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Abstract. Miyaji, Nakabayashi and Takano have recently suggested a construction
of the so-called MNT elliptic curves with low embedding degree, which are also of
importance for pairing-based cryptography. We give some heuristic arguments which
suggest that there are only about z1/2+o(1) of MNT curves with complex multiplication
discriminant up to z. We also show that there are very few finite fields over which elliptic
curves with small embedding degree and small complex multiplication discriminant may
exist (regardless of the way they are constructed).
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1. Introduction

Since the pioneering works [8], [9], [15], [16], [21], [22] and [26], several other crypto-
graphic applications of the Tate or Weil pairing on elliptic curves have been discovered
(see, for example, [1] and [7]). In particular, for these applications, the following problem
is of primal interest: Find an efficient construction of elliptic curves E over finite fieldsFq

of q elements, such that #E(Fq), the number of Fq -rational points on E , has a sufficiently
large prime divisor � | #E(Fq) which also satisfies � | qk − 1 for a reasonably small
value of the positive integer k. In what follows we refer to [6] and [24] for a background
on elliptic curves.
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It is easy to see that supersingular curves are the natural candidates for such construc-
tions. However, one can also suspect that supersingular curves have some cryptographic
weaknesses and thus ask for constructions generating ordinary curves with the above
property. It follows from results of [2], [18] and [19] that such curves are very rare and
brute-force search is not likely to succeed. On the other hand, several such construc-
tions have recently been proposed (see [3]–[5], [11], [14], [20], [23] and the references
therein). Unfortunately, none of these constructions has been rigorously analysed and,
in fact, even heuristic analysis is not immediate, and may take significant efforts. For
example, see [13] and [14] for several examples of such analysis of various aspects of
the above constructions.

Let

�k(X) =
k∏

j=0
gcd( j,k)=1

(X − exp(2πιj/k))

be the kth cyclotomic polynomial, where ι = √−1. Typically, the above mentioned
constructions work in two steps:

Step 1. Choose a prime �, integers k ≥ 2 and t , and a prime power q such that

|t | ≤ 2q1/2, t 	= 0, 1, 2, � | q + 1− t, � | �k(q). (1)

Step 2. Construct an elliptic curve E over Fq with #E(Fq) = q + 1− t .

In the above construction, k should be reasonably small (for example, k = 2, 3, 4, 6
are typical values), while the ratio log �/log q should be as large as possible, preferably
close to 1.

Unfortunately, there is no efficient algorithm for Step 2, except for the case when the
t2 − 4q has a very small square-free part; that is, when

t2 − 4q = −r2s (2)

with some integers r and s, where s is a small square-free positive integer (see Section 18.1
of [1]). In this case, either −s or −4s is the fundamental discriminant of the complex
multiplication field of the corresponding elliptic curve.

Accordingly, for positive real numbers x , y and z we denote by Qk(x, y, z) the number
of prime powers q ≤ x for which there exist a prime � ≥ y and an integer t satisfying (1)
and (2) with a square-free positive integer s ≤ z. In this note we obtain an upper bound
on Qk(x, y, z) which suggests that finite fields suitable for pairing-based cryptography
are very rare, at least using the current algorithms for constructing elliptic curves with a
given number of points.

For example, if z = O(1), that is, if the complex multiplication discriminant is
bounded by an absolute constant, and the cardinality of the curve must be prime, then
our bound implies that there are at most x1/2+o(1) such possible fields Fq with q ≤ x .
On the other hand, heuristically, the construction proposed in [5] should lead to about
x1/4+o(1) examples of suitable fields and elliptic curves. It would be very interesting to
close the gap and give, if not rigorous then at least convincing, heuristic tight upper and
lower bounds on the number of suitable finite fields.



Elliptic Curves with Low Embedding Degree 555

We also examine in more detail one of the first constructions of the above type, namely
the construction of the MNT curves from [20], and give some heuristic arguments which
suggest that this construction may produce only a very limited family of curves once
one wants that � = q + 1 − t is prime. On the other hand, we give some arguments
showing for any fixed δ > 0 that one can generate substantially many more curves if
only log �/log q ≥ 1 − δ is desired. Moreover, one can let δ be a slowly decreasing
function of q .

