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The Bremermann-Dirichlet Problem

for q- Plurisubharmonic Functions.

ZBIGNIEW SLODKOWSKI

0. - Introduction.

A smooth C2 -function in Cn is called q-pluxis-abharmonic (0 q n -1 )
if its complex Hessian has at least (n - q)-nonnegative eigenvalues at each
point. Hunt and Murray [8] gave a new definition, which is also applicable
to upper semicontinuous functions, and studied systematically properties
of the larger class. They proved, among other results, that, under natural
assumptions on the boundary of a domain D c Cn for every continuous
function b : 8D- R there exists a continuous extension u of b to D which

is both q-plurisubharmonic and (n - q - 1)-plurisuperharmonic in D. Hunt
and Murray [8] conjecture that there is at most one u with such properties.

The main aim of this paper is to prove this conjecture. (The proof
given by Kalka [9], who considers a special case of this conjecture is-in
our opinion-incorrect.)

Hunt and Murray, as well as Kalka, have observed that the above con-
jecture is a consequence of the following one.

(*) If u and v are q- and r-plurisubharmonic functions respectively, then
u + v is (q + r)-plurisubharmonic.

On the other hand the author, working on Basener’s conjecture concerning
higher order Shilov boundaries of tensor products of uniform algebras
(cf. Basener, [2]), has reduced it to the following claim:

(**) If u and v are q- and r-pZurisubharmonic functions respectively, then
min (u, v) is (q + r 

The similarity between conjectures (*) and (**) suggested that a relation
between them might exist. In fact, in Sect. 6 we prove that (~ ) implies (~ ~ ).
The rest of the paper is devoted to the proof of (~ ).

Pervenuto alla Redazione il 15 Gennaio 1984.
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Already Hunt and Murray [8] have noticed that (*) is simple for smooth
functions and they have raised the question whether uniform approxima-
tion of continuous q-plurisubharmonic functions by smooth q-plurisubhar-
monic ones is possible. This seems to be still unknown. We were, however,
able to achieve such an approximation by means of q-plurisubharmonic
functions with second-order derivatives (in the Peano sense) existing almost
everywhere (Theorem 2.9). (As a by-product, it is proved that every upper
semicontinuous function from the q-plurisubharmonic class can be approxi-
mated pointwisely by continuous functions from this class.)

More specifically, we introduce the class of functions with lower bounded
Hessian, to which our approximants belong (Sec. 2). A function of this
class is q-plurisubharmonic if and only if it has almost everywhere at most
q negative eigenvalues (Theorem 4.1). This and the approximation mentioned
above yield the proof of Conjecture (*), and consequently the proof of
uniqueness of solution to the Dirichlet problem described above (cf. Sec. 5).

Since the class of functions with lower bounded Hessian is strictly related
to the class of convex functions, it is but natural that some estimates con-

cerning convex functions play essential role in our arguments (Sec. 3).
Main results of this paper and of [13] were announced in [12]. Applica-

tions to uniform algebras and to further study of q-plurisubharmonic func-
tions and q-pseudoconvex domains will appear in [13].
-

Acknowledgement. This work was done in Spring and Summer 1983
during the author’s stay at Scuola Normale Superiore, Pisa and was sup-
ported by Consiglio Nazionale delle Ricerche. The author is grateful to
both institutions, and personally to Professor Edoardo Vesentini, for their
hospitality.

1. - Basic properties of q-plurisubharmon.ic functions.

We recall, after Hunt and Murray [8], that an upper semicontinuous
function u : U -~ [- oo, + oo), where !7cC" is open, is said to be q-pluri-
subharmonic if for every (q + I)-dimensional complex hyperplane .L in-

tersecting U, for every closed ball B c U r1 .L, and for every smooth, pluri-
superharmonio function g defined in a neighbourhood of B (in Z) :

Actually Hunt and Murray considered the following condition

which is, of course, equivalent to (1.1).
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REMARK. The notion of q-plurisubharmonic function is interesting only
when 0  q  n - 1. However, the definition makes sense also for q ~ n : in
this case each upper semicontinuous function in Cn is q-plurisubharmonic.

Notation and terminology. A C2-function u is called strictly q-plurisub-
harmonic in U C Cn if its complex Hessian has at least (n - q) positive
eigenvalues at each point of U.

A function u is called q-plurisuperharmonic if - u is q-plurisubharmonic.
Let ’E e Cn; usc (E) denotes the set of all upper semicontinuous func-

tions defined in E; C(E) denotes all continuous functions defined in E;
the set of restrictions to E of all functions q-plurisubhar-

monic in some neighbourhood of E; if E is open, denotes the

set of all smooth q-plurisubharmonic functions defined in E.
Let if u is defined in and then the function

is denoted by T’lJu. The topological
boundary of E is denoted by aE.

B(c, r) denotes the open ball with center c and radius r with respect
to Euclidean metric in Cn or R" ; B(c, r) denotes the closure of B(c, r); S(c, r)
denotes the boundary of B(c, r).

Let f: U - [- oo, + belong to usc (E). We say that f has
local maximum property in U if, for every compact subset .K c U

(1.3) max flaK.

We will use the following characterization of q-plurisubharmonic func-
tions. The methods of proof resemble those of Hunt and Murray [8].

