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1 Introduction

Since their classification [1, 2], 6d superconformal field theories (SCFTs) with 8 super-

charges have played a prominent role in constructing lower dimensional quantum field the-

ories. In particular, it appears that 5d SCFTs arise as compactifications of such 6d theories

with Wilson line expectation values for background flavour fields turned on [3, 4], while 5d

theories of KK type admitting an affine quiver description can be understood as twisted

compactifications of 6d SCFTs [5–7]. Moreover, 4d N = 1 SCFTs can be understood as

compactifications on Riemann surfaces with fluxes [8–14].

In this paper we focus on 6d SCFTs arising from N M5 branes probing C
2/Zk singu-

larities. When compactified on a 2-torus T
2, BPS partition functions of such theories have

been computed in [15, 16] (k = 1) and [17] (k > 1). As it turns out, a crucial property

of these partition functions is that they can be expressed in terms of an infinite sum over

elliptic genera of BPS strings wrapping the torus. These elliptic genera are Jacobi forms
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with modular parameter τ , being the complex structure of the torus, and several ellip-

tic parameters arising from gauge, flavour, and R-symmetry chemical potentials. Using

the correspondence described in the first paragraph, the torus-compactified theory can be

equally understood as a circle compactification of a 5d gauge theory whose moduli space

of vacua also carries this elliptic structure [18]. In particular, the corresponding Seiberg-

Witten curve can be expressed in terms of a polynomial in a variable t whose coefficients

are Jacobi forms vl of an elliptic parameter z:

H(w, z) = tN + v1(z)tN−1 + . . .+ vl(z)t
N−l + . . . vN (z) = 0, t = e2πiw. (1.1)

A central question is about the interpretation of this curve as a quantum curve. To this

end, the variables w and z are promoted to operators satisfying a non-trivial commutation

relation

[ŵ, ẑ] ∼ ~. (1.2)

Interpreting ẑ as a position operator, by the above commutation relation ŵ becomes a

momentum operator and Y ≡ e−ŵ will be a shift operator. In this framework the algebraic

curve equation (1.1) becomes a difference equation in the sense that the operator Ĥ(ŵ, ẑ)

acts on a wave-function with zero eigenvalue. This notion of a quantum curve is intimately

related to partition functions arising from surface defects in gauge theories [19]. In this

interpretation the wave-function annihilated by the operator Ĥ(ŵ, ẑ) is the expectation

value of a codimension 2 defect operator. In the context of our 6d SCFT such defect

operators arise from half BPS operators extended over T
2 × R

2 and localised at a point

on the remaining R
2. Localisation is done by turning on the Omega-background R

4
ǫ1,ǫ2

×
T

2 [15, 20] and ~ is identified with ǫ1, while ǫ2 is sent to zero in the Nekrasov-Shatashvili

limit [21]. The theory living on the defect flows in the IR to a 4d N = 1 SCFT and

in some instances the defect partition function in the NS-limit can be understood as the

superconformal index of this SCFT on S1 × S3 [22]. In this correspondence, the S3 is

understood as a Hopf-fibration of a circle over a two-sphere such that the two circles are

identified with T
2 and the two-sphere is identified with a compactification of R2.

From a more geometric point of view, 6d SCFTs can be engineered by compactifying

F-theory on an elliptic Calabi-Yau manifold. Performing F-theory/M-theory duality, one

observes that the BPS partition function of the theory on T
2 × R

4
ǫ1,ǫ2

corresponds to the

refined topological string partition function of the Calabi-Yau manifold [15, 17]. In this

picture, the surface defect arises from an M5 brane wrapping a Lagrangian cycle inside the

Calabi-Yau threefold and extended over S1 ×R
2 transverse to the Calabi-Yau. The theory

living on such a defect is expected to flow to a 3d SCFT with four supercharges coupled

to the parent 5d gauge theory. Using the 3d/3d correspondence of [23], the partition

function of the 3d SCFT is equivalent to the partition function of SL(2,C) Chern-Simons

theory on a three-manifold which is a knot complement. As is well-known, the moduli

space of flat SL(2,C) connections on the knot complement is characterised by the so-

called A-polynomial A(z, w) where z and w characterise holonomies around the two cycles

of the boundary torus. The equation A(z, w) = 0 then describes the subspace of those

holonomies which can be extended to the entire three-manifold. The partition function of

– 2 –
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SL(2,C) Chern-Simons theory on the knot complement satisfies a difference equation which

arises from the quantisation of the A-polynomial [24–26]. By the 3d/3d correspondence,

the partition function of the 3d SCFT then satisfies the same difference equation. In the

case of our 3d defect, the 3d SCFT is coupled to a 5d gauge theory and the A-polynomial

receives a Q-deformation [27–30] where by Q we collectively denote the moduli of the 5d

theory. The quantised Q-deformed A-polynomial can then be identified with our difference

operator H(ŵ, ẑ). As our 5d theory arises from a 6d SCFT, we find that the difference

operator is elliptic with elliptic modulus Q = e2πiτ .

