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Abstract. In [2] the authors show how to construct the building blocks for perfect 
zero-knowledge proofs called "blobs" using the discrete log problem. Contrary to 
what they remark on p. 73 of [2], we argue that the Mordell group of an elliptic 
curve is m o r e  suitable than the multiplicative group of a finite field for the construc- 
tion of a hard cryptographic suite of problems. 
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1. Introduction 

In [3] a certain basic building block in the construction of zero-knowledge proto- 
cols was introduced. This concept was later termed a "blob." A "blob" is simply an 
encryption of a bit. If a system of blobs satisfies certain properties, then it can be 
used for perfect zero-knowledge proofs. For details and formal definitions see I-2] 
and [4]. 

The implementation of blobs can be based on various cryptographic assumptions. 
In [2] the authors show how to do this with an assumption about intractability of 
the discrete logarithm. After discussing the discrete log in the multiplicative group 
of a prime finite field Fp, they describe the generalization to discrete log in any 
suitable family of finite groups. Here their main theorem states that perfect zero- 
knowledge interactive arguments for a wide class of problems follow from what they 
call Cryptographic Assumption II + ("there is a hard cryptographic constructive 
suite of discrete-logarithm problems"). However, on p. 73 they comment that 
"because Mordell groups [of elliptic curves] need not be cyclic, it seems unlikely 
that Cryptographic Assumption II + holds in this case." 

The purpose of this paper is to argue that, on the contrary, a family of Mordell 
groups of suitably chosen elliptic curves is m o r e  likely to give a hard cryptographic 
suite--even in a strengthened sense of "hard"--than is a family of groups 17". The 
advantages of Mordell groups arise because of: 

(1) the much greater choice available (by varying the coefficients of the defining 
equation over each Fp); 
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(2) the resulting possibility of limiting ourselves to groups of prime order; and 
(3) the absence of any known discrete log algorithm (except in very special cases) 

which is not fully exponential. 

2. Elliptic Curves and Exponentially Hard Problems 

Basic information on elliptic curves can be found, for example, in 1-6] and [13]. In 
addition, in I-7] we studied the particular problem of finding elliptic curves over a 
finite field having a prime number of points. 

In the formalism of Section 5 of [2], the elements of the prime-order elliptic curve 
discrete log problem are strings ( (p ,  Xo, Yo, X1, YI, a, N) ,  x )  such that p is a 
prime number; X o, Yo, X1, Y1, a ~ Fp; 4a 3 + 27b 2 r 0, where b has been set equal 
to y2 _ X 3 _ a X  ~ (this means that E: y2 = X 3 + a X  + b is an elliptic curve 
containing Po = (X0, Yo)); ,~ = (X1, Y1) is another point of E; N = # E  is a prime 
number; and /'1 = xPo. An instance of the problem is a string of the form 
(P, Xo, Yo, X~, Y~, a, N )  with the above properties, and a solution is the unique 
integer x modulo N such that P~ = xPo. 

In 1-2] the notion of a hard suite of problems is defined, where, roughly speaking, 
the term "hard" means "harder than polynomial." We introduce a stronger notion, 
that of an exponentially hard suite of problems. 

Definition 1. A family cg = {C,,} of randomized circuits, where Cm is the circuit for 
input of length m, is exponential  if there exist a positive constant c and an m o such 
that the size of the circuit C,  is > ecm for m > m o. A family cg that is not exponential 
is said to be subexponential. 

Following 1-2], we then make the following: 

Definition 2. A suite of problems X is exponentially hard if, for every sub- 
exponential family cg = (Cr, } of randomized circuits, there exist a positive constant 
c and an m o such that, for all m > m o, 

Prob(ct e Xm: Prob{~ is solved by Cm} > e -c~} 

is less than e -cm. 

In the case of the discrete logarithm problem on an elliptic curve, the one general 
purpose algorithm we have is the Shanks giant-step-baby-step algorithm, which, 
unlike index calculus-type algorithms, does not depend on the structure of the group 
G in which we are working. The running time of this algorithm is slightly more than 
the square root of the largest prime factor of # G. Thus, if m = log # G denotes the 
size of G and if # G is "almost prime" (i.e., the product of a prime number and a 
small integer), then we have the running time e t~176 i.e., the algorithm is fully 
exponential. It is also clear that there is exponentially small probability of hitting 
upon an instance of the discrete log problem which the algorithm can solve in faster 
than exponential time, and random reruns of the algorithm also have an exponen- 
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tially small probability of finding the discrete logarithm. In other words, the prime- 
order elliptic curve discrete log problem is exponentially hard if we have only the 
giant-step-baby-step algorithm. 

