalgebra. Additionally, since
s = sin?£,5 = cos? £ vanish at the north pole (p = 0) and the south pole (p = =)
respectively, we see from (2.22) (with T = T = 0 on the round four-sphere) that at the
north pole the equations on the field strength relax to F™ = 0 and at the south pole to
F~ =0, allowing for point-like (anti-) instantons.

Before studying the solutions that become available upon turning on Hj; we introduce
some notation. The A =1 (A = 2) components of the hypermultiplet transform in represen-
tations SR (FR) of the combined gauge and flavor group (see also appendix B). We introduce
a vector multiplet for this combined symmetry group, whose gauge group components are
dynamical while its flavor group components are background, and denote its scalars as
®q, ®y. To preserve supersymmetry, the background components need to satisfy the vector
multiplet BPS equations of subsection 2.3 (for Hy; = 0). In particular, from (3.1), it is
clear that one can give a vev to the background piece of ®; (and the background auxiliary
field) which corresponds to turning on a (real) mass for the hypermultiplet.” Decomposing
R into irreducible representations of the gauge group as R = @©;R;, we have concretely
y|r; = (bgj) +mj, Polr, = d)éj), where m; is a mass for the U(1) flavor symmetry carried

by the hypermultiplet transforming in gauge representation R;(R;).
We choose

C . a ] a ' ‘ a ]
Hpy = A C A lz adj. (q%) TR, quJQ) T qyl) Tz, qgj)> ’ (3:2)
j,a

where the sum runs over the irreducible gauge symmetry representations R; and its
generators Tﬁj. Furthermore, ¢ is a dimensionless adjoint-valued parameter defined as
¢ = Ypaw() R, where the sum runs over the generators h" of u(1) factors of the Lie
algebra of the gauge group, and (% are real parameters. It will turn out to be useful to
split the (* parameter in two pieces as (% = ({,.. + (S, With (7, , (G of the same sign,

vac.
and define HIS}N =Hrj+ %wu.

3.2 Deformed Coulomb branch

The deformed Coulomb branch is characterized by vanishing hypermultiplet scalars. Then,
using that

dk = —8§§W -85S, w[JGII;,f = dk,, w[JC:)lI;,f = —dkr’ (3.3)

uv

"Note that from (3.1) one sees that giving a vev to ¢z is not BPS on the four-sphere. Hence it is impossible
to turn on the standard flat space hypermultiplet complex masses while preserving supersymmetry, contrary
to what was claimed in [53].



which are a direct consequence of the generalized Killing spinor equations on the four-sphere
S4, one can write the vector multiplet equations as

= D, ¢1 = [¢1,¢2] = R D02

0=—2sF,, +2(kANdag2),, — d2dk,, + iCd/-f (3.4)
0=—25Ff, —2(k Adada)y, + dodr;t, + Cdl%lw
Notice that on S* one can explicitly verify that
Kcoszgdﬁf = —sinp(e* AK), Esin2gdli+ =sinp(e* A n)Jr . (3.5)

With this fact, it is easy to check that®

1 1
A= @Cm ¢2 = @CCOSP, ¢ =a, Dy = <2C€—m) wrJ (3.6)

for constant a is a solution. Again, a can be diagonalized. On top of this smooth Abelian
solution, we again can have point-like (anti-) instantons located at the poles of the sphere.

3.3 Higgs branch and Seiberg-Witten monopoles

Higgs-like solutions. They are characterized by the requirement that HIS}N vanishes.
The vector multiplet equations then reduce to the deformed Coulomb branch equations
of the previous subsection with deformation parameter (yac., and have the solutions (3.6).
The value of (yac. will be fixed momentarily. In particular, the field ¢; is a diagonal,
constant matrix. Its values are further constrained by the hypermultiplet equation (2.26),
i.e. ®1-gra = 0. The combined set of equations

0= (69 +my)-q9), 0= @wIJ+ZZ o (qn T8 o) + o) T8 qm) (37)

are in fact the standard vacuum equations of an A/ = 2 supersymmetric theory in the
presence of an Fl-parameter. Their solutions strongly depend on the choice of gauge and
matter representations of the hypermultiplets. We will be interested in cases where generic
masses and generic Fayet-Iliopoulos parameters (¢ completely break the gauge group. More
precisely, we restrict ourselves to cases where the first vacuum equation in (3.7) uniquely
determines the components of ¢; in terms of the m;, and moreover where all components
take distinct values, thus breaking the gauge group G to its maximal torus U(1)™*%, The
hypermultiplet scalars taking on a vacuum expectation value further break these U(1)s via
the Higgs mechanism. One arrives at a discrete set of Higgs vacua. It is clear then that

rank G it s sufficient to analyze a U(1) gauge group

after the gauge group is broken to U(1)
with a single flavor, which, up to rescaling of U(1) charges, we can take to be fundamental.

We will do so henceforth.

8Note that [53] set to zero all ¢» dependence. However, it is easy to verify that it is crucial to keep
¢2 to have a deformed Coulomb branch configuration satisfying the Bianchi identity. As we will see, the
existence of the deformed Coulomb branch solution is in turn crucial to find Higgs banch solutions.



Let us consider the particular example of a U(N.) gauge group with Ny > N, fun-
damental hypermultiplets. Then it is well-known that the vacuum equations have (]]\\[/: )
solutions, essentially differing by the choice of V. out of the Ny hypermultiplets to acquire
a vev. For positive value of (gw, and choosing the first N, hypermultiplets, one solution
is given concretely as ¢1 = —diag(my, ..., my,) and ¢/% = £~1\/Cswd’?, for j =1,..., N,
¢@*=0for j = N.+1,... Ny, and gj, = 0, where a denotes the gauge index and we
introduced the standard notations g = qr=1 a=1, and ¢ = gqr=1,4=2 (see also (B.10)), while
for negative values of ¢ the ¢ get a vev. The U(1) vacua can be obtained as a special case.

To complete the Higgs-like solution, we should still make sure that (2.24) and (2.25)

are satisfied. On the round sphere, their combination (2.20) simplifies to
2¢/ " RFDygra — w’lqra +ie’ (s — 8)da - qra =0, (3.8)
which can be decomposed in terms of the scalars ¢, G as
2R"D,q + %q +i(s—3) p2q=0, 2R"D,q - %q* +i(s—3) g2 4 =0,  (3.9)

and their complex conjugates. It is clear that in the vacuum where (only) ¢ gets a vev,
these equations are solved for (yae. = +6, while if § gets a vev, one finds (e, = —6. It is
straightforward to verify that then also (2.24) and (2.25) are solved.