PROPOSITION 1.1. Let U c Cn be open and u E use (U). Then u E PSHq( U)
if and only if one of the following two conditions holds

(i) for every U’ c U and f E the f unction u + f has local
maximum property in U,

(ii) every point z E U has a of relatively compact neigh-
bourhoods such that for every f E it holds

The f unction u E if and only if the following condition does not hold.

(iii) there exist z* E U, E &#x3E; 0, r &#x3E; 0 with B(z*, r) c U and a strictly
(n - f unction f, defined in B(z*, r) such that
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PROOF. It is enough to check the following implications:

The first two are obvious.

~ (iii) ~ (i); we show that - (i) ~ (iii). Suppose that there is

U’ c U, such that u + f does not have local maximum
property in U’, i.e. for some compact Kc U’, max ( f + max ( f + u) 10K.
Then there is E &#x3E; 0 such that .lt~ : = max (fi + &#x3E; max (tl -~-- 
where = f (z) + 2 E Jz ~ 2, z e U. Choose z* E Int (K) such that (f, + u) ·
. (z*) = ~ and set /,(Z) = - M - elz - Z* 12. It is clear that (u + f 2) ·

. (z*) = 0, (u + /2)(~)2013 Z*12 for while (K). Moreover
= f(z) + linear form, and so it is strictly q-plurisubharmonic.

Thus f2 satisfies (iii) (cf. Hunt and Murray, [8], Lemma 2.7).

(i) =&#x3E; (1.1). Suppose that u is not q-plurisharmonic, that is there

exist a (q + i)-dim hyperplane L, a ball T3 c L r1 U and a 0-plurisuper-
harmonic function g defined in a neighbourhood of B, such that 
but for some zl E B, g(z,)  u(z,). Similarly as Hunt and Murray [8, Proof
of Th. 3.3], we choose new coordinates so that L = {ZQ+2 = ... = zn = 01
and B = iz c- E: ~z and an open convex set .K such that K c U,
K n L = B and the orthogonal projection of .K onto L is exactly B. We
set gw(z) = g(zl , ... , Za+l) + C( IZq+212 + ... + IZnI2). Clearly gw is a smooth,
(n - q - I)-pluris-uperharmonic function in a neighbourhood of K for C &#x3E; 0.
If C &#x3E; 0 is big enough then but Finally
f : = - gw E and (u + f )(zx) ~ 0 &#x3E; max (u --~-- which con-

tradicts (i).

(1.1) + ~-ooo~~ (iii). We prove (iii) ~ ~ (1.1). Let f, z*, E be as in (iii).
Since f is strictly (n - q - 1)-plurisubharmonic, its complex Hessian at z*
has at least (q + I)-positive eigenvalues. Consider the C-linear subspace
spanned by corresponding eigenvectors and translate it to z*. Then

g = - flL has negative definite Hessian and so it is plurisuperharmonic
near z*, say in .B(~ 2~). Further g(z*) = u(z*), but u  g on aB (z*, ~ ) .
Thus (1.1) does not hold. Q.E.D.

For easy reference we list now some properties of q-plurisubharmonic
functions.

PROPOSITION 1.2. Then
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(iii) D c Dl, u E Ul E PSHq(Dl) and for every z E D t-) ôDl,
lim sup ui(z’) c u (z ), then the functionz’-z

belongs to PS.Hq(D). 

’ ’ 

(iv) i f c PSHQ(D) is locally uniformly bounded from the above and
u(z) = sup ut(z), then u* E PSHq( U), where u* denotes the upper semicontinuous
regularization of u.

(vii) the limit of a pointwise convergent and nonincreasing sequence of
q-phcrisubharmonic functions is q-plurisubharmonic.

(viii) every u E has local maximum property in U.

These properties, proved, for the most part, by Hunt and Murray [8]
follow quickly from the criterion given above. Thus, for example, (viii)
is a special case of Prop. 1.1.(i) with f = 0, and (iii) follows from Proposi-
tion 1.1. (ii).

2. - Regularization of q-plurisubharmonic functions.

In this and next sections we will frequently deal with functions on R~’.
When we pass to Cn = the real Hessian has to be distinguished from
the complex one.

DEFINITION 2.1. Let U c RN be open. We say that a function u : U-R

has lower bounded (real) Hessian if there is .L &#x3E; 0 such that the function

U(X) + is locally convex in U.

Our terminology is motivated by the following proposition. Since we

will not use it, we omit its (easy) proof.

PROPOSITION 2.2. Let open, u: U - R be continuous, 
and L &#x3E; 0. Then the following conditions are equivalent :

(i) the function u(x) + -1 L IX - X* 12 is locally convex in U;
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(iii) the real Hessian of u, in the sense of the distribution theory, is a

matrix valued Its singular part is a measure with values in positive
semi-definite matrices and its .Radon-Nikodym derivative takes a.e. values

that are matrices with no eigenvalue smaller than - .L.

REMARK. One can check that u E if and only if both u and - u

have lower bounded (real) Hessian.
We denote the class of all functions satisfying with constant L any of

these conditions by °l( U).

PROPOSITION 2.3. Let U1 c Z7 c RN be open, .L, 0. Class CL ( U) has
the following properties :

(iii) CL is local in the following sense: if for every x E U there 0

such that ð) E Cl,(B(x, 6)), then u E °1( U);
I is pointwise bounded f rom the above, then

(ix) i f n E C2( U) and at each poin, its (real) Hessian has norm non

bigger than L, then u E CL( U).