However, very recently a second algorithm was developed by Menezes, Okamoto, 
and Vanstone (MOV) [9]. Using the Weil pairing on an elliptic curve E, MOV were 
able to imbed the group of Fp-points on E in the multiplicative group of the field 
Fpk for some integer k. That reduces the discrete log problem on E to the discrete 
log problem in F*k. Now in Fp~ we can hope to use a version of the number field 
sieve to obtain an algorithm with running time 

exp((c + o(1))((log pk)l/3)((log log pk)2/3)). (1) 

See [5] for the case k = l; the algorithm has not yet been extended to k > l, but we 
adopt the "optimistic" supposition that the above time estimate is the complexity 
of the discrete log in F*k for k > 1 as well. Since the time for the MOV reduction 
from E to F*~ is much less than (1), we also take (1) as the complexity of the discrete 
log on E using MOV reduction followed by number field sieve. 

Note that k must be small for this second algorithm to be subexponential. 
Namely, a necessary condition is that k < log 2 p, since otherwise (log pk)l /3  > log p, 
and the running time (1) is fully exponential in log # E  ,,~ log p. There is a very 
special class of elliptic curves--called supersinoular curves--for which k is small. 
However, a randomly generated elliptic curve has an exponentially small probabili- 
ty of being supersingular; and, as we shall see below, for most randomly generated 
elliptic curves we must necessarily have k > log 2 p. 

Without having to examine the details of the MOV reduction, we immediately 
see that a necessary condition for E to be imbedded in F*~ is that the order N = # E 
divide pk  _ 1, i.e., that k be a multiple of the order of the element p in the multi- 
plicative group modulo N. It is shown below that for two different large primes p 
and N, it is highly unlikely that the order of p modulo N is less than log 2 p. Thus, 
in our selection of prime-order elliptic curves, we can easily avoid the rare cases 
when MOV reduction leads to a subexponential solOtion of the discrete log prob- 
lem. This informal argument is made precise in the proof of the main theorem (see 
Lemma 2). 

In conclusion, the prime-order elliptic curve discrete logarithm is exponentially 
hard if the order of p modulo N = # E is > log 2 p, assuming the best algorithms 
available at present (i.e., giant-step-baby-step and MOV reduction plus number 
field sieve). 

3. The Cryptographic Property 

In [2] a cryptographic suite of problems is defined to mean a suite of problems where 
each problem is accompanied by a certificate that demonstrates that it is a problem 
of the type claimed. It is the cryptographic property which leads to perfect (rather 
than "almost perfect") zero-knowledge interactive arguments. 

In [2] the use of the discrete log in F* is complicated by the need to give a 
certificate that the base 9 is really a generator (or at least an element of large enough 
order). This entails factoring p - 1, or else choosing special types of primes p. 
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In our situation this complication disappears, because we allow only groups of 
prime order. Thus, the only thing that needs a certificate is the primality of p and 
of N = # E, and by using the method of Adleman and Huang [1] this can be 
provided in probabilistic polynomial time. At first it might seem that requiring the 
groups to have prime order is asking too much. However, our main theorem, proved 
in the next section, says that, because of all the flexibility we have in choosing p and 
the equation of the curve, a suite of Mordell groups all of prime order can be 
constructed in probabilistic polynomial time. 

4. A Probabilistic Polynomial-Time Construction 

We use the following procedure to generating a suite of prime-order elliptic curve 
discrete log problems: 

(1) Find a random prime p of suitable size, using the method of Adleman and 
Huang [1] to generate a certificate of primality. 

(2) Generate random X o, Y0, a ~ Fp, set b = y2 _ X 3 _ aXo, and check that 
4a 3 + 27b 2 r 0 (repeat step (2) if 4a 3 + 27b 2 = 0). 

(3) Use Schoof's polynomial-time algorithm [12] to compute N = # E, where E 
is the elliptic curve y2 = X 3 + aX + b. 

(4) If N is composite, go back to step (2); if N is prime, generate an Adleman- 
Huang certificate for it. 

(5) Check that pJ ~ 1 mod N for 1 < j < log 2 p (go back to step (2) if p has 
order < log 2 p modulo N). 

(6) Choose a random positive integer x < N, and set P1 = xPo, where Po = 
(Xo, Yo), P1 = (Xl,)I1). 

Theorem. The above procedure constructs a cryptographic suite of discrete loga- 
rithm problems in bounded probabilistic polynomial time. Assuming time complexity 
for elliptic curve discrete log as determined by the fastest algorithms known at present 
(i.e., (1) giant-step baby-step and (2) M O V reduction followed by number field sieve), 
the suite of problems is exponentially hard. 

Proof. In Section 2 we saw that the suite of problems is exponentially hard, 
assuming no fundamental breakthrough in the available algorithms. To show that 
the procedure is probabilistic polynomial time, we need some lemmas. 