Smooth “(m,n)-vortex” solutions. Let us now relax the constraint HIS}N = 0 and
study more general smooth solutions with non-zero H?}’V.g We will focus on generalizing
the vacuum solutions where ( is positive and thus ¢ acquires a vev, knowing that the
case where ( is negative and ¢ gets a vev can be treated completely similarly. Let us
further denote the deformed Coulomb branch configuration for (yac. as Avac. = icvac.ﬁ,
and (P2)vac. = ég‘vac, cos p. The smooth solutions we are about to uncover carry winding
around the circles parametrized by ¢ and x, and thus have their combined core at the
north pole and the south pole. In fact, they resemble the standard two-dimensional vortex
solutions, and as in that case, we do not have an analytic expression for the solution, but
study its behavior in the far away region, and near the core. It is trivial to verify that
away from the north and south pole one has the solution ¢ = 0 and

A= Avac. — mdSO —ndy, q= % e—imgo—inX’ P2 = (¢2)vac. ) (3'10)

while ¢ still takes its vacuum value determined in terms of the masses. This solution is
valid in the region p? > Csw—gi%

To analyze the behavior around the north pole and south pole, we study the vector

, as we will derive momentarily.

and hypermultiplet equations to linear order in p or @ — p respectively. The geometry is
approximated by flat C2. Indeed, around the north pole p = 0 and with r; = £pcosf and
ro = £psin 6 the metric simply becomes

ds? = dr} + ride?® + drs +ridx* . (3.11)

9The smooth configurations of this paragraph and the singular Seiberg-Witten configurations of the next
are missing in [53].



The hypermultiplet equations read for ¢ =0

0= [Dy + Dy +i(r1 Dy, +72Dy,)] g + O(pq) (3.12)
0= [_:,QD@ + %Dx +i(=r2 Dy, + TlDTz):| g+ O0(pq) (3.13)
1 2
. 1 ,
0= [i(=14 62 + 5 (D + Dy = i0aD + D)) 4+ 0G0, (319

while the vector multiplet equations can be written as

0= F,y = Fy,, (3.15)
Flpy = T;?r% 2 32 [2@ - % . r;fr% (r10y, + 720r,) (252:| +0(p?) (3.16)
B = 022" o= - ot 00D Gan
Fon, =11 (iz + 4;) - % <: - 2) Fipry + O(p%) (3.18)

where we omitted terms involving |q|? and constant times 7;(710,, o + 120,,¢2) for i = 1
or 2, which assuming smoothness can only contribute at order p? or higher. Furthermore,
we wrote the equations in such a way as to highlight the vortex-like behavior in the planes
(r1,¢) and (rg,x) evident in equations (3.12), (3.18) and (3.12), (3.19) respectively if
Fyxry = For, = 0.

One finds the solution to the full set of equations (3.12)-(3.19) for p? = T%Z%T% <

+ 5
#&Wtobeq—()and

]. 1 m ) n
A= Ae == (CS;V+m+n> (ridp+r3dx), q=B(rie™?)" (re™)", (3.20)
m+n 1 ( Csw

¢2_(¢2)vac.:7+47€3 —2+m+n) (7“%4-7“%), (3.21)

for some constant B. Note that m and n are necessarily positive and that F\, = F,., =0
indeed. One can easily estimate the size of these smooth solutions. From (3.10), one
can find via Stokes’ theorem the vorticity of A — Ay,e. carried in the (r1, ) and (7o, x)
planes to be given by —m and —n respectively. Then approximating %(F — Fyac.)rp and

202

€2 respectively, one easily estimates €; =~ £, /Csw++(m+n) and €9 ~ /£ /Csw++(m+n)' For
sufficiently large values of (sw the smooth solutions squeeze to zero size, justifying the first

%(F — Flac.)rox by step functions of height —L <CSTW +m+ n) on disks of radii €; and

order approximations we made.
One can similarly analyze the asymptotic behavior near the south pole. One finds in
terms of 71 = £(m — p) cos @ and 7y = £(7m — p) sin 6
1

A—Avac,:—@ (%]V—l—m—&-n) (f%dgp—l—f%dx), qZB (fle—iv)m (fge—ix)n , (3.22)

~10 -



¢2—(¢2)Vac.=—m7jr”+$ <CSW—m—n> (7F2473), (3.23)

for 73 4+ 75 < mfzi%

We have constructed solutions to the BPS equations in a small neighborhood around
the north pole p = 0 and the south pole p = w. We claim however that for m = 0 the
core of the solution (defined as the zeros of the complex scalar field ¢) in fact wraps the
two-sphere 592:0 defined by # = 0, and similarly for n = 0 the core wraps the 6 = 7/2
two-sphere Sg:ﬂ /2° While heuristically clear, such behavior can be argued for rigorously
from the full hypermultiplet equations by starting in the core at either north or south pole
and verifying that any motion along the relevant two-sphere keeps ¢ zero, but we won’t do
so here. In these cases we thus found a vortex-like object in R? wrapping an S2. For generic
m,n # 0 the BPS configurations are a non-trivial superposition of the m-vortex near 502:0
and the n-vortex near ngﬂ /20 with the core lying again on these two spheres. The cores
overlap at the two intersection points of the two two-spheres, i.e. the north pole and the
south pole of S*. As we will see momentarily, there are additional point-like solutions to
the BPS equations supported at these points.

The approximations made above are valid only in the limit where (sw — oo and the
solutions squeeze to zero size (in the planes carrying winding). For finite values of (gw
the solutions will require both finite size and curvature corrections. Nonetheless, using the
BPS equations, we can deduce important properties of the solutions valid for any value
of (sw. Namely, since ¢ only vanishes in the core of the solution, we find from (3.9) the
exact relation,

2ARA+ o (5—5) =L (m+n+1). (3.24)

Moreover, due to the compact nature of S*, the winding numbers m,n are not without
restrictions; instead, given (sw, they are required to satisfy a certain bound, which we now
derive. Consider the integral

1 LV —_ 174
/F A xdk = 3 / (FLdel + Fde) gd'a. (3.25)
On the one hand, one can substitute the F'* using the BPS equations, and obtain
L [ 1662 ~ ., L(C 2 42 4
/F/\*d/-@:2/[£2(s—s)+€<€2—\q| +1d]” ) | Vod'x. (3.26)

On the other hand, observing that d * dk = —3¢"2sinp (— sin fe' + cos 062) Aed A et it
is easy to show that (using the fact that any complex line bundle on S* is trivial, and
therefore globally F' = dA)

/F A sdr = 6072 / (LrA) \/gd'z . (3.27)
Combining the equations (3.26) and (3.27), we have

6072 / [20pA 4 o (5 — 8)] Vgd'z < E%Vol (s, (3.28)
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where we used that on the solution K% - |q]2 + ]6\2 < e%. Finally, using the exact rela-

tion (3.24) which implies that the integrand on the left hand side is constant on S%, we
0

¢ Gsw

m+n+1<6:m+n< 5

For finite (positive) values of ¢, only a finite number of smooth “(m,n)-vortex” solutions is

obtain a bound on the winding numbers’

(3.29)

supported on the four-sphere. In particular, when the bound is saturated, the scalar field
q (and of course §) vanishes and the solution is of the deformed Coulomb branch type. We
thus find that upon increasing the value of ( from zero to infinity, the Coulomb branch
solutions is smoothly deformed into the deformed Coulomb branch solution, and additional
smooth solutions become available each time the bound (3.29) is crossed. Such a picture
is similar to the Higgs branch localization computations of [42-44].