The concrete example, on which we focus in this paper, is the 6d SCFT arising from

2 M5 branes probing a Zk singularity. In this case, compactification on a two-torus leads

to the following Seiberg-Witten curve [18]

t+ qφ

2k∏

l=1

ϑ1(z − µl) t
−1 − (1 + qφ)

k∏

l=1

ϑ1(z − zl) = 0, (1.3)

where qφ ≡ e2πiφ with φ being the tensor branch parameter of the 6d theory, the µl

denote collectively the flavour chemical potentials, and zl are complicated functions of gauge

chemical potentials. For the definition of the theta functions ϑ1 we refer to appendix A.2.1.

A central result of the present paper is that the defect partition function Ψ of the torus-

compactified (or equivalently the circle-compactified 5d affine quiver gauge theory) satisfies

the following difference equation corresponding to the quantisation of the above algebraic

curve [
Y −1 + qφ

2k∏

l=1

ϑ1(z − µl) · Y − 〈W〉
]

Ψ = 0, (1.4)

where we have identified

〈W〉 ≡ (1 + qφ)
k∏

l=1

ϑ1(z + ǫ1 − zl), (1.5)

with 〈W〉 the Wilson surface expectation value of a codimension 4 operator wrapping the

torus to be further specified in the main text.

The remainder of this paper is organised as follows: after reviewing the 6d N = (1, 0)

theory and its partition function, section 2 details the inclusion of codimension 2 and 4

defects. For both cases, the partition functions are derived and evaluated up to order

q2
φ. Thereafter, the difference equation is derived in section 3. In detail, starting from

a path integral representation for the partition function of the codimension 2 defect, the

corresponding saddle point equation naturally leads to a difference equation. Crucially,

one contribution of the difference equation is identified with the partition function of the

codimension 4 defect. The 6d theories originating from 2 M5 branes on a C
2/Zk family

have 8 supercharges for k > 1, but 16 supercharged for k = 1. The analysis of this

enhanced N = (2, 0) case is presented in section 4, and compared to the dual 5d N =

2 theory. Finally, section 5 provides a conclusion and outlook. Appendix A contains

definitions and conventions used in the evaluation of the various partition functions as

well as computational results. As a remark, most computational details are delayed to

appendix A in order to ease the readability of the main text.

– 3 –
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2 Defects for M5 branes on A-type singularity

The 6d N = (1, 0) SCFTs originating from N M5 branes on a A-type singularity C
2/Zk

are naturally labeled by two integers (N, k). For k = 1, the 6d world-volume theories have

enhanced supersymmetry and are known as the AN−1 N = (2, 0) theories [31, 32], whose

4d descendants are the AN−1 N = 2 theories of class S [33]. For k > 1, the resulting

N = (1, 0) world-volume theories are well-studied [34–37] and their 4d descendants are

the N = 1 theories of class Sk [8]. In this section, the set-up is reviewed and, thereafter,

defects of codimension 2 and 4 are introduced.

2.1 2 M5 branes on A-type singularity

In this work, the focus is placed on 6d N = (1, 0) SCFTs for N = 2. The M-theory set-up

admits a dual realisation in Type IIA superstring theory. The 2 M5 branes become NS5

branes filling the space-time directions x0, x1, . . . , x5 and being points in the transverse

directions. The A-type ALE space C
2/Zk dualises into a stack of k D6 branes filling space-

time directions x0, x1, . . . , x6, which are transverse to the original singularity. The set-up is

summarised in table 1. The 6d N = (1, 0) low-energy effective theory living on the world-

volume of the D6 branes is composed of hypermultiplets and vector multiplets encoded in

the following quiver diagram for 8 supercharges:

SU(k)a

SU(k)m SU(k)n
−b b

U(1)b
∼=

SU(k)a

SU(2k)y

(2.1)

and one tensor multiplet. The global symmetry SU(2k)y can be decomposed into SU(k)m,n,

from the two stacks of semi-infinite D6 branes for x6 → ±∞, and U(1)b, which is the C
2/Zk

isometry.

