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ELLIPTIC PROBLEMS IN VARIABLE EXPONENT SPACES

MlHAI MlHAILESCU

In this paper we study a nonlinear elliptic equation involving p(x)-growth conditions
on a bounded domain having cylindrical symmetry. We establish existence and mul-
tiplicity results using as main tools the mountain pass theorem of Ambosetti and
Rabinowitz and Ekeland's variational principle.

1. INTRODUCTION

The study of partial differential equations and variational problems involving p(x)-
growth conditions has captured a special attention in the last decade. This is a con-
sequence of the fact that such equations can be used to model phenomena which arise
in mathematical physics. Elastic mechanics and electrorheological fluids (sometimes re-
ferred to as "smart fluids") are two classical examples of physical fields which benefit
from such kind of studies. In that context we refer to Acerbi and Mingione [1], Dien-
ing [7], Halsey [13], Ruzicka [17, 18], Winslow [21], Zhikov [22], and the references
therein. In what concerns the investigation of existence and multiplicity of solutions for
equations with p(x)-growth conditions we refer to the recent papers by Alves and Souto
[2], Chabrowski and Fu [6], Fan and Zhang [12], Mihailescu and Radulescu [15], where
different techniques of finding solutions are illustrated.

The goal of this paper is to establish the existence of solutions for problems of the
type

I '
/,% i — u»»^i vi»|-- - v uj = g(x, u), if x e ft
K' s - - n if x € ar

where Q C RN is a bounded domain having cylindrical symmetry, p(x) is a continuous
function on ft, with 1 < p{x) for all x G ft and g{x, u) is a real-valued function which
will be specified later. We investigate problem (1) in the case when ft = ftx x ft2, where
fii C Rm is a bounded regular domain, and ft2 is a k dimensional ball of radius R, centred
in the origin, and consequently m + k = N.
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2. PRELIMINARY RESULTS

In this section we recall some background facts concerning the generalised Lebesgue-
Sobolev spaces UW{Q) and Wo

llP(l)(ft), where fi is a bounded domain in W. We refer
the reader to the book by Musielak [16] and the papers by Edmunds, Lang and Nekvinda
[8], Edmunds and Rakosnik [9, 10], Kovacik and Rakosnfk [14], and Samko and Vakulov
[19].

Throughout this paper we assume that p(x) > 1, p(x) € C(fi).
Set

C+(U) = {A;/ i6 C(U), h(x) > 1 for all x € fi}.

For any h E C+(Q) we define

h+ = sup/i(x) and h~ = inf h(x).

For any p(x) € C+(Q.), we define the variable exponent Lebesgue space

Lp(x)(fi) = | u ; u is a measurable real-valued function such that / |u(x)| dx < oo\.

We define a norm, the so-called Luxemburg norm, on this space by the formula

We remember that the variable exponent Lebesgue spaces are separable and reflexive
Banach spaces. If 0 < |fi| < oo and pu p-2 are variable exponents such that pi(i)
< P2{x) almost everywhere in Q then there exists the continuous embedding D^

We denote by z/ ( l ) (f t) the conjugate space of lAx\Q), where l/p(x) + l/p'(x) = 1.
For any u 6 L^X\Q) and u e Z^'^^fi) the Holder type inequality

(2) UVdl < (
p

(— + -p) |«U«)|«Î (,
XP p '

holds true.
An important role in manipulating the generalised Lebesgue-Sobolev spaces is played

by the modular of the LP^(Q) space, which is the mapping pp(r) : I/^(Q) -> K defined

P**)(u) = / |u|*'> dx.

If (un), u e I/*X)(Q) then the following relations hold true

(3) |u|P(x) > 1 =• lufc , ^ Pp{x){u) < !
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(4)

(5)

Next, we consider the weighted variable exponent Lebesgue spaces. Let a : fi ->• R
be a measurable real function such that o(x) > 0 almost everywhere i e f l . We define

l£[xj(fi) = lu; uis a measurable real-valued function such that / a(x)|u(x)| dx < oo |

with the norm

(x) P(«)
' u ' o n > = iuiw*)-°(*»=infY > 0; Ja

The space i*[*)(n) endowed with the above norm is a Banach space which has similar
properties with the usual variable exponent Lebesgue spaces.

