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Abstract—In this paper, our aim is to compare and contrast
various ways of modeling uncertainty by using different type-2
fuzzy membership functions available in literature. In particular
we focus on a novel type-2 fuzzy membership function, – ”Elliptic
membership function”. After briefly explaining the motivation
behind the suggestion of the elliptic membership function, we
analyse the uncertainty distribution along its support, and we
compare its uncertainty modeling capability with the existing
membership functions. We also show how the elliptic membership
functions perform in fuzzy arithmetic. In addition to its extra
advantages over the existing type-2 fuzzy membership functions
such as having decoupled parameters for its support and width,
this novel membership function has some similar features to the
Gaussian and triangular membership functions in addition and
multiplication operations. Finally, we have tested the prediction
capability of elliptic membership functions using interval type-2
fuzzy logic systems on US Dollar/Euro exchange rate prediction
problem. Throughout the simulation studies, an extreme learning
machine is used to train the interval type-2 fuzzy logic system.
The prediction results show that, in addition to their various
advantages mentioned above, elliptic membership functions have
comparable prediction results when compared to Gaussian and
triangular membership functions.

Index Terms—Elliptic membership function, type-2 fuzzy logic
theory, uncertainty, fuzzy sets, Gaussian, triangular, time series
prediction.

I. INTRODUCTION

Transition from type-1 to type-2 is still a hot topic in fuzzy
logic community as it is believed that type-2 fuzzy logic
systems (T2FLSs) appear to be a more promising method than
their type-1 counterparts for handling real world applications,
which exhibit measurement noise, uncertainties such as noisy
data and changing environments [1]–[3]. Regardless of being
type-1 or type-2, membership functions (MFs) are inevitable
components of any fuzzy logic system which were introduced
by Zadeh in his paper on fuzzy sets in 1965. The basic
definitions of fuzzy logic and MFs of Lotfi A. Zadeh were
as follows:

“A fuzzy set is a class of objects with a continuum of grades
of membership. Such a set is characterized by a membership
(characteristic) function which assigns to each object a grade
of membership ranging between zero and one.” [4].

L. A. Zadeh

A type-2 fuzzy set is where the membership grade is not in
[0,1] but is itself a (type-1) fuzzy set. Zadeh introduced the
notion of type-n fuzzy sets.

Definition: Type-n fuzzy sets [5]. A fuzzy set is of type n,n=
2,3, ..., if its membership function ranges over fuzzy sets of
type n− l. The membership function of a fuzzy set of type 1
ranges over the interval [0,1].

This elegant definition provides an excellent, concise de-
scription of type-n fuzzy sets. It is worth noting here that, to
date, researchers are working with type-1 and type-2 fuzzy
sets with limited research into type-n fuzzy sets [6].

Now we introduce a more modern definition:
Definition: A Type-2 Fuzzy Set [7] is a bivariate function

on the cartesian product X× [0,1] into [0,1]. In other words, µ

on the universe of discourse X is given by u : X× [0,1]→ [0,1].
This paper is concerned with interval type-2 fuzzy sets.
Definition: An interval type-2 fuzzy set is where the type-1

fuzzy set in the secondary takes value unity everywhere. That
is an Interval type-2 fuzzy set is a function from X into D[0,1]
where D[0,1] is the set of closed sub-intervals in [0,1] [7].

An interval type-2 fuzzy set is fully defined by it’s Footprint
of Uncertainty (FOU).

Definition [7]: The FOU is the union of all the primary
memberships and is given by {(x, t) ∈ X × [0,1]|µ(x, t) > 0}.
As stated in [7] it is the support of µ .

In the type-2 fuzzy logic research community we charac-
terise type-2 fuzzy MFs by the shape of the FOU. There exist
a number of type-2 fuzzy MFs in literature, i.e. triangular,
trapezoidal, Gaussian, two-sided Gaussian, Bell-shaped, sig-
moid, pi-shaped, etc. However, all the aforementioned MFs



have an adverse common feature: the parameters responsible
for the support and the width are coupled. On the other hand,
elliptic MFs have certain values on the left and right end of the
support, and it deals with uncertainty on the rest of the support.
By designing such a novel type-2 fuzzy MF, the parameters
responsible for the width of uncertainty are de-coupled from
the parameters responsible for the center and the support of
the MF. This feature allows us to analyze how the uncertainty
in the input distorts the inference of the T2FLS [8].