Throughout the paper, the implied constants in the symbols “O”, “
” and “�” may
occasionally, where obvious, depend on the small positive parameters ε and δ and are
absolute otherwise (we recall that U = O(V ), U 
 V and V � U are all equivalent to
the inequality |U | ≤ cV with some constant c > 0).

2. Scarcity of the Pairing Friendly Fields

According to the heuristics given in [14], there are about x1/2+o(1) of prime powers q ≤ x
for which there is an ordinary elliptic curve E satisfying #E(Fq) | �k(q). We note that
these heuristics apply to all curves without any restriction on the arithmetic structure
of #E(Fq), or on the size of the discriminant of the field of complex multiplication. It
seems that giving a rigorous proof of this result is out of reach nowadays due to our
poor knowledge of the distribution of roots of polynomial congruences (see [12] for
the limits of what is achievable nowadays). However, in the most important practical
case when the cardinality of the curve is required to have a large prime divisor and the
complex multiplication discriminant must be small, we are able to prove a comparable
upper bound.

Theorem 1. For any fixed integer k and positive real numbers x , y and z the following
bound holds:

Qk(x, y, z) ≤ x3/2+o(1)y−1z

as x →∞.

Proof. Since � | q + 1 − t and � | �k(q), we also have � | �k(t − 1). In particular,
each such � divides

W =
∏
|t |≤2x1/2

�k(t − 1).

Clearly, log W = O(x1/2 log x).
Let ω(n) denote the number of prime divisors of an integer n. Since ω(n)! ≤ n, we

have

ω(n) = O

(
log n

log log n

)
.

Thus, there are at most

L ≤ ω(W ) = O(x1/2) (3)

suitable values of �.
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For each fixed � ≥ y we have

�m = q + 1− t (4)

with some positive integer m ≤ M , where

M =
⌊

x + 1+ 2x1/2

y

⌋
= O

(
x

y

)
. (5)

Using (4), we can express (2) as

(t − 2)2 + r2s = 4�m. (6)

It is known, from the theory of complex quadratic fields, that if �m and s are fixed (with
s > 0), then the number of integer solutions (t, r) of (6) is (�m)o(1), uniformly in s.
More precisely, every integer solution (t, r) of (6) leads to a principal ideal divisor of
�m in the ring of algebraic integers of K = Q[

√
s]. Since this last ring has at most six

units (the roots of unity of orders 2, 4 or 6), each such ideal divisor can occur from at
most six pairs of integers (t, r) (see [10]). The assertion about the number of integer
solutions of (6) follows now from the fact that the number of ideal divisors of �m in this
complex quadratic number field behaves like the divisor function of a positive integer
with respect to growth.

Furthermore, the number q is uniquely determined when �, m and t are fixed. Since
there are O(L Mz) possible triples (�,m, s), we derive

Q(x, y, z) ≤ L Mzxo(1),

and by (3) and (5) we conclude the proof.

In particular, if z = xo(1), which is the only practically interesting case anyway, we see
that unless y ≤ x1/2+δ for some fixed δ > 0 there are only O(x1−δ+o(1)) finite fields Fq

with q ≤ x suitable for pairing-based cryptography. In other words, unless the request of
the primality of the cardinality of the curve is relaxed to the request for this cardinality
to have a large prime divisor (that is, a prime divisor � with log �/log q ≥ 1

2 + δ), the
suitable fields are very rare.

3. Heuristic on MNT Curves

3.1. General Outline

Here, we give some heuristic estimates on the number of elliptic curves which can be
produced by the algorithms of [20] designed to produce elliptic curves satisfying the
condition (1) with k = 3, 4, 6, and the condition (2) for a given value of s.

In general, our arguments are based on a combination of the following observations:

• The algorithm of [20] gives a parametric family of possible group orders of curves
whose parameter runs through a solution of a Pell equation u2 − Dv2 = a.
• Consecutive solutions (uj , vj ) of a Pell equation grow exponentially, as ecj for some

constant c > 0.
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• The probability of a random integer n to be prime is 1/log n.
• MNT curves should satisfy two independent primality conditions (on the field size

and on the cardinality of the curve).