Finally, we define Wo
lj>(x)(n) as the closure of C£°(f2) under the norm

INI = |vu|P(x).

The space (W0
1>p(x)(n), || • ||) is a separable and reflexive Banach space. We note that if

s{x) e C+(H) and s(x) < p*(x) for all x £ U then the embedding Wo
lj>(l)(ft) «-> LS^(Q)

is compact and continuous, where p*(x) = (Np(x)/N — p(x)) if p(x) < N or p*(x) = +oo

3. T H E MAIN RESULTS

In what follows we establish two existence results for some problems of type (1). We
are seeking solutions for this kind of equations in the space

<f ( l ) ( " ) = {« € Wo
llP(l)(fi); u(x11x2) = u(xx, |x2|), V (xx,x2) e n},

which is a closed subspace of WQ \d).
First, we study problem (1) in the case when

where q{x) 6 C+(Q) and h(x) = |x2| ', for all x = (xi,x2) e f i i x fi2, with ! > 0 a real
number.

Thus, problem (1) becomes

{-div(|Vup<x>

u = 0,
_ V I . . , v u ) = / l ( x ) | u | « w - 2

u , if x e n

^ if x € a n .
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We say that u € W^(x){9) is a weak solution for problem (6) if

f |Vu|p(l)-2VuVu dx - f h(x)\u\«x)-2uv dx = 0,
Jn Jn

for all v € Wifs){Q).
We prove

THEOREM 1. Assume that m > r>~, k ^ I + p~, p+ < N, p+ < q~ and q+

< ip~Y + 6> where 6 = p~/(N - p~) min|(p-(A: - p~)/m),l\. Then problem (6) has at
least a nontrivi&l weak solution.

Next, we consider the perturbed problem

{ - div(|Vu|p(x>-2Vu) = A(s)|u|«to-au + /(x), if x e fi
u = 0, if x e d f i ,

where / is a function which belongs to the dual space of WQ'^X\Q), denoted by
>(fi))-\

We say that u € W^x)(il) is a weak solution for problem (7) if

f | Vu|p(l)-2VuVt/ dx - f h(x)\u\q^-2uv dx- f f(x)v dx = 0,
Jn Jn Jn

for all v tf\)
We show

THEOREM 2 . Assume that the hypotheses of Theorem 1 are satisfied. Tien there
exists e0 > 0 such that for any f € (W^f^fi))"1, / # 0, with \\f\\-i < e0 problem (7)
lias at least two weak solutions.

REMARK. We point out the fact that, in general, the existence of solutions for problems
involving p(x)-growth conditions is studied in the sub-critical case when

q(x)<p*(x), Vie ft.

The conditions assumed in the hypotheses of Theorems 1 and 2 allow a relaxation of the
above inequality since it is possible to have

P+ < (p-)* < q~ < q+ < (p-)* + S < (p+)*.

That situation is linked to the special geometry of the domain Q. in our study. More
exactly, since Q is a cylindrically symmetric domain we can state some compactness
results which will lead to the above quoted relaxation. Originally, this idea was illustrated
in the case of elliptic boundary value problems in the papers by Brezis and Nirenberg [5]
and Bahri and Coron [4], and recently in the paper by Wang [20].
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4. A COMPACTNESS RESULT

Wang in [20, Theorem 2.4] asserts that if dimflx = m ^ 2 and dimfi2 = k ^ 3 then
the embedding

is compact for any real number q € (l, (2N/N — 2) + r) , where

2 . f 2(fc - 2)
T = ——-min< — -

JV-2 I m

A careful analysis of the proof of that theorem shows that similar arguments enable
the extension of the above result in the following way: assuming that p € (1, N) is a real
number, dim fli = m ^ p and dim fi2 = fc ̂  P + 1 then the embedding

is compact for any real number q € (l, (Np/N — p) + r), where

AT-p

The above information, combined with the facts that Lq
h,xJQ.) is continuously em-

bedded in l J 5 ( n ) and Wofx){Q) is continuously embedded in Wg~{tt), leads to the
main result of this section.