Even if there are some fuzzy control software packages,
which allow the user to design custom shaped MFs, there is
no systematic way to choose a fuzzy MF in order to achieve a
better control performance. In this paper, our aim is to compare
and contrast the different ways of modeling uncertainty by
using different type-2 MFs in literature. In particular, we focus
on a novel type-2 MF, namely ”Elliptic MF”. In our analysis,
we look at the uncertainty modeling capability of different
type-2 MFs and make some comments about fuzzy arithmetic,
by using the novel elliptic MF. All these analysis shows that
the novel MF is promising in terms of its uncertainty modeling
capability.

The rest of the paper is organized as follows: In Section
II, we go over both the existing type-2 MFs and elliptic MF.
In Section III, we give a brief critique for their capability
of modeling uncertainty. Section IV presents fuzzy arithmetic
by using different type-2 MFs, and the prediction capability
of elliptic membership functions is illustrated in Section V.
Finally, some conclusions are drawn from this study in Section
VI.

II. EXISTING TYPE-2 MFS IN THE LITERATURE

Gaussian type MFs are commonly preferred in literature
which are differentiable along the support which is advanta-
geous especially when designing parameter update rules for
adaptive neuro-fuzzy systems. Another prominent feature of
these MFs is that they are always continuous, whereas some
other MFs are continuous only under certain conditions. In
Figs. 1(a)-1(b), Gaussian type-2 fuzzy sets with uncertain
standard deviation and uncertain mean are shown, respectively.
The mathematical expression for the Gaussian MF is expressed
as:

µ̃(x) = exp
(
− 1

2
(x− c)2

σ2

)
(1)

where c and σ are the center and the width of the MF, x is
the input vector.

In Figs. 1(c)-1(d), triangular type-2 fuzzy sets with uncertain
width and uncertain center are shown. The mathematical
expression for the MF is expressed as:

µ̃(x) =
{

1− |x−c|
d if c−d < x < c+d

0 else
(2)

where c and d are the center and the width of the MF, x is
the input vector.

Which MF to deploy in a real application is often chosen
by trial and error or by preference. There is still a lot of
research need as to which type-2 MFs are best for which
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Fig. 1. Type-2 fuzzy Gaussian and triangular MFs: uncertain standard
deviation (a), uncertain mean (b), uncertain width (c) and uncertain center
(d)

application. In [9], a detailed analysis has been done on
Gaussian and trapezoidal MFs in interval type-2 fuzzy logic
controllers. It has been reported that interval type-2 fuzzy
logic controllers by using Gaussian MFs are simpler in design,
always continuous and faster for small rulebases, whereas the
controllers by using trapezoidal MFs are simpler in analysis
[9].

In this paper we are interested in a new and novel type-2
MF - the elliptic MF [8]. These MFs have certain values on the
left and right end of the support, and it deals with uncertainty
on the rest of the support. Inspired by the formulation of the
triangular MFs, the lower and the upper MFs are defined with
the following formulas:

µ̄(x) =

{ (
1−| x−c

d |
a1
)1/a1 if c−d < x < c+d

0 else
(3)

µ(x) =

{ (
1−| x−c

d |
a2
)1/a2 if c−d < x < c+d

0 else
(4)

where c and d are the center and the width of the MF, x is the
input vector. The parameters a1 and a2 determine the width
of the uncertainty of the proposed MF, and these parameters
should be selected in the following form:

a1 > 1 (5)
0 < a2 < 1

Figures 2(a), 2(b), 2(c) and 2(d) show the shapes of the
proposed MF for a1 = a2 = 1, a1 = 1.2,a2 = 0.8, a1 = 1.4,a2 =
0.6 and a1 = 1.6,a2 = 0.4, respectively. As can be seen from
Fig. 2(a), the shape of the proposed type-2 MF is changed
to a type-1 triangular MF when its parameters are selected as
a1 = a2 = 1.
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Fig. 2. The shape of the proposed type-2 MF for a1 = 1 and a2 = 2 (a) for
a1 = 1.2 and a2 = 0.8 (b), for a1 = 1.4 and a2 = 0.6 (c), for a1 = 1.6 and
a2 = 0.4 (d)

The elliptic type-2 fuzzy MF has already been used for
identification [10] and control [11] purposes. A similar MF
to the elliptic MF, a diamond-shaped type-2 fuzzy MF, was
initially proposed [12]. It has similar features such as to have
certain values both on the left and right end points of the
support and to represent uncertainty on the rest of the support.
However, elliptic MF is smoother than the diamond-shaped
type-2 fuzzy MF and is differentiable in more points of its
support set than diamond-shaped type-2 MF. Moreover, this
type of type-2 MFs has more parameters to tune than elliptic
type-2 MF which make it hard to tune.

