
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXIV, NUMBER 4

DECEMBER 2006, PAGES 735–747

S 0033-569X(06)01033-1

Article electronically published on November 8, 2006

ELLIPTIC EQUATIONS WITH DIFFUSION COEFFICIENT
VANISHING AT THE BOUNDARY:

THEORETICAL AND COMPUTATIONAL ASPECTS

By

CHUNG-MIN LEE (Department of Mathematics, Indiana University, Bloomington, Indiana 47405 )

and

JACOB RUBINSTEIN (Department of Mathematics, Indiana University, Bloomington, Indiana
47405 )

Abstract. A class of degenerate elliptic PDEs is considered. Specifically, it is assumed
that the diffusion coefficient vanishes on the boundary of the domain. It is shown that if
the diffusion coefficient vanishes fast enough, then the problem has a unique solution in
the class of smooth functions even if no boundary conditions are supplied. A numerical
method is derived to compute solutions for such degenerate equations. The problem is
motivated by a certain approach to the recovery of the phase of a wave from intensity
measurements.

1. Introduction and motivation. Our goal in this paper is to study elliptic partial
differential equations, where the diffusion coefficient vanishes at the boundary. We shall
present a number of theoretical results on the well-posedness of such problems and a
numerical algorithm for solving them.

One motivation to study such problems comes from a basic question in optics: Can the
phase of a wave be reconstructed from its intensity? This is an important problem that
appears in many applications. In general, measuring the phase is a difficult and expensive
process. In contrast to direct phase measurement, measuring the wave’s intensity is
relatively easy. It is therefore tempting to seek methods for finding the phase from
intensity measurements. Indeed, Teague [8] proposed such a phase sensor. His method
was further developed by Roddier and others.

To explain the idea behind intensity-based sensors (sometimes called “curvature sen-
sors”), consider a complex-valued wave function W in the Fresnel (paraxial) regime,
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736 C. LEE AND J. RUBINSTEIN

where the wave equation in a homogeneous medium is approximated by

−i
∂W

∂z
= kW +

1
2k

∆W. (1.1)

Here z is the main direction of propagation, k is the wave number and ∇ and ∆ denote,
respectively, the gradient and Laplacian operators in the plane orthogonal to z. We use
x to denote a point in the plane orthogonal to z (sometimes later on x will be a point
in an interval, but no confusion is expected since this will be clear from the context).
Writing W = Aeik(z+u) with A(x, z) being the amplitude and u(x) being the phase, we
obtain from the imaginary part of (1.1),

−∂A

∂z
=

1
2A

∇(A2∇u). (1.2)

This equation can be written more conveniently as a transport equation for the intensity
I = A2:

−∂I

∂z
= ∇ · (I∇u). (1.3)

The idea behind most intensity-based phase sensors (but not all of them; a different
kind of intensity-based phase sensor was proposed in [6]) is to reverse the standard point
of view, and to consider (1.3) not as a transport equation for I, but rather as an equation
for the phase u. Teague [8] argued that since (1.3) is, under this interpretation, an elliptic
partial differential equation, one should supply suitable boundary conditions for it. In
particular, a domain D in which the equation is considered should be specified. He
proposed to supplement (1.3) with Dirichlet boundary conditions, in which the values of
u on the domain’s boundary are given. Roddier [5] addressed the difficulty of obtaining
the required boundary values of u. He pointed out that in practice the nearly collimated
wave passes through an aperture. He therefore suggested considering (1.3) in a domain
D that is the image of the aperture on the relevant plane of observation. Then, on
the boundary ∂D the intensity will approach zero. He argued (without a mathematical
proof) that this implies that u satisfies a homogeneous Neumann boundary condition,
i.e.,

∂nu = 0, x ∈ ∂D, (1.4)

where ∂n denotes differentiation in the direction of the normal to the boundary. However,
there seems to be no mathematical or physical support to this claim.