Putting all these observations together leads to the conclusion that the expected total
number of isogeny classes of MNT curves, for a fixed fundamental discriminant, is
bounded, by the order of magnitude, by the converging series

∞∑
j=1

1

(log ecj )2
= c−2

∞∑
j=1

1

j2
= π2

6c2
.

This leads to the conclusion that the total number of all isogeny classes of MNT curves
of prime cardinalities (over all finite fields) is bounded by an absolute constant. This
certainly does not undermine the practical usability of the algorithms of [20] which
seem to produce enough such curves in ranges which are used nowadays (for example,
for finite fields Fq , where q is a 160–170 bit prime power).

On the other hand, since the set of numbers with a large prime divisor is denser than
the set of primes, similar heuristic arguments also show that the algorithms of [20] should
be able to produce sufficiently many curves with a low embedding degree and whose
cardinalities have a large prime divisor.

We now implement these heuristics in a more precise (and thus more technically
cluttered) form which leads to more specific estimates.

3.2. Prime Cardinalities

Since all three algorithms for k = 3, 4, 6 can be analysed along the same lines, we only
concentrate on the case k = 6. In this case, if successful, the algorithm produces positive
integers q and t of the form

q = 4m2 + 1, t = ±2m + 1

for some positive integer m, where u = 6m + 1 is a solution to the following Pell
equation:

u2 − 3sv2 = −8, u, v ∈ N. (7)

Assume that 3 � s. Since 8 is a prime power, it follows from the well-known theory
of quadratic fields (for example, see [10]) that if we write (u1(s), v1(s)) for the smallest
positive integer solution of (7) with odd u, then all the positive integer solutions to (7)
are of the form (uj (s), vj (s)), where

uj (s)+ vj (s)
√

3s = (u1(s)+ v1(s)
√

3s)(U0(s)+ V0(s)
√

3s) j , j ∈ Z,
where (U0(s), V0(s)) is the fundamental solution of the Pell equation

U 2 − 3sV 2 = 1, U, V ∈ N.
We also put

mj (s) = uj (s)− 1

6
.
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Note that we need that uj (s) ≡ 1 (mod 6) in order for mj (s) to be an integer. The
sequence (uj (s))j≥1 is periodic modulo 6 with period at most 2, so if at least one of
u1(s) and u2(s) is congruent to 1 (mod 6), then at least every second value of uj (s), j =
1, 2, . . ., is also congruent to 1 (mod 6), otherwise none of these numbers can satisfy this
congruence.

Using the regular heuristics that the probability of a random integer n to be prime is
1/log n and assuming that the numbers

qj (s) = 4mj (s)
2 + 1 and �j (s) = qj (s)+ 1− (±2mj (s)+ 1)

behave like random integers with respect to primality, we see that if we denote by N (s) the
expected total number of prime powers among the numbers of the form qj (s) satisfying
the additional condition that �j (s) is also a prime, then we expect that uniformly in s
(even if we ignore the fact that solutions with uj (s) 	≡ 1 (mod 6) do not lead to integer
values of mj (s)), we have

N (s) 

∞∑

j=0

1

log(4mj (s)2 + 1) log(4mj (s)2 + 2mj (s)+ 1)

+
∞∑

j=0

1

log(4mj (s)2 + 1) log(4mj (s)2 − 2mj (s)+ 1)
.

Since it is clear that

U0(s) =
√

3sV 2
0 (s)+ 1� s1/2,

we easily get that if we write

α(s) = U0(s)+ V0(s)
√

3s and β(s) = u0(s)+ v0(s)
√

3s, (8)

then

mj (s) = 1
6

(
1
2 (β(s)α(s)

j + 8β(s)−1α(s)− j )− 1
)� s j/2.

Thus,

N (s)

∑
j≥1

1

j2(log s)2

 1

(log s)2
. (9)

In the case when 3 | s, say s = 3s0, the same arguments apply and lead to the same
bound (9). The only change is that the positive integer solutions to (7) are of the form
(uj (s), vj (s)), where

uj (s)+ 3vj (s)
√

s0 = (u1(s)+ 3v1(s)
√

s0)(U0(s)+ 3V0(s)
√

s0)
j , j ∈ Z,

where (U0(s), V0(s)) is the smallest positive solution of the Pell equation

U 2 − s0(3V )2 = 1, U, V ∈ N.
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We now see that the bound (9) implies that the expected total number E(z) of all
isogeny classes of MNT curves with s ≤ z is

E(z) =
∑

s≤z
s square-free

N (s)

∑
s≤z

1

(log s)2

 z

(log z)2
.