PROOF. These properties follow directly from the definition and cor-

responding properties of convex functions. We check only some of them.

form, and so it is convex.

(iv) The functions Vt(x) := Ut(X) + iL/x/2 are convex in U. The family
is pointwise bounded in ~J and so = sup vt(x) is a convex function;

in particular v is continuous, cf. Rockafellar [10, Th. 10.1]. Clearly v(x) =
= U(X) + iL/x/2 and so u E CLCU).
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(ix) Let v(x) = u(x) + lLJxB2. Then (Hess v) (x) = (Hess u) (x) + LI,
where I denotes the identity matrix. Clearly Hess v is positive semidefinite at
each x E U. By the well-known criterion v is convex and u E Q.E.D.

DEFINITION 2.4. Let u and g be non-negative bounded function (pos-
sibly discontinuous) defined on the whole The supremum-convolution
of u and g, denoted by u *8 g, is defined by the formula

If u is defined in U c .RN only, u *8 g is understood as it’ *, g, where =

= for x E U and 0 otherwise.

The following results show how the operation of supremum-convolu-
tion helps us to obtain regularization of q-plurisubharmonic functions.

REMARK 2.5. If are bounded functions, then 

(Proof obvious). ..

PROOF. By Def. 2.4 u *8 g(x) = sup (u(y)T1/g) (x). We use Proposi-
PN

tion 2.3 : by (ii) T1/g E Ol(RN), by (vi) u(y) T1/g E and by (iv) u * g
E Q.E.D.

LEMMA 2.7. Let u, g : [0, 00) be bounded and U c Cn be open. If u
is q-plurisubharmonic in U and supp g c B(O, r), r &#x3E; 0, then the upper semi-
continuous regularization of u *8 g is q-plurisubharmonic in Ur = {0153 E U:
B(x, r) c Ul.

PROOF. Let us rewrite the definition of u *8 g:

(since g(w) = 0 for By Proposition 1.2.(i), (ii) and (vi) 
and belong to for The lemma follows from

Proposition 1.2.(iv) applied to uniformly bounded family 
The following Corollary is a direct consequence of the last two results.

COROLLARY 2.8. Let
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Assume that u and g are non-negative, sup u = M, and supp (g) c r),
r &#x3E; 0. Then ~c *8 g E C’ ML (Cn) r’~ 

THEOREM 2.9. Let U c Cn be open and u E PSH~ ( U). Then for every

compact K c U there is a monotone, non-increasing sequence of functionS’
(Uk)k=l such that:

(iii) nk converge pointwise to u on K.

If, in addition, u is continuous (in U), then the convergence is uniform on K.

REMARK 2.10. In particular, every q-plurisubharmonic function can be
approximated (on a compact set K) by pointwise convergent monotonous
sequence of continuous q-plurisubharmonic functions (defined in a neigh-
bourhood of K).

PROOF OF THEOREM 2.9.

ASSERTION. Assume, in addition to the assumptions of the theorem,
that and that a continuous function v : K -~ R is given, y such

that Then there exist .L ~ 0 and w E CII ,(Cn) n PSHq(K), such

that v &#x3E; &#x3E; 

PROOF OF THE ASSERTION. Choose r &#x3E; 0 such that K c Ur and

(by the upper semicontinuity of u). Take g E such that g(O) = It
and supp (g) c B (0, r), and set w = u *8 g (meant as ~ *8 g). Let L

be the maximum of the norm of the real Hessian of g. By Proposition 2.3 (ix)
g E and by Corollary 2.8 w E n Moreover

Furthermore, for z E .K
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=
We may add a small constant to w, so that without changing
other properties. The Assertion is established.

The general case. We may assume ( shrinking U, if necessary) that ~c is
bounded from the above. Since u is upper semicontinuous, there is a

decreasing sequence of continuous functions on K converging point-
wise to in particular v, &#x3E; To end the proof it is enough to find
functions u*~ and constants L(k), k = 1, 2, ..., such that .L(k) &#x3E; o, ’UkE r1

n Vk&#x3E; &#x3E; u IK Uk+1, k = 1, 2, ...
We proceed by induction. Assume that u1, ... , uk are already con-

structed. (We can choose ’111 == (sup u) + 1). Now set C = max (- inf uklK,
- inf 0), u’(z) = C + max (u(z), - C), z E U and v’(z) = C + min 

E K. Then u’, v’ fulfil the assumptions of the assertion, in particular
~c’ ~ 0, v&#x3E; therefore there is 

t-) such that v’ &#x3E; It is easy to see that the function

:= - C + w(z) has all the properties required in the induction

step. Q.E.D.

3. - Convex functions : an estimate involving second order derivatives.

One may expect that the approximation theorem 2.9 will allow us-in

many instances-to restrict our attention to q-plurisubharmonic functions
with lower bounded Hessian, instead of considering the general class

(cf. Sects. 4 and 6). Since every function in the special class is, up to
quadratic polynomial ILIX 12, convex, it is natural to apply convex analysis.
It is well known that every convex function u : U --&#x3E;- R, U open in RN, has
second-order partial derivatives in the sense of distribution theory, and the
real Hessian is a matrix-valued measure. It is much less known that such u

has also second-order derivatives in the local (Peano) sense. Namely, for
almost every x E U, there are: a vector a = (a1, ..., aN), and a symmetric
matrix (real Hessian) such that

The result is apparently due to Alexandrov [1]. For a proof the reader may
refer also to Buseman [5, p. 24].