As a remark, the general family, i.e. N M5 branes on a C
2/Zk or N NS5s intersected

by k D6 branes in Type IIA, leads to a 6d N = (1, 0) quiver gauge theory on the tensor

branch with global symmetry SU(k)m×U(1)×SU(k)n. For N = 2 there exists an accidental

enhancement SU(k)m × U(1) × SU(k)n ⊂ SU(2k) as indicated in (2.1). For N = k = 2, the

SU(4) global symmetry is further enhanced to SO(7) at the fixed point and to SO(8) on

the tensor branch [38–40].

Partition function. In order to evaluate the partition function, the 6d theory is placed

on T
2 × R

4
ǫ1,ǫ2

, where the 2-torus is along x0,1 and the 4d Omega background R
4
ǫ1,ǫ2

fills

directions x2, . . . , x4, see table 1. The two parameters ǫ1 and ǫ2 denote rotations in the x2,3

and x4,5 planes, respectively. The full partition function is composed of two contributions

Z6d = Zpert · Zstr (2.2)

denoting the perturbative contributions Zpert and the non-perturbative contributions Zstr.

The perturbative part is fully determined by the 6d supermultiplets in (2.1) plus a single

– 4 –
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M-theory
T

2
R

4
ǫ1,ǫ2

TNk

0 1 2 3 4 5 6 7 8 9 10

2 M5 • • • • • •
l M2 • • •
1 M̃5 • • • • • •
1 M5′ • • • • • •

IIA
S1

R
4
ǫ1,ǫ2

TNk

0 2 3 4 5 6 7 8 9 10

2 D4 • • • • •
l F1 • •
1 D̃4 • • • • •
1 D4′ • • • • •

IIA
T

2
R

4
ǫ1,ǫ2

0 1 2 3 4 5 6 7 8 9

2 NS5 • • • • • •
l D2 • • •
1 D̃4 • • • • •
1 D4′ • • • • •
k D6 • • • • • • •

IIB
S1

R
4
ǫ1,ǫ2

S1

0 2 3 4 5 6 7 8 9 10

2 D5 • • • • • •
l F1 • •
1 D̃3 • • • •
1 D3′ • • • •
k NS5 • • • • • •

IIB
S1 S1

R
4
ǫ1,ǫ2

0 1 2 3 4 5 6 7 8 9

2 NS5 • • • • • •
l D1 • •
1 D̃3 • • • •
1 D3′ • • • •
k D5 • • • • • •

reduction
S1⊂R1

reduction
S1⊂R10

T-dual
on R10 T-dual

on R1

S-dual
and x10↔x1

Table 1. Brane set-up for codimension 2 and codimension 4 defect. The theory without defect is

realised via 2 M5 branes transverse to a Taub-NUT space TNk, which is a resolution of the C
2/Zk

singularity. The isometries of TNk can be identified with the admissible ǫ1,2 twists defining the

Omega background and the U(1)b symmetry. The codimension 2 defect is realised via an additional

M̃5 brane, while the codimension 4 defect corresponds to an M5′ brane. Assuming the M-theory

circle is either along x1 or x10 direction, one arrives at two different Type IIA realisation. The

reduction on x1 leads to branes on a non-trivial TNk background, while the reduction on x10 results

in an intersecting brane configuration on a flat background. Further employing T-duality on either

x10 or x1, respectively, leads to two 5-brane web configurations, which are S-dual to one another.

– 5 –
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tensor multiplet. In contrast, the non-perturbative parts originate from the 2d N = (0, 4)

world-volume theories of D2 branes filling x0, x1, x6 directions, see table 1. The instanton

string partition function can be written as sum of elliptic genera of the 2d theories:

Zstr = 1 +
∞∑

l=1

e2πi ·lφZl ≡
∞∑

l=0

ql
φZl with qφ = e2πi ·φ , (2.3)

where φ is the vacuum expectation value of the scalar field in the tensor multiplet. The

BPS partition functions have been computed for k = 1 in [15, 16] and for k > 1 in [17].

In this work, the partition function of the 6d N = (1, 0) without defect is required for

the computation of the normalised partition function in the presence of defects, see ap-

pendix A.3.1. For completeness and concreteness, the details of Zpert and Zstr are discussed

in turn in the following subsections.