The fact that I(x) tends to zero as the point of observation x approaches the boundary
∂D makes the elliptic problem (1.3) singular. Our work is inspired by an innovative
idea of Gureyev and Nugent [1]. They approached the difficulty of missing boundary
conditions by using the singular nature of the problem. They assumed that I is a function
that is positive in the interior of D, while it tends to zero as x approaches the boundary
∂D. They claimed that because I vanishes on ∂D, no boundary conditions are required
for equation (1.3). Their argument went as follows: consider the homogeneous equation

∇ · (I∇v) = 0 (1.5)

in D. Multiplying the equation by v and integrating by parts gives∫
D

I|∇v|2 −
∫

∂D

Iv∂nv = 0.
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DIFFUSION COEFFICIENT VANISHING AT THE BOUNDARY 737

Since I = 0 on ∂D, they argued, it follows that the second term on the left-hand side of
the last equality vanishes, implying that v is constant everywhere in D. Thus equation
(1.3) has a unique solution (up to an irrelevant additive constant) even without specifying
any boundary data on ∂D.

However, the uniqueness proof of [1] is not complete. One difficulty is that the integral
of I|∇v|2 may diverge. Yet another difficulty lies in the argument that the boundary term∫

∂D
Iv∂nv vanishes because I vanishes on the boundary. The trouble is that although I

vanishes on ∂D, it does not follow necessarily that this integral vanishes too, since ∂nv

might diverge at the boundary.
To demonstrate this point, let us consider the following simple one-dimensional model

problem for v(x) where γ is a positive parameter:

(xγv′)′ = 0, v(1) = 0, 0 < x < 1. (1.6)

Here the singularity is at x = 0. It is easy to check that this homogeneous problem has
a one-parameter family of solutions (we assume for simplicity γ �= 1):

v(x) = C(x1−γ − 1). (1.7)

Therefore the problem does not have a unique solution (up to an additive constant). One
can now see the difficulty with the argument of [1]. Substituting the solution above into
the boundary term Iv∂nv(x = 0) shows that this term does not vanish. Notice that for
γ < 1 the solutions are bounded, and for γ < 1/2 the derivative of the solutions is square
integrable.

We conclude that the mathematical nature of equation (1.3) should be more carefully
analyzed. In particular, the uniqueness of the solutions and their smoothness depend
on the way in which I approaches zero on the boundary. Therefore, we derive in the
next section a uniqueness result that distinguishes between different vanishing rates of
I at the boundary. Indeed, no boundary condition is needed to determine the unique
bounded solution of (1.3) when I vanishes sufficiently fast at the boundary. This raises
the question of how to find such a solution. We develop a hybrid analytical-numerical
method for this purpose in section 3. In section 4 we report on simulations and tests of
the algorithm derived in section 3. Finally, the results are summarized in section 5.

2. A uniqueness theorem. The uniqueness question can be addressed by consid-
ering whether the only solutions to the homogeneous problem (1.5) are constants. We
assume that the solution v is a bounded function with finite weighted energy, i.e.,∫

D

I|∇v|2 < ∞. (2.1)

We further assume that D is a planar domain with a smooth boundary, and that I is a
positive smooth function in D, vanishing on the boundary ∂D. We prove

Lemma 2.1. Assume there exists a sequence of functions ξn(x) such that
i). ξn = 1 on ∂D;
ii). ξn → 0 a.e. in D;
iii).

∫
D

I|∇ξn|2 → 0.
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738 C. LEE AND J. RUBINSTEIN

Then equation (1.5) has a unique solution (up to an additive constant) in the class of
functions v that are bounded and have finite weighted energy.

Proof. Let v be a solution to (1.5). Standard arguments imply that v minimizes∫
D

I|∇w|2 among all functions w such that w = v on ∂D.
Let ξn be a sequence of functions satisfying (i)–(iii) above. We then consider the

sequence un = ξnv. Since on the boundary ∂D we have un = v, it follows that∫
D

I|∇un|2 ≥
∫

D

I|∇v|2. (2.2)

But∫
D

I|∇un|2 =
∫

D

I|∇(ξnv)|2 =
∫

D

Iξ2
n|∇v|2 + 2

∫
D

Ivξn∇v · ∇ξn +
∫

D

Iv2|∇ξn|2. (2.3)

The third term on the right-hand side of (2.3) converges to zero by virtue of property
(iii). Using property (iii) once again, together with our assumption (2.1) and the Cauchy-
Schwarz inequality we also conclude that the second term converges to zero. Finally,
recalling property (ii) we obtain

∫
D

Iξ2
n|∇v|2 → 0. But (2.2) now implies

∫
D

I|∇v|2 = 0,
and thus v is constant. �

Remark. The analysis of equation (1.5) by barrier functions (similar to, but not
identical to ξn above) goes back to Khas’minskii, who studied the problem from a prob-
abilistic point of view [3].