III. UNCERTAINTY MODELING CAPABILITY

In this section we consider all these sets form the perspective
of uncertainty modeling. This is, by its very nature, somewhat
subjective but we hope is interesting for the reader.

A. Uncertainty Distribution Along the Support

The capability of modeling uncertainty plays a vital role not
only in control systems but also in decision support systems.
In particular, fuzzy decision making systems are designed in a
way that they will be able to model the uncertainty resulting a
strong and accurate decision support system. Unfortunately, as
already stated in the previous subsection, there is no systematic
way to choose a fuzzy MF in order to achieve a better
uncertainty modeling capability. In this subsection, our aim
is to compare and contrast the different ways of modeling
uncertainty for different type-2 MFs in literature.

1) Critique for Gaussian and Triangular MFs: Let us
imagine a horizontal line on Figs. 1(a) and 1(c). When the hor-
izontal line moves from the most top point, which corresponds
to µ(x) = 1, to the most bottom point, which corresponds
to µ(x) = 0, the uncertainty on the input will increase for
a specific membership value. In other words, whereas the
uncertainty is less around the center, we are more uncertain

when we are far away from the center. The former part is
reasonable as the expert is probably more precise around the
center of the MF, however, it is being more ambiguous along
the support as being far away from the center. The latter part is
not realistic from a human expert point of view, because if an
expert is precise around the center that a specific input belongs
to a fuzzy set, the same expert must be also precise that after
some region along the support, the input will definitely not
belong to this specific set. In this case, it is not reasonable to
increase the uncertainty constantly.

As can be seen from Figs. 1(b) and 1(d), the uncertainty
is the same along the support. This type of modeling is not
reasonable as the expert cannot be equally uncertain along
the support. As he/she is the person who places the MF on
a specific center value, we expect him/her to be more or less
uncertain on the specific places on the support.

2) Critique for Elliptic MFs: As can be seen from Figs.
2(b) and 2(c), the expert is very precise that a specific input
around the center will belong to a specific fuzzy set. As we are
moving from the center towards the left or right end point of
the support (c+d or c−d), he/she is less certain about his/her
decision. It is interesting that after the half way, the expert
starts being more precise that a specific input does not belong
this fuzzy set. The reason for such a modeling is explained in
the next paragraph with the help of Fig. 3.

In Fig. 3, having more than one MF case is illustrated. There
are two elliptic type-2 fuzzy MFs; whereas one of which is
centered at 0 and the other is centered at 1. The expert is
quite precise that the first input, 0.1, belongs to the magenta
fuzzy set. However, the expert is again precise that the third
input, 0.9, does not belong to the magenta fuzzy set. On the
other hand, the expert is again precise that the third input, 0.9,
belongs to the green fuzzy set whereas he/she is again precise
that the first input, 0.1, does not belong to the green fuzzy set.
The expert is most uncertain around 0.5. We believe that this
way of uncertainty representation is closer to the human way
of thinking when compared to Gaussian or triangular MFs.
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Fig. 3. Having more than one Elliptic MF



IV. ARITHMETIC USING DIFFERENT TYPE-2 FUZZY MFS

In this Section we consider how uncertainty is propagated
through two arithmetic operation: addition and multiplication.

A. Addition

It is well understood that addition can be performed on type-
1 fuzzy sets through applying addition to the parameters of the
type-1 fuzzy sets. We now show that this is also the case for
triangular, Gaussian and elliptic interval type-2 fuzzy sets.

The addition of two type-1 fuzzy sets A and B is given in
(6) where values of x, y and z all belong to the same numeric
domain. Since all operations on an interval type-2 fuzzy can be
defined by operations on the upper and lower MFs as defined
by (7) and (8).

µA+B(z) = argmax
∀z=x+y

(µA(x)∧µB(y)) (6)

µ ˜A+B(z) = argmax
∀z=x+y

(
µÃ(x)∧µB̃(y)

)
(7)

µ ˜A+B(z) = argmax
∀z=x+y

(
µÃ(x)∧µB̃(y)

)
(8)

We now perform addition on three pairs of broadly equiva-
lent triangular, Gaussian and elliptic interval type-2 fuzzy sets.
Table I gives the parameters of the these set and the expected
parameters of the sets resulting from the addition of these sets.
These parameters are taken from the Authors previous work
on addition of type-2 fuzzy sets [13]–[15].