Seiberg-Witten monopoles. On top of these smooth solutions we find singular solu-
tions supported only at the north and south pole. Let us focus on the north pole first. In
appendix D we show that there exists an integrable, self-dual complex structure J which
is well-defined in the region S* — {south pole}. Then, taking into account that we are
focusing on gauge group G = U(1), we can introduce ordinary differential forms « € Q(}’O

and 8 € on,2 defined as
a=q, B=-514"04. (3.30)
To extract the equations describing the singular configurations, we further split off

the vacuum deformed Coulomb branch solution for ¢ = (yae. = 6, ie. A = Avac. + a,
¢2 = (P2)vac. + A¢a. Then, at the north pole (p = 0), the equations become:

0= 0, + 913 (3.31)
0= Agoa = (Agy + 2071 (3.32)
0=F2% %@5 (3.33)

Fj _ 1 CSW 2A¢2

o =772 T —laf +18]%| J, (3.34)

where the superscript 7 denotes the component proportional to the (1,1); form J. By
standard arguments, by combining (3.31) and (3.33), it is easy to show that either a = 0
or 8 = 0. As for the smooth solutions, we consider solutions with non-trivial «, which
trivially implies that A¢e = 0 (and 8 = 0).!! The equations then reduce to the standard
Seiberg-Witten equations on C? [54], see [55] for a nice introduction. Moreover, we demand
that the singular solutions share the same winding numbers with the smooth solutions
found above.

10When instead analyzing the case of negative ¢ and thus non-trivial § solutions, and introducing the
positive winding numbers 7,7 as in ' ~ e"™¢TX one finds the exact relation 2tgpA + ¢2 (5§ —s) =
—¢7' (M + 7 + 1) and the bound —m —7i — 1 < § = —m — i < 5,

111f we had split off the vacuum deformed Coulomb branch solution for ¢ = (yac. = —6, i.e. had considered
smooth solutions with non-trivial 8, then only (3.32) changes. Tt becomes (A¢pe — 207 )a = A¢e8 = 0,
thus again setting A¢s = 0.
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In the patch containing the south pole, the anti-self-dual complex structure J is well-
defined, see (D.8). It is then straightforward to derive another set of Seiberg-Witten

equations at the south pole with respect to this complex structure.
2

. can be con-

Solutions (o = a(z,w), B = 0) to the Seiberg-Witten equations on C
structed from complex algebraic curves, as discussed in [56].12 More precisely, given a poly-
nomial p(z,w), there exists a solution to the Seiberg-Witten equations such that «o(z,w)

vanishes on the zeros of p and such that near its zeros, « looks like the polynomial to lead-
D

ing order. In particular, given a polynomial p (z,w) = [] (az + bw + i), the preimage

=1
of zero is a collection of D parallel planes intersecting the © = az 4+ bw plane at points

u = —c¢; for i = 1,...,D. The Seiberg-Witten solution is now in fact a multi-centered
vortex solution in the u-plane with cores at the points u = —¢; of local winding d;. Note
however that the solution is not uniquely determined by the polynomial p, but comes with
a moduli space.

We are looking for single-centered solutions with winding numbers matching those of
the smooth solutions on top of which the singular Seiberg-Witten solution is defined. It is
clear then that the relevant polynomial is given by p(z,w) = z™w™. It will be important
later to note that in particular when m = 0 or n = 0 we are dealing with a vortex solution

in the w or z-plane respectively.

4 Computation of the partition function

To complete the localization computation of the partition function on S*, we need to
evaluate the classical action on and the one-loop determinant of quadratic fluctuations
around the BPS configurations and subsequently sum/integrate over the space of BPS
solutions. Since Hj; is introduced through a Q-exact deformation (2.10), all (appropriate)
choices of Hy; should leave the partition function invariant. We will see in detail how this
expectation works out.

Since the classical action for the hypermultiplet is Q-exact, we only need to evaluate
the Yang-Mills action (B.4) and the Fayet-Iliopoulos action (B.7). Furthermore, through an
index theorem, the one-loop determinants on Sgl can be computed straightforwardly [1, 22]:

0\
2@ = [T totia@).  Z8b,@ = [[ o (w@+§) . @
gig wER

where a € g are the roots of the gauge Lie algebra g, w € R are the weights of represen-

tation R in which the hypermultiplet transforms, and Q = b+ b~1, with b = /¢/ (. Here
we assumed that the (rescaled) equivariant gauge transformation parameter (see (B.16))
evaluated at north and south pole are equal:

R~ (2i (¢§ v qu) + 2iR”AM> ‘N — Vi (2@ (¢§ n és) n 21‘R“AM) ‘S . (4.2

12We would like to thank Clifford Taubes for communication on this point.
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Since we are working on S*, we have ¢ = /,b=1 and Q = 2. In this section we will keep
using ¢ and ¢ indicating how our results are naturally generalized to the squashed sphere
at the level of the partition function.

4.1 Coulomb branch

The classical actions evaluated on the Coulomb branch solution (3.1) give

200 ~
SyMm = 872 a4 Tra?, Spr = —16i7200 Trpr a. (4.3)
Iym

The gauge equivariant parameter is easily evaluated to be @ = V/¢fa, which can be plugged
into (4.1). Taking into account the point (anti-) instantons at north and south pole, the
total partition function can then be written as

)

p 1 rank G _ 82772 Trszrl&.ﬂ_g\/ZgTrFIx ’Zinst.(xa M, bv bilv Q)’2 Hgi% Tb(la(x))
= — e
wi

H dz, IYM
ai [T, Ter, To (i(w(@) + M;) + $)
(4.4)
where Zing (z, M, €1, €2,q) denotes the instanton partition function [2, 57], we introduced
T = \/Zga, and we also included the (rescaled) hypermultiplet masses M. The integrations
are along the real line. It is furthermore relevant to mention that the poles of the instanton
partition function cancel against the zeros of the vector multiplet one-loop determinant and
thus the integrand only has poles originating from the hypermultiplet one-loop determinant.

4.2 Deformed Coulomb branch

Let us now consider the case that ¢ # 0. On the deformed Coulomb branch configura-
tion (3.6), the classical actions evaluate to

~ 2
QEZ ~

Q
Iym 12\/[!7 12\/67

Direct evaluation of (4.2) yields a = Vi (a +1 C%) . Effectively, the deformed Coulomb
12

branch thus shifts the integration contours in the matrix integral in (4.4) in the imaginary

direction x — x+ z% Note that to obtain these simple expression on the squashed sphere,
one should apply a rescaling of ¢ by a fixed function of b and b~! (which simplifies to 1 for
b=0b"1=1).

As mentioned before, the (-dependence is Q-exact and thus should not affect the
partition function. While for ( = 0 one indeed recovers the standard Coulomb branch
expression (4.4), upon turning on ¢ the integration contours are deformed and effectively
shifted in the imaginary direction. The resulting integral remains equal to the original
Coulomb branch integral until one crosses one of the poles of the hypermultiplet one-loop
determinant. From the bound (3.29), which generalizes to

mb+nb~ ' +Q/2 < % (4.6)
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one can anticipate that the positions of the poles will precisely correspond to values of ¢ for
which new smooth solutions become available: their contributions as well as those from the
Seiberg-Witten monopoles will precisely correspond to the residues of the crossed poles.

