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Abstract: In this note we prove an identity that equates the elliptic genus partition
function of a supersymmetric sigma model on theN -fold symmetric productMN/SN

of a manifoldM to the partition function of a second quantized string theory on the space
M × S1. The generating function of these elliptic genera is shown to be (almost) an
automorphic form forO(3, 2, Z). In the context of D-brane dynamics, this result gives a
precise computation of the free energy of a gas of D-strings inside a higher-dimensional
brane.

1. The Identity

Let M be a K̈ahler manifold. In this note we will consider the partition function of the
supersymmetric sigma model defined on theN -fold symmetric productSNM of M ,
which is the orbifold space

SNM = MN/SN (1.1)

with SN the symmetric group ofN elements. The genus one partition function depends
on the boundary conditions imposed on the fermionic fields. For definiteness, we will
choose the boundary conditions such that the partition functionχ(SNM ; q, y) coincides
with the elliptic genus [1, 2], which is defined as the trace over the Ramond-Ramond
sector of the sigma model of the evolution operatorqH times (−1)F yFL . Hereq andy
are complex numbers andF = FL +FR is the sum of the left- and right-moving fermion
number. (See the Appendix for background.) In particular,

χ(M ; q, y) = TrH(M )
(−1)F yFLqH (1.2)

with H = L0 − c
24. Of the right-moving sector only the R-ground states contribute to

the trace.
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We will prove here an identity, conjectured in [3], that expresses the orbifold elliptic
genera of the symmetric product manifolds in terms of that ofM as follows:1

∞∑
N=0

pNχ(SNM ; q, y) =
∏

n>0,m≥0,`

1
(1 − pnqmy`) c(nm,`), (1.3)

where the coefficientsc(m, `) on the right-hand side are defined via the expansion

χ(M ; q, y) =
∑

m≥0,`

c(m, `)qmy`. (1.4)

The proof of this identity follows quite directly from borrowing standard results about
orbifold conformal field theory [6], and generalizes the orbifold Euler number compu-
tation of [7] (see also [8]). Before presenting the proof, however, we will comment on
the physical interpretation of this identity in terms of second quantized string theory.

1.1. String Theory Interpretation.Each term on the left-hand side with givenN can
be thought of as the left-moving partition sum of a single (non-critical) supersymmet-
ric string with space-timeSNM × S1 × R. This string is wound once around theS1

direction, and in the light-cone gauge its transversal fluctuations are described by the
supersymmetric sigma-model onSNM . The right-hand side, on the other hand, can be
recognized as a partition function of a large Fock space, made up from bosonic and
fermionic (depending on whetherc(nm, `) is positive or negative) creation operators
αI

n,m,` with I = 1, 2, . . . , |c(nm, `)|. This Fock space is identical to the one obtained by
second quantization of the left-moving sector of the string theory on the spaceM × S1.
In this correspondence, the oscillatorsαI

n,m,` create string states with winding number
n and momentumm around theS1. The number of such states is easily read off from the
single string partition function (1.4). In the light-cone gauge we have the level matching
condition

L0 − L0 = mn, (1.5)

and sinceL0 = 0, this condition implies that the left-moving conformal dimension is
equal toh = mn. Therefore, according to (1.4) the number of single string states with
windingn, momentumm andFL = ` is indeed given by|c(nm, `)|. (Strictly speaking,
the elliptic genus counts the number of bosonic minus fermionic states at each oscillator
level. Because of the anti-periodic boundary condition in the time direction for the
fermions, only the net number contributes in the space-time partition function (1.3). )

The central idea behind the proof of the above identity is that the partition function
of a single string on the symmetric productSNM decomposes into several distinct
topological sectors, corresponding to the various ways in which a once wound string
on SNM × S1 can be disentangled into separate strings that wind one or more times
aroundM × S1. To visualize this correspondence, it is useful to think of the string on
SNM × S1 as a map that associates to each point on theS1 a collection ofN points
in M . By following the path of theseN points as we go around theS1, we obtain a
collection of strings onM × S1 with total winding numberN , that reconnect theN

1 In case we have more than one conserved quantum number such asFL, the index` becomes a multi-
index and the denominator on the RHS of (1.3) becomes a general product formula as appears in the work of
Borcherds [4], see also [5].
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points with themselves. Since all permutations of theN points onM correspond to the
same point in the symmetric product space, the strings can reconnect in different ways
labeled by conjugacy classes [g] of the permutation groupSN . The factorization of [g]
into a product of irreducible cyclic permutations (n) determines the decomposition into
several strings of winding numbern. (See Fig. 1). The combinatorical description of the

M

S 1

Fig. 1.The string configuration corresponding to a twisted sector by a given permutationg ∈ SN . The string
disentangles into separate strings according to the factorization ofg into cyclic permutations

conjugacy classes, as well as the appropriate symmetrization of the wavefunctions, are
both naturally accounted for in terms of a second quantized string theory.

