Corrigendum

Elliptic equations in $\boldsymbol{R}^{\mathbf{2}}$ with nonlinearities in the critical growth range

D.G. de Figueiredo, O.H. Miyagaki, B. Ruf

Calc. Var. 3, 139-153 (1995)

In hypothesis (H6) of Theorem 1.4 the λ_{k} has to be replaced by $\lambda_{k}+\sigma$, with $\sigma>0$. In the statements of Thms. 1.3 and 1.4 the lower bounds for β have to be replaced by $\frac{2}{\alpha_{0} d^{2}}$ and $\frac{4}{\alpha_{0} d^{2}} e^{K / \sigma}$, respectively, where $K=K\left(\alpha_{0}, \lambda_{k}\right)$.

In the inequalities (4.5) and (5.4) the last integrals in fact go to πd^{2}. So the last inequality of the proof of Thm. 1.3 is $4 \pi / \alpha_{0} \geq(\beta-\epsilon) d^{2} \pi M_{0}$. One proves that $M_{0}=2$.

The first integral in (5.4) is split into integrals over $B_{d / n}$ and $B_{d} \backslash B_{d / n}$. The latter integral is estimated from below by $\pi d^{2} \hat{M}$ as in the paper; one calculates that $\hat{M}=1$. To estimate the integral over $B_{d / n}$ one uses the following estimates on t_{n} and $v_{n}: t_{n}^{2} \leq 4 \pi / \alpha_{0}+c\left\|v_{n}\right\| / \sqrt{\log n},\left\|v_{n}\right\| \leq c /(\sigma \sqrt{\log n})$, and $t_{n}^{2} \geq$ $4 \pi / \alpha_{0}-c /(\sigma \log n)$ which are obtained from (5.1) and (5.2). Then the last inequality in the proof of Theorem 1.4 becomes $4 \pi / \alpha_{0} \geq(\beta-\epsilon) d^{2} \pi e^{-K / \sigma}$, which yields a contradiction if β satisfies the above condition.

