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Abstract Elliptic optimal control problems with L1-control cost are analyzed. Due

to the nonsmooth objective functional the optimal controls are identically zero on

large parts of the control domain. For applications, in which one cannot put control

devices (or actuators) all over the control domain, this provides information about

where it is most efficient to put them. We analyze structural properties of L1-control

cost solutions. For solving the non-differentiable optimal control problem we propose

a semismooth Newton method that can be stated and analyzed in function space and

converges locally with a superlinear rate. Numerical tests on model problems show

the usefulness of the approach for the location of control devices and the efficiency

of our algorithm.

Keywords Optimal control · Nonsmooth regularization · Optimal actuator

location · Placement of control devices · Semismooth Newton · Active set method

1 Introduction

In this paper, we analyze elliptic optimal control problems with L1-control cost and

argue their use for the placement of actuators (i.e., control devices). Due to the non-

differentiability of the objective functional for L1-control cost (in the sequel also

called L1-regularization), the structure of optimal controls differs significantly from

what one obtains for the usual smooth regularization. If one cannot or does not want

to distribute control devices all over the control domain, but wants to place available

devices in an optimal way, the L1-solution gives information about the optimal loca-

tion of control devices. As model problems, we consider the following constrained
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elliptic optimal control problems with L1-control cost.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

minimize J (y,u) := 1
2
‖y − yd‖2

L2 + α
2
‖u‖2

L2 + β‖u‖L1

over (y,u) ∈ H 1
0 (�) × L2(�)

subject to Ay = u + f ∈ �,

a ≤ u ≤ b almost everywhere in �,

(P )

where � ⊂ R
n is a bounded domain with sufficiently smooth boundary Ŵ = ∂�,

yd , f ∈ L2(�), a, b ∈ L2(�) with a < 0 < b almost everywhere and α,β > 0. More-

over, A : H 1
0 (�) �→ H−1(�) is a second-order linear elliptic differential operator, and

‖ · ‖L2 and ‖ · ‖L1 denote the L2(�) and L1(�)-norm, respectively. In the sequel, y

is called state and u the control variable, and yd is referred to as desired stated. Note

that the novelty in the above problem is the introduction of the L1-regularization term

β‖u‖L1 .

Nonsmooth regularization for PDE-constrained optimization has mainly been

used for inverse problems, see e.g., [2, 5, 26, 28, 33]. In particular, the use of the

L1-norm of the gradient as regularization has led to better results for the recovery of

data from noisy measurements than smooth regularization. As mentioned above, our

main motivation for the use of nonsmooth regularization for optimal control problems

is a different one, namely its ability to provide information about the optimal location

of control devices and actuators. Although intuition and experience might help in this

design issue, this approach fails when prior experience is lacking or the physical sys-

tem modelled by the PDE is too complex. Provided only a finite number of control

locations is possible, one might use a discrete method for the location problem, but

clearly the number of possible configurations grows combinatorially as the number

of devices or the number of possible locations increase. To overcome these problems,

we propose the use of a L1-norm control cost. As will be shown in this paper, this

results in optimal controls that are identically zero in regions where they are not able

to decrease the cost functional significantly (this significance is controlled by the size

of β > 0); we may think of these sets as sets where no control devices need to be put.

By these means, using the nonsmooth L1-regularization term (even if in combination

with the squared L2-norm such as in (P )), one can treat the somewhat discrete-type

question of where to place control devices and actuators.

An application problem that has partly motivated this research is the optimal place-

ment of actuators on piezoelectric plates [8, 12]. Here, engineers want to know where

to put electrodes in order to achieve a certain displacement of the plate. For linear

material laws, this problem fits into the framework of our model problem (P ). Obvi-

ously, there are many other applications in which similar problems arise.

Additional motivation for considering (P ) is due to the fact that in certain appli-

cations the L1-norm has a more interesting physical interpretation than the squared

L2-norm. For instance, the total fuel consumption of vehicles corresponds to a L1-

norm term, see [34]. We remark that the L1-term ‖u‖L1 is nothing else than the

L1(�)-norm of u, while the L2-term ‖u‖2
L2 (which is the squared L2-norm) is not a

norm.

As mentioned above, the use of nonsmooth functionals in PDE-constrained opti-

mization is not standard and has mainly been used in the context of edge-preserving
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image processing (see [28, 33]) and other inverse problems where nonsmooth data

have to be recovered (see e.g., [2, 5]). Interesting comparisons of the properties of

various nonsmooth regularization terms in finite and infinite dimensions can be found

in [10, 25, 26] and [27]. One of the few contributions using L1-regularization in op-

timal control is [34]. Here, a free-flying robot whose dynamical behavior is governed

by a system of nonlinear ordinary differential equations is navigated to a given final

state. The optimal control is characterized as minimizer of an L1-functional, which

corresponds to the total fuel consumption. Finally, we mention the paper [15] that

deals with elliptic optimal control problems with supremum-norm functional.

Clearly, the usage of a nonsmooth cost functional introduces severe difficulties into

the problem, both theoretically as well as for a numerical algorithm. As mentioned

above, a solution of (P ) with β > 0 obeys properties significantly different from the

classical elliptic optimal control model problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

minimize J2(y,u) := 1
2
‖y − yd‖2

L2 + α
2
‖u‖2

L2

over (y,u) ∈ H 1
0 (�) × L2(�)

subject to Ay = u + f ∈ �,

a ≤ u ≤ b almost everywhere in �,

(P2)

with α > 0. One aim of this paper is to compare the structure of solutions of (P )

to those of (P2) and to explore their different properties. Moreover, we propose and

analyze an algorithm for the efficient solution of (P ).

Clearly, setting α := 0 in (P ) results in the problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

minimize J1(y,u) := 1
2
‖y − yd‖2

L2 + β‖u‖L1

over (y,u) ∈ W
1,1
0 (�) × L1(�)

subject to Ay = u + f ∈ �,

a ≤ u ≤ b almost everywhere in �.

(P1)

Now, the optimal control has to be searched for in the larger space L1(�). The

smoothing property of the elliptic operator A guarantees that the state y correspond-

ing to u ∈ L1(�) is an element in L2(�), provided n ≤ 4. However, for the above

problem to have a solution, the inequality constraints on the control are essential. In

absence of (one of) the box constraints on u, (P1) may or may not have a solution.

This is due to the fact that L1(�) is not a reflexive function space.