We would like to write the partition function in terms of only the contributions of
Higgs branch configurations, i.e. we would like to find a regime of parameters for which
the deformed Coulomb branch contribution vanishes in the limit (¢ — +oo. Using the
asymptotic behavior of Y;(z) for large z, which can be derived from the asymptotics of the
double gamma function [58],

08 V4(2) 320~ Qog (:(Q = ) + (= +7) sz~ Q)+ Ollog:z). (47)

where 7 is the Euler-Mascheroni constant, and introducing the U(1) charges of the gauge

representation R; as q](a)

the leading behavior in the large ¢ limit

) 2 2
lintegrand| ~ exp —% Z dim R ; <Z qj(a)fa) log (Z qj('a)Ca> +O0()|, (48)
i a a

which arises from the hypermultiplet one-loop determinant. The vector multiplet does not

= w(h*) for any weight w of the representation R;, we find for

contribute to the asymptotics since it doesn’t carry charge under the U(1)s. Similarly, only
hypermultiplets transforming in representations R; with non-zero charges qj(-a) contribute.
Finally, note that the classical action contributes only at order ¢2. We thus conclude
that if there exists a choice of (* — Zoo such that for a representation R; one finds

)N qj(a) (q — F00, suppression is achieved.

4.3 Higgs branch and Seiberg-Witten Monopoles

For finite values of (, one needs to take into account, apart from the contribution of the
deformed Coulomb branch configuration analyzed in the previous subsection, also that
of the Higgs vacua and smooth solutions, satisfying the bound (4.6), and the point-like
Seiberg-Witten monopoles. Even though we do not possess the exact expression for the
smooth solutions, it is still possible to evaluate their classical actions exactly using their

behavior in the core and the BPS equations:'?

~ 2
2 b -1 2
Sym = 87; t Tr | apv + il b ~+ 9/ (4.9)
Iym \/Zﬁ
. -1
SF1 = —16im200 Trpr (CLHV + imb + nf/»:‘_ Q/2> ) (4.10)
17

where apy denotes the value of ¢ in the Higgs vacuum.
The one-loop determinants for the hypermultiplets not acquiring a vacuum expecta-
tion value and the off-diagonal vector multiplets (which in fact combine with some of the

13Note that we are writing the result for the case where all U(1) charges equal one. The generalization
is straightforward.
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former into massive long vector multiplets through the Higgs mechanism) are straight-
forwardly obtained by inserting the equivariant gauge parameter (4.2) evaluated on the
smooth configuration,

&%{W\L/’n) — Vi <aHV + imb b 1~+ Q/2> ; (4.11)
Vi

into the one-loop determinants (4.1). The rank G hypermultiplets that do get a Higgs
branch vev combine with the diagonal vector multiplets into massive long vector multi-
plets as well. The computation of their one-loop determinants is more subtle, as is signaled
by the divergence of the hypermultiplet one-loop determinant upon inserting the equiv-
ariant gauge parameter (4.11). This divergence arises since we are considering a point on
the Coulomb branch where these hypermultiplets are effectively massless. As explained
in [6], the computation of the combined vector and hypermultiplet system is performed
by removing the corresponding zero modes via a residue prescription. The total one-loop
determinant can thus be written as

Res )[ZVM (a)Z10s(@)] - (4.12)

1-loop 1-loop
L A(m,n
a—apy

On top of these smooth solutions, we also found point-like Seiberg-Witten monopole
solutions supported at both the north pole and the south pole, see section 3.3. Their
contribution, i.e. their moduli space integral, is captured by what one may call — in
complete analogy to the (non-perturbative) k-instanton! and m-vortex partition functions
— the p(z, w)-Seiberg-Witten partition function ng\é:ﬁgﬁ;)ert.(M, €1, €2,q), which is labeled
by the particular Higgs vacuum, denoted by HV, and the complex algebraic curves p(z, w) =
Z™w"™, and is a function of the hypermultiplet masses, the Q2-deformation parameters €1, €5
and the exponentiated complexified gauge coupling ¢ = €*™7. This partition function could
in principle be computed by putting the N' = 2 supersymmetric theory on 2-deformed R*
in the presence of a Q-exact Fayet-Iliopoulos term such that the BPS configurations are
Seiberg-Witten monopoles.'®> The computation also requires integration over the moduli
space of Seiberg-Witten solutions.

At finite values of (, the total partition function is a sum of the contribution of the
deformed Coulomb branch of the previous subsection and the Higgs vacua and smooth
solutions satisfying the bound, as well as the singular Seiberg-Witten monopoles, of this
subsection. The latter contribution can be written explicitly as

Z _gsér; Tr (dg\;’n))2+16i7r2 07 Trpy (dgr{;n))
e
m,n>0
mbt§+ 353
HV,z"w™ - , .
X ‘ZSW,IZIOHIf]peI‘t. (M7 b7 b 1, q)‘ R Refl ) [Zl'loop(a)Zl—loop(a:)] , (413)
G—> gy,

M71f one writes the full instanton partition function as Zxekr. = Zpert. Zk q’“Zk, then we mean Zi by the
(non-perturbative) k-instanton partition function. We employ similar nomenclature for vortex partition
functions and Seiberg-Witten partition functions.

15This setup is quite similar to the one employed to study the two-dimensional vortex partition function,
see [59].
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with &gz,’n) defined in (4.11) and where the modulus squared entails sending ¢ — . It is

clear that if

Zé{V\\//:rzl:n?;ertA(M’ b, bil? Q) = ZiHSt-(xHV + Z(mb + nb~! + Q/2)7 M;b, bil? q) ) (4‘14)

then (4.13) precisely contributes the residues of the crossed poles, as anticipated in the
previous subsection. Unfortunately, we are not aware of an independent computation of
Zé{v\v/:fl:n“_’;ort.(M ,b,b71 q), so instead we put forward (4.14) as a prediction. As a particular
case of (4.14), we find for n = 0 that Zins. (zuv + i(mb + Q/2), M,b,b71, q) equals the
non-perturbative piece of the four-dimensional A/ = 2 supersymmetric m-vortex partition

function in the 2-background.

The ¢ — oo limit. For ( — 400, we found around (4.8) that in favorable cases the de-
formed Coulomb branch contribution vanishes. Moreover, in this limit the smooth “(m, n)-
vortex” solutions were found to squeeze to zero size and their winding numbers are un-
bounded. The path integral is thus dominated by the squeezed vortex solutions as well as
the singular Seiberg-Witten solutions. We will denote their total resummed contribution
in the Higgs vacuum HV rather unimaginatively as Z (HV)

resummed’
The partition function in this limit is then computed as follows:

z= Y ZiV Z MV 2 (4.15)

cl. 1-loop resummed
Higgs vacua HV

First of all, the summation runs over the finite set of all possible Higgs vacua of the theory. '
The real scalar field ¢; is solved in terms of the hypermultiplet masses as ¢1 = agy. Let
us also introduce zpy = \/ZZ@HV. Next, the classical actions in (4.9) provide weighting
factors for Z\1Y)

resumme

2 2 _
’ 9YyMm 2 92

4 and an overall classical factor. The latter is given by

, (4.16)

while the weighting factor for the “(m,n)-vortices” and additional singular Seiberg-Witten
monopoles reads

efs(HV,m,n) — (qq)Tr(ib(mHV+iQ/2)m_§m2) 6167T2i\/figT\rF1 bm

T h— y 72 . z —_
5 (qq)Tr<1b l(fEHerlQ/Q)n*bT”Q) elﬁn%\/[f’[‘rplb In (qg)f’l‘r(mn)_ (4.17)

Next, the one-loop determinant for the vectormultiplet and the chiral multiplet not ac-
quiring a vacuum expectation value are as on the Coulomb branch, but with * —
zpv. The rank G chiral multiplets getting a vev produce an extra residue factor

, NN L . 1 (HV) o :
[2711 Res T, (zx)} . Together they constitute Z; j  °. Finally, let us give some more
details on Zr(esxgme 4- It can be written schematically as
(HV) . HV mn) _S mn (HV,m,n) HV 2Mw™ 2
Zresummed - Z resummed Z e v, ) Zpert ZSW,non-pert. ’ (418)
m,n>0 m,n>0

where eSv.mm s given in (4.17) and Z&\ flonwpert was introduced below (4.12).

