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Ellipsoidal Unfalsified Control: Stability

Jeroen van Helvoort, Bram de Jager and Maarten Steinbuch

Abstract— Unfalsified Control is a direct data-driven, plant-
model-free controller design method, which recursively falsifies
controllers that fail to meet the required performance specifi-
cation, making them ineligible to actually control the plant. In
this paper it is shown that sufficient conditions for stability can
be derived for Unfalsified Control with an ellipsoidal Unfalsified
set, Ellipsoidal Unfalsified Control (EUC), under the mild
assumption that there exists at least some region in the original
candidate controller pool, which contains controllers that meet
the performance specifications. One of these conditions is a
finite number of controller switches, which is guaranteed by
imposing a maximum volume ratio between two consecutive
ellipsoidal Unfalsified sets.

I. INTRODUCTION

The concept of Unfalsified Control is introduced in
[1], as a data-driven plant-model-free control approach.
It recursively falsifies control parameter sets that fail to
satisfy a performance specification, given measured data
and specified control law. Although in early works the
parameter space was gridded (resulting in a finite, but often
large, set of candidate controllers), this restriction was lifted
by applying a quadratic performance specification to a
control law where the control parameters appear affine [2],
[3]. As a result, a continuous region of unfalsified control
parameter sets can be regarded, hence, with infinitely
many controllers. In Ellipsoidal Unfalsified Control [3], the
continuous region of controllers is described by an ellipsoid,
resulting in simple algebraic equations to describe the entire
set (An introduction to Ellipsoidal Unfalsified Control will
be provided in Section II).

A crucial element for any control design method is
the notion of stability. Especially for a plant-model-free
control design method, no a priori statements can be made
whether a specific controller is stabilizing the closed loop
system. In [4] it was shown that for general adaptive
controller schemes, sufficient conditions for stability can
be derived, under the assumption that there exists at least
one robustly-stabilizing and -performing controller in the
candidate controller pool. The conditions imply that the cost
functional is cost-detectable (i.e., the cost goes to infinity if
the controller is unstable) and that the number of controller
switches is finite. The latter condition is satisfied by
imposing a monotone non-decreasing cost functional which
is bounded from above and some minimum improvement
in the cost functional between two consecutive controller
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switches. Furthermore, if a continuous set of controllers
is regarded, some neighborhood around a controller with
similar performance is required (hence, which is falsified
simultaneously). See also [5], [6] for applications of these
results to unfalsified multiple-controller adaptive control
schemes.

The main result of this paper is the introduction of a finite
number of controller switches to Ellipsoidal Unfalsified
Control theory. This is done, not by imposing restrictions
on the (implicit) cost functional, but by exploiting the
(explicit) decrease in volume of the Unfalsified set. It is
shown that, under the mild assumption that there exists a
region E in the candidate controller pool of some volume
e > 0 with stabilizing and performing controllers, stability
of Ellipsoidal Unfalsified Control is guaranteed with only
a minor adaptation to the algorithm as introduced in [3].
Hence, even with infinitely many controllers, a finite number
of controller switches is guaranteed.

An introduction to Ellipsoidal Unfalsified Control is given
in Section II. In Section III, sufficient conditions for Ellip-
soidal Unfalsified Control to be stable are provided. The
conditions for stability are elaborated in Section IV (cost
detectability) and Section V (finite number of controller
switches). A simulation example is provided in Section VI,
and the conclusions are presented in Section VII.

II. ELLIPSOIDAL UNFALSIFIED CONTROL

In this research, the Ellipsoidal Unfalsified Control (EUC)
approach is considered, as developed in [3]. This data-driven,
plant-model-free controller design method recursively falsi-
fies controller parameter sets that fail to satisfy a performance
specification, given measured data and a specified control
law. In this section, an overview of Ellipsoidal Unfalsified
Control is given.

A. Data Acquisition

The only “plant information” required by EUC is
measurement data. The EUC algorithm is applied each time
new measurement data becomes available.

B. Candidate Controllers

A “cloud” of candidate controllers is selected, the
candidate controller set. When no measurement data is
available yet, no controllers have been falsified, and the
candidate controller set is, trivially, equal to the initial
candidate controller set. When measurement data is
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available, though, candidate controllers might get falsified,
and the approximation of the set of currently unfalsified
controllers, the Unfalsified set, is used as candidate
controller set.

Definition 1: The True Unfalsified set is the set of
controllers, which are currently unfalsified by all available
measurement data.