However, for our further applications in Sec. 4 we need also to handle
somehow these points at which second order differential does not exist.
To this purpose we introduce a quantity K(u, x) which is equal to the largest
eigenvalue of the real Hessian (b~~) at z, provided it exists, and plays similar
role at the remaining points.
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DEFINITION 3.1. If grad u at x exists, K(u, x) is defined by the formula

otherwise K(u, x) is defined as + o. 
’

We specify that the lower density of Lebesgue measurable set Z c I~N
at x* E is the number

where mN denotes the N-dimensional Lebesgue measure.
Our further applications of convex analysis to q-plurisubharmonic func-

tions (cf. Theorem 4.1.) depend on the following, rather technical estimate.

THEOREM 3.2. Let it be convex near x* E .RN. Assume that K(u, x*) = k*
is finite. Then for every k &#x3E; k* the set {x: K(u, x)  kl is Borel and its lower
density at x* is not less than ((k - k*)/2k)N.

Before starting the proof of Theorem 3.2 we give simple properties
of K(u, x).

We will say that a sphere r) supports the graph of u from the above at

y = (x, u(x)), if y E S(c, r), B(c, r) n graph (u) = 0 and u(Pc), where P
denotes the orthogonal prokection of RN+ll onto RN.

PROPOSITION 3.3. Let U c RN be open and u : ZT -~ R be convex. Assume

that u has gradient at x.

(i) If it has second-order Peano derivatives at x, then K(u, x) is equal
to the (i.e. the largest eigenvalue) of the (real) Hessian of u at x.

(ii) If K(u, x) is finite, then for every K &#x3E; K(u, x) there is E &#x3E; 0 such

that u(x + h) - u(x) - (grad u(x), h)  lKlhl2 for every Ihl  8.

(iii) If there is a sphere r), r &#x3E; 0 which supports the graph of u from
the above at (x, u(x)), then

where g = 

The statements (i) and (ii) follow directly from the relevant definitions;
(iii) is obtained by elementary, y though lengthy calculations, which are

postponed to the Appendix. The following lemma deals, in geometric terms,
with the essential difficulty of Theorem 3.2.
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LEMMA 3.4. Let u be a non-negative convex f unction in B(O, d) d &#x3E; 0,
such that u(O) = 0 and (grad u) (0) = 0. Let .R &#x3E; 0 and assume that the ball

B(c*, R), c* = (0, ..., 0, R) E Bv+’, intersects the graph of u only at 0 E .RN+1.
Let X~ , 7 0  r  .R denote the set of all x E B (0, d) c RN such that there exist
a sphere of radius r supporting the graph of u f rom the above at (x, u(x) ). Then
the lower density of Xr at 0 is not less than ((R - r)/2r)N.

PROOF. The number r E (0, R) will be kept fixed in the proof and we
write X for Xr. Define Z = ~(x, u(x) ) E .RN+1: x E X}. It is clear that

Z r1 T3(0, d’ ) X R is compact for every d’  d. Also X r1 B(o, d) X .R is com-
pact, since it is the image of the former set via the orthogonal projection
P: .RN. Thus the notion of density is applicable to both .X and Z.

It is more convenient to estimate first the density of Z at 0 (with respect
to N-dimensional Hausdorff measure HN). With this in mind we will modify
u outisde a small neighbourhood of 0, that is we are going to introduce new,
auxiliary convex functions

Define

Then Iy- c*llc*JcoS2Ct== (y - c*, - c*) + R2, and so Y is the in-
tersection of the sphere ~S(c, 1~) with the hyperplane = -R(l 2013 cos 2a).
Its projection P( Y) onto RN is the sphere of radius (1~2 - (.R - YN+l)2)1 =
= R sin centered at 0. Let Ca denote the union of all closed segments

with one end-point w on the axis 0 c and tangent to the sphere
~S(c, R) at the other end-point y about which we assume that it

belongs to Y. Since  (w - c*, y - c*) = 2a and  (w - y, y - c*) = 

therefore Jw-c*lcoS2Ct== and 2a))
independently of y. We conclude that is a (finite) cone, with vertex at w
and base Y, tangent to S(c*, ~) along Y. Define now

It is geometrically obvious that Cex U Texis the graph of some convex func-
tion k,,: 1~) ~ 1~. Finally we define, for 0  a C 2 arc sin (d/.R)
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In particular

It is clear that va is locally convex on the set Ixl # R sin 2oc. If lxl -
= R sin 2a, then (x, u(x) ) E Y c S(c*, R). By assumptions S(c*, .R) lines

above the graph of u, and so and near Y. Since u is

locally convex in B(O, it is convex.

Let v be a convex function in B(O, R). Denote by E(v) the convex set
t) E t &#x3E; u(x)l. Define Z~ as the set of all y = (x, v(x), ixi  R,

such that for some c E RN+1, I B(c, r) c E(v) and y E S(c, r). The set 

(like Z) is closed in R) X R. Observe that if y = (~, v(x)) E Zv, then
graph (v) has a unique supporting hyperplane at y (since any such hyper-
plane is tangent to S(c, r) ), and, in turn, c is uniquely determined by y.
We write c = yv(y) and assert: the map yv: Z’~ ~ RN+l is Lipschitz with constant
one. Indeed, let Z", and ei = yv(yi), i = 1, 2. The set E(v), being
convex, contains ~f:== co (B(cl , r) VB(c2 , r) ) . In particular graph (u) = 0.
Since Yi E S(Ci’ r) n graph (u), we get yi E r)BW, i = 1, 2, and so yi,
i == 1, 2 do not belong to, and are separated by the open layer between two

hyperplanes which are orthogonal to the segment cl, c2 and pass through
its ends. Thus IC1 - c, I IYl - Y21.