16Recall from subsection 3.3 that we restricted our attention to theories with generic masses ensuring the
discrete nature of the Higgs vacua.
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Recalling the nature of the smooth solutions for n = 0, as a vortex of winding m

in the plane R? wrapping an S2, one can identify ZﬁiXmT?nZd: 9 as the S2-theoretic m-

vortex partition function. Recall that we indeed already identified Zé{v\\//i:n-p ort. s the non-

perturbative piece of the m-vortex partition function in the Q-background. Alternatively,

(HV,m,n=0) . )
resummed is the 5

indeed the structure of a Higgs branch localized partition function on the two-sphere,

partition function of the m-vortex worldvolume theory.!” It has

see [5, 6, 62]. We will see an explicit example in the next section. Similar considerations
are valid for m = 0.

5 Matching with the Coulomb branch integral

In this section we briefly show that Coulomb branch and Higgs branch localization indeed
produce the same partition function for the simplest case of a U(1) theory with N; funda-
mental hypermultiplets. The computation amounts to closing the integration contour in
the Coulomb branch integral and computing the residues of the encircled poles.'®

We start with the Coulomb branch integral (4.4) specialized to the U(1) case

Z

= / o B o | Zi (2, MDD g) (5.1)

i I (it + M)+ §)

Here the masses satisfy the relation Z,iv:f 1 M), = 0 since the flavor symmetry group is
SU(Ny). Furthermore, the instanton partition function is given by [2, 57]

Ny W(Y) v,

Zinst.(x, M, €1, €2, q) qu H H H< (x + M;) 61;62 +61r+egs>

j=1 r=1 s=1

y 2|1y| o0 I’(Yr—}@—:—;(S—T—i—l))F(—:—;(S—T)) 52

& ST (V=Y = 85— ) T (-2(s —r+ 1)

as a sum over Young diagrams Y. Each Young diagram Y encodes a non-increasing se-

quence of integers (Y1 > Y2 > ... > Yiy(v) 2 Yiw(yv)+1 = Ywy)42 = . .- = 0), where W (Y))
is the width of the Young diagram. The total number of boxes in the diagram is denoted

by |Y|. The instanton counting parameter is given by ¢ = €2™7, with 7 = % + giﬁz' The
first factor captures the contribution from the hypermultiplets, while the second factor
those of the vectormultiplet. We denote them by zpy and zyy respectively. The latter
can be simplified by splitting the infinite products over r, s into the four regions r,s < W,

and r < W,s > W, and r > W,s < W, and r > W,s > W, where W > W(Y) is any

17Considering a four-dimensional A = 2 gauge theory with gauge group U(N.) and Ny > N, fundamental
hypermultiplets, the m-vortex worldvolume theory is given by a two dimensional N' = (2,2) gauge theory
with gauge group U(m) and N. fundamental chiral multiplets, Ny — N, anti-fundamental chiral multiplets
and an adjoint chiral multiplet [60, 61]. Note that the vortex theory contains vortices itself.

!8The U(N) generalization of this computation has been considered in [53], which however performs an
incorrect truncation of the sum over Young diagrams in the instanton partition function upon plugging in
the position of the pole.
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integer larger than or equal to the width of the Young diagram. The last region does not
contribute, while various manipulations in the other products result in

ZVM (Y7x7 M7 b7 bilvq) (53)
_ (_b2)|Y\ Hg‘;l(l—i-st—Yl—i—Ys)yl
[125, (1+02s)y, H}«Z:l (L0 (s—r)+Ys=Yr)y, _y, I, (L2(r—=W-=1))y.

where we use the Pochhammer symbol (y), = H?;ol (y + i) and already specified the -
deformation parameters as e; = b, ey = b~ 1.

As discussed around equation (4.8), the contour in (5.1) can be closed in either upper
or lower-half plane. We choose to close the contour in the upper-half plane and pick up
the poles at

2" = —Mj - imb b +iQ/2,  myn >0, j=1,...,Ny, (5.4)
which are located at the zeros of the T; functions in the denominator. Using the shift
formula

ol — ub— b)) = (1) To(a) [T Ty (2 — (r+ )b — (s + 1)b~ )2 -
B H B e (T - GGy »
r=0 p—1+2(z—(r+1)b)b 5=0 p1- 2(:1: (s+1)b Lyp—1
valid for positive integers p,v > 0, and with v(z) = %, one can straightforwardly

rewrite the one-loop determinants.
Plugging in the poles in the hypermultiplet contribution to the instanton partition
function, one finds

Ny w Y.

M (Y; 2 Mb b q) =TT IT I (iMj+0(r—(m+1)+b~ (s~ (n+1))), (5.6)

k=1r=1s=1

where we introduced My; = M}, — M. It is clear then that the contribution of diagram
Y vanishes if and only if it contains a box at coordinates (column,row) = (m + 1,n + 1).
Note also that we trivially replaced W (Y) with any integer W > W (Y).

In total we then find

Z 29 29y 2 mea (5.7)
where
79 = exp |- —— (Mjﬂ') + 16>V gy (Mj+i> . (59
' IyMm 2 2
) 27 Res T, (iz)
1jloop (5'9)

Hk fl Tb <’LM]€J >
k#j
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For Z (gb)ummed we find
S 'mn ) m 2
resummed - Z e " pi;? " Zé\jv ril(})n -pert. ’ (510)
m,n>0
where
efs(]',myn) (qq)zb( M;+iQ/2)m sz 6167r2i\/Zl7§F1bm
% (qq)ib_l(fMj+iQ/2)n7¥n2 61671'21‘\/677{1711)_171 (qq)fmn (511)
—1 _ . _
glimn) _ H HV (iMy; — (r+1)b))h’y(b 1(@Mkj—(s+1)b 1))
pert. —1+2(iMj; —(r+1)b)b bl—z(iMkj—(SH)b—l)b—l
m—1n—1 )
O™ T T (Mg — (r+1)b— (s + 1)b‘1)_] (5.12)
r=0 s=0
Zin e, = D a v (V2™ 0M,0,07 ) 2o (Vial™™, MLb07 ) L (5.13)
Y

where we should insert (5.3) and (5.6) in the last line. As discussed below (5.6), the sum
over Young diagrams Y is effectively truncated to those diagrams whose shape is such that
they do not contain a box with coordinates (column,row) = (m +1,n + 1).