Definition 2: The Unfalsified set is the approximation of
the True Unfalsified set.

The need for gridding of the candidate controllers is
overcome by describing the Unfalsified set with a continuous
region. In Ellipsoidal Unfalsified Control, the Unfalsified set
is defined by an ellipsoid, see [2], which allows for the
evaluation of the entire set with simple algebraic equations.
The Unfalsified set at time tk−1 is described by the ellipsoid

E(tk−1) = {θ|(θ−θc(tk−1)
)T Σ−1(tk−1)

(
θ−θc(tk−1)

)≤1}
(1)

with θ ∈ R
p the controller parameters, θc(tk) ∈ R

p the
center of the ellipsoid and Σ(tk) ∈ R

p×p the matrix, which
describes the shape of the ellipsoid.

C. Fictitious Reference

For every controller in the candidate controller pool,
a “fictitious reference” rfict is constructed. The “fictitious
reference” is an abstract notion, but it can be thought of
as a controller parameter dependent reference, that would
have resulted in exactly the measured input and output,
if that controller would have been in the loop during the
measurements.

Adaptation mechanism

K(θ̌(tk), r(tk), y(tk), z−1) Plant
r(tk)

u(tk)

y(tk)

Fig. 1. General setup of closed loop feedback system with adaptation of
controller parameters

As an example, consider the general closed loop adaptive
feedback system as given in Fig. 1. Here, r(tk) is the (actual)
reference, u(tk) is the plant input and y(tk) is the plant
output. The currently implemented controller parameters are
denoted with θ̌(tk) and z−1 is the discrete time shift operator.
Assume that plant input u(tk) can be written as

u(tk) = K(θ̌(tk), r(tk), y(tk), z−1)
= Kr(θ̌(tk), z−1) ∗ r(tk) + Ky(θ̌, y(tk), z−1)

(2)

with ∗ a discrete-time convolution. Then, for a given u(tk)
and y(tk), the controller parameter dependent fictitious
reference rfict(tk) is given by

rfict(θ, tk) = Kr(θ, z−1)−1 ∗ (
u(tk) − Ky(θ, y(tk), z−1)

)
(3)

As can be seen from (2) and (3), for θ = θ̌(tk), rfict(θ, tk)
exactly results in the actual reference r(tk), provided that
Kr(θ) is causally-left-invertible. Of course, the restriction
that Kr(θ, z−1) is invertible limits the selection of candidate
controllers. However, still a large class of controllers is
available.
Let the controller structure be chosen such, that rfict(θ, tk)
is affine in the controller parameters θ. Then (3) can be
rewritten as

rfict(θ, tk) = w(u(tk), y(tk), z−1)T θ (4)

Note that the concept of a fictitious reference enables the
evaluation of controllers, even if they were not in the loop
at the time of the measurement.

D. Unfalsification

Given a desired performance specification, and exploiting
the fictitious reference, a region can be constructed of
controller parameters which are unfalsified by current
measurement data.

Let the performance specification be defined as a time-
dependent maximum allowed tracking error Δ(tk), as in [3].
Then the region of controller parameters, which is unfalsified
by current measurement data at time tk, is given by

U(tk) ={θ | −Δ(tk) ≤ (5)

Gm(z−1) ∗ rfict(θ, tk) − y(tk) ≤ Δ(tk)}
={θ | −1 ≤ (6)

Gm(z−1) ∗ w(u(tk), y(tk), z−1)
Δ(tk)

T

θ − y(tk)
Δ(tk)

≤ 1}

with Gm(z−1) the desired closed loop dynamics. From (6)
it is clear to see, that U(tk) defines two parallel half-spaces
in the controller parameter space.

E. Update Unfalsified set

The region of controllers, that is unfalsified by all
available measurement data (hence, including all past and
present measurement data), is given by the intersection of
the candidate controllers E(tk−1) from section II-B (the
controllers that are unfalsified by past measurement data)
and the controllers U(tk) from section II-D (the controllers
that are unfalsified by the present measurement data).