2.1.1 Perturbative contribution

Following [41], the perturbative single-letter contribution of the 6d supermultiplets are

given as follows:

Itensor = − p+q

(1−p)(1−q)
(2.4a)

Ivector = − (1+p ·q)
(1−p)(1−q)




k∑

i,j=1

eai−aj −1




= − (1+p ·q)
(1−p)(1−q)


(k−1)+

∑

1≤j<i≤k

(
eai−aj +eaj−ai

)

 (2.4b)

Ihyper =

√
p ·q

(1−p)(1−q)

k∑

i=1

{
k∑

l=1

(
eai−ml+b +eml−b−ai

)
+

k∑

l=1

(
eai−nl−b +enl+b−ai

)}
(2.4c)

where the {ai} gauge as well as the {ml}, {nl}, and b flavour charges of the hypermultiplets

are derived from (2.1). The SU(k)a gauge as well as the SU(k)n,m flavour fugacities need

to satisfy

k∏

i=1

eai =
k∏

l=1

eml =
k∏

l′=1

enl′ = 1 ⇔
k∑

i=1

ai =
k∑

l=1

ml =
k∑

l′=1

nl′ = 0 . (2.5)

Moreover, p = e2πi ǫ1 , q = e2πi ǫ2 denote the Cartan generators of the rotation symmetries

of the Omega background R
4
ǫ1,ǫ2

. The total perturbative contribution becomes

Zpert = PE

[
(Itensor + Ivector + Ihyper) ·

(
Q

1 −Q
+

1

2

)]
(2.6)

which includes the contributions of the KK-modes generated by
∑∞

n=1Q
n = Q

1−Q , with

Q = e2πi τ .

– 6 –
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2.1.2 Elliptic genus

To compute the l-th instanton string partition function Zl, one can add l D2 branes along

the x0, x1, x2 directions, see table 1. The D2 world-volume theory is a 2d N = (0, 4)

effective theory, whose elliptic genera encode the Zl partition functions.

Considering the NS5-D6-D2 brane system in table 1, the space-time symmetry is bro-

ken to
SO(1, 9) → SO(1, 1) × SO(4)2345 × SO(3)789 ,

with SO(4)2345
∼= SU(2)l × SU(2)r and SO(3)789

∼= SU(2)I .
(2.7)

The 16 supersymmetries can be decomposed in representations of

(SU(2)l, SU(2)r, SU(2)I)±±, where the two “±” label the chirality of world-sheet

x0, x1 and space along x6. The supersymmetries preserved by the NS5-D6-D2 brane

system transform as (1, 2, 2)−+, such that the D2 world-volume theory is a 2d N = (0, 4)

quiver theory, see for instance [42]. The brane configuration allows one to read off the field

content and the charges of the supermultiplets with respect to SU(2)l × SU(2)r × SU(2)I ,

labelled as (α, α̇, A). One finds:

• The D2-D2 open strings give rise to the N = (0, 4) vector (Aµ, λ
α̇A) and a hyper-

multiplet (φαβ̇, χαA) in the adjoint representation of U(l) group.

• The D2-D6 open strings, which do not cross a NS5, provide a N = (0, 4) hypermul-

tiplet (qα̇, ψA) in the bi-fundamental representation of U(l) × SU(k).

• The D2-D6 open strings, which cross a NS5 brane, provide two additional N = (0, 4)

Fermi multiplets Ψ and Ψ′ in the bi-fundamental representation of U(l) × SU(k).

All these N = (0, 4) multiplets can be decomposed into N = (0, 2) multiplets as follows:

vector (Aµ, λ
α̇A) −→ vector V (Aµ, λ

1̇1, λ2̇2) + Fermi Λ (λ1̇2) , (2.8a)

hyper (ϕαβ̇ , χαA) −→ chiral B (ϕ11̇, χ12) + chiral B̃† (ϕ12̇, χ11) , (2.8b)

hyper (qα̇, ψA) −→ chiral q (q1̇, ψ2) + chiral q̃† (q2̇, ψ1) , (2.8c)

Fermi Ψ, Ψ′ −→ Fermi Ψ, Ψ′ . (2.8d)

From the decomposition, one can read off the charges of these N = (0, 2) multiplets as

summarised in table 2. This 2d quiver gauge theory is known from [42] and reduces to the

N = (0, 4) gauge theory description for M-strings introduced in [17] for case k = 1. For

completeness, the 2d quiver gauge theory with multiplets (2.8) can be written as

U(l)U(k)m

U(k)a

U(k)n −→ U(l)U(k)m

U(k)a

U(k)n

N = (0, 4) quiver N = (0, 2) quiver

(2.9)

– 7 –
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N = (0,2) multiplets Jl Jr JI U(l) U(k)a U(k)m U(k)n U(1)b U(1)x U(1)z