The objects Zv and yv defined for (o, 2 arc Sill will

be denoted by Za and ya respectively.
Let us consider the set

The following inclusions hold for 

The first inclusion follows directly from the definitions. Further, by defini-
tions and by (3.2 ), Zx n graph (u) c Z; since Ua c graph (u), Zo, n U. c
c Za r1 graph (u) c Z, and (3.4) follows. As for the third relation, consider

Then the set is a non-

empty, closed half-line. Let c be its end-point and y E S(c, r) n graph (v,,).
Then c = ya(y) and x = Thus
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Since U c graph U = therefore T~) c
.c Za r1 U¡x. Consequently u Ta) c Pya(Za r1 U¡x). This relation
and (3.6) will imply (3.5), as soon as we prove that:

To see this, consider the family of all sphers S(c, r) which support
CaBY from the above (at some point of CaBY) and are contained in the
upper half space Then the smallest value of ~P(c) ~ is attained when
sphere ~S(c, r) is tangent both to Ca and to = 0}. It is not difficult

to see geometrically that in such a position 9:: (c - c*, 0 - c*) = oc, and
so Thus

(The points of Y c Ca are handled as limits.) When in turn ~S(c, r) sup-
ports TaBY) from the above at some point y, the segment c, y is normal
to S(c*, R) and cos 2a), therefore  (c - c*, 0 - c*) &#x3E; 2a a,nd,
like above, Thus n m B(0, 3) = 0,
which, together with (3.8), gives (3.7).

We are now in a position to estimate the density of X = P(Z). Note

that the map

is Lipschitz with constant (1 + 
 .1~ sin 2a~. (In fact, by Rockafellar [10, Th. 10.4] u is Lipschitz, and by [10,
Theorems 24.7, 25.5 and 25.6] ga is a Lipschitz bound for .R sin 2a) ~.
Moreover (3.9) maps onto Applying
basic theorem about effect of Lipschitz maps on Hausdorff measures [Ro-
gers 11, Ch. 2, Th. 29] and (3.3) we get:

Furthermore it holds
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Combining these inequalities we obtain:

If 8 2013~O? then a -~ 0 and ga -~ 0 by continuity of the gradient of a convex
function [Rockafellar 10, Th. 25.5]. Q.E.D.

PROOF oF THEOREM 3.2. Denote {0153 E dom (u) : K(u, x)  k} by 
It is clear that .(u, x) is of first Baire class and so X k is Borel. We can
assume without loss of generality that x* = 0, u(x*) = 0 and grad ~c(x*) = 0;
in particular u &#x3E; 0. Fix k &#x3E; k* = 0) and take .g such that k &#x3E; K &#x3E; k*.

By Proposition 3.3(ii), there is d &#x3E; 0 such that for lhl  d.

Since for the inequality R - holds,
therefore the sphere S(c*, R), where c* = (0, ..., 0, R) E .RN+1, supports the
graph of ulB(O, d) from the above at We can apply Lemma 3.4
to the function d).

Take arbitrary r such that 1 /k  r  .R, and let .X = Xr and Z = Zr
have the same meaning as in Lemma 3.4 and its proof. By Proposition 3.3(iii),
if then K(u, x)  r-11(l -f- g2)1, where g = Set

Then

By the continuity of the gradient [Rockafellar, 10, Th. 25.5] 
= grad ~c(0) = 0. Therefore there is 0e’d such that 

for s  ~~ and so

It follows that

by Lemma 3.4. Since we can choose R and r &#x3E; 1/~ arbitrarily close
to 1/k* and 1/k respectively, we get the desired bound ( (k - k*)/2k)N. Q.E.D.



317

The following fact follows immediately from Theorem 3.2 :

COROLLARY 3.5. Let u be a locally convex function in 
that for almost every XEU. Then for 

4. - Characterization of q-plurisubharmonic functions among functions with
lower bounded Hessian.

Since a function u with lower bounded real Hessian is the difference of

a convex function and of quadratic polynomial the notion of a

real Hessian makes sense at almost every point x e dom (u). The formula (3.1 )
may be rewritten as follows :

where B : RN X RN -~ R, the real Hessian of u at x is a symmetric form cor-
responding to the matrix (bu). In case u is defined in Cn = .R2n we can

also define formally the complex Hessian at x, in complete analogy with
the smooth case. We define

where z = (Xl’ YI, ..., xn, yn) and all second order derivatives on the right-
hand side of the last formula are suitable entries of the matrix The

form

is called the complex Hessian of u at x. If we set further

then B(z, w) = H(z, w) + H(z, w)- + A(z, w) + A(z, w)-. Note that H~ is a

Hermitian form, while A is bilinear. Since H(z, z) is real, it holds
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THEOREM 4.1. Let U c Cn be open, u: U -R and 0  q  n - 1.

(i) I f u E is second-order Peano differentiable at x, then its

complex at x has at least (n - q)-nonnegative eigenvalues.