As a remedy for the difficulties that arise for (P1), in the sequel we focus on

(P ) with small α > 0. Note that whenever β > 0, the cost functional in (P ) obeys a

kink at points where u = 0 independently from α ≥ 0. In particular, α > 0 does not

regularize the non-differentiability of the functional J (· , ·). However, α influences

the regularity of the solution and also plays an important role for the analysis of the

numerical method we use to solve (P ). This algorithm is based on the combination

of semismooth Newton methods, a condensation of Lagrange multipliers and certain

complementarity functions. It is related to the dual active set method [16, 17, 19] and

the primal-dual active set method [3, 20]. Its fast local convergence can be proven in

function space, which allows certain statements about the algorithm’s dependence (or
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independence) of the fineness of the discretization [22]. We remark that the analysis

of algorithms for PDE-constrained optimization in function space has recently gained

a considerably amount of attention; we refer for instance to [20, 21, 30–32, 35, 36].

This paper is organized as follows. In the next section, we derive necessary opti-

mality conditions for (P ) using Lagrange multipliers. In Sect. 3, we study structural

properties of solutions of (P ). The algorithm we propose for solving elliptic optimal

control problems with L1-control cost is presented and analyzed in Sect. 4. Finally,

in the concluding section, we report on numerical tests, where we discuss structural

properties of the solutions as well as the performance of our algorithms.

2 First-order optimality system

In this section, we derive first-order necessary optimality conditions for (P ). For that

purpose, we replace (P ) by a reduced problem formulation. This reduction to a prob-

lem that involves the control variable u only is possible due to the existence of the

inverse A−1 : H−1(�) → H 1
0 (�) of the differential operator A. The reduced prob-

lem is

{

minimize Ĵ (u) := 1
2
‖A−1u + A−1f − yd‖2

L2 + α
2
‖u‖2

L2 + β‖u‖L1

over u ∈ Uad := {u ∈ L2(�) : a ≤ u ≤ b a.e. in �}.
(P̂ )

This is a convex optimization problem posed in the Hilbert space L2(�). Its unique

solvability follows from standard arguments [14, 30], and its solution ū ∈ Uad is

characterized (see e.g., [7, 11, 23]) by the variational inequality

(

A−⋆(A−1ū+A−1f − yd)+αū,u− ū
)

+ϕ(u)−ϕ(ū) ≥ 0 for all u ∈ Uad, (2.1)

where A−⋆ denotes the inverse of the transposed operator, i.e., A−⋆ = (A⋆)−1; more-

over, ϕ(v) := β
∫

|v(x)|dx = β‖v‖L1 . In the sequel, we denote by ∂ϕ(ū) the subd-

ifferential of ϕ at ū, i.e., ∂ϕ(ū) = {u ∈ L2(�) : ϕ(v) − ϕ(ū) ≥ (u, v − ū) for all v ∈

L2(�)}. It follows from results in convex analysis that, for λ̄ ∈ ∂ϕ(ū), (2.1) implies

(

A−⋆(A−1ū + A−1f − yd) + αū + λ̄, u − ū
)

≥ 0 for all u ∈ Uad. (2.2)

The differential inclusion λ̄ ∈ ∂ϕ(ū) yields, in particular, that

λ̄ ∈ 
ad := {λ ∈ L2(�) : |λ| ≤ β a.e. in �}. (2.3)

A pointwise (almost everywhere) discussion of the variational inequality (2.2) such

as in [30, p. 57] allows to show that there exist nonnegative functions λ̄a, λ̄b ∈ L2(�)

that act as Lagrange multipliers for the inequality constraints in Uad . Moreover,

evaluating the differential inclusion λ̄ ∈ ∂ϕ(ū) relates λ̄ to the sign of ū (see also

[11, 23, 29]). This leads to the optimality system for the reduced problem (P̂ ) sum-

marized in the next theorem.
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Theorem 2.1 The optimal solution ū of (P̂ ) is characterized by the existence of

(λ̄, λ̄a, λ̄b) ∈ 
ad × L2(�) × L2(�) such that

A−⋆(A−1ū + A−1f − yd) + αū + λ̄ + λ̄b − λ̄a = 0, (2.4a)

λ̄b ≥ 0, b − ū ≥ 0, λ̄b(b − ū) = 0, (2.4b)

λ̄a ≥ 0, ū − a ≥ 0, λ̄a(ū − a) = 0, (2.4c)

λ̄ = β a.e. on {x ∈ � : ū > 0}, (2.4d)

|λ̄| ≤ β a.e. on {x ∈ � : ū = 0}, (2.4e)

λ̄ = −β a.e. on {x ∈ � : ū < 0}. (2.4f)

Above, (2.4b–2.4c) are the complementarity conditions for the inequality con-

straints in Uad . Moreover, λ̄ ∈ 
ad together with (2.4d–2.4f) is an equivalent expres-

sion for λ̄ ∈ ∂ϕ(ū).

Next, we derive an optimality system for (P ) using (2.4), i.e., the optimality con-

ditions for (P̂ ). We introduce the adjoint variable p̄ by

p̄ := −A−⋆(A−1ū + A−1f − yd). (2.5)

Then, (2.4a) becomes

−p̄ + αū + λ̄ + λ̄b − λ̄a = 0. (2.6)

Applying the operator A⋆ to (2.5) and using the state variable ȳ := A−1(ū + f ), we

obtain the adjoint equation

A⋆p̄ = yd − ȳ. (2.7)

Next, we study the complementarity conditions (2.4b–2.4f). Surprisingly, it will turn

out that we can write these conditions in a very compact form, namely as one (non-

differentiable) operator equation. To do so, first we condense the Lagrange multipliers

λ̄, λ̄a and λ̄b into one multiplier

μ̄ := λ̄ − λ̄a + λ̄b. (2.8)

Due to a < 0 < b almost everywhere, this condensation can be reversed, i.e., for μ̄

given, λ̄, λ̄a and λ̄b can be calculated from

⎧

⎪

⎨

⎪

⎩

λ̄ = min(β,max(−β, μ̄)),

λ̄a = −min(0, μ̄ + β),

λ̄b = max(0, μ̄ − β).

(2.9)

The condensation (2.8) allows to reformulate the system (2.4b–2.4f) together with

λ̄ ∈ 
ad using, for c > 0 the nonsmooth equation

C(ū, μ̄) := ū − max(0, ū + c(μ̄ − β)) − min(0, ū + c(μ̄ + β))

+ max(0, (ū − b) + c(μ̄ − β))

+ min(0, (ū − a) + c(μ̄ + β)) = 0. (2.10)
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Above, the min- and max-functions are to be understood pointwise. In the next lemma

we clarify the relationship between (2.10) and (2.4b–2.4f).

Lemma 2.2 For (ū, λ̄, λ̄a, λ̄b) ∈ (L2(�))4, the following two statements are equiva-

lent:

1. The quadruple (ū, λ̄, λ̄a, λ̄b) satisfies the conditions (2.4b–2.4f), and λ̄ ∈ 
ad .

2. There exists a function μ̄ ∈ L2(�) such that (ū, μ̄) satisfies (2.10) and λ̄, λ̄a, λ̄b

can be derived using (2.9).