2. The Proof

The Hilbert space of an orbifold field theory [6] is decomposed into twisted sectors
Hg, that are labelled by the conjugacy classes [g] of the orbifold group, in our case the
symmetric groupSN . Within each twisted sector, one only keeps the states invariant
under the centralizer subgroupCg of g. We will denote thisCg invariant subspace by

HCg
g . Thus the total orbifold Hilbert space takes the form

H(SNM ) =
⊕
[g]

HCg
g . (2.1)

For the symmetric group, the conjugacy classes [g] are characterized by partitions{Nn}
of N ∑

n

nNn = N, (2.2)

whereNn denotes the multiplicity of the cyclic permutation (n) of n elements in the
decomposition ofg,

[g] = (1)N1(2)N2 . . . (s)Ns . (2.3)

The centralizer subgroup of a permutationg in this conjugacy class takes the form

Cg = SN1 × (SN2 n ZN2
2 ) × . . . (SNs n ZNs

s ). (2.4)
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Here each subfactorSNn permutes theNn cycles (n), while each subfactorZn acts
within one particular cycle (n).

Corresponding to the above decomposition of [g] into irreducible cyclic permuta-
tions, we can decompose each twisted sectorHCg

g into the product over the subfactors
(n) of Nn-fold symmetric tensor products of appropriate smaller Hilbert spacesHZn

(n),

HCg
g =

⊗
n>0

SNnHZn

(n), (2.5)

where we used the following notation for (graded) symmetric tensor products

SNH =

H ⊗ . . . ⊗ H︸ ︷︷ ︸
N times

SN

. (2.6)

Here the symmetrization is assumed to be compatible with the grading ofH. In particular
for pure odd statesSN corresponds to the exterior product

∧N
.

The Hilbert spacesHZn

(n) in (2.5) denote theZn invariant subsector of the Hilbert
spaceH(n) of a single string onM ×S1 with winding numbern. We can representH(n)
as the Hilbert space of the sigma model ofn coordinate fieldsXi(σ) ∈ M with the
cyclic boundary condition

Xi(σ + 2π) = Xi+1(σ), i ∈ (1, . . . , n). (2.7)

The groupZn, acting on the Hilbert spaceH(n), is generated by the cyclic permutation

ω : Xi → Xi+1. (2.8)

We can glue then coordinate fieldsXi(σ) together into one single fieldX(σ) defined
on the interval 0≤ σ ≤ 2πn. Hence, relative to the string with winding number one,
the oscillators of the long string that generateH(n) have a fractional1n moding. TheZn-
invariant subspaceHZn

(n) consists of those states inH(n) for which the fractional oscillator
numbers combined add up to an integer. We will make use of this observation in the next
subsection.

2.1. Partition Function of a Single String.The elliptic genus ofSNM can now be
computed by taking the trace over the Hilbert space in the various twisted sectors. We
introduce the following notation:

χ(H; q, y) = TrH(−1)F yFLqH (2.9)

for every (sub)Hilbert spaceH of a supersymmetric sigma-model. Note that

χ(H ⊕ H′; q, y) = χ(H; q, y) + χ(H′; q, y),

χ(H ⊗ H′; q, y) = χ(H; q, y) · χ(H′; q, y). (2.10)

These identities will be used repeatedly in the following.
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As the first step we will now compute the elliptic genus of the twisted sectorH(n).
This is the left-moving partition sum of a single string with windingn onM ×S1. As we
have explained, its elliptic genus can be simply related to that of a string with winding
number one via a rescalingq → q

1
n ,

χ(H(n); q, y) = χ(H; q
1
n , y) =

∑
m≥0,`

c(m, `)q
m
n y`. (2.11)

This rescaling accounts for the fractional1
n moding of the string oscillation numbers.