TABLE I
PARAMETERS OF SETS UNDERGOING ADDITION

Type About 3 About 12 About 15
Triangular (s,m,e) 1.5 3 4.5 10.5 12 13.5 12 15 18
Triangular (s,m,e) 1 3 5 10 12 14 11 15 19

Gaussian (c,σ ) 3 0.5 12 0.5 15 1.0
Gaussian (c,σ ) 3 0.8 12 0.8 15 1.6
Elliptic (c,d,a1) 3 2 0.8 12 2 0.8 15 4 0.8
Elliptic (c,d,a2) 3 2 1.2 12 2 1.2 15 4 1.2

Figures 4, 5 and 6 depict these addition operations of the
respective three forms of MF; triangular, Gaussian and elliptic.
The relationship between the parameters under addition is
quite straight forward. To add a pair of triangular or Gaus-
sian interval fuzzy numbers we simply add their respective
parameters. This is a useful property which is well known for
triangular and Gaussian fuzzy sets and here we will now show
an equivalent property for elliptic fuzzy sets.

The parameters of an elliptic fuzzy set C̃ can be calculated
from from the two elliptic fuzzy sets Ã and B̃ whose addition it
results from. The following equations given this relation ship
where a1, a2, c and c are set parameters and the subscripts
denote which set the parameters belong to.

cC̃ = cÃ + cB̃ (9)

dC̃ = dÃ +dB̃ (10)

a1Ã = a1B̃ = a1C̃ (11)

a2Ã = a2B̃ = a2C̃ (12)
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Fig. 4. The addition of two triangular interval fuzzy sets About 3 and
About 12.
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Fig. 5. The addition of two Gaussian interval fuzzy sets About 3 and
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B. Multiplication

Multiplication of fuzzy numbers of any kind is a more
complex operation than addition. Typically, although not ex-
clusively, multiplication is performed via α-cuts as given by
(13).

C = ∀α∈[0,1]Aα ×Bα (13)

For continuous fuzzy sets Aα and Bα are intervals and
therefore interval arithmetic may be used. For discrete fuzzy
sets Aα and Bα are crisp sets, however only minimum and
maximum values in these sets need be multiplied. As with
addition multiplication of type-2 interval fuzzy sets can be
performed on the upper and lower MFs independently as given
in (14) and (15).

C = ∀α∈[0,1]Aα ×Bα (14)

C = ∀α∈[0,1]Aα ×Bα (15)

We now perform multiplication on three pairs of broadly
equivalent triangular, Gaussian and elliptic interval type-2
fuzzy sets. Table II gives the parameters of the these sets.
These parameters are taken from the Authors previous work
on addition of type-2 fuzzy sets [13]–[15].

Figures 7, 8 and 9 depict these multiplication operations
of the respective three forms of MF; triangular, Gaussian and
elliptic using 10,000 α-cuts. Unlike addition, for multiplica-
tion of two fuzzy numbers does not yield a fuzzy set which
can be easily constructed from it’s parameters. However, the
parameters of the two sets being added can give a fuzzy set
with a new set of parameters which approximate the result
from multiplication.

For triangular and elliptic type-2 interval MFs the relevant
parameters can be calculated. For triangular MFs all param-
eters are multiplied and this yields the set depicted in Fig.
7. For elliptic the centres (C) are multiplied together and the
widths are given by (16).
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Fig. 7. The multiplication of two triangular interval fuzzy sets About 3 and
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Fig. 9. The multiplication of two Elliptic interval fuzzy sets About 3 and
About 4.

dC̃(x) =
{

cC̃− (cÃ−dÃ)× (cB̃−dB̃) i f x≤ cC̃
(cÃ−dÃ)× (cB̃−dB̃)− cC̃ i f x > cC̃

(16)

From Figs. 7, 8 and 9 it is clear that it is possible to
approximate the multiplication operation quite easily with
triangular and elliptic fuzzy set but not with Gaussian.