Proof We give an explicit prove of the above equivalence, and start with 1 ⇒ 2. We

set μ̄ := λ̄+ λ̄b − λ̄a and need to show that (ū, μ̄) satisfies C(ū, μ̄) = 0. To do so, we

separately discuss subsets of � where μ(x) > β , μ(x) = β , |μ(x)| < β , μ(x) = −β

and μ(x) < −β . The argumentation below is to be understood in a pointwise almost

everywhere sense.

◦ μ̄ > β: From (2.9) follows that λ̄ = β , λ̄a = 0 and λ̄b > 0. Thus, from (2.4b) we

have ū = b. Therefore,

C(ū, μ̄) = ū − (ū + c(μ̄ − β)) + ((ū − b) + c(μ̄ − β)) = 0.

◦ μ̄ = β: It follows from (2.9) that λ̄ = β and λ̄a = λ̄b = 0. The conditions (2.4b)

and (2.4d) imply that 0 ≤ ū ≤ b and thus

C(ū, μ̄) = ū − (ū + c(μ̄ − β)) = 0.

◦ |μ̄| < β: In this case, λ̄ = μ̄ and λ̄a = λ̄b = 0. From (2.4e) we obtain ū = 0 and

C(ū, μ̄) = 0 is trivially satisfied.

◦ The verification of C(ū, μ̄) = 0 for the two remaining sets where μ = −β or μ <

−β is similar to the cases μ = β and μ > β .

This ends the first part of the proof. Now, we turn to the implication 2 ⇒ 1. We

suppose given (ū, μ̄) ∈ (L2(�))2 that satisfy C(ū, μ̄) = 0 and derive λ̄, λ̄a and λ̄b

from (2.9). By definition, it follows that λ̄ ∈ 
ad and that μ̄ = λ̄ − λ̄a + λ̄b holds. To

prove the conditions (2.4b–2.4f), we again distinguish different cases:

◦ ū + c(μ̄ − β) > b: In this case, only the two max-terms in (2.10) contribute to

the sum. We obtain 0 = C(ū, μ̄) = ū − b and thus ū = b. From ū + c(μ̄ − β) > b

follows μ̄ > β , which implies that λ̄ = β , λ̄b > 0 and λ̄a = 0 and the conditions

(2.4b–2.4f) are satisfied.

◦ 0 < ū + c(μ̄ − β) ≤ b: Here, only the first max-term in (2.10) is different from

zero. Hence, 0 = C(ū, μ̄) = μ̄ − β. This implies μ̄ = β and 0 < ū ≤ b. Clearly,

λ̄ = β and λ̄a = λ̄b = 0, and again (2.4b–2.4f) hold.

◦ |ū + cμ̄| ≤ cβ: In this case, all the max and min-terms in (2.10) vanish, which

implies that ū = 0. This shows that |μ̄| ≤ β , and thus λ̄ = μ̄ and λ̄a = λ̄b = 0,

which proves (2.4b–2.4f).

◦ The remaining two cases ū+c(μ̄+β) < a and a ≤ ū+c(μ̄+β) < 0 are analogous

to the first two cases discussed above.
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Since for every point of � exactly one of the above five conditions holds, this finishes

the proof of the implication 2 ⇒ 1 and ends the proof. �

In the next theorem we summarize the first-order optimality conditions for (P ).

Theorem 2.3 The solution (ȳ, ū) ∈ H 1
0 (�) × L2(�) of (P ) is characterized by the

existence of (p̄, μ̄) ∈ H 1
0 (�) × L2(�) such that

Aȳ − ū − f = 0, (2.11a)

A⋆p + ȳ − yd = 0, (2.11b)

−p̄ + αū + μ̄ = 0, (2.11c)

ū − max(0, ū + c(μ̄ − β)) − min(0, ū + c(μ̄ + β))

+ max(0, (ū − b) + c(μ̄ − β)) + min(0, (ū − a) + c(μ̄ + β)) = 0, (2.11d)

with c > 0.

Note that, from (2.11) one obtains an optimality system for (P2) simply by set-

ting β = 0 in (2.11): While the equations (2.11a–2.11c) remain unchanged, (2.11d)

becomes

μ̄ + max(0, μ̄ + c−1(ū − b)) + min(0, μ̄ + c−1(ū − a)) = 0.

This formulation has been used for the construction of an algorithm for bilaterally

control constraint optimal control problems of the form (P2), see [24].

3 Properties of solutions of (P)

This section is concerned with analyzing structural properties of solutions of (P ) and

with comparing them to solutions of (P2). For simplicity of the presentation, in this

section we dismiss the control constraints in (P ) and (P2), i.e., we choose a := −∞

and b := ∞ and thus Uad = L2(�). We think of α > 0 being fixed and study the

dependence of the optimal control on β . To emphasize this dependence, in the rest

of this section we denote the solution of (P ) by (ȳβ , ūβ) and the corresponding dual

variables by (p̄β , μ̄β). Using these assumptions, (2.11) becomes

Aȳβ − ūβ − f = 0, (3.1a)

A⋆p̄β + ȳβ − yd = 0, (3.1b)

−μ̄β + p̄β − αūβ = 0, (3.1c)

ūβ − max(0, ūβ + α−1(μ̄β − β)) − min(0, ūβ + α−1(μ̄β + β)) = 0. (3.1d)

For later use, we remark that using (3.1c) we can replace μ̄β in (3.1d). The choice

c := α−1 then leads to

ūβ − max(0, α−1(p̄β − β)) − min(0, α−1(p̄β + β)) = 0 (3.2)
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as an equivalent expression for (3.1c) and (3.1d). The first lemma states that, if β is

sufficiently large, the optimal control is ūβ ≡ 0.

Lemma 3.1 If β ≥ β0 := ‖A−⋆(yd − A−1f )‖L∞ , the unique solution of (P ) is

(ȳβ , ūβ) = (A−1f,0).

Proof For the proof we use the reduced form (P̂ ) of (P ). For arbitrary u ∈ L2(�) we

consider

Ĵ (u) − Ĵ (0) =
1

2
‖A−1u‖2

L2 − (yd − A−1f,A−1u)L2 + β‖u‖L1 +
α

2
‖u‖2

L2

≥
1

2
‖A−1u‖2

L2 − ‖u‖L1‖A−⋆(yd − A−1f )‖L∞ + β‖u‖L1 +
α

2
‖u‖2

L2

=
1

2
‖A−1u‖2

L2 + (β − β0)‖u‖L1 +
α

2
‖u‖2

L2 .