(ii) I f u E CL( U) for some .L ~ 0 and at almost every point x E U, the

complex Hessian of u at x hacs at least (n - q)-nonnegative eigenvalues, then
U E 

For the proof we need the following folk-lore lemma:

LEMMA 4.2. If A and B are complex Hermitian matrices with at most
q- and r-negative eigenvalues respectively, then the matrix C = A + B has at
most (q + r) negative eigenvalues.

PROOF. It follows from the assumptions that A and B have invariant
subspaces E, and L2 of dimension (n - q)- and (n - r) respectively, such
that (Ax, x) &#x3E; 0, for xEL1, for x E L2. Put L=L1(’BL2. Then
dim L &#x3E; n - (q + r) and (Cx, x) ~ 0 for x E L. By minimax formula for

eigenvalues [Dunford and Schwartz, 6, Th. X. 43] the matrix C has at least
dim L = n - q - r nonnegative eiganvalues. Q.E.D.

PROOF OF THEOREM 4.1. (i) (Necessity). Choose r &#x3E; 0 with B(x, r) c U
and define functions u, : B(O, r) -* .R, 0  t  1, by the formula

By Proposition 1.2(v), (vi) all u, E r)). By formula (4.1) u, con-
verge uniformly to 1 B(y, y), as t -* 0. By Proposition 1.2 (vii) y)
is q-plurisubharmonic. Since the latter is a smooth function, y its complex
Hessian at 0 has at least (n - q)-nonnegative eigenvalues. However, the
complex Hessian of y) is exactly H(z, w), because z) = H(z, z) +
+ Re A (z, z), and Re A (z, z) is a pluriharmonic function.

(ii) (Sufficiency). We will show that condition (iii), Proposition 1.1
cannot hold. Suppose it does and there are z* E U, s &#x3E; 0, r &#x3E; 0, and

f E r)) satisfying all requirements of Proposition 1.1 (iii).
We can assume without loss of generality that z* = 0. If we set ul(z) _
= u(z) + f(z), H  r, we get

Observe that at almost every point x of B(O, r) the real Hessian of ul
has at least one nonnegative eigenvalue. Indeed, let x be any point
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at which the complex Hessian of u exists and has at least (n - q)-nonnegative
eiganvalues. Clearly the Hessian of smooth function f at x has (q + 1)-
nonnegative eigenvalues. The sum of these two forms has at least one

nonnegative eigenvalue (by Lemma 4.2). Thus the complex Hessian of 1’1

at x, say H(z, u), has at least one nonnegative eigenvalue, and so H(z, z) ~ 0
for some z =1= 0. Let B(x, y ) denote the real Hessian of ’Ul at x. By Eq. (4.2)
2 B(iz, iz) = H(z, z) - Re A(z, z), and so 4H(z, z) = B(z, z) + B(iz, iz). Thus

the symmetric form B(z, z) cannot be negative-definite, and so the real
Hessian of ul at x has at least one nonnegative eigenvalue. It is clear that

the set of such points x is of full measure.
Choose r’ E (0, r) and let Ll denote the maximum of the largest eigen-

value of the real Hessian of f at x, By Proposition 2.3 (ix) and (v),
uIIB(O, r) E r)), where M = L + L,. By Def. 2.1 the function

V(Z) = u1(z) + iMlzl2, Jzl  r’, is convex. In particular 0 = 2v(o)  v(z) +
+ v(- z) = + z) + MJzI2. Using this and (4.3) we get

This implies that Ul is differentiable at 0 and grad = 0, and also

grad v(o) = 0. Moreover = 0, Therefore

Since the real Hessian of has, at every point, all eigenvalues equal
to M, the real Hessian of v at almost each point has at least one eigenvalue
greater or equal than M. By Proposition 3.3 (i) K(u, x»M almost every-
where. By Corollary 3.5 also K(u, which contradicts (4.4). Q.E.D.

5. - Uniqueness of solution of the generalized Dirichlet problem.

It has been already realised by Hunt and Murray [8], as well as Kalka [9]
that the uniqueness of solution of the generalized Dirichlet problem in the
class of q-plurisubharmonic functions follows from the following result.

THEOREM 5.1. Let U c Cn be open and and

1) E then (u + W ) E 

PROOF. By Theorem 2.9 and Proposition 1.2 (vii), it is enough to prove
the theorem for u, v with lower bounded real Hessian, say 
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.L’, By Proposition 2.3 (v), where

L = L’ --E- .L". Now we can apply Theorem 4.1. Take any point z at which
both u and v are second order Peano differentiable. Let A and B denote the

complex Hessians at x of u and v respectively. By Th. 4.1 (i) A and B have
at most q and r negative eigenvalues respectively and by Lemma 4.2,
A + B has at most (q -f- r) negative eigenvalues. Thus the complex Hes-
sian of u + v has at almost every point at most (q + r) negative eigenvalues,
and by Theorem 4.1 (ii) (u + v) Q.E.D.

DEFINITION 5.2. (Hunt and Murray [8]). A function u : U - R, 
is said to be q-Bremermann, if uEPSHq(U) and - u c-
E (Hunt and Murray use the term q-complex Monge-Ampère
instead of q-Bremermann.) In case a q-Bremermann function is smooth, y
the determinant of its complex Hessian vanishes everywhere. Thus the

Dirichlet problem studied in Hunt and Murray [8] and here is of homo-

geneous type. The uniqueness result conjectured in [8] is the following.