In fact, more is believed (see, for example, [17]), namely that for most s the number
α(s) in (8) is very large. Specifically, it is believed that there exists a set S of asymptotic
density 1 of positive integers such that the relation

lim
s∈S

log logα(s)

log(
√

s)
= 1

holds. In particular, α(s) ≥ exp(s1/2+o(1)), and thus

N (s) ≤ 1

s1+o(1)

when s ∈ S. Thus, it is quite possible that in fact

E(z) ≤ zo(1).

3.3. Cardinalities with a Large Prime Divisor

Similar heuristics apply if we weaken the condition that �j (s) is prime and request only
that it has a sufficiently large prime divisor, say lj (s) ≥ qj (s)1−δ for some δ > 0.

Since in this case we are likely to get infinitely many isogeny classes of elliptic curves,
it is natural to introduce the counting function Eδ(x, z) for the number of isogeny classes
of such elliptic curves with qj (s) ≤ x and s ≤ z.

Let ρ(u) be the Dickman function which is defined for u ≥ 0 by the difference-
differential equation

uρ ′(u)+ ρ(u − 1) = 0, u > 1, (10)

together with the initial condition

ρ(u) = 1, 0 ≤ u ≤ 1.

We recall that the number of positive integers n ≤ X such that no prime divisor of n
exceeds X1/u is (1 + o(1))ρ(u)X for every fixed u (see Corollary 9.3, Chapter III.5 of
[25] for a much more precise statement). Since ρ(u) < 1 for every u > 1, we see that
for every δ ∈ (0, 1) there is a positive proportion 1 − ρ(1/(1 − δ)) + o(1) of positive
integers n ≤ X which have a prime divisor l ≥ n1−δ .

Let us write Mδ(s, x) for the expected total number of isogeny classes of the above
elliptic curves with qj (s) ≤ x and such that qj (s) + 1 − (±2mj (s) + 1) has a prime
divisor lj (s) ≥ qj (s)1−δ . We say that s is admissible if it is square-free and if (7) has
solutions with uj (s) ≡ 1 (mod 6) (and thus, at least 50% of such solutions).

If s is admissible, then similar heuristics as those used in Section 3.2 together with
the fact that logα(s)
 √s log s and logβ(s)
 √s log s give that for every δ ∈ (0, 1)
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we should have

Mδ(s, x) �
(

1− ρ
(

1

1− δ
)) J (s,x)∑

j=1

1

js1/2 log s

�
(

1− ρ
(

1

1− δ
))

log J (s, x)

s1/2 log s
,

where

J (s, x) =
⌊
κ log x

s1/2 log s

⌋

and κ > 0 is some absolute constant. In particular,

Mδ(s, x)� log log x

s1/2 log s

in the range s < (log x)2−ε for any fixed positive ε and δ.
It is natural to assume that there is a positive proportion of admissible values of s.

Thus, the expected total number Eδ(x, z) of isogeny classes of such elliptic curves with
qj (s) ≤ x and s ≤ z is

Eδ(x, z) =
∑

s≤z
s admissible

Mδ(s, x)�
∑

s≤z
s admissible

log log x

s1/2 log s
� z1/2 log log x

log z

for every z < (log x)2−ε.

4. Concluding Remarks

One should certainly be very cautious when applying heuristic arguments of the type used
in Section 3. In particular, upper bounds of the type o(1) on quantities which take integer
values (see (9), for example) look especially dubious. So, we withdraw from making
any binding conclusions. However, we believe that overall, the arguments in Section 3
give some indication about the power and limitation of the algorithms from [20]. We
also hope that some ideas of this paper can be used for evaluating some other similar
constructions.

Since

ρ(u) = 1− log u, 1 ≤ u ≤ 2,

one can expect that for a sufficiently small δ the implied constant in the lower bound (5)
is proportional to

log

(
1

1− δ
)
∼ δ.

In particular, one can take δ to be a slowly decreasing function of s, which would
correspond to “almost prime” cardinalities.
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