Clearly, the latter expression is nonnegative if β ≥ β0. Thus, for β ≥ β0, Ĵ (u) −

Ĵ (0) ≥ 0 for all u ∈ Uad , which proves that the optimal control is ūβ ≡ 0. Using

(2.11a) the corresponding state is obtained as A−1f . �

An analogous result with respect to the parameter α in (P2) does not hold, that

is, in general optimal controls for (P2) will only approach zero as α tends to infin-

ity. Lemma 3.1 is also a consequence of the fact that the L1-term in the objective

functional can be seen as exact penalization (see e.g., [4]) for the constraint u = 0.

To gain more insight in the structure of solutions of (P ) and in the role of the cost

weight parameters α and β , we next discuss the behavior of ūβ as β changes (while

α > 0 is kept fixed), i.e., we study the solution mapping

� : [0,∞) → L2(�), �(β) := ūβ .

We first focus on continuity properties of �.

Lemma 3.2 The mapping � is Lipschitz continuous.

Proof Let β,β ′ ≥ 0 and denote the solution variables corresponding to β and β ′ by

(ȳβ , ūβ , p̄β , μ̄β) and (ȳβ ′ , ūβ ′ , p̄β ′ , μ̄β ′), respectively. From (2.11a–2.11c) we obtain

A−⋆A−1u + αu − A−⋆yd + A−⋆A−1f + μ = 0 (3.3)

for both (u,μ) = (ūβ , μ̄β) and (u,μ) = (ūβ ′ , μ̄β ′). Deriving the difference between

these two equations and taking the inner product with ūβ − ūβ ′ results in

‖A−1(ūβ − ūβ ′)‖2
L2 + α‖(ūβ − ūβ ′)‖2

L2 =
(

μ̄β − μ̄β ′ , ūβ ′ − ūβ

)

L2 . (3.4)

We now estimate the right hand side of (3.4) pointwise (almost everywhere). From

the complementarity conditions, we deduce that the following cases can occur:
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◦ μ̄β = β, ūβ ≥ 0, μ̄β ′ = β ′, ūβ ′ ≥ 0: Here, we obtain

(μ̄β − μ̄β ′)(ūβ ′ − ūβ) = (β − β ′)(ūβ ′ − ūβ) ≤ |β − β ′||ūβ ′ − ūβ |.

◦ μ̄β = β, ūβ ≥ 0, |μ̄β ′ | < β ′, ūβ ′ = 0: In this case, we find ūβ ′ − ūβ = −ūβ ≤ 0 and

thus

(μ̄β − μ̄β ′)(ūβ ′ − ūβ) ≤ (β − β ′)(ūβ ′ − ūβ) ≤ |β − β ′||ūβ ′ − ūβ |.

◦ μ̄β = β, ūβ ≥ 0, μ̄β ′ = −β ′, ūβ ′ ≤ 0: From the sign structure of the variables one

obtains the estimate (μ̄β − μ̄β ′)(ūβ ′ − ūβ) ≤ 0.

◦ |μ̄β | < β, ūβ = 0, |μ̄β ′ | < β ′, ūβ ′ = 0: Here, trivially (μ̄β − μ̄β ′)(ūβ ′ − ūβ) = 0

holds.

◦ There are five more cases that can occur. Since they are very similar to those above,

their discussion is skipped here and we only remark that in all remaining cases the

pointwise estimate

(μ̄β − μ̄β ′)(ūβ ′ − ūβ) ≤ |β − β ′||ūβ ′ − ūβ |

holds as well. Taking the L2-norm over �, this results in

(

μ̄β − μ̄β ′ , ūβ ′ − ūβ

)

L2 ≤ |�|1/2|β − β ′|‖ūβ ′ − ūβ‖L2 . (3.5)

Combing (3.4) with (3.5) yields

‖ūβ ′ − ūβ‖L2 ≤
1

α
|�|1/2|β − β ′|,

and thus proves Lipschitz continuity of �. �

Clearly, from the above lemma we get L2(�)-boundedness of the sequence

1

β − β ′
(ūβ − ūβ ′) as β ′ → β. (3.6)

Let u̇β denote a weak limit of a subsequence. We now show that, for almost all β ,

1

β − β ′
(ūβ − ūβ ′) ⇀ u̇β weakly in L2(�). (3.7)

Let {vk : k = 1,2, . . .} be a countable dense subset of L2(�). Then, for all k, the

maps ϕk : β �→ (vk, ūβ) are Lipschitz continuous and due to Rademacher’s theorem

differentiable almost everywhere. Since a countable union of null sets is again a null

set, all the maps ϕk are simultaneously differentiable almost everywhere, and, from

(3.7) their derivative is ϕ′
k : β �→ (vk, u̇β). The density of {vk : k = 1,2, . . .} implies

that (3.7) holds for almost all β .

Let us take β > 0 such that (3.7) holds. As β ′ → β , it follows from (3.1a) that

(ȳβ − ȳβ ′)/(β − β ′) → ẏβ ∈ H 1
0 (�) weakly in H 1

0 (�) and thus strongly in L2(�).
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Analogously, due to (3.1b) the same holds true for (p̄β − p̄β ′)/(β − β ′) → ṗβ ∈

H 1
0 (�). We now introduce the functions

g−(β) :=
1

α
(p̄β + β), g+(β) :=

1

α
(p̄β − β). (3.8)

Then,

1

β − β ′
(g−(β) − g−(β ′)) →

1

α

(

ṗβ + 1
)

=: ġ−(β),

1

β − β ′
(g+(β) − g+(β ′)) →

1

α

(

ṗβ − 1
)

=: ġ+(β)

both strongly in L2(�). Let us define the disjoint sets

S
+
β = {x ∈ � : g+(β) > 0 or (g+(β) = 0 ∧ ġ+(β) ≥ 0)},

S
−
β = {x ∈ � : g−(β) < 0 or (g−(β) = 0 ∧ ġ−(β) ≤ 0)}

and denote by χS the characteristic function for a set S ⊂ �. Using (3.8) and sepa-

rately arguing for sets with g+(β) > 0, g+(β) = 0 and g+(β) < 0, it follows that

∫

�

1

β − β ′

(

max(0, g+(β)) − max(0, g+(β ′))
)

v dx →

∫

�

1

α

(

ṗβ − 1
)

vχ
S

+
β

dx,

∫

�

1

β − β ′

(

min(0, g−(β)) − max(0, g−(β ′))
)

v dx →

∫

�

1

α

(

ṗβ + 1
)

χ
S

−
β
v dx

for v ∈ H 1
0 (�). Hence, from (3.2) we obtain

u̇β −
1

α

(

ṗβ − 1
)

χ
S

+
β

−
1

α

(

ṗβ + 1
)

χ
S

−
β

= 0, (3.10)

resulting in

u̇β =

{

0 a.e. on � \ (S−
β ∪ S

+
β ),

1
α
(ṗβ − χ

S
+
β

+ χ
S

−
β
) a.e. on S

−
β ∪ S

+
β .