To maintain an ellipsoidal Unfalsified set, the intersection
E(tk−1) ∩ U(tk) is approximated by a minimum-volume
outer-bounding ellipsoid E(tk). Since U(tk) defines two
parallel half-spaces, this approximation can be computed
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analytically, as was shown in [7]. To compute E(tk), define
the variables

yk =
y(tk)
Δ(tk)

(7)

φk =
Gm(z−1) ∗ w(u(tk), y(tk), z−1)

Δ(tk)
(8)

g = φT
k Σ(tk−1)φk (9)

a+ = max
(yk − φT

k θc(tk−1) − 1√
g

,−1
)

(10)

a− = max
(−yk + φT

k θc(tk−1) − 1√
g

,−1
)

(11)

If a+a− ≥ 1/p (Recall from (1) that p is the number
of controller parameters), E(tk−1) is the minimum-volume
outer-bounding ellipsoid of the intersection, hence, E(tk) =
E(tk−1). Consequently, Σ(tk) = Σ(tk−1) and θc(tk) =
θc(tk−1), with Σ(tk) and θc(tk) as in (1).
For a+a− < 1/p and a+ �= a−, E(tk) is defined by (see [7])

Σ(tk) = δ

(
Σ(tk−1) − σ

g
Σ(tk−1)φkφT

k Σ(tk−1)
)

(12)

θc(tk) = θc(tk−1) +
σ(a+ − a−)

2
√

g
Σ(tk−1)φk (13)

with

δ =
p2

p2 − 1

(
1 − a2

+ + a2
− − ρ/p

2

)
(14)

σ =
1

p + 1
·[

p +
2

(a+ − a−)2
(
1 − a+a− − ρ

2

)]
(15)

ρ =
√

4(1 − a2
+)(1 − a2−) + p2(a2

+ − a2−)2 (16)

If a+ = a−, (15) becomes unbounded. Therefore, for
a+a− < 1/p and a+ = a− = a, E(tk) is defined by

Σ(tk) =
p(1 − a2)

p − 1

(
Σ(tk−1)

− 1 − pa2

(1 − a2)g
Σ(tk−1)φkφT

k Σ(tk−1)
)

(17)

θc(tk) = θc(tk−1) (18)

F. Controller Selection

A controller, that is unfalsified by the available measure-
ment data, is to be selected to be inserted in the loop. Or
in other words, one controller inside the new Unfalsified
set E(tk), as derived in the previous section, is to be
implemented.
Consider

γ = φT
k θ̌(tk−1) − yk (19)

with θ̌(tk−1) the currently implemented controller
parameters (as in (2)). Note from (6) through (8) that
for |γ| > 1, θ̌(tk−1) is falsified by current measurement

data.

Lemma 1: θc(tk) is always unfalsified by U(tk), i.e.,
θc(tk) ∈ U(tk).

Proof: As explained in Section II-E, E(tk) ⊃ (E(tk−1)∩
U(tk)). Assume that there is some ellipsoid E∗ with center
θ∗c , such that E∗ ⊃ (E(tk−1) ∩ U(tk)) and θ∗c /∈ U(tk).
Because θ∗c /∈ U(tk), it holds that a+ > 0 or a− > 0 (from
(6) through (8): |φT

k θ∗c − yk| > 1). Then a+a− ≤ 0 < 1/p,
hence, ∃E∗∗ ⊃ (E∗∩U(tk)) ⊃ (

(E(tk−1)∩U(tk))∩U(tk)
)

=
(E(tk−1) ∩ U(tk)) of smaller volume then E∗.
Hence, for E(tk) to be of minimal volume, θc(tk) has to be
in U(tk).

From Lemma 1, it can be concluded that θc(tk) is both
in E(tk) (trivially) and in U(tk). Therefore, θc(tk) is a
legitimate choice for the controller parameter set θ̌(tk), if
the old controller parameter set θ̌(tk−1) is falsified. This is
implemented in the controller parameter update algorithm

θ̌(tk) =
{

θ̌(tk−1) if |γ| ≤ 1
θc(tk) if |γ| > 1

(20)

III. STABILITY OF ADAPTIVE SYSTEMS

Ellipsoidal Unfalsified Control only considers the
external, or input-output, behavior of a plant, in contrast to
the internal, or state-space, behavior. This naturally leads
to the stability concept of bounded-input bounded-output
stability.

Definition 3 (BIBO stability): A system is called
bounded-input bounded-output (BIBO) stable if the system
has bounded gain [8, p. 218].

From definition 3 it can be concluded, that the output
of a BIBO stable system will remain bounded for all time,
for any finite input (and initial condition). Since only finite
time data is considered, the stability of a system (with a
fixed controller) can at best be unfalsified. That is, at best
it can not be concluded from available data, that the system
is not BIBO stable.

A. Stability of adaptive systems

In [4], properties are imposed on a feedback adaptive
control system, such that the adaptive system is stable.
Crucial assumption is the “feasibility assumption,” i.e., that
the adaptive control problem is feasible.