The Special case of n = 0. In the previous section we have argued that for n = 0,
Z(jvmvn:(])

| should equal the S?-theoretic m-vortex partition function, or equivalently, the S?

partition function of the m-vortex worldvolume theory. Let us see how these expectations
are realized in the concrete example at hand. We find

G = eSomao 2000 |28 | (514
with
o= Stmm=0) — (qq)ib(fMj+iQ/2)m7%m2 16720V tlgprbm (5.15)
Zé{,’:g’nzo) _ (b,QNf)z‘b(—MjJrz‘Q/Z)m—%m2 ni—f v (_ (r+1) b2) , (5.16)
=0 H@;V(l —b(iMy; — (r+1)0))

after some straightforward manipulations and using in the second line that the masses

sum to zero. Before writing down 2%

SW non-pert. W€ should first remark that for n = 0 only

Young diagrams Y not containing a box with coordinates (column,row) = (m + 1,1), i.e
satisfying W (Y') < m, have non-vanishing contributions. We can thus use m as W in (5.3)
and (5.6) and obtain

Z%W non-pert. (517)
m N m ,n .
: v [ (1+0%s = Y1+ Yoy, Hk:fl I Tz (Mg +0* (r—m—1)+(s—1))
_b2 Ny — 7
2.(-¥a) [ o, TH (LG Vo, v

where the prime indicates the restriction W(Y') < m.
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Expression (5.14) should be compared to the S? partition function of an N = (2,2
supersymmetric U(m) gauge theory with N, = 1 fundamental chiral multiplets, Ny — N, =
Ny —1 anti-fundamental chiral multiplets and an adjoint chiral multiplet (see footnote 17).
In the conformal case, Ny = 2N, = 2, this partition function was computed in [62] (see
their section 2.3.1) and we find almost!'® perfect agreement upon identifying

5 =SF1 o 44 = O24 + (m — 1)m, ;4{1) =0, (5.18)

and .
) ) . (4 -
—ib* =mx, bM; —ib™ —i/2 =m, —ka(;éj)—i—i =m, (5.19)

where we denoted the masses in the two-dimensional theory as m for the fundamental
chiral multiplet, m for the anti-fundamental chiral multiplet, and mx for the adjoint chiral
multiplet. In particular we find that Zg’\fvrtlnon_pert_ precisely equals the vortex partition
function of the two-dimensional theory.
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A Sigma matrices and spinors
In this appendix we review our conventions, following [22], for spinors and o-matrices.

A.1 Spinors

The spinor indices o, 5,... = 1,2 and d,B, ... = 1,2 of (anti-)chiral spinors v, @d?_are
raised and lowered by antisymmetric e-tensors, which take values €2 = —ej9 = €!? =
—€j5 = 1, as follows:

1/)(1 = 6a6¢5, wd = 6d5'1/15 . (Al)

The spinor product is denoted by parenthesis () and defined as
WX) =¥ %a, (%) =daX”. (A2)
A symplectic-Majorana spinor ¢y or zﬁ 7 is a doublet of chiral or anti-chiral spinors satisfying
(Wra)t = €75, (Yra)t = ey 5 (A.3)
The doublet indices I, J, K, ... = 1,2 are raised and lowered by €/, e, with e!? = —g15 =

1, as XT = el7X;, X; = e1;X7. Note that (7¢1) = (1) W14, and (Y17 = ()8
are semi-positive products.

ib(— M +iQ/2)ym— 22 m?

9 A discrepancy arises from the factor (b74) in the perturbative part.
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Finally, given symplectic-Majorana spinors &; or §~ 1, one can define several useful bi-
linears, including

s=(ler), =€), R = (o), 0% = (&0, 0% = (657¢y),
(A.4)
where we used the o-matrices introduced in the next subsection.
A.2 o-matrices and Fierz identities
We introduce the o-matrices (0%)aq, (69)%, for a = 1,...,4, as

O'a = (—’L'Tl,—iTg,—iTg,]]_gxg), 5_a: (’iTl,iTQ,iTg,]]_QXQ). (A5)

They satisfy the defining anti-commutation relations 06 4+ 0%6% = 26%149.5, and 5%° +
5o = 26%15,,. We further introduce the anti self-dual o% = %(0“5’17 — 0%6%), and
self-dual 6 = 1(5%"° — o).
The basic Fierz identities are (for commuting spinors v, 1;)
01 (1had"1p3) = 2uhs(Parhr),
Gty (1haohs) = 243 (athr)
1
1 (Y293) — Joaphn (11120‘11)?,!)3 3 (Yat1),

U1 (Paths) — *O'alﬂbl (1h26™)3) = 24h3(1hathr).

(A.6)

(A7)

Combining the Fierz identities in the second line, one can replace spinor products with
tensor products of bilinears,

(v'er) = (5Iw1><5jwj> (sfoab¢1><£Jaawa>
(Yryh) = g(fﬂﬁ DEmpT) + g(&&“%[)(éﬁablz‘])-

(A.8)

These identities will be useful in section 2 for rewriting the Q-exact deformation terms.

B N = 2 vector multiplet and hypermultiplet

N = 2 Killing spinors on Eculidean four-manifolds. As discussed in [22] (see
also [23, 63]), four-dimensional N = 2 supersymmetric theories can be placed on compact
Euclidean manifolds with metric g, if one can find symplectic-Majorana spinors {7 and é I
solving the generalized Killing spinor equations

D& = =T 0,08 — i0,&) (B.1)
Du&p = —T™6\,6,81 — i6,&]
and the auxiliary equations
o1& D, Dy &1 + AD\T,,, 0" 0 ér = Mér (B.2)

&1 D, Dy &r + 4D\T,, 6" 6 ¢ = MéE; .
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Here I,J,... = 1,2 denote SU(2)x indices. The generalized Killing spinor equations and
auxiliary equations contain the real (anti-) self-dual tensor background fields 7},,, TW, and
the scalar background field M. Moreover, the covariant derivatives contain an SU(2)r
background gauge field (VM)I ;- The spinors &7, E’I are arbitrary anti-symplectic-Majorana
spinors. These primed spinors and the background fields T, T, M, and V are part of the
freedom in solving the equations. We take & and & to be bosonic spinors satisfying the
above equations and denote the corresponding supercharge as Q.

Vector Multiplet. An off-shell N' = 2 vector multiplet contains the gauge field A,
complex scalars ¢, ¢, (anti-) chiral symplectic-Majorana spinors A; and A7, and an SU(2)z
triplet of auxiliary fields D ;7). Their transformation rules are given by [22]

QA/L = i(éjauj\l) - i(éla'u)\l)
Qb = —i (€'\))
Q5 = +i(€hy)

O\ = é““”&(FW +80T,) + 2 (Dyd) s + b0 D,y + 2its 6, 6] + Drge? (B3)

QA = %&Wé(FM + 8¢Ty) + 2(Dyd)5t s + ¢+ Dyér — 2ir[p, @) + Dr €’
QDry = —(£6" DyAy) +i(§0" Dyudy) — 28, (§rA0)] + 26, (EA)] + (T < J) .