(3.11)

Note that the disjoint sets S
−
β ,S+

β depend on ṗβ . However, if p̄β = 0 only on a set of

measure zero, this dependence can be neglected and S
−
β ,S+

β can be derived as soon

as p̄β is available. Even then, calculating u̇β requires to solve a linear system on �

and not only on S
−
β ∪ S

+
β , since ṗβ = A−⋆A−1u̇β .

For the reader’s convenience, we conclude this section with a summary of the

results obtained above. These properties are reflected in our numerical findings in

Sect. 5, where we also discuss how the choice of β influences the attainability of the

desired state.

• For β sufficiently large, (3.1) has the trivial solution ūβ = 0. It can be seen easily

that the same is true in the presence of control bounds as in (P ).
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• The solution mapping � : β → ūβ is Lipschitz continuous and almost everywhere

differentiable. The derivatives u̇β have jumps along the boundaries of the sets

S
−
β ,S+

β . The height of these jumps tends to grow as α decreases, see (3.11).

• For n ≤ 3, parts of � where ūβ changes sign are separated by regions with posi-

tive measure, in which ūβ is identically zero. This follows from standard regular-

ity results for elliptic equations [13], which show that p̄β ∈ H 2(�): The Sobolev

embedding theorem [1, p. 97] yields that H 2(�) embeds into the space of contin-

uous functions, which implies that p̄β is continuous. Now, the assertion follows

from (3.2).

4 Semismooth Newton method

In this section we present a numerical technique to find the solution of (P ) or,

equivalently, of the reformulated first-order optimality conditions (2.11). Obviously,

an algorithm based on (2.11) has to cope with the pointwise min- and max-terms

in (2.11d). One possibility to deal with these non-differentiabilities is utilizing smooth

approximations of the max- and min-operators. This leads to a smoothed L1-norm

term in (P ) and thus has the disadvantage that the typical properties of solutions

of (P ) (e.g., the splitting into sets with u = 0 and u �= 0) are lost. Hence, we prefer

solving (2.11) directly instead of dealing with a smoothed version. Since we focus

on fast second-order methods, we require an appropriate linearization of the non-

linear and nonsmooth system (2.11). We use a recent generalized differentiability

concept, which, for the convenience of the reader is summarized below. We point

out that this concept of semismoothness and generalized Newton methods holds in a

function space setting. Such an infinite-dimensional analysis has several advantages

over purely finite-dimensional approaches: The regularity of variables often explains

the behavior of algorithms dealing with the discretized problem; Moreover, the well-

posedness of a method in infinite dimensions is the basis for the investigation of

mesh-independence properties.

4.1 Semismoothness in function space

Below we give a brief summary of generalized differentiability in function space. For

more details and proofs of these results we refer to [6, 20, 31]. Let X,Y be Banach

spaces, D ⊂ X be open and F : D → Y be a nonlinear mapping. Then, we call the

mapping F generalized differentiable on the open subset U ⊂ D if there exists a

mapping G : U → L(X,Y ) such that

lim
h→0

1

‖h‖X

‖F (x + h) − F (x) − G(x + h)h‖Y = 0 (4.1)

for every x ∈ U . The above introduced mapping G , which need not be unique, is

referred to as generalized derivative. Note that in (4.1) G is evaluated at the point

x + h rather than at x and thus might change as h → 0. Assume now we intend to

find a root x̄ of a semismooth mapping

F (x) = 0 (4.2)

employing a Newton iteration. Then, the following local convergence result holds:
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Theorem 4.1 Suppose that x̄ ∈ D is a solution of (4.2) and that F is semismooth in

an open neighborhood U of x̄ with generalized derivative G . If G(x)−1 exists for all

x ∈ U and {‖G(x)−1‖ : x ∈ U} is bounded, the Newton iteration

x0 ∈ U given, xk+1 = xk − G(xk)−1 F (xk)

is well-defined and, provided x0 is sufficiently close to x̄, converges at superlinear

rate.

Since we want to use a Newton scheme for the solution of (2.11), we need semi-

smoothness of the pointwise max- and min-operators. It can be shown that this holds

true provided a two-norm property is satisfied. To be precise, the pointwise max- and

min-operators Fmax, Fmin : Lr(�) → Ls(�) defined by Fmax(v) = max(0, v) and

Fmin(v) = min(0, v) for v ∈ Lr(�), respectively, are generalized differentiable for

1 ≤ s < r ≤ ∞. The mappings

Gmax(v)(x) =

{

1 if v(x) ≥ 0,

0 if v(x) < 0,
Gmin(v)(x) =

{

1 if v(x) ≤ 0,

0 if v(x) > 0
(4.3)

can be used as generalized derivatives of Fmax and Fmin at v. We point out that the

norm gap (i.e., r < s) is essential for generalized differentiability of Fmax and Fmin.

4.2 Application to (P )

From (2.11c), we infer that μ̄ = p̄ − αū. Inserting this identity in (2.11d) and choos-

ing c := α−1 results in

ū − α−1 max(0, p̄ − β) − α−1 min(0, p̄ + β)

+ α−1 max(0, p̄ − β − αb) + α−1 min(0, p̄ + β − αa) = 0. (4.4)

Now, due to this choice of c (see also [20]), only p̄ appears inside the pointwise max-

and min-operators, which, compared to ū, μ̄ ∈ L2(�) obeys additional regularity.

To make this more precise, we introduce the operator S := −A−⋆A−1 : L2(�) →

H 1
0 (�) and denote by h := −A−⋆(A−1f − yd) ∈ H 1

0 (�). Then, (2.5) can be written

as

p̄ = Sū + h.

Let us consider the mapping

T : L2(�) → Ls(�) with s ∈

⎧

⎪

⎨

⎪

⎩

(2,∞] for n = 1,

(2,∞) for n = 2,

(2, 2n
(n−2)

] for n ≥ 3,

(4.5)

defined by T u = p = Su + h. Strictly speaking, T u = I(Su + h) with I denoting

the Sobolev embedding (see e.g., [1]) of H 1
0 (�) into Ls(�) with s as defined in (4.5).