THEOREM 5.3. Let open and bounded and let b : a U-~ R be con-

Then for each 0  q  n - 1 there is at most one q-Bremermann func-
tion u in U such that for every z E a U

The theorem is a special case of the following fact.

LEMMA 5.4. Let open and bounded, 0 c q c n - 1 and 

moreover, that u is q-Bremermann in U, u  ’Ii
in U and = Tehn u = v.

PROOF. We have to show that v  u. Since - u E it follows

from Theorem 5.1 that the function v - u = v + (- u) is q --f- (n - q -1 ) =
= (n-1 )-plurisubharmonic, and by maximum principle (Proposition 1. 2 (vii i)),

i.e. Q.E.D.
u

As it was noticed by Hunt and Murray [8] Sec. 3, a solution to the
Dirichlet-Bremermann problem of Theorem 5.3 does not always exist, even
for relatively regular domains. There are, however, general positive results
in this direction.

DEFINITION 5.5. [Hunt and Murray, 8, Sec. 3] A bounded domain D c C"
is said to be strictly q-pseudoconvex if there is an open neighbourhood U
of aD, and a strictly q-plurisubharmonic function O : U - .R, such that
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THEOREM 5.6. I f strictly r-pseudoconvex, 0  r  n - 1 , and
0  q  n - r - 1, then for every continuous f unetion b: aD ---&#x3E; R there exists

a unique q-Bremermann fonction u E such that b.

The existential part of this theorem is due-in the case of q = r-to
Hunt and Murray [8, Th. 3.3]. By the same method one can prove the gener-
alization given above (formulated by Kalka [9]).

REMARK 5.7. If D c C’~ is strictly pseudoconvex (r = 0) then each con-
tinuous function b: 8D - R has q-Bremermann extension for every q =

= 0,1,...,n-1.

6. - The Perron method and smooth q-plurisubharmonic functions.

As it was indicated in the Introduction, the author has undertaken
this study mainly to obtain the following theorem.

THEOREM 6.1. - If u and v are respectively q- and r-plurisubharmonic,
q, r &#x3E; 0, then min (u, v) is (q + r + l)-plurisubharmonic (in dom (u) n dom (v)).

This result was then applied in Slodkowski [12] to prove Basener’s con-
jecture [2]; there Theorem 5.1 played secondary role and served only to
obtain Theorem 6.1. Afterwards another approach was found in [Slod-
kowski, 13]: Basener’s conjecture was derived directly from Theorem 5.1,
moreover, Theorem 6.1 is now a consequence of this conjecture; see [13]
for details.

Anyway, the initial approach is not without interest. On the whole

it is perhaps shorter than that of [13], and certainly more homogeneous
as far as the methods are concerned. It starts from the observation that

Theorem 6.1 is simple if u and v are, in addition, smooth. Something more
can be obtained by the same simple methods.

LEMMA 6.2. I f U c Cn E C2( U) n PSHa( U), v E q, r&#x3E; 0,
then min (u, v) E 

(The simple proof is postponed to the Appendix.) Now our strategy
is to obtain all functions in n PS.H~( U), at least locally, by successive
application of Perron method starting from functions in PSHa.. Then
Theorem 6.1 can be obtained by a sort of induction, of which Lemma 6.2
is the first step. We will describe only the basic steps of this method, omitting
the details that are similar to those in Bremermann [4], Walsh [14], and
Hunt and Murray [8].
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DEFINITION 6.3. Let for every open D c Cn there be given a set A(D) c
c usc (D). We call the family A = fA(D)l an admissible class, if it fulfils

condition (i)-(iv) of Proposition 1.2, with replaced by A( - ).

REMARK 6.4. is an admissible class.

If we are given an admissible class {A(D): D c Cnl, and a function
v E C(D), we consider the set

Denote the upper envelope of A(v, D), the function sup {u(z): u E A(v, D)}
by e(A, v). The following remark follows from condition (iv) of Def. 6.3.

REMARK 6.5. Let D c Cn be open and bounded, and v : D -~ .R be con-

tinuous. Let A be an admissible class in Cn. Then e(A, v) E usc (D) n A(D)
and in D.

General Walsh lemma 6.6. Let D c Cn be open and bounded and v : D - R

be continuous. Let A be an admissible class in Cn. Assume that the envelope
e(A, v) is continuous at each point of aD. Then e(A, v) is continuous in D.

The proof goes in the same way as the original one in Walsh [14]; one
has to replace the class by A and to note, that nothing more than
conditions (i)-(iv) of Def. 6.3 is needed in Walsh’s proof.

We denote by AP~ , 0  q  n - 1, the smallest admissible class in Cn
containing all smooth q-plurisubharmonic functions defined on arbitrary
open subsets of Cn.

LEMMA 6.7. Let strictly q-pseudoconvex, 0  q  n - 1, and
v E C(D). Then the envelope e(APq, v) is of APq class, in particular is q-pluri-
subharmonic in D, continuous in D and equal to v on aD.

PROOF (Sketch). By Remark 6.5 e(AP~, v) E use (D) n P~SH~~(D). One

can prove that lim znf e(AP, )&#x3E;(), for each by applying Bremer-

mann’s argument [4, Proof of Th. 4.1], with obvious modifications. Since

also e(APa , v) c v (Remark 6.5), we conclude that for every 
lim e(AP, v) = v(z). Thus the envelope is continuous at each boundary

_

point and, by Lemma 6.6, it is continuous in D. Moreover it is equal to v on aD.