The projection on theZn invariant sector is implemented by insertion of the projec-
tion operatorP = 1

n

∑
k ωk, with ω as defined in (2.8),

χ(HZn

(n); q, y) =
1
n

n−1∑
k=0

TrH(n)
ωk(−1)F yFLqH . (2.12)

Since the boundary condition (2.7) on the Hilbert spaceH(n) represents aZn-twist by
ω along theσ direction, the operator insertion ofω in the genus one partition sum can
in fact be absorbed by performing a modular transformationτ → τ + 1, which amounts
to a redefinitionq

1
n → q

1
n e

2πi
n .2 Thus we can write

χ(HZn

(n); q, y) =
1
n

n−1∑
k=0

χ(H; q
1
n e

2πik
n , y)

=
∑

m≥0,`

c(mn, `)qmy`. (2.13)

2.2. Symmetrized products.The next step is to consider the partition function for the
symmetrized tensor products of the Hilbert spacesHZn

(n) . We need the following result:
If χ(H; q, y) has the expansion

χ(H; q, y) =
∑
m,`

d(m, `)qmy`, (2.14)

then we want to show that the partition function of the symmetrized tensor products of
H is given by the generating function∑

N≥0

pNχ(SNH; q, y) =
∏
m,`

1
(1 − pqmy`)d(m,`). (2.15)

This identity is most easily understood in terms of second quantization. The sum over
symmetrized products ofH is described by a Fock space with a generator for every state
in H, where states with negative “multiplicities”d(m, `) are identified as fermions. The
usual evaluation of the partition function in a Fock space then results in the RHS of
equation (2.15).

2 The redefinitionτ → τ + 1 means that the periodic boundary condition in the time direction is composed
with a space-like translationσ → σ + 2π. According to (2.7) and (2.8) this indeed results in an extra insertion
of the operatorω into the trace.
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In more detail, we can interpret the elliptic genus as computing the (super)dimension3

of vector spacesVm,`

d(m, `) = dimVm,`. (2.16)

We then evaluate∑
N≥0

pNχ(SNH; q, y)

=
∑
N≥0

pN
∑

m1 ...,m
N

`1,...,`
N

dim
(
Vm1,`1 ⊗ · · · ⊗ Vm

N
,

Ǹ

)SN

qm1+...+m
N y`1+...+

Ǹ

=
∑
N≥0

pN
∑
Nm,`∑
Nm,`=N

∏
m,`

(
qmy`

)Nm,` dim
(
SNm,`Vm,`

)

=
∏
m,`

∑
N≥0

pN
(
qmy`

)N
dim

(
SNVm,`

)
. (2.17)

Using the identity

dim
(
SNVm,`

)
=

(
d(m, `) + N − 1

N

)
, (2.18)

where the RHS is defined as (−1)N
(|d(m,`)|

N

)
for negatived(m, `), gives the desired

result.

2.3. Combining the ingredients.The proof of our main identity follows from combining
the results of the previous two subsections. Our starting point has been the fact that the
Hilbert space of the orbifold field theory has a decomposition in terms of twisted sectors
as

H(SNM ) =
⊕∑
nNn=N

⊗
n>0

SNnHZn

(n). (2.19)

Physically speaking, the right-hand side describes the Hilbert space of a second quantized
string theory withNn the number of strings with winding numbern.

With this form of the Hilbert spaceH(SNM ), we find for the partition function∑
N≥0

pNχ(SNM ; q, y) =
∑
N≥0

pN
∑
Nn∑
nNn=N

∏
n>0

χ(SNnHZn

(n); q, y)

=
∏
n>0

∑
N≥0

pnNχ(SNHZn

(n); q, y). (2.20)

Here we used repeatedly the identities (2.10). In order to evaluate the elliptic genera
of the symmetric products, we apply the result (2.15) of the previous subsection to the
Hilbert spaceHZn

(n), which gives

3 We define dimV = TrV (−1)F = d+ − d−, whered± are the dimensions of the even and odd subspaces
V ± in the decompositionV = V + ⊕ V −.
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∑
N≥0

pNχ(SNHZn

(n); q, y) =
∏

m≥0,`

1
(1 − pqmy`) c(mn,`). (2.21)

If we insert this into (2.20) we get our final identity

∑
N≥0

pNχ(SNM ; q, y) =
∏

n>0,m≥0,`

1
(1 − pnqmy`) c(mn,`), (2.22)

which concludes the proof.

3. One-Loop Free Energy

In this section we will discuss some properties of our identity. For convenience we will
assume here that the spaceM is a Calabi-Yau manifold, so that the sigma-model defines
aN = 2 superconformal field theory. For the elliptic genus this implies that it transforms
as a modular form.