From the above considerations, it follows that T is well-defined and continuous.
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Since it is affine, it is also Fréchet differentiable from L2(�) to Ls(�). Replacing

p̄ in (4.4) by T ū motivates to define F : L2(�) → L2(�) by

F (u) := u − α−1 max(0, T u − β) − α−1 min(0, T u + β)

+ α−1 max(0, T u − β − αb) + α−1 min(0, T u + β − αa). (4.6)

This allows to express the optimality system (2.11) in the compact form F (u) = 0.

We are now able to argue generalized differentiability of the function F and derive a

generalized Newton iteration for the solution of F (u) = 0 and thus for (P ).

Theorem 4.2 The function F as defined in (4.6) is generalized differentiable in the

sense of (4.1). A generalized derivative is given by

G(u)(v) = v − α−1χ(I−∪I+)(Sv), (4.7)

where I−, I+ are disjoint sets defined by

I− = {x ∈ � : αa < T u + β ≤ 0 a.e. in �},

I+ = {x ∈ � : 0 ≤ T u − β < αb a.e. in �}.
(4.8)

Proof After the above discussion, the prove is an application of the general theory

from Sect. 4.1 to (4.6). For showing that the conditions required for the application of

Theorem 4.1 are satisfied, we restrict ourselves to the first max-term in (4.6). Anal-

ogous reasoning yields generalized differentiability of the remaining terms in (4.6)

and thus of F . From the smoothing property of the affine operator T we obtain for

each u ∈ L2(�) that T u ∈ Ls(�) with some s > 2. It follows that

F1 : u → max(0, T u − β) = max(0, Su + h − β)

is semismooth if considered as mapping from L2(�) into L2(�); Moreover, for its

generalized derivative we obtain G1(u)(v) = χA(Sv), where χA denotes the charac-

teristic function for the set A = {x ∈ � : T u − β ≥ 0 a.e. in �}, compare with (4.3).

A similar argumentation for the remaining max- and min-operators in (4.6) shows that

the whole function F is generalized differentiable. Merging the characteristic func-

tions yields that a generalized derivative is given by (4.7), which ends the proof. �

We next state our algorithm for the solution of (P ).

Algorithm 1 (Semismooth Newton)

1. Initialize u0 ∈ L2(�) and set k := 0.

2. Unless some stopping criterion is satisfied, compute the generalized derivative

G(uk) as given in (4.7) and derive δuk from

G(uk)δuk = −F (uk). (4.9)

3. Update uk+1 := uk + δuk , set k := k + 1 and return to Step 1.
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Now, Theorem 4.1 applies and yields the following convergence result for Algo-

rithm 1:

Theorem 4.3 Let the initialization u0 be sufficiently close to the solution ū of (P ).

Then the iterates uk of Algorithm 1 converge superlinearly to ū in L2(�). Moreover,

the corresponding states yk converge superlinearly to ȳ in H 1
0 (�).

Proof To apply Theorem 4.1, it remains to show that the generalized derivative (4.7)

is invertible and that the norms of the inverse linear mappings are bounded. Let u,v ∈

L2(�) and (· , ·)S denote the L2-product over S ⊂ �. Then, using that S = −A−⋆A−1

and I− and I+ as defined in (4.8)

(G(u)(v), v)� = (v − α−1χ(I−∪I+)(v), v)�

= (v, v)� + α−1(A−⋆A−1v, v)(I−∪I+) ≥ (v, v)�

independently from I−, I+ and thus from u. This shows that for all u, (G(u)(·), ·)

defines a coercive (and continuous) bilinear form on L2(�)×L2(�). Using the Lax-

Milgram lemma, it follows that the generalized derivative G(u) is invertible and that

‖G(u)−1‖ ≤ 1 for all u, which ends the proof. �

We conclude this section with the statement of a different, more explicit form for

the Newton step (4.9) in Algorithm 1. This alternative formulation obeys the form of

an active set strategy. The method’s relations to the “dual active set method” (see [9,

16, 17, 19]) and the “primal-dual active set strategy” [3, 20, 24] are discussed as well.

4.3 Interpretation as active set method

Utilizing (4.7), the explicit statement of the Newton step (4.9) becomes

δuk − α−1χ(Ik
−∪I

k
+)(Sδuk) = −uk + α−1χ

I
k
−
(T uk + β)

+ α−1χ
I

k
+
(T uk − β) + χAk

a
a + χ

A
k
b
b, (4.10)

where the disjoint sets A
k
a, I

k
−,Ak

o, I
k
+ and A

k
b are given by

A
k
a = {x ∈ � : T uk + β ≤ αa a.e. in �}, (4.11a)

I
k
− = {x ∈ � : αa < T uk + β ≤ 0 a.e. in �}, (4.11b)

A
k
o = {x ∈ � : |T uk| < β a.e. in �}, (4.11c)

I
k
+ = {x ∈ � : 0 ≤ T uk − β < αb a.e. in �}, (4.11d)

A
k
b = {x ∈ � : αb ≤ T uk − β a.e. in �}. (4.11e)

Observe that Algorithm 1 only involves the control uk explicitly. The corresponding

iterates for the state, the adjoint state and the multiplier are, in terms of uk , given by

pk = T uk, yk = A−1(uk + f ) and μk = T uk − αuk, (4.12)

compare with the definition of T on page 170, and with (2.11a–2.11c).
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We now discuss (4.10) separately on the sets (4.11). To start with, on A
k
a we obtain

δuk = −uk +a. Using δuk = uk+1 −uk , this results in setting uk+1 = a on A
k
a . Next

we turn to I
k
−. From (4.10), we obtain

δuk − α−1 Sδuk = −uk + α−1(T uk + β)

and, again using δuk = uk+1 − uk that uk+1 − α−1 T uk+1 = α−1β . Multiplying with

α and using (4.12) yields μk+1 = −β on I
k
−. Continuing the evaluation of (4.10) sep-

arately on the remaining sets Ao, I+,Ab and using (4.12) shows that uk+1 = 0 on A
k
o,

μk+1 = β on I
k
+ and uk+1 = b on A

k
b . Thus, we can restate Algorithm 1 as active set

method.

Algorithm 2 (Active set method)

1. Initialize u0 ∈ L2(�), compute y0,p0 and μ0 as in (4.12) and set k := 0.

2. Unless some stopping criterion is satisfied, derive the sets A
k
a, I

k
−,Ak

o, I
k
+ and A

k
b

following (4.11).

3. Solve for (uk+1, yk+1,pk+1,μk+1):

Ayk+1 − uk+1 − f = 0,

A⋆pk+1 − yd + yk+1 = 0,

−pk+1 + αuk+1 + μk+1 = 0,

uk+1 =

⎧

⎪

⎨

⎪

⎩

a on Ak
a,

0 on Ak
o,

b on A
k
b,

μk+1 =

{

−β on I
k
−,

β on I
k
+.