THEOREM 3 . Assuming that p(x), q(x) € C+(Q) then the embedding

is compact, providing that 1 < q+ < (Np~/N — p~) + r with

r ^ m i n {
N — p~ I m

5. PROOF OF THE MAIN RESULTS

In this section we shall concentrate our efforts in order to prove Theorem 2. The
proof of Theorem 1 will follow using a part of the arguments used in the proof of Theorem
2 that will be specified of the end of this section.

Let E denote the generalised Sobolev space Wo,
 z (fi) and E~l the dual space,

\

The energy functional corresponding to problem (7) is denned as J : E -* R,

J(u)= /(l/p(z))|Vu|*(*)ds- fh(x)(l/q{x))\u\^dx- [ f(x)udx.
Jn Jn Jn
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Standard arguments imply that J G Cl (E, R) and

</(«), v) = f |Vu|p(l)-2VuVt; dx- f h{x)\u\"^-2uv dx - f f(x)v dx,
Jn Jn Jn

for all u, v G E. Thus the weak solutions of (7) are exactly the critical points of J.
We establish some properties of the functional J.

LEMMA 1. There exist, e0 > 0 77 > 0 and a > 0 such that J{u) ^ a > 0 for any
u G E with \\u\\ = 77, providing that 0 < ||/||_i < s0-

PROOF: First, we point out that for any u € E we have

(8) |u(x)|'(l) < \u(x)f + |U(*)|'+, V* € U.

Since p + < q~ < <?+ < (p~)*+6 it follows by Theorem 3 that E is continuously embedded
in Lq

h,X)(Q) and Lj(.(fi). Thus, there exist two positive constants C\ and C-x such that

(9) Cx • \u\{q-Mx)) ^ IN, C2-H(,+ ,M l ) )^ | |u | | , V u € ^ .

Next, we focus our attention on the case when u e E with ||u|| < 1. For such a u by
relation (4) we obtain

(10) / |Vu|p(l) dx 2 \HP+.
Jn

On the other hand, for any e > 0 there exists a constant Ce > 0 such that we have

(11) IjT /(*)« ̂  < 11/11-1 • H < ^ • iiuir++c£

for any u € E.
Relations (4), (8), (9), (10), and (11) imply

J{u) > i • | |U |r - i ; • [ ( i - • ||tt||)'~ + ( ^ • ||«||)'+] - Il/H.! • ||U

IMIP+ - ^ • n«ir - A • ii«ir+ - ce

for any u € E with ||u|| < 1 and any e > 0, where $2 and £3 are positive constants.
Fixing e G (0,1) we can easily find 77 G (0,1), EQ > 0 and a > 0 such that the conclusion
of Lemma 1 holds true. D

LEMMA 2 . There exists e G E such that \\e\\ > 77 and J[e) < 0 (where 77 is given
in Lemma 1).
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PROOF: We consider a function w0 € C£°(Q) D E, such that / h(x)\wo{x)\9{x) dx
> 0. Then for any t > 1 we obtain n

J(t • w0) = f Svw o | p ( x ) dx - f ft(x)^-Kr(l) dx - f tf{x)w0 dx
JnP(x) Jn ?(i) Jn

^ ^_ . f \Vwo\
p{x) dx-?-- I /i(*)K|'(l) dx-t- [ f{x)w0 dx.