We have argued that the quantity on the right-hand side of (2.22)

Z(p, q, y) =
∏

n>0,m,`

1
(1 − pnqmy`) c(mn,`) (3.1)

has an interpretation as the partition function of a second quantized string theory with tar-
get spaceM×S1. This identification was based on the fact thatZ has the form of the trace
over free field Fock space generators by oscillatorsαI

n,m,l with I = 1, . . . , |c(nm, `)|,
i.e. one oscillator for each first quantized string state. We will now comment on the path
integral derivation of this expression.

Since we are dealing with a free string theory, we should be able to take the logarithm
of the partition sum

F (p, q, y) = logZ(p, q, y) (3.2)

and obtain an interpretation ofF as the one-loop free energy of a single string. From a
path-integral perspective, this free energy is obtained by summing over irreducible one-
loop string amplitudes. The time coordinate of the target space is taken to be compactified
(since the partition function is defined as a trace) and thus the irreducible one loop
string amplitudes are described in terms of all possible maps ofT 2 into the Euclidean
target space-timeM × T 2. From this point of view the parametersp, q, y obtain the
interpretation as moduli of the target space two-torus. We can introduce parameters
ρ, σ, υ via

p = e2πiρ, q = e2πiσ, y = e2πiυ. (3.3)

Hereρ andσ determine the complexified K̈ahler form and complex structure modulus
of T 2 respectively, whereasυ parametrizes theU (1) bundle onT 2 corresponding toFL.

3.1. Instanton sums and Hecke operators.We will now show that the logarithmF of
the partition function (3.1) indeed has the interpretation of a one-loop free energy for a
string onM × T 2. First we compute
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F (p, q, y) = −
∑

n>0,m,`

c(nm, `) log
(
1 − pnqmy`

)
=

∑
n>0,m,`,k>0

1
k

c(nm, `)pknqkmyk`

=
∑
N>0

pN
∑

kn=N

1
k

∑
m,`

c(nm, `)qkmyk`. (3.4)

To write this expression in a more convenient form, it is useful to recall the definition of
the Hecke operatorsTN . (For more details on Hecke operators see e.g. [9].) In general,
the Hecke operatorTN acting on a weak Jacobi form4 φ(τ, z) of weight zero and index
r produces a weak Jacobi formTNφ of weight zero and indexNr, defined as follows

TNφ(τ, z) =
∑
ad=N

b mod d

1
N

φ

(
aτ + b

d
, az

)
. (3.5)

Hence ifφ(τ, z) has a Fourier expansion

φ(τ, z) =
∑

m≥0,`

c(m, `)qmy`, (3.6)

thenTNφ(τ, z) takes the form

TNφ(τ, z) =
∑

ad=N

1
a

∑
m≥0,`

c(md, `)qamya`. (3.7)

Comparing with the expression (3.4) for the free energyF , we thus observe that it can
be rewritten as a sum of Hecke operators acting on the elliptic genus ofM ,

F (p, q, y) =
∑
N>0

pN TNχ(M ; q, y). (3.8)

(See also [4, 10] for similar expressions.)
This representation has a natural interpretation that arises from the geometric mean-

ing of the Hecke operatorsTN . The expression on the right-hand side of (3.7) that defined
TNφ can be reformulated as the sum of pullbacks for all holomorphic mapsf : T 2 → T 2

of degreeN ,

TNφ =
1
N

∑
f

f∗φ. (3.9)

These mapsf act as linear transformations on the two-torus and can be represented by
the matrices

f =

(
a b

0 d

)
, (3.10)

4 See the Appendix for the definition of a Jacobi form.
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wheread = N and 0≤ b ≤ d − 1. The factor 1/N in (3.9) is natural because of the
automorphisms of the torus.

With this interpretation, the free energy is represented as a sum over holomorphic
maps

F (p, q, y) =
∑

f : T 2→T 2

1
Nf

pNf f∗χ(M ; q, y) (3.11)

with Nf the degree of the mapf . The right-hand side can be recognized as a summation
over instanton sectors.

3.2. Automorphic properties.As suggested by its form, the above expression can indeed
be reproduced from a standard string one-loop computation. To make this correspon-
dence precise, we notice that the partition functionZ is in fact almost equal to an
automorphic form for the groupSO(3, 2, Z) of the type discussed in [4].