V. APPLICATION TO THE PREDICTION OF USD/EURO
EXCHANGE RATE

In this section, the capability of IT2FLS with elliptic type-
2 MF in the prediction of US Dollar/Euro exchange rate
is investigated. The data set used belongs to the period of
30−Oct−1998 to 16−Aug−2016. The data set is normalized
to the interval of [0, 1] and converted to the true values after
prediction. The main intention of this section is to show
that the prediction performance of interval type-2 fuzzy logic
systems (IT2FLSs) with elliptic type-2 MF is comparable and



TABLE II
PARAMETERS OF SETS UNDERGOING MULTIPLICATION

Type About 3 About 4 About 12
Triangular (s,m,e) 1.5 3 4.5 2.5 4 5.5 3.75 12 24.75
Triangular (s,m,e) 1 3 5 2 4 6 3 12 30

Gaussian (c,σ ) 3 0.5 4 0.5 12 0.25
Gaussian (c,σ ) 3 0.8 4 0.8 12 0.64
Elliptic (c,d,a1) 3 2 0.8 4 2 0.8 12 See (16) 0.8
Elliptic (c,d,a2) 3 2 1.2 4 2 1.2 12 See (16) 1.2

even may be better when compared to other more commonly
used type-2 MFs.

Extreme learning machine (ELM) is a non-iterative learning
algorithm for single-hidden layer feedforward neural networks.
Being non iterative, this algorithm has least number of design
parameters. Considering the fact that IT2FLSs can be con-
sidered as a special single-hidden layer feedforward neural
networks, ELM is used to train IT2FLS [16], [17].

An IF-THEN rule in IT2FLS in SLFN structure can be
expressed as follows:

Rn: IF x1 is X̃n
1 and x2 is X̃n

2 and · · · and xd is X̃n
d

THEN yn(x) = cn
0 + cn

1x1 + · · ·+ cn
dxd , n = 1, · · · ,N

where xi’s stand for the inputs of the system, Rn represents
the nth rule of this structure, N is the total number of rules
which is taken as equal to 5, the parameters c j

i ’s denote the
consequent part parameters.

The parameters considered for the elliptic type-2 MFs are
uniformly selected numbers whose range are depicted in Table
II.

In order to have a comparison with more common type-2
MFs, Gaussian type-2 MFs with uncertain standard deviation
parameter are selected. The parameters selected for this type of
MF are illustrated in Table III where σ =σ +∆ and σ =σ−∆.

The mean value of root mean squared error (RMSE) for
IT2FLSs with both type-2 MFs namely Gaussian type-2 MF
with uncertain σ parameter and elliptic type-2 MF over 100
times of run of the programs are represented in Table IV.
As can be seen from this table, the results obtained by elliptic
type-2 MF shows significant improvements when compared to
the results obtained by Gaussian type-2 MF with uncertain σ

parameter. The prediction results for the train and test data are
illustrated in Figs 10 and 11, respectively. As can be seen from
figures, even though the test data seems to be very different
from the train data, the prediction is obtained with a high
performance.

TABLE III
PARAMETERS CONSIDERED FOR TYPE-2 MFS FOR THE PREDICTION OF

FINANCIAL DATASET

Elliptic type-2 MF Gaussian type-2 MF
Parameter Interval Parameter Interval

c [0, 1] c [0, 1]
d [0.6, 1.25] σ [0, 1]
a1 [1, 1.1] ∆ [0, 0.1]
a2 [0.9, 1]
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Fig. 10. The results of training data obtained by using IT2FLS with elliptic
type-2 MF.
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Fig. 11. The results of test data obtained by using IT2FLS with elliptic
type-2 MF.

TABLE IV
MEAN VALUE OF RMSE

Type-2 MF used Test Train
Elliptic 0.0054 0.0070
Gaussian with 0.0130 0.0170
Uncertain σ

VI. CONCLUSION AND FUTURE WORK

A. Conclusion
Interval type-2 fuzzy sets are defined by their Footprint

of Uncertainty. It is common to create type-2 fuzzy sets by
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Fig. 13. The results of test data error obtained by using IT2FLS with elliptic
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using triangles, Gaussian or any custom design method. In
this paper, we consider a novel elliptic type-2 membership
function and compare and contrast it with the more usual
shapes. We have also shown the effects of addition and
multiplication operations. In addition to its extra advantages
over the existing type-2 fuzzy membership functions such
as having decoupled parameters for its support and width,
this novel membership function has some similar features to
the Gaussian and triangular membership functions in addition
and multiplication operations. The aforementioned feature of
having decoupled parameters for its support and width allows
us to make comprehensive analysis which cannot be done
with other membership functions. According to the simulation
results, in addition to their various advantages mentioned
above, elliptic membership functions have comparable pre-

diction results when compared to Gaussian and triangular
membership functions.
B. Future work

Further work will consider their role in real applications
modelling human decision making.
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