D2-D2

vector V 0 0 0 adj. 1 1 1 0 0 0

Fermi Λ 0 1

2
− 1

2
adj. 1 1 1 0 0 0

chiral B 1

2

1

2
0 adj. 1 1 1 0 0 0

chiral B̃ − 1

2

1

2
0 adj. 1 1 1 0 0 0

D2-D6

chiral q 0 1

2
0 l k 1 1 0 0 0

chiral q̃ 0 1

2
0 l k 1 1 0 0 0

Fermi Ψ 0 0 0 l 1 k 1 1 0 0

Fermi Ψ′ 0 0 0 l 1 1 k 1 0 0

D2-D̃4
chiral σ 0 0 0 l 1 1 1 0 −1 0

Fermi Ξ − 1

2

1

2
0 l 1 1 1 0 −1 0

D2-D4′

chiral φ 0 0 1

2
l 1 1 1 0 0 −1

chiral φ̃ 0 0 1

2
l 1 1 1 0 0 1

Fermi Γ1
1

2
0 0 l 1 1 1 0 0 −1

Fermi Γ†
2

1

2
0 0 l 1 1 1 0 0 1

D6-D4′ Fermi ρ 0 0 0 1 k 1 1 0 0 1

Table 2. Charge assignments of the fields in the 2d world-volume theory from the D2-D6-NS5

system with or without the presence of a D̃4 or D4′ defect, see table 1. Here Jl, Jr, and JI denote

the Cartans of SU(2)l, SU(2)r, and SU(2)I respectively. U(l) is the 2d gauge group on the D2

world-volume. The U(k)a,m,n denote the 6d gauge and flavour symmetries, whose fugacities need

to be subjected to the constraint (2.5) in order to reduce to SU(k)a,m,n. U(1)b is part of the 6d

global symmetry. The U(1)x,z denote the defect groups for the D̃4 and D4′ defects, respectively.

with the conventions: circles ◦ denote N = (0, 4) or N = (0, 2) vector multiplets, and

squares � are flavour nodes. In addition, for lines without/with arrows: solid lines denote

hypermultiplets / chiral multiplets, and dashes lines denote Fermi multiplets, respectively.

The arrow in N = (0, 2) bifundamental matter fields points towards that node under which

the field transforms in the fundamental representation.

For a fixed number l of D2 branes, the partition function of the 2d N = (0, 4) theory

placed on a torus T
2, with complex structure τ , is known to coincide with the elliptic

genus [43, 44]. The non-perturbative contributions are then encoded in the elliptic genera

for all l ≥ 1. The elliptic genus Zl for the 2d theory with gauge group U(l) on torus T
2 is

computed by picking up N = (0, 2) supercharges Q ≡ Q11̇
− and Q† ≡ Q22̇

− , and evaluating

Zl = Tr


(−1)FQHLQ̄HRe2πi ǫ−(2Jl)e2πi ǫ+2(Jr−JI)e2πi bF

k∏

j

e2πi mjFje2πi njF ′

j

k∏

i

e2πi aiGi


 .

(2.10)

Here Q = e2πi τ , and ǫ± ≡ 1
2(ǫ1 ± ǫ2), such that 2ǫ−Jl + 2ǫ+Jr = ǫ1J23 + ǫ2J45 with

Jr,l = 1
2(J23 ± J45) are the Cartan generators of SU(2)l × SU(2)r ≃ SO(4)2345.

Based on a path integral representation for the elliptic genus, a generic prescription

for the elliptic genera via supersymmetric localisation has been derived [43, 44]. To briefly
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summarise, the first step involves identifying compact zero modes {up} originating from flat

connections on T
2. Keeping the zero modes fixed, the next step requires an integration over

massive fluctuations, which results in a 1-loop determinant for each multiplet. According

to [43, 44], the contributions of the different multiplets in (2.8) can be summarised as

follows:

Zvec =

(
2πη2

i

)l ∏

α∈root

θ1 (α(u))

iη
=

(
2πη2

i

)l ∏

1≤p<q≤k

θ1 (±(up − uq))

(iη)2
, (2.11a)

Zchiral =




l∏

p,q=1

(iη)2

θ1(ǫ1,2 + up − uq)






l∏

p=1

k∏

i=1

(iη)2

θ1(ǫ+ ± (up − ai))


 , (2.11b)

ZFermi =




l∏

p,q=1

θ1(2ǫ+ + upq)

iη






l∏

p=1

k∏

l=1

θ1(up −ml + b) θ1(−up + nl + b)

(iη)2


 , (2.11c)

where the definitions of the Dedekind