The precise form of this automorphic function has been worked out in detail in [12].
It is defined by the product

Φ(p, q, y) = paqbyc
∏

(n,m,`)>0

(1 − pnqmy`)c(nm,`), (3.12)

where the positivity condition means:n, m ≥ 0 with ` > 0 in the casen = m = 0. The
“Weyl vector” (a, b, c) is defined by

a = b =
1
24

χ(M ), c =
∑

`

−|`|
4

c(0, `). (3.13)

One can then show that the expressionΦ is an automorphic form of weightc(0, 0)/2 for
the groupO(3, 2, Z) for a suitable quadratic form of signature (3, 2), see [12].

The formΦ follows naturally from a standard one-loop string amplitude defined as
an integral over the fundamental domain [5, 13]. The integrand consists of the genus
one partition function of the string onM × T 2 and has a manifestO(3, 2, Z) T-duality
invariance. We will not write down the explicit form of this partition function, but refer
to [12] for the specific details. For our purpose it is sufficient to mention the final result
of the integration

I = − log
(
Y c(0,0)/2|Φ(p, q, y)|2

)
(3.14)

with Y = ρ2σ2 − 1
2d υ2

2, d = dimM , in the notation (3.3). Since the integralI is by con-
struction invariant under the T-duality groupO(3, 2, Z), this determines the automorphic
properties ofΦ. The factorY transforms with weight−1, which fixes the weight of the
form Φ to bec(0, 0)/2.

The holomorphic contribution inI is recovered by taking the limitp → 0. In the
sigma model this corresponds to the localization of the path-integral on holomorphic
instantons and in this way one makes contact with the description of the free energy
F in the previous subsection. We note however that logΦ contains extra terms that do
not appear inF . Apart from a logp contribution that arises from degree zero maps5

these terms are independent ofp and have no straightforward interpretation in terms of
instantons.

5 For degree zero the two-torus gets mapped to a point inM , and the moduli space of such maps is the
productM ×M1, with M1 the moduli space of elliptic curves. Weighting this contribution by the appropriate
characteristic class [11], we obtain− χ(M )

24 logp, in accordance with (3.13).
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4. Concluding Remarks

Our computation of the elliptic genus of the symmetric product spaceSNM can be seen
as a refinement of the calculations in [7, 8] of the orbifold Euler number. In fact, if we
restrict toy = 1, the elliptic genus reduces to the Euler number and our identity takes
the simple form ∑

N≥0

pNχ(SNM ) =
∏
n>0

1
(1 − pn)χ(M ). (4.1)

Here the K̈ahler condition is not necessary. IfM is an algebraic surface, it can be shown
that this formula also computes thetopologicalEuler characteristic of the Hilbert scheme
M [N ] of dimension zero subschemes of lengthn [15]. This space is a smooth resolution
of the symmetric productSNM . (In complex dimension greater than two the Hilbert
scheme is unfortunately not smooth.) It is natural to conjecture that in the case of a
two-dimensional Calabi-Yau space,i.e.aK3 or an abelian surface, the orbifold elliptic
genus of the symmetric product also coincides with elliptic genus of the Hilbert scheme.

The left-hand side of our identity (1.3) can be seen to compute the superdimension
of the infinite, graded vector space⊕

N,m,`

Vm,`(S
NM ), (4.2)

whereVm,` are the index bundles (A.12). Our result suggests that this space forms a
natural representation of the oscillator algebra generated by string field theory creation
operatorsαI

n,m,`. This statement is analogous to the assertion of Nakajima [16] (see
also [17]) that the space⊕NH∗(M [N ] ) forms a representation of the Heisenberg algebra
generated byαI

n, whereI runs over a basis ofH∗(M ).
It would be interesting to explore possible applications to gauge theories along the

lines of [8]. On aK3 manifold the moduli space of Yang-Mills instantons takes (for
certain instanton numbers) the form of a symmetric product ofK3. This fact was used in
[8] to relate the partition function ofN = 4 Yang-Mills theory onK3 to the generating
function of Euler numbers (4.1). Our formula gives an explicit expression for the elliptic
genus of these instanton moduli spaces. It seems a natural conjecture that the analysis
of [8] can be generalized to show that the generating function of the elliptic genera is
the partition function of an appropriately twisted version ofN = 2 Yang-Mills theory
onK3 × T 2. For some interesting recent work in this direction, see [18].