The supersymmetric Yang-Mills action is given by [22]
Syn = 921 d*z/g Tr BFWFW + 16 F,, (§TH + ¢TH) + 64¢°T),, T
+ 64¢°T,, TH — %Dl ID1j — 4D, ¢D ¢ + 2M b
+4(6, 92 = 2N 0" D, 1) — 20V (3, M) +2(V [0, A1))| (B4)
which is positive definite upon imposing the reality properties
Al = A, ¢l = -9, (D))" = -D', (B.5)

on the bosonic fields, while one maintains the symplectic-Majorana nature of A, X, If
the gauge group contains a U(1) factor, one can also introduce a Fayet-Iliopoulos term.
Introducing an SU(2)% triplet background field w!” satisfying

wlley = —2i¢" v 210 ,,¢l wllEy = 20" + 2T 5,,,ET (B.6)

one can write the invariant action [22]
Spr= / d*z/g Trpy [wI ID1j—M(¢p+)—64¢TH Ty — 64T Ty — 8 F* (Tyu+ Ty |
(B.7)

where Trpr denotes a trace that weighs each U(1) factor in the gauge group with its own
Fayet-Iliopoulos parameter &gy.
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Hypermultiplet. An off-shell N' = 2 hypermultiplet?® consists of scalar fields g7, the
fermions 14,14, and the auxiliary fields Fy 4. Here A,B,C,... = 1,2 denote USp(2)
indices (which is broken to the Cartan upon gauging), and I',J’,... = 1,2 are SU(2)r/
indices. Furthermore %4 and 1/; 4 are ()-symplectic-Majorana spinors,

(Paa)' = PV Ysp,  (Yan)T = PP, (B.8)
while ¢ and F (canonically)?! have reality properties

(q14) = VP g5, (Fpa) =048 Frp, (B.9)

where Q15 = —Q!2 = —1 is the symplectic form of USp(2). Note that the reality property
of ¢ implies it can be written as

qr=1= (?) , qr=2 = <_?T) : (B.10)
q q

The A =1 and A = 2 components reside in complex conjugate representations 9R, R of the
gauge and/or flavor group G. A hermitian generator 7' € g in representation R acts on
any field K4 as

TK;
T -Ky= B.11
4 (—T*Kg) ’ (B.11)
and thus an adjoint field = = Z%T“ acts as
_ _ =ere 0 Ka—y
E-Kp4=Z2T Ky = . B.12
A A ( 0 —E“(T“)*) (KA:2> (B.12)

The supersymmetry transformation rules are [22]

Qqra = —i (E19a) +i(Erva)
Qs = —20"¢" Dygra — 0# Dyl qra + 4i€" ¢ - qra — 2¢" Fpra

Qba = —25"¢'Dyqra — 6* Dyl qra + 4i€'¢ - qra — 20 Fria (B.13)
QFpia = i(Crro”Dytpa) — 2(Cprdp - ha) — 2(Co M) @k + 20Ty (Cpoaba)
{ —i(CpE* Dyiba) + 2(Crd - da) + 2(CoAg)gh — 20T, (Cpa™da) .

where the extra symplectic-Majorana spinors ¢ and ¢ satisfy
(&1¢rr) = (&Cr) (¢ =s, "¢ry=5, R+ (o) =0. (B14)

The supersymmetric action for the hypermultiplet is Q-exact [22] on the ellipsoid and
thus does not play a role in the localization computations of this paper. One should remark
though that it is only positive definite upon choosing the alternative reality properties for
the auxiliary fields

Fra=—"0%BF;5. (B.15)

20The multiplet is off-shell with respect to the particularly chosen supercharge Q corresponding to the

Killing spinors &1, &r.
2! The reality property of Fra will be changed in (B.15) to (Fp4) = _QABGI/J,FJ/B to ensure a positive
definite action.
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Supersymmetry algebra. The supersymmetry algebra takes the form
Q? = _2wg+v+f/ + Gauge(®) + Scale(w) + Ry1), (©)
SU(2 S < SU(2) 5/
Ry (077 7%) + Ry (07577) - (B.16)
where L’IL%'W'W denotes a gauge, SU(2)g and SU(2)r/-covariant Lie derivative along the

vector field R, and SU(2)g/ rotates the hypermultiplet auxiliary fields. The parameters
are given by

R = (ElotE), (B.17)

O = 2ipi+2ids, (B.18)

w= -2 ((E'&)+ () . (B.19)

0= (('&H-EEN) (B.20)
o1y % =~ ((€u)) - Cudy)) (B.21)
G)?}f,(,z)ﬂ' = Qi(C(pU“DufJ/))—Qi(DuC(pJ“fﬂ))+4i(C(1/0leszJ/))—4i(C~(1f5leszJ/()l)3-22)

As in [22], we restrict ourselves to Killing spinors & 1,&r such that no scale or U(1),
transformations appear in Q2. The conditions

('e) = (& =0 (B.23)
can be solved for & and &, as

& = —iSuater, & = —iS,,6"Er . (B.24)

C Killing spinors and complex structures

In this subsection we introduce almost complex structures whose existence is guaranteed
by having a solution to the generalized Killing spinor equations (B.1) and the auxiliary
equations (B.2). They will turn out to be useful when analyzing the singular solutions to
the BPS equations.

The interplay between supersymmetry and geometry is quite rich, as for example
observed for four-dimensional theories with four or fewer supercharges in [64-68]. It is
clear that we are only scratching the surface here, and a more in depth analysis would be
very interesting.

C.1 Locally almost complex structures

Let &7 and £ to be the solutions to the generalized Killing spinor equations (B.1) and the
auxiliary equations (B.2). Then given any symplectic-Majorana spinor x; and X such that
(€1x") =0, (&rx') = 0, one can define two almost complex structures away from the zeros

of € and €
1

SSy

—_

JH, = (glauuxl) ) juu = (é]éuvil) ) (C.1)

Va3
=

S
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where s, = (XI Xf)v sy = (xrX!) are both positive semi-definite. Using Fierz identities, it
is easy to check that

JJN, = =68 TN, = =01, TTN, = TR TN, (C.2)

Where £ is non-zero, one can write x; = m;’&y or xr = my, o §r and similarly for

~ . . . . . - / ! .
X, where myy is a triplet of functions satisfying mr; = el mp 1, and My is a real
anti-self-dual 2-form. The two representations are interchangeable, for instance, my; and

m,,, are related by

1
My, O = PRUOEE (C.3)

In the following, when we need to, we pick the representation of xj using my s, and similarly
for xr.
On open sets where the locally almost complex structures are defined, one can introduce
the decomposition of tangent vectors with respect to J and J respectively:
{ JX10 = ix10 { JXW0 = X1

JXON = —ix0" | JXO = X0 (4

A (p, q)-type vector can be characterized using spinorial equations. First of all, taking
JX =iX as an example,

{\/@ (o5, x1) + z% (¢ J“&V&)] XV =0

1 . 1 -
{ — (§Ia“aVX1) + i— (XIU"UVXI)] X" =0
X X

JX =iX & (C.5)

Multiplying X" to the two equations on the right, and subsequently taking their sum, it
is easy to verify that one obtains a semi-positive product

SAFAT = X st (o) + 205”25 (Vo) + 57 (E own) | X 20,

Ié
(C.6)
where A¢ = XH(5,) (3;1/%(17 + i8_1/2§[7>. Therefore,
JX =iX & Ar = XF5, (S;WXI + is_1/2§[> —0. (C.7)
Similarly, one can derive the spinorial condition for X to be (p, q)-vector of J or J:
JX =iX & X5, (5;1/% + z'sfl/?gl) —0
: (C.8)
JX = —iX & X', (3;1/2x1 - z's_l/2£]) —0
JX =iX & XV, ( - z’s*l/Qg}) —0
(C.9)

5
JX = —iX & X0, (;1/221 + z‘s—l/?g}) —0
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C.2 Integrability

It is possible that the almost complex structures induced by Killing spinors are integrable.
In the following, we consider x; = m;’/&; and study the conditions for J to be integrable.