Assumption 1 (Feasibility): It is assumed that there exists
at least one controller in the candidate controller pool,
which is robustly-stabilizing and -performing, hence, which
satisfies given performance and stability constraints at all
times.

Definition 4 (Cost-detectability): Let J(K, zdata, tk) be
a cost functional, with controller K, measurement data
zdata, and time tk. A system is said to be cost detectable if,
whenever stability of the system with controller K in the loop
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is falsified by data zdata, then limτ→∞ J(K, zdata, τ) = ∞
(See [4], Definition 11).

Lemma 2 (Stability): Consider an adaptive scheme with
an associated cost functional J(K, zdata, tk). Suppose that
the adaptive control problem is feasible. Then stability of
the adaptive scheme is unfalsified, if the cost-detectability
property is satisfied and if the maximum number of
controller switches is finite (See [4], Lemma 2).

Remark: In [4], restrictions are imposed on the cost
functional J(K, zdata, tk) to guarantee a finite number of con-
troller switches. Namely, J(K, zdata, tk) has to be bounded
from above, be monotone increasing and a minimum im-
provement in the cost functional has to be achieved before
the controller is updated.

B. Stability of Ellipsoidal Unfalsified Control

Consider the feasibility assumption 1. To better suit the
Ellipsoidal Unfalsified Control framework, the assumption
is somewhat altered.

Assumption 2 (Feasibility EUC): It is assumed that there
exists at least a region E in the candidate controller
pool of some volume e > 0 with stabilizing and
performing controllers, hence, which satisfy the performance
specification at all times.

Remark 1: The assumption that there exists a region
of some volume is more natural to Ellipsoidal Unfalsified
Control then the assumption of one controller, which
corresponds to an ellipsoid with zero volume.

Remark 2: By the definition of the performance
specification, E is a convex set.

Theorem 1 (Stability EUC): Consider Ellipsoidal
Unfalsified Control, as introduced in Section II, with
performance specification as in (5) and controller switching
algorithm as in (20). Suppose that the EUC problem is
feasible. Furthermore, impose a maximum volume ratio
δV ≤ ν < 1 on two consecutive ellipsoidal Unfalsified sets,
if the Unfalsified set changes. Then the EUC system is
BIBO stable.

Proof: Stability of the adaptive scheme is unfalsified,
if the cost-detectability property is satisfied and if the max-
imum number of controller switches is finite (Lemma 2).
As will be shown in Section IV, with the performance
specification (5), the cost detectability property is satisfied.
Furthermore, as will be shown in Section V, with the
controller selection as in (20) and a maximum volume ratio
δV between two consecutive ellipsoidal Unfalsified sets, the
maximum number of controller switches is finite.

IV. COST-DETECTABILITY

As stated in definition 4, a system is said to be cost
detectable if, whenever stability of the system with con-
troller K(θ) in the loop is falsified by data zdata, then

limτ→∞ J(K(θ), zdata, τ) = ∞. However, the cost func-
tional for Ellipsoidal Unfalsified Control is only spec-
ified implicitly. Therefore, consider the cost functional
J(K(θ), zdata, tk), defined by⎧⎪⎪⎨⎪⎪⎩

J(K(θ), zdata, tk) = (θ − θc(tk))T Σ−1(tk)(θ − θc(tk))
for K(θ) unfalsified

J(K(θ), zdata, tk) = ∞
for K(θ) falsified

(21)

with θc(tk) and Σ(tk) defined by the data zdata at time tk.
Should a destabilizing controller K(θ) be unfalsified at time
t, and future data would indeed falsify BIBO stability at
some time t+, then the performance specification (5) will
not be satisfied for controller K(θ) at time t+. Hence, the
unstable controller K(θ) will be falsified at time t+. As a
consequence, the cost functional (21) will be ∞. Hence, if
BIBO stability is falsified for a given controller K(θ), the
corresponding cost will be ∞ and the adaptive system is
cost detectable.

V. FINITE NUMBER OF CONTROLLER SWITCHES

Ellipsoidal Unfalsified Control uses an ellipsoidal
description of the Unfalsified set, which is continuous in
the controller parameter space. Hence, an infinite number of
candidate controllers is considered. Note, however, that the
volume of the ellipsoidal Unfalsified set is non-increasing.
Furthermore, the volume is lower bounded by e, the volume
of the region E, containing the stabilizing and performing
controllers. Hence, in stead of regarding a cost functional
to limit the maximum number of controller switches, the
volume of the Unfalsified set is regarded.