Lemma 1. Let S M denote the set of points (x, y) in the region M/2 < x <_ M, 
x - x~x < y < x + x / x  such that both x and y are prime numbers. Then, for some 
effectively computable positive constant cl and for large M, 

M3/2 
~SM >~ C11og2 M'  (2) 

Proof of Lemma. A. Odlyzko pointed out to me that this is elementary. Namely, 
without loss of generality we may assume that M is of the form M = 4m 2. Divide 
the interval (�89 M] into the 2m subintervals ((i - 1)m, im], 2m < i < 4m. Let 
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1 M A = i t ( M ) -  ~z(�89 be the number of primes in (~ , M], and let ai be the 
number of primes in the ith subinterval. By the Prime Number Theorem, 
M/3 log M < A < M/log M for M large. Any ordered pair (x, y) of primes in the 
same subinterval gives a point in the set SM, since x/~ > m > lY - xl. This leads to 
the following lower bound for # SM: ~ a2; but the minimum of ~ a 2 subject to the 
condition ~ ai = A is attained when all the ai are equal, i.e., a~ = A/2m. This leads 
to the lower bound 

(A)2=M-1/2A2M3/2 
2m 2m > 9 l o g  2M" [] 

Lemma 2. Let SM be the subset of SM consisting of points such that the order of x 
modulo y is <_ log 2 x. Then # SM < 2M log 3 M. 

Proof of Lemma. For a fixed prime y, let Su. r denote the set {x �9 Z l l y  < x < 3y, 
order of x modulo y is < log 2 M}. Then, since at most j residue classes mod y have 
order j, it follows that # SM.r < ~l_<j_<log2 ~ j < log 4 M. Clearly, 

#S~<_ # { ( x , y ) � 9  <_M, 2x < y < 2 x ,  

y is prime, order of x mod y is < log 2 x} 

< ~ #Su.y  < 7z(2M) log 4 M < 2M log 3 M. [] 
primesy<2M 

Lemma 3. For p a prime, let S(p) denote the set of integers y in the interval 

P - x//-P <- Y < P + x/P such that y is prime and the order of p modulo y is > log 2 p. 
Then, for some effectively computable positive constant c 2 and for M large, 

M 3/2 
# S(p) > c 2 M/2<_p<_M,pprime -- log  2 M' 

This lemma follows immediately from Lemmas 1 and 2. 
The next lemma, which is due to Lenstra, tells us that the number of points on 

elliptic curves over Fp is nearly uniformly distributed in the interval of size x/~ 
around p + 1. 

Lemma 4 (Proposition 1.16(a) of [8]). There exists an effectively computable 
positive constant c a such that, for each prime number p > 3 and for any subset S of 

{s e Zl ls  - (p + 1)1 _< v/p}, 

the number of triples ( X  o, Yo, a) �9 F 3 such that 

4a 3 + 2 7 b  2 ~ 0 ,  where b =  y 2 _ x  3 _ a X o ,  

and the elliptic curve E: y2 = X 3 + aX + b satisfies # E �9 S 

is at least p5/2 
c3(#S -- 2)l~gg p. 
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We now return to the proof of the theorem. We want a lower bound for the 
number of four-tuples (p, Xo, Yo, a)  such that 

(i) p < M is a prime, 
(ii) y 2 = X 3 + a X + b ,  where b= Yo 2 - X ~ - a X o ,  is an elliptic curve E 

o v e r  Fp, 
(iii) N = # E is prime, and 
(iv) p has order > log 2 p modulo N. 

Using Lemmas 3 and 4, we find that the number of such four-tuples is at least 

C3 2 max(0, #S(p)- p5/2 
M/2<<_p<M,pprime 2) i~P 

> c3 2-5/2 ~MS/2 ( (  Z S(p)) 2x(M)) 
- l o g  m \ \ ~ / z < p < M  # --  

M5/2( M3/2 ) - -  2 M 
--> C32-5/2 log M c2 log 2 M 

M 4 
>- C41og 3 M (3) 

for M large, where c4 is an effectively computable positive constant. 
To show that the procedure at the beginning of the section is probabilistic 

polynomial time, it suffices to show that, in running through the set of four-tuples 
of positive integers (p, Xo, Yo, a) in the range p < M, X o _< p, I1o -< P, a < p, the 
probability that such a four-tuple satisfies conditions (i)-(iv) above is bounded from 
below by a reciprocal power of log M. However, since the number of four-tuples is 
asymptotic to M*/4, it follows from (3) that this probability is 

4c4 > - -  
- l o g  3 M "  

This completes the proof of the theorem. [] 

Remarks. 1. For a fixed prime p, at present we cannot prove anything about the 
number of primes in the interval [p - x/P, P + x/P] - e v e n  that there are any. Thus, 
a subtlety in the proof of our theorem is that it is important that we are simultane- 
ously ranging through different p and different N = # E(Fv) (see Lemma 1). 

2. In an actual implementation, we would probably want to make modifications 
which, while sacrificing theoretical certainty, make the exponentially hard crypto- 
graphic suite of problems "constructive" in the practical sense of the word: 

(1) Agree to be satisfied with a probabilistic primality test for p and for N = # E 
rather than requiring an Adleman-Huang certificate. 

(2) Work with elliptic curves E for which N = # E is "almost prime," i.e., the 
product N = NoN1 of a small factor N o and a prime N~, where we consider 
the discrete log problem in the group generated by a point of order N1 (or 
equivalently, in the image group No E of E under multiplication by No). 
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