Finally, our calculation is likely to be relevant for understanding the quantum statisti-
cal properties of D-branes [19] and their bound states [20]. Particularly useful examples
of such possible bound states are those between D-strings with one (or more) higher
dimensional D-branes. In type II string compactifications on manifolds of the form
M × S1, we can consider the configuration of a D-string woundN times around the
S1 bound to a (dimM+1)-brane. (For the case whereM is a K3 manifold, this situ-
ation was first considered by Vafa and Strominger [21] in their D-brane computation
of the 5-dimensional black hole entropy.) As argued in [22, 21], the quantum mechan-
ical degrees of freedom of this D-brane configuration are naturally encoded in terms
of a two-dimensional sigma model on theN -fold symmetric tensor product ofM , that
describes the transversal fluctuations of the D-string. As was also pointed out in [23],
this description implies that a multiply wound D-string can carry fractional oscillation
numbers. Our result shows that the resulting quantum statistical description of these first
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quantized “fractional” D-strings is in fact equivalent to a description in terms of second
quantized “ordinary” strings. In this correspondence the extra degrees of freedom that
arise from the fractional moding are used to assign to each individual string a momen-
tum along theS1 direction. This result may be a useful clue in explaining some of the
miraculous non-perturbative dualities between strings and D-branes.

Acknowledgement.We thank D. Neumann, J-S. Park, G. Segal, W. Taylor and C. Vafa for discussions, and the
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A. Appendix: Elliptic Genus

We summarize some facts about the elliptic genus for a Kähler manifoldM of complex
dimensiond [1, 2]. We start with an elliptic curveE with modulusτ and a line bundle
labeled byz ∈ Jac(E) ∼= E. We defineq = e2πiτ , y = e2πiz. The elliptic genus is
defined as

χ(M ; q, y) = TrH(M )
(−1)F yFLqL0− d

8 qL0− d
8 , (A.1)

whereF = FL + FR andH(M ) is the Hilbert space of theN = 2 supersymmetric field
theory with target spaceM .

For a Calabi-Yau space the elliptic genus is a weak Jacobi form of weight zero
and indexd/2. Recall that a Jacobi formφ(τ, z) of weight k and indexr (possibly
half-integer) transforms as [24]

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)keπi rcz2

cτ+d φ(τ, z),

φ(τ, z + mτ + n) = e−πir(m2τ+2mz)φ(τ, z), (A.2)

and is called weak if it has a Fourier expansion of the form

φ(τ, z) =
∑

m≥0,`

c(m, `)qmy`. (A.3)

The coefficients of such a form depend only on 4rm − `2 and oǹ mod 2r.
The elliptic genus has the following properties: First of all, it is a genus; that is, it

satisfies the relations

χ(M t M ′; q, y) = χ(M ; q, y) + χ(M ′; q, y),

χ(M × M ′; q, y) = χ(M ; q, y) · χ(M ′; q, y), (A.4)

χ(M ; q, y) = 0, if M = ∂N ,

where the last relation is in the sense of complex bordism. Furthermore, forq = 0 it
reduces to a weighted sum over the Hodge numbers, which is essentially the Hirzebruch
χy-genus,

χ(M ; 0, y) =
∑
p,q

(−1)p+qyp− d
2 hp,q(M ), (A.5)
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and fory = 1 its equals the Euler number ofM ,

χ(M ; q, 1) = χ(M ). (A.6)

For smooth manifolds, the elliptic genus has an alternative definition in terms of
characteristic classes, as follows. For any vector bundleV one defines the formal sums∧

qV =
⊕
k≥0

qk
∧k

V, SqV =
⊕
k≥0

qkSkV, (A.7)

where
∧k

andSk denote thekth exterior and symmetric product respectively. One then
has an equivalent definition of the elliptic genus as

χ(M ; q, y) =
∫

M

ch(Eq,y)td(M ) (A.8)

with

Eq,y = y− d
2

⊗
n≥1

(∧
−yqn−1TM ⊗∧−y−1qnTM ⊗ SqnTM ⊗ SqnTM

)
, (A.9)

whereTM denotes the holomorphic tangent bundle ofM . Expanding the bundleEq,y

as

Eq,y =
⊕
m,`

qmy`Em,`, (A.10)

one can define the coefficientsc(m, `) as

c(m, `) = indexD/Em,`
(A.11)

with D/E the Dirac operator twisted with the vector bundleE. Soc(m, `) computes the
dimension of the virtual vector space

Vm,`(M ) = kerD/Em,`
	 cokD/Em,`

. (A.12)
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