A. Decrease of volume

Lemma 3: The volume ratio δV (tk) between two consec-
utive ellipsoids for a+ �= a− is given by

δV (tk) =
√

δp(1 − σ) (22)
Proof: The volume V (tk−1) of the Unfalsified set

E(tk−1) is given by

V (tk−1) = vol
(E(tk−1)

)
= Vp

√
det

(
Σ(tk−1)

)
(23)

with Vp the volume of the unit ball in R
p and Σ(tk−1)

from (1). The volume ratio δV (tk) between two consecutive
ellipsoids is given by

δV (tk) =
vol(E(tk))

vol(E(tk−1))
=

√
det

(
Σ(tk)

)
det

(
Σ(tk−1)

) (24)
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Consider a+ �= a−. Using (9) and (12), det
(
Σ(tk)

)
can be

expressed in terms of det
(
Σ(tk−1)

)
:

det
(
Σ(tk)

)
= det

(
δ

(
Σ(tk−1)−

σ

g
Σ(tk−1)φkφT

k Σ(tk−1)
))

= δp det
(
Σ(tk−1)

)
det

(
I − σ

g
φkφT

k Σ(tk−1)
)

= δp det
(
Σ(tk−1)

)(
1 − Tr

(σ

g
φkφT

k Σ(tk−1)
))

= δp(1 − σ) det
(
Σ(tk−1)

)
(25)

⇒ δV (tk) =

√
det

(
Σ(tk)

)
det

(
Σ(tk−1)

) =
√

δp(1 − σ)

Corollary 1: The volume ratio δV (tk) between two con-
secutive ellipsoids is given by

δV (tk) = −a

√
pp

(
1 − a2

p − 1

)p−1

(26)

for a+ = a− = a ≤ 0.
Proof: The result for a+ = a− = a is obtained by using

(17) to express det
(
Σ(tk)

)
in terms of det

(
Σ(tk−1)

)
. The

remainder of the derivation is similar to the proof of Lemma
3

From Lemma 3 it can be concluded that the volume of the
ellipsoids decreases when δp(1 − σ) < 1.

B. Conditions for a finite number of controller switches

In the previous subsection, the volume ratio between
two consecutive ellipsoids is given in (22) and (26). This
subsection specifies a condition, such that a maximum on
the volume ratio between two consecutive ellipsoids is
guaranteed.

Consider a maximum volume ratio δV ≤ ν for some
positive ν < 1. From (22), it can be seen that a sufficient
condition to ensure δV ≤ ν between two consecutive ellip-
soids is to require that a+a− ≤ ε(ν)/p for some ε(ν) < 1.
The value of ε(ν) can be derived from (22). It is observed,
that for ε(ν) close to 1,

arg max
a+a−=ε(ν)/p

δV (tk) =
{ {a+ = −1, a− = −ε(ν)/p}

{a− = −1, a+ = −ε(ν)/p}
(27)

for a fixed p.
If ε(ν)/p < a+a− ≤ 1/p, the additionally falsified region is
neglected and the Unfalsified set is not changed.

Remark: If ν is chosen close to 0, a small volume ratio
between two consecutive ellipsoidal Unfalsified sets is
enforced. It also induces, though, that intersections which
would lead to a volume ratio larger then ν are dismissed.
Therefore, to not throw away valuable falsification data, ν
should not be chosen too small.

To express the maximum number of ellipsoidal Unfalsified
sets, consider the volume V (t0) of the initial Unfalsified
set, which is the largest possible volume of the Unfalsified
set. The volume of the nth ellipsoid is upperbounded by
V (t0)νn. Next, consider the smallest possible volume e of
the Unfalsified set, which is given by the volume of region
E with stabilizing and performing controllers. Then the
maximum number of ellipsoids nmax is limited by

nmax ≤ log(e/V (t0))
log(ν)

(28)

As is shown, by imposing the constraint a+a− ≤ ε(ν)/p
with ε(ν) < 1 before updating the ellipsoidal Unfalsified set,
the number of controller switches is limited. A maximum
number of ellipsoids, in turn, implies a maximum number
of controller switches with controller update algorithm (20).
This can be seen from the fact that if the final ellipsoid
is reached (in a finite number of steps), the currently
implemented controller parameters can at most be falsified
one more time. Then, the center of the final ellipsoid is
chosen, which can not be falsified, for then the ellipsoid has
to be updated. This is in contradiction with the assumption
that the final ellipsoid is reached.