Lemma 2.1 provides a sufficient condition for the uniqueness of solutions to equation
(1.3). The condition involves the existence of a sequence ξn satisfying certain properties.
It would be preferable to formulate a condition that is expressed directly in terms of I.
We therefore formulate and prove a theorem that relates the existence of a sequence ξn

as required in Lemma 2.1 to I itself.

Theorem 2.2. Assume that I(x) approaches its boundary value uniformly such that
I(x) ∼ zγ(x), where z(x) = dist(x, ∂D). Then there exists a sequence ξn satisfying
conditions (i)–(iii) of Lemma 2.1 if and only if γ ≥ 1.

Proof. If γ < 1, then
∫

D
I−1 < ∞. Define for a small positive δ,

Dδ = {x ∈ D, dist(x, ∂D) < δ}. (2.4)

Let (s, η) be a local orthogonal coordinate system in Dδ, such that s is an arclength
parameterization of ∂D, and η is a coordinate normal to ∂D. Assume in contradiction
that there exists a sequence ξn satisfying conditions (i)–(iii) of Lemma 2.1. Denoting the
length of ∂D by |∂D|, we can then write for δ small and n sufficiently large

|∂D|
2

<

∣∣∣∣∣
∫

∂D

∫ δ

0

∂

∂η
ξn dηds

∣∣∣∣∣ ≤
∫

∂D

∫ δ

0

I−1/2I1/2|∇ξn| dηds

≤
(∫

D

I−1

∫
D

I|∇ξn|2
)1/2

.

(2.5)

Therefore it cannot be that
∫

D
I|∇ξn|2 → 0.

Consider now the case γ ≥ 1. Define the sequence of functions ξn(x) = 1− zαn , where
z(x) was defined above, and αn is any sequence of numbers such that αn → 0. The
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DIFFUSION COEFFICIENT VANISHING AT THE BOUNDARY 739

functions ξn are smooth, at least for z sufficiently small, and we can truncate them to
be 0 at a finite distance a from ∂D. Clearly ξn(x ∈ ∂D) = 1, and ξn → 0 for x ∈ D. To
check property (iii) in Lemma 2.1 we compute∫ a

0

zγ(α2
nz2αn−2)dz = α2

n

∫ a

0

z2αn+γ−2dz → 0.

�
The fact that no sequence ξn as required in Lemma 2.1 exists when γ < 1 indicates

that equation (1.5) does not have by itself a unique solution. This indeed follows from
the following theorem [4].

Theorem 2.3. Consider the problem consisting of equation (1.5) together with the
boundary condition v = g for x ∈ ∂D for some boundary data g. If

∫
D

I−1 < ∞,
then the problem has a unique solution.

Remark. Notice that Lemma 2.1 and Theorem 2.2 are valid for equations such as
(1.5) in any dimension. Theorem 2.3, on the other hand, is proved in [4] only for D ∈ R2.
We conjecture that equation (1.5) has no unique solution in any dimension if γ < 1.

3. A hybrid numerical algorithm. Consider the equation

∇(I∇u) = f, x ∈ D. (3.1)

Suppose that I satisfies the conditions of Theorem 2.2 with γ ≥ 1. This means that∫
D

I−1 is unbounded, and thus no boundary condition is needed. How do we solve
the singular equation (3.1)? We develop in this section a hybrid analytical-numerical
method for this problem. The idea is to integrate (3.1) analytically in a small strip near
the boundary ∂D, and to derive an effective boundary condition in the reduced domain
defined by D minus the strip (see Figure 1).

To perform the local integration we use the (s, η) local coordinate system near ∂D

that was defined in the previous section. We also denote the tangent and normal vectors
at ∂D by t̂ and n̂, respectively. A strip near ∂D is defined by

Qε = {(s, η)| 0 < η < ε}. (3.2)

The boundary ∂D is assumed to be sufficiently smooth so that Qε is defined at least for
small enough ε. In the strip Qε we treat the functions I, u and f as functions of (s, η).
Denoting the curvature at a boundary point (s, η = 0) by κ(s), the gradient operator
can be written as

∇u =
1

1 − κη

∂u

∂s
t̂ +

∂u

∂η
n̂. (3.3)

Similarly we can write the entire PDE (3.1) in local coordinates in Qε:

∂

∂s

(
I(1 − κη)−1 ∂u

∂s

)
+

∂

∂η

(
(1 − κη)I

∂u

∂η

)
= (1 − κη)f. (3.4)