4. Set k := k + 1 and return to Step 2.

Note that the sets in (4.11) are defined using the adjoint state pk = T uk only. Us-

ing the fact that −pk + αuk + μk = 0 for all k, these sets can also be defined using

αuk + μk (or, more generally, even cuk + μk for some c > 0). These different ap-

proaches explain two existing names for methods such as Algorithm 2 that derive

active sets and solve a sequence of problems with equality constraints on the active

and without constraints on the inactive sets. On the one hand, Algorithm 2 is a dual

active set method as introduced in [19]. Here, “dual” refers to the adjoint (or dual)

state p. At the same time, it is an primal-dual active set method as introduced in [3].

In this case, “primal” refers to the control variable u, and “dual” to the correspond-

ing multiplier μ. Both methods have been used and deeply analyzed for optimization

problems with equality, and inequality bound constraints. Note that nonsmooth op-

timization problems such as (P ) lead to inequality constrained dual problems. This

explains the active set form of Algorithm 2 for solving (P ), which however is not a

straightforward application of these active set methods. Let us now briefly review the

development of the dual and the primal-dual active set method.

In [19], the dual active set method has been introduced for bound constrained

control of an ordinary differential equations. Local fast convergence is proved using
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generalized equations. Later, the dual active set method has been analyzed and ex-

tended in various directions. We refer for example to [16], where, for problems in

R
n the method is shown to converge in a finite number of steps if an appropriate line

search strategy is used. This approach is used for the solution of network optimiza-

tion problems in [18]. The method has also been extended to linear programming

problems in [17], see also [9] for implementation issues.

The primal-dual active set strategy has been introduced in [3] for control con-

strained elliptic optimal control problems. The method is a dual active set method

without line search. Its relation to semismooth Newton methods in R
n as well as in

function space as found in [20] can be used to prove fast local convergence. Con-

ditional global convergence results are based on typical properties of optimization

problems with constraints given by partial differential equations such as smoothing

or monotonicity, see [3, 20, 24]. We remark that for problems with bilateral con-

straints, choosing cuk + μk with c different from α allows to control if points can

change from one active set to the other one within one iteration [29]. Such unwanted

behavior might lead to cycling of the iterates or to very small steps if some linesearch

procedure is used. Moreover, c can be used to balance possible different orders of

magnitudes of uk and μk , which becomes an issue if the involved linear systems are

solved only approximately.

5 Numerical examples

We end this paper with a numerical study. Our aim is twofold: Firstly, we examine

the influence of the L1-norm on the structure of solutions of (P ) and numerically

verify our theoretical findings in Sect. 3. Secondly, we study the performance of our

algorithm for the solution of (P ).

As initialization u0 for Algorithm 1 (or equivalently Algorithm 2) we choose

the solution of (2.11) with μ̄ = 0, that is, the solution of (P ) with β = 0 and

Uad = L2(�). We terminate the algorithm if the sets A
k
a ,Ik

−,Ak
o,Ik

+,Ak
b coincide for

two consecutive iterations or as soon as the discrete analogue of ‖uk+1 −uk‖L2 drops

below the tolerance ε = 10−10. If the linear systems in Algorithm 2 are solved ex-

actly, the first stopping criterion yields the exact solution of (the discretized version

of) (P ).

Subsequently, we focus on the following test problems. We use � = [0,1]2 and,

unless otherwise specified, A = −�. For discretization we apply the standard 5-point

stencil.

Example 1 The data for this example are as follows: a ≡ −30, b ≡ 30, yd =

sin(2πx) sin(2πy) exp(2x)/6, f = 0 and α = 10−5. We study the influence of the

parameter β on the solution. For β = 0.001, the optimal control ū with correspond-

ing condensed multiplier μ̄, the optimal state and the splitting into the active/inactive

sets are shown in Fig. 1.

Example 2 This example uses the same data as Example 1, but without control

bounds (i.e., a ≡ −∞, b ≡ ∞) and with α = 10−7. Example 2 is used together with

Example 1 to discuss the attainability of the desired state yd depending on β .
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Fig. 1 Example 1: Optimal control ū (upper left), corresponding multiplier μ̄ (upper right), optimal

state ȳ (lower left), and visualization of the splitting (lower right) into Aa (in black), I− (in dark grey),

Ao (in middle grey), I+ (in light grey) and Ab (in white)

Example 3 Example 3 is constructed in order to obtain sets Aa , I−, Ao, I+, Ab that

have a more complex structure at the solution. Moreover, the upper control bound b

is zero on a part of � with positive measure. The exact data are a ≡ −10,

b =

{

0 for (x, y) ∈ [0,1/4] × [0,1],

−5 + 20x for (x, y) ∈ [1/4,1] × [0,1],

yd = sin(4πx) cos(8πy) exp(2x), f = 10 cos(8πx) cos(8πy), α = 0.0002 and β =

0.002. The solution (ȳ, ū), as well as the corresponding Lagrange multiplier are

shown in Fig. 2. Moreover, we visualize the splitting in the sets (4.11) at the solu-

tion.

Example 4 For this example we use the differential operator A = ∇ · (a(x, y)∇),

with a(x, y) = y2 + 0.05. The remaining data are given by yd ≡ 0.5, f = 0 and

α = 0.0001. We do not assume box constraints for the control, i.e., a ≡ −∞ and

b ≡ ∞. In Fig. 3, the optimal control ū and the corresponding multiplier μ̄ are shown

for β = 0.005.
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Fig. 2 Example 3: Optimal control ū (upper left), corresponding multiplier μ̄ (upper right), optimal

state ȳ (lower left), and visualization of the splitting (lower right) into Aa (in black), I− (in dark grey),

Ao (in middle grey), I+ (in light grey) and Ab (in white)

Fig. 3 Example 4: Optimal control ū (left) and corresponding multiplier μ̄ (right)

5.1 Qualitative discussion of the results

Complementarity conditions We start with visually verifying the complementarity

conditions for Example 1, see Fig. 1, upper row. First note that ū = 0 on a relatively

large part of �. Further, observe that on this part |μ̄| ≤ β holds, as expected. On sub-

domains with 0 ≤ u ≤ b, μ = β; Moreover, ū = b corresponds to sets where μ ≥ β ,
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Fig. 4 Example 1: Optimal control ū for β = 0.008 (upper left), β = 0.003 (upper right), β = 0.0005

(lower right) and β = 0 (lower left)

as desired. Similarly, one can verify visually that the complementarity conditions

hold for ū ≤ 0 as well.

The role of β—placement of control devices To show the influence of the parameter

β on the optimal control ū, we solve Example 1 for various values of β while keep-

ing α fixed. For β = 0.02 or larger, the optimal control ū is identically zero, compare

with Lemma 3.1. As β decreases, the size of the region with ū different from zero in-

creases. In Fig. 4 we depict the optimal controls for β = 0.008, 0.003, 0.0005 and 0.