VI. SIMULATION

In simulations, the effect of Ellipsoidal Unfalsified Control
has been evaluated on a fourth order system, which is given
by

ẋ = Ax + Bu (29)

y = Cx (30)

with

x =
[
x1 ẋ1 x2 ẋ2

]T
(31)

A =

⎡⎢⎢⎣
0 1 0 0

−c/J1 −d/J1 c/J1 d/J1

0 0 0 1
c/J2 d/J2 −c/J2 −d/J2

⎤⎥⎥⎦ (32)

B =
[
0 1/J1 0 0

]T
(33)

C =
[
0 0 1 0

]
(34)

The parameter-values are chosen as J1 = 1.56 · 10−4, J2 =
1.95 · 10−4, d = 0.9 · 10−3 and c = 8.64. The plant is
sampled at 1 kHz with a zero order hold and a bounded
output disturbance with noise power 10−8 is present. The
controller structure w(u(tk), y(tk), z−1) is chosen as

w(u(tk), y(tk), z−1) =

⎡⎢⎢⎢⎢⎢⎣
u(tk)

10−3 1+z−1

1−z−1 u(tk)
y(tk)

10−3 1+z−1

1−z−1 y(tk)
y2(tk)

⎤⎥⎥⎥⎥⎥⎦ (35)

The last element of w(u(tk), y(tk) 1+z−1

1−z−1 ) is chosen, to
underline that EUC is not limited to linear controllers. The
maximum volume ratio is constrained by setting ε(ν) =
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0.99 < 1. This corresponds to ν = 0.999989, which is close
to, but still smaller than, 1.
The reference trajectory is r(tk) = sign(sin(0.5π(tk)) and
the reference model is Gm(z−1) = 2·10−4(z−1+z−2)

1−1.96z−1+0.9604z−2 . The
performance bound Δ(tk) = 0.02 + e−tk . Here, the lower
bound on Δ(tk) is included, to guarantee feasibility in the
presence of output disturbance.
The algorithm is initialized with

Σ(0) = 104
I5×5 (36)

θ̌(0) = θc(0) =
[
100 0 1 0 0

]T
(37)

The initial value θ̌(0) corresponds to a P-controller with
gain 0.01 (1/θ̌1) (which, in fact, is destabilizing the system
due to the phase lag caused by the zero order hold).

In Fig. 2, the tracking error Gm(z−1) ∗ r(tk) − y(tk)
of the EUC adaptive system is shown. After 10 seconds
the EUC algorithm has found a controller parameter set
which is unfalsified for Δ = 0.02. In Fig. 3, controller
parameters θ̌(tk) are shown as a function of time, together
with the center of the ellipsoidal Unfalsified set θc(tk).
If the tracking error of Fig. 2 is within the performance
bounds, the controller parameters are unchanged. The center
θc(tk) on the other hand changes almost continuously.
In Fig. 4, det(Σ(tk)) is shown as a function of time, which
is proportional to the volume of the Unfalsified set (see
(23)). The volume is monotone decreasing and tends to a
stationary value.
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Fig. 2. Tracking error of fourth order plant with EUC, with control structure
(35).

VII. CONCLUSIONS

Stability for Ellipsoidal Unfalsified Control is established,
even though Ellipsoidal Unfalsified Control uses a continu-
ous region of unfalsified control parameter sets, hence, with
infinitely many controllers. It is assumed that the adaptive
control problem is feasible, i.e., that there is a region E in
the candidate controller pool with stabilizing and performing
controllers.
By explicitly defining a cost functional, it is shown that
Ellipsoidal Unfalsified Control is cost detectable. A finite
number of controller switches is guaranteed by imposing a
constraint on the update of the Unfalsified set. The constraint
guarantees a maximum volume ratio between two consecu-
tive (ellipsoidal) Unfalsified sets. A sufficient condition to
fulfill the constraint is implemented by a simple check on
the update variables. Since the volume is lower bounded and
monotone decreasing, the number of Unfalsified sets is finite,
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Fig. 3. Plot of the controller parameters θ̌(tk) as a function of time (black),
together with the center of the ellipsoidal Unfalsified set θc(tk) (grey).
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Fig. 4. Plot of det(Σ(tk)) as a function of time, which is proportional to
the volume of the Unfalsified set.

and, hence, the number of controllers is finite.
In a simulation example with a fourth order system, the
effectiveness of the proposed method is shown.
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