Integration of equation (3.4) with respect to η over the interval (0, η) (for some 0 < η ≤ ε)
gives

(1 − κη)I(s, η)
∂u

∂η
(s, η) = C +

∫ η

0

(1 − κη)fdη −
∫ η

0

∂

∂s

(
I(1 − κη)−1 ∂u

∂s

)
dη, (3.5)
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D\Qε

D

	t

	n

ε

Qε

Fig. 1. The reduced domain

where C is an integration constant. We argue that C = 0. To see this, divide both
sides of (3.5) by (1 − κη)I(s, η), and integrate with respect to η over (0, ε). Since I−1

is unbounded, and since I is strictly positive in D \ Qε, it follows that
∫

Qε
I−1dsdη is

unbounded. Therefore, to obtain a bounded solution u we must have C = 0.
Now substitute η = ε into (3.5), and consider the last term on the right-hand side:∫ ε

0

∂

∂s

(
I(s, η)(1 − κη)−1 ∂u

∂s
(s, η)

)
dη =

∫ ε

0

∂

∂s

(
I(s, η)(1 − κη)−1 ∂u

∂s
(s, ε)

)
dη

+O

(
ε

∫ ε

0

ηγdη

)
, (3.6)

where we assumed that ∂u
∂s (s, η) is a smooth function. Substitution of (3.6) into (3.5),

and dividing by I(s, ε)(1 − κη) gives (up to O(ε2))

∂u

∂η
(s, ε) =

1
I(s, ε)(1 − κε)

(∫ ε

0

(1 − κη)f(s, η)dη

−
∫ ε

0

∂

∂s

(
I(s, η)(1 − κη)−1 ∂u

∂s
(s, ε)

)
dη

)
.

(3.7)

Defining

Γ(s, ε) :=
∫ ε

0

(
I(s, η)(1 − κη)−1

)
dη, (3.8)

and observing that the normal derivative ∂n for the domain Dε := D \Qε is the negative
of the normal derivative on ∂Qε, we finally arrive at the effective boundary condition for
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Dε in the form

∂u

∂n
(s, ε) =

1
I(s, ε)(1 − κε)

(
∂

∂s

(
Γ(s, ε)

∂u

∂s
(s, ε)

)
−

∫ ε

0

(1 − κη)f(s, η)dη

)
. (3.9)

To summarize, the hybrid solution method consists of solving the PDE (3.1) in Dε with
the boundary condition (3.9). We devised a finite-elements solver for this problem. Notice
that in light of (3.7) there is no gain in using a very fine mesh that gives a numerical
error smaller than O(ε2). In the next section we report on a number simulation that we
carried out.

4. Simulations and numerical tests. 1. A one-dimensional example. We first test
the hybrid method in an interval; that is, we solve (xγu

′
)
′
= f(x) for x ∈ (0, 1) with the

boundary condition (at the nonsingular boundary) u(1) = 1. The discretization norm
is h = 1/N , where N is the number of nodes used. Although ε and h are in principle
independent of each other (except for the remark in the end of the previous section), we
used in this example ε = h. The ordinary differential equation was integrated over the
interval (ε, 1) using the effective boundary condition (3.9). We simulated a number of
functions f(x) and obtained similar results for them. For example, we depict in Figure 2
the errors in the weighted norm as a function of the number of nodes for different values
of γ for the special case f(x) = 1 + x + x2. The exact solution here is

u(x) = 1 +
1

2 − γ
(x2−γ − 1) +

1
2(3 − γ)

(x3−γ − 1) +
1

3(4 − γ)
(x4−γ − 1),

where γ > 1 is not an integer. The weighted norm is defined as

||e||w =
( ∫

Dε

I|∇e|2dx
)1/2

/
( ∫

Dε

Idx
)1/2

,

where e(x) is the difference between the exact u and the computed u.
The error is seen to increase with increasing γ. The reason is that the derivative of

u(x) becomes singular when γ > 1.
2. The unit square. We solved (3.1) for the case where D is the unit square (0, 1) ×

(0, 1), and I(x, y) = xγ . This means that only the part of the boundary along the y-axis
is singular. The boundary conditions on the other components of the boundary are

u(1, y) = cos(4) cos(2πy) for 0 ≤ y ≤ 1, uy(x, 1) = uy(x, 0) = 0 for 0 ≤ x ≤ 1.