P Jn <T Jn Jn

Taking into account that q~ > p+ we conclude that lim J(t • wo) = - c o and thus Lemma
2 holds true. ~>°° D

P R O O F O F T H E O R E M 2. We set

r={7€C([0,l],Jg?);7(0)=0>7(l) = e}>

where e € E is given by Lemma 2, and

c = inf max Jdti)).
7€rt€(O,l] V '

According to Lemma 2 we know that ||e|| > TJ SO every path 7 G F intersects the sphere
| i | = Tf. Then Lemma 1 implies

c ^ inf J(u) ^ a,
IMI=»»

with the constant a > 0 given in Lemma 1, thus c > 0.
The mountain-pass theorem (see, for example, [3]) implies the existence of a sequence

{un} C E such that

(12) J(un) -> c and /(««) -> 0.

First, we show that {itn} is bounded in E. Assume by contradiction the contrary. Then,
passing eventually to a subsequence, still denoted by {un}, we may assume that ||un||
-4 00 as n -> 00. Thus we may consider that Uunll > 1 for any integer n.

By relation (12) it results that there exists a positive constant M such that for any
n large enough we have

M > J(un) - ^(

F " F ) L 'VUnl"(l) dX ~ In K<i*) - F ) K|fW ^ " (J " F ) /n

Since q~ > p+ > 1 letting n -> 00 in the above inequality, we obtain a contradiction. It
follows that {un} is bounded in E.
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Since {un} is bounded in E we deduce that there exists a subsequence, again denoted
by {un}, and UQ S E such that {un} converges weakly to Uo in E. We prove that {un}
converges strongly to i*o in E.

First, we point out that the above information and relation (12) imply

(13) (f(un)-f(u0),un-uo)-i-0 as n-too.

Next, applying Theorem 3 we obtain that {un} converges strongly to u0 in LjS(n).
Using that fact and inequality (2) we can deduce that

(14) ton / h(x)(|un|«(*>-2un - |uo|«<*>-2«o)(un - u0) dx = 0.
v SI

Relations (13) and (14) yield

Relation (15) and the fact that {un} converges weakly to u0 in E enable us to apply
Theorem 3.1 in Fan and Zhang [12] in order to obtain that {un} converges strongly to
UQ in E. So, by (12),

(16) J(u<,)=c>0 and f(uo)=0.

We conclude that u0 is a weak solution for problem (7). 0
We prove now that there exists a second weak solution v0 € E such that v0 ^ u0.
Consider

d := inf{ J(u); u € E and ||u|| < r\\ ,

where r) > 0 is given by Lemma 1. Since / ^ 0 it follows that d < J(0) = 0. The set

is a complete metric space with respect to the distance

dist(u, v) := ||u - v\\, V u, v e 5,(0).

On the other hand, J is lower semi-continuous and bounded from below in Bv(0). Thus,

letting 0 < e < inf J — inf J, and applying Ekeland's Variational Principle for func-

tional J : B,(0) -*• R, (see [11]), there exists ue e 5^(0) such that

J(ue) < jnf J + e

J[ue) < J{u) + e • ||u — uf ||, u ^ ue.

Since
J(ue) < inf J + e < inf J + e < inf J
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it follows that uc € B,(0). Now, we define / : B,,(0) ->• R by / («) = J(u) + e • ||u - ue||.
It is clear that ue is a minimum point of / and thus

t ^ °
for a small t > 0 and v € -B^(O). The above relation yields

Letting t —> 0 it follows that < / ( u e ) , v ) + e • ||u|| > 0 and we infer that | | / ( u e ) | | < e.

We deduce that there exists a sequence {vn} C Bn(0) such that

(17) J{vn)-+d and f(vn)-> 0.

Using the same arguments as in the case of solution u0 we can prove that {vn} converges
strongly to v0 in E. Moreover, since J € C ^ E . R ) , by relation (17) it follows that

(18) J(v0) = d and / ( u 0 ) = 0.

Thus, v0 is also a weak solution for problem (7).

Finally, we point out the fact that VO^UQ since

J(uo) = c > 0 > d = J(uo).

The proof of Theorem 2 is complete. D

REMARK. The proof of Theorem 1 can be carried out from the first part of the proof
of Theorem 2. Moreover, the solution of problem (6) obtained in this way is not trivial,
since a similar relation to (16) will hold true.
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