To realize the optimal control for β = 0.003 in an application, four separated rela-

tively small control devices are needed, since ū is zero on large parts of the domain.

This means that no distributed control device acting on the whole of � is necessary.

The attainability of the desired state yd depending on β can be seen from Table 1.

Here, for Examples 1 and 2 we give for various values of β the L2-norm ‖yd − ȳ‖

as well as the percentage of � where ū �= 0. Note that the solution for β = 0 is the

solution for the classical smooth optimal control problem (P2) and that the solution

for β = 0.02 is ū ≡ 0.

Next, we turn to Example 4. In Fig. 5, we visualize for different values of β those

parts of �, where control devices need to be placed (i.e., where the optimal control is

nonzero). It can be seen that the control area shrinks for increasing β . Moreover, for

different β also the shape of the domain with nonzero control changes significantly.
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Table 1 Examples 1 and 2: L2-norm ‖yd − ȳ‖ and percentage |ū �= 0|/|�| of area where ū �= 0 for

various β

β 0 0.0001 0.0005 0.003 0.008 0.02

Example 1 ‖yd − ȳ‖ 7.52e−2 7.79e−2 9.17e−2 1.79e−1 2.65e−1 2.91e−1

|ū �= 0|/|�| 100% 75.0% 51.6% 18.4% 3.4% 0%

Example 2 ‖yd − ȳ‖ 4.90e−4 1.37e−2 4.15e−2 1.43e−1 2.52e−1 2.91e−1

|ū �= 0|/|�| 100% 38.5 % 19.4% 2.9% 0.4% 0%

Fig. 5 Example 4: Visualization of sets with nonzero optimal control ū (black) for

β = 0.001,0.01,0.05,0.1 (from left to right); Only in the black parts of � control devices are

needed

Fig. 6 Derivatives u̇β for β = 0.001 in Example 1 (left) and β = 0.002 in Example 3 (right)

Derivatives with respect to β Here, we derive derivatives of ū with respect to β as

discussed in Sect. 3. To be precise, we use an extended version of the results obtained

there, since we also allow for box constraints on the control. Without proof we remark

that, for strongly active box constraints (i.e., where the Lagrange multiplier satisfies

|μ̄| > β), u̇β = 0 holds. We checked that for our choice of β , p̄β �= 0. Thus, the sets

S− and S+ can be derived from p̄β . For β = 0.001, the derivative u̇β is shown on the

left of Fig. 6. Observe that the sensitivity for changes in β in only nonzero on I
−
β ∪I

+
β ,

since in this example numerical strict complementarity holds. As observed at the end

of Sect. 3, u̇β is noncontinuous with jumps of approximate magnitude α−1 = 104.

On the right hand side of Fig. 6, we depict u̇β for Example 3, where β = 0.002 and
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Table 2 Number of iterations

for Example 1 with α = 0.0001

for meshsize h and various

values for β

h β

0.008 0.003 0.001 0.0005 0

1/32 5 5 4 4 3

1/64 5 5 4 4 4

1/128 5 5 5 4 4

1/256 6 6 5 5 4

Table 3 Convergence of uk in

Example 4, h = 1/128
k ‖uk − ū‖ ‖uk − ū‖/‖uk−1 − ū‖

1 4.588585e+00 –

2 5.045609e+00 1.099600e−00

3 2.148787e−01 4.258726e−02

4 2.054260e−01 9.560091e−01

5 5.556892e−02 2.705058e−01

6 6.047484e−04 1.088285e−02

7 0.000000 0.000000

α = 0.0002. Again, the height of the jump along the boundaries of S− and S+ is of

magnitude α−1 = 5000.

5.2 Performance of the algorithm

Number of iterations In Table 2 we show the number of iterations required for the

solution of Example 1 for various values of β . For all mesh-sizes h and choices

of β the algorithm yields an efficient behavior. Note also the stable behavior for

various meshsizes h. The parameter β does not have a significant influence on the

performance of the algorithm. Thus, the computational effort for solving problem

(P ) is comparable to the one for the solution of (P2).

Though the solution of Example 2 obeys a more complex structure of active

sets, the algorithm detects the solution after 3 iterations for meshes with h = 1/32,

. . . ,1/256.

Convergence rate For Example 4, we study the convergence of the iterates uk to the

optimal control ū. In Table 3, we show the L2-norm of the differences uk − ū and

the quotients ‖uk − ū‖L2/‖uk−1 − ū‖L2 for α = 0.0001 and β = 0.005. Observe that

after a few iterations, the quotients decrease monotonically. This numerically verifies

the local superlinear convergence rate proven in Theorem 4.1.

Attempts to speed up the algorithm when solving (P ) for various β If one is inter-

ested in placing control devices in an optimal way, one needs to solve (P ) for several

values of β in order to find a control structure that is realizable with the available re-

sources. We considered two ideas to speed up the algorithm for the case that a solution

is needed for various β . The first one used an available solution for β as initialization
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Table 4 Example 3: Number of iterations for nested iteration and for direct solution on finest grid

h 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−8 CPU-time ratio

#iterations 3 2 2 6 4 3 3 11 0.39

for the algorithm to solve (P ) for β ′. The second one used uβ + (β ′ − β)u̇β as ini-

tialization for (P ) with β ′. We tested both approaches when solving Example 4 for

various β . Unfortunately, we did not observe a significant speedup of the iteration.

Speeding up the algorithm using a nested iteration Here, we use a prolongated so-

lution on a rough grid as initialization on a finer grid. We start with a very rough

grid and iteratively repeat the process (solve–prolongate–solve on next finer grid–

· · · ) until the desired mesh-size is obtained. In Table 4, we give the results obtained

for Example 4 with β = 0.001, where h = 1/256 for the finest grid. Using the nested

strategy, only 3 iterations are needed on the finest grid, compared to 11 when the iter-

ation is started on that grid. Since the effort on the rougher meshes is small compared

to the finer ones, using the nested approach speeds up the solution process consider-

ably (only 39% of CPU time is needed).

5.3 Conclusions for the placement of control devices

As seen above, the structure of the optimal controls depends in a nontrivial and non-

monotone way on the value of β . In practice, one will need to find a value for β

such that ȳ is sufficiently close to yd while only sparsely distributed control devices

are used (i.e., the optimal control is nonzero only on a rather small portion of �).

This might require some manual tuning of β and thus a couple of solves of (P ) for

different β . Nevertheless, the approach used in this paper should be much more effi-

cient than using discrete optimization techniques to find optimal locations for control

devices.
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