The simulation on which we report here used the function u(x, y) = cos(4x) cos(2πy),
but the results are similar for other test functions. The value of ε was set to be 0.025 in
this test.

The dashed and dotted lines in Figure 3 are least-square fitting curves for the er-
ror as a function of the number of nodes. The convergence rates that correspond to
γ = 1.2, 1.5, 2.0 and 2.5 are O(N−0.4507), O(N−0.5046), O(N−0.5215) and O(N−0.5192), re-
spectively, where N represents the number of nodes used in the finite-elements code. We
can see that when γ increases, that is, when the intensity goes to zero faster, the error
decreases.
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742 C. LEE AND J. RUBINSTEIN

3. An optical simulation in a disc. In this test we solved the optical transport equation
(1.3) with intensity vanishing on the boundary of the unit disc. The optical simulation
was geometrical, though. The hybrid boundary condition (3.6) is used at the artificial
boundary. The intensity I(x, y) at a plane z = z0 was (1−

√
x2 + y2)γ(γ

√
x2 + y2 + 1),

and the phase u(x) on the same plane is the nonsymmetric function 0.01((x/2)2 + y2).
The intensities at z = z0 ± 1/64 were simulated using the actual phase function, and we
then applied a finite difference approximation to find ∂I/∂z. We chose ε to be 0.025 just
as in the previous test. The weighted norm errors for γ = 1.2, 1.5, 2.0 and 2.5 are shown
in Figure 4. The convergence rates for γ = 1.2, 1.5, 2.0, 2.5 with respect to the number
of nodes N are O(N−0.1928), O(N−0.6315), O(N−0.8501), O(N−1.0963), respectively. These
results are similar to the previous square test in the sense that when the intensity de-
creases faster, the reconstructed phase is more accurate. The computed phase and its
error in the case of γ = 2.5 with 1206 nodes is shown in Figure 5.

4. A very small but nonvanishing diffusion coefficient (at the boundary). The re-
quirement that I vanishes at the boundary is severe for real data. Because of noise
and diffraction effects, for example, the intensity is never zero. Theoretically this means
that boundary conditions are needed. On the other hand, one might expect the hybrid
method to give a reasonable approximation also in such a case. Let us look again at a
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Fig. 2. Errors in the weighted norm in the one-dimensional example
for γ = 1.2, 1.4 and 1.6
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Fig. 3. Errors in the weighted norm for the case where D is the unit
square for γ = 1.2, 1.5, 2.0, and 2.5

one-dimensional example. The underlying model is

(Iu′)′ = f, γ > 1, x ∈ (0, 1), u(1) = A. (4.1)

Selecting a boundary layer of thickness ε near x = 0 we write, just as before, the effective
boundary condition

u′(ε) =
1

I(ε)

∫ ε

0

f(t) dt =
1

αεγ

∫ ε

0

f(t) dt. (4.2)

Assume now that I is slightly perturbed at x = 0 by a small positive parameter δ. Thus,
(4.1) is replaced in the boundary layer near x = 0 by

((δ + αxγ)u′)′ = f, x ∈ (0, ε). (4.3)

Integrating this equation over the boundary layer gives

u′(ε) =
δu′(0)

δ + αεγ
+

1
δ + αεγ

∫ ε

0

f(t) dt. (4.4)

One option (method I) is to use the effective boundary condition (4.2), i.e., a boundary
condition in which the first term on the right-hand side of (4.4) is neglected. A second
option (method II) is to subtract the excess boundary intensity δ from I everywhere.
This brings us back to the case where I vanishes at the boundary. The danger with
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Fig. 4. Errors in the weighted norm when γ = 1.2, 1.5, 2.0, and 2.5

method I is that the first term on the right-hand side of (4.4) might dominate the second
term there. We therefore opt to use method II.

We simulated an optical situation with a radially symmetric wave. The wave at the
aperture at z = 0 is e−4r2

eik0.01 cos(r). The wave number is k = 200. The intensities at
z = 50 − 1/64, 50, 50 + 1/64 and the phase at z = 50 were computed with the Rayleigh-
Sommerfeld formula. The domain is a disc with radius 2. We used ε = 0.025. In Table 1
we compare the hybrid method as applied to the original data (method I above) to the
results obtained by using method II.

Table 1.

Nodes 915 1435 1992 2913 3566
Method I 7.78 × 10−4 7.29 × 10−4 7.21 × 10−4 7.12 × 10−4 7.09 × 10−4

Method II 3.03 × 10−4 2.01 × 10−4 1.80 × 10−4 1.39 × 10−4 1.39 × 10−4

The convergence rates of the weighted error norm are O(N−0.0636) using the original
intensity (method I) and O(N−0.5747) after subtracting δ from the intensity everywhere
(method II). We see that the “subtraction” method works well in this example. To
give an idea of the parameters involved in this example, we provide the values of δ =
1.1666×10−4, δ+αεγ = 1.4351×10−4, u′(2) = 3.888×10−2, and u′(2−ε) = 3.785×10−2.
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Fig. 5. The computed phase and its error on the unit disc

5. Comparison of the hybrid method to a spectral method. An alternative numerical
approach was proposed in reference [1]. Gureyev and Nugent used there a spectral
expansion method. We compared the hybrid method and the spectral method for a few
domains and a few test functions. We present here a one-dimensional example. The
following model is used:

(Iu′)′ = f, x ∈ (0, 1), I(x) = x2(1 − x)2. (4.5)

In the current test the exact solution is u(x) = − sin(4x), which should not be hard for a
spectral method to discern. The convergence of the two methods is compared in Figure
6. We see that the hybrid method gives faster convergence. Similar comparisons hold
for other examples that we tested in one-dimensional and two-dimensional domains and
in different settings.

5. Summary. We presented a theoretical analysis for the problem of elliptic PDEs
with degenerate diffusion coefficient. In addition, we provided a hybrid analytical-
numerical method for computing solutions to such equations. Our main motivation
was the problem of phase reconstruction from intensity measurements that appears in
a number of optical applications. Therefore, we used this problem as a guide in both
the theoretical and numerical part. We report on a number of experiments in which we
tested the hybrid method in several setups. We also compared it to a spectral method
that was suggested earlier for such problems.
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Fig. 6. The convergence of the spectral method (left) and the hybrid
method (right) for a one-dimensional example

In addition to our optical motivation, problems where the diffusion coefficient tends
to zero at least at part of the boundary arise in other applications. For example, Shiga
[7] and Houseworth et al. [2] considered such situations arising in continuum models in
genetics.

Acknowledgments. We thank S. Serfati for a useful discussion of this problem. We
also thank M. Friedlin for bringing reference [3] to our attention.

References

[1] T.E. Gureyev and K.A. Nugent, Phase retrieval with the transport of intensity equation II: Orthog-
onal series solution for nonuniform illumination, J. Opt. Soc. Amer. A 13 (1995), 1670–1682.

[2] E. Houseworth, M.S. Jolly and G.O. Mohler, Continuum limit of a discrete genetic problem, preprint.
[3] R. Z. Khas’minskii, Diffusion processes and elliptic differential equations degenerating at the bound-

ary of the domain, Theory of Probability and its Applications 3 (1958), 400–419.
[4] M.K.V. Murthy and G. Stampacchia, Boundary value problems for some degenerate-elliptic opera-

tors, Annali di Matematica, LXXX (1968), 1–122. MR0249828 (40:3069)
[5] F. Roddier, Curvature sensing and compensation: A new concept in adaptive optics, Appl. Opt. 27

(1998), 1223–1225.
[6] J. Rubinstein and G. Wolansky, A variational principle in optics, J. Opt. Soc. Amer. A 21 (2004),

2164–2172. MR2122591 (2005i:35257)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=0249828
http://www.ams.org/mathscinet-getitem?mr=0249828
http://www.ams.org/mathscinet-getitem?mr=2122591
http://www.ams.org/mathscinet-getitem?mr=2122591


DIFFUSION COEFFICIENT VANISHING AT THE BOUNDARY 747

[7] T. Shiga, Continuous time multi-allelic stepping stone models in population genetics, J. Math. Kyoto
Univ. 22 (1982), 1–40. MR0648554 (84h:60138)

[8] M.R. Teague, Deterministic phase retrieval: A Green’s function solution, J. Opt. Soc. Amer. 73
(1983), 1434–1441.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=0648554
http://www.ams.org/mathscinet-getitem?mr=0648554

	1. Introduction and motivation
	2. A uniqueness theorem
	3. A hybrid numerical algorithm
	4. Simulations and numerical tests
	5. Summary
	Acknowledgments
	References