THEOREM 6.8. Let D c Cn be strictly q-pseudoconvex, 0: q  n - 1. Then

r’1 C(D) c APq(D).
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PROOF. Let v E n C(.Ï5) and denote u:= e(APq, v). It is enough
to show that u =-= v (for E APq(D)). Suppose that v and let

H : = {z E D : u(z)  v(z)}. Since u, v E C(D) and = (by Lemma 6.7),
H is open in Cn. The following holds:

Observe that ulH is q-Bremermann. If not, then - u 0 
and condition (iii) of Proposition 1.1 holds. Thus there are z* E H, r &#x3E; 0,
E &#x3E; 0, f e r) ), such that B(z*, r) c H,

Choose 6 &#x3E; 0 small enough, so that Define

Clearly f (z) + 3 e r)) and for z* = r, f (z) -E- ~ c u(z) +
-+- ~ - Er~  u(z), by (6.4). By condition (iv) of Def. 6.3, U1 E APq(D). By
the choice of 6, ui  v and so u, E APq (D, v). Finally, by (6.3), &#x3E; u(z*),
contrary to the assumption that u is the upper envelope of APq(D, v). Thus

is q-Bremermann, as required. Since E PSH«(H), by Lemma 5.4
one of relations (6.1), (6.2) cannot hold. Thus v. Q.E.D.

PROOF OF THEOREM 6.1. Let us introduce an auxiliary class A by setting
for each open D c Cn

Since both Psgr and are admissible classes, it is obvious that

the conditions (i)-(iv) of Def. 6.3 hold and is admissible as well.

By Lemma 6.2 02PSHqcA therefore AP~ (D ) c A(D), for every D c Cn.

Thus Theorem 6.1 holds for u E APq, and-by Theorem 6.8-for u E C(B) r1
r1 where B denotes an arbitrary ball, and finally-by approxima-
tion (Remark 2.10)-for u E usc (B ) n This concludes the proof,
for Theorem 6.1 is of local character.
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Appendix.

PROOF OF PROPOSITION 3.3 (iii). Let us assume that the ball B( (c, t), r),
c E RN, supports graph (u) from the above at (x, u(x)) and is differentiable
at x. Let G = grad u(x) and g = Define d: B(x, B) --&#x3E; R to be the
function whose graph is the lower (open) hemisphere of t), r). Of course

Let us express first d(x + h). The vector (e, t) - (x, u(z)), of length r,
is proportional to the upward pointing normal to the graph of u at (x, u(x) ),
which is equal to (1 + g2)-I(- G, 1). Therefore

The equation for ~ is

From these two equations we get

where y = (1-f-- 
We have to estimate K(u, x) = lim sup {max k(u, x, h, e): ~h~ c E~, where

k(u, x, h, e) := 2e-2( u(x + h) - u(x) - 8(G, h)). One checks that grad d(x) = G.
By this and (A.1), k(u, x, h, e)  k(d, x, h, s) and so

where
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Therefore

and so

PROOF OF LEMMA 6.2. Suppose, on the contrary, that for some

it E C2PSHq(D) and v E P~SHr (D ), where D c Cn, w : = min (u, v) ~ 
By definition w is not (q + r --1 )-plurisubharmonic on some (q + r + 2)-
dimensional hyperplane L. We assume, without loss of generality, that
L = Cn, i.e. n = q + r + 2. By Proposition 1.1 (iii) there is z* E D, s &#x3E; 0,
r &#x3E; 0, with B(z*, r ) c D and a function f, strictly 0-plurisubharmonic in

B(z*, r) such that

Set u1 = u + = v + f in B = B(z*, r). Then vx is r-plurisubharmonic
and ul is striotly q-plurisubharmonic (for Hess ul(z) = Hess u(z) + a positive
definite form, and by Dunford and Schwartz [6, Th. X. 43], the eigenvalues
of Hess ul(z) are greater than corresponding eigenvalues of Hess u(z)).
By (A.3), min (ul(z*), = 0 and

If then is identically equal to one of the func-
tions v, near z* and (A.3) is impossible by maximum principle (Propo-
sition 1.2 (viii)). Thus = = 0.

Take the complex hyperplane X such that X - z* is the subspace spanned
by eigenspaces corresponding to positive eigenvalues of Hess u(z*); since u
is strictly q-plurisubharmonic, = r + 2. Set U2 = B,

Then U2 has positive-definite Hessian at z*, and so is strictly
plurisubharmonic near z*. By Gunning and Rossi [7, Th. 9.B.2] there is a

quadratic polynomial p on X and r’ E (0, r) such that p(z*) = 0, Br+2(z, r’ ) ~
r1 {p = 0} c ~u2 &#x3E; 01 V {2;*}. Then = 01 has strict maximum at z*,
therefore the function V2(Z) - °lp(z)12, z E X, does not have local maximum
property in B r1 X, if C &#x3E; 0 is big enough, and so is not (r + 1 )-plurisub-
harmonic in X (dim X = r + 1). On the other hand this function is (r + 1 )-
plurisubharmonic in X n B, for v2 E B ) and - lp 12 E n B)
(by Th. 5.1, a direct elementary proof can be given as well). Q.E.D.
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