Before moving on to the detail, let us make a remark. Notice that J,, is anti-self-dual
and j,w is self-dual. That implies that, with the implicitly chosen orientation, one has the

decomposition of self-dual and anti-self-dual 2-forms
J U g (C.10)
Q0 =0202020a 7.0 — /b1’ :
g J i

where the prime indicates removing components along J and J in the first and second line
respectively. Therefore, for instance, if X, Y are (1,0); vectors, then any self-dual 2-form
@ satisfies

B (X,Y) =0 (C.11)

because w has no components in Q?,’O.
Let X, Y be (1,0); vectors with respect to J. We wish to analyze which conditions
guarantee that their Lie bracket is still of type (1,0), i.e., we want to study when

(XIV, Y = YV, X7) 6, (57120 +is72r) = 0. (C.12)

1J

Note that s, = %sm mry = sM, hence the condition can be rewritten as

0= (X"Y” — X*Y")&,D, (M*Wmﬂg I+ i§I> (C.13)
— (XMYY — XVY") 5, <Du (M‘1/2m1‘]) €+ MY 2m Dg; + iDM&) (C.14)
= (XY = XY 6, D, (M2 ) &

—(XPYY — XYY (M*I/zmﬂ + z‘é{) (TAP&VUA,,UM{ It z‘&wéj,) . (C.15)

Using the fact that a self-dual 2-form has no (2,0); components and T*(G,0x,0,—p <>
v) = 8T},,, the condition reduces to

0= (XPYY — XVYH) [@DM(M*l/?mH)gJ T (M2 E) z’éf)} . (C.16)

This expression vanishes and therefore J is integrable if

1
D, <m1J> =0, T=T7"=0. (C.17)

/mKLmKL

D Geometry of ellipsoid

D.1 Some useful properties

Let us first list a few useful general properties of the bilinears (A.4) one can construct given
a Killing spinor solution &; and &;. As a direct consequence of (B.1), one finds
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e 0,5 =8R"(Tyw — Suw), 0,5 = 8R” (T — Sy
o diyy = 83(Tyw — Suw) + 85(Tyw — Syw), which implies RFdr,, = 0,,(s3).

Following [22], we define

wry =457 O (T — Spw),  Wry = —45 10T — Su) - (D.1)
By a Fierz identity, wy; and wy; satisfy
wrg€’ = =T = Suw)o&r, 58" = —(Ty — Spw) & . (D.2)
D.2 Ellipsoid

The ellipsoid can be defined by its embedding equation in R

2 2 2 2 2
0 1 2 3~ 4

2 7 7z =1. (D.3)
Introducing polar coordinates
To =TCosp, x1 ={sinp cosf cosp , x3={sinp sinf cosy , (D)
xg ={sinp cosf siny, x4:@sinp sinf siny , .

its metric can be written in terms of the vielbeins

el =lsinpcosf dp, €?=/Isinpsingdy, e*=fsinpdd+hdp, e*=gdp, (D.5)

where f=1/¢2sin?0+72cos20, g= \/7‘2 sin? p+0202 f=2 cos? p, and h= E?T—e? cos psin 6 cos 6.
In [22], a solution to the generalized Killing spinor equations (B.1) and the auxiliary
equations (B.2), also satisfying the orthogonality condition (B.23), was found. It reads

1.p etx+e—0)/2 s p [ etlxte=0)/2
S=1= 8o | icrote)2 =1 = 5 €085 | _pitereto)/2
: . (D6
1. p et(=x—p—0)/2 - p [ ell-x—¢=0)/2 (D-6)
Sr=2 = 8o | ioxpro)2 §1=2= =5 0085 | Lit-x—eto)/2

The corresponding explicit expressions for the auxiliary fields 7}, , T, s Sy S’W, V,, and M
can be found in [22].

Introducing 79 = cosfT; + sinfm and 729 = iTy73, one can note that & and é 7 are
eigenvectors of 19: 179&1 = —&1, 1€ = &9, 7951 = —§~1, 7952 = 52. Furthermore, one finds
for the simplest bilinears defined in (A.4)

s=(8'en) = SiDQg’ §= (&g = COS2g, R* = (¢loné)) = _Sigﬂ

(cosfel + sinfeh) .

(D.7)
In particular one finds that s + § = 1. It is also important to note that wjy; and wyy
defined in (D.1) are equal on the ellipsoid and using (D.2) can thus be used to define a
Fayet-Iliopoulos action as in (B.7).
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As discussed in appendix C.1, one can define various almost complex structures away
from the north or south poles. In particular, we consider

Jh, =2isTHOw)",, I, =2i5 1 (O)" . (D.8)

where J is defined away from the north pole (p = 0), and .J is defined away from the south
pole. Here we chose xj o (TS)Iij, and X7 o< (7%);7€;. In vielbein indices, the two almost
complex structures read

0 0 —sinf —cos6 0 0 —sinf cos6
0 0 cosf) —sinf ~ 0 0 cosf sinf
pr— p— D .
J sinf —cosf 0 0 ’ J sinf@ —cosf® O 0 (D-9)
cosf sinf 0 0 —cosf —sinf 0 0

One can verify that the conditions (C.17) are satisfied and thus that they are integrable.
Note also that the forms ©7; and ©;; for equal indices I = .J are elements of the (2,0)
or (0,2)-forms with respect to J and J:

61 € 93’2, Oy € Q?]’O, (:)11 S Q(}’z, (:)22 S Q2J~’O . (D.l())

Near p = 0, the complex structure J reduces to the opposite of the usual complex structure
on R* = C? parameterized by (71,2, 73, 24), and T}’O = span {0y, + 10zy, Oy + 104, }-
D.3 Round S§*4

Setting ¢ = ¢ = r, the ellipsoid in (D.3) becomes the round sphere of radius ¢. On this
round geometry, various simplifications occur and some special properties help simplify the
discussion. First of all, some of the auxiliary fields appearing in the generalized Killing

spinor equations and the auxiliary equations vanish:
= J
T,u,l/ = dpuyy = (V,u)[ = O, (Dll)

while the auxiliary field M is simply given by
4

M = - (D.12)
For 5} = —15,,0"&r and 5} = —Z'SWFI’“’EI one finds
1 1 ~ 1 - ~ 1 -
gi = 27651 ) gé = 7276527 éi = ?Zé-l, gé = *2*€€2 . (D13)

Recalling that dk can be expanded as in (D.1), one finds on the round sphere, dr,, =
—8§5’W — 855,,,. Hence one has

dkiy, = =85Sy = 80" J = 20 (O12) 1, (D.14)
dif, = =858, = =50 Ju = —2i07 (O12) v,
and R*(S,y + Su) = 0.
Finally, the triplet of functions w;; = wr; defined in (D.1) read:
. - 1 - -
Wi = W1 = Wiz = W21 = =, w11 = w2 = W11 = Wa2 = 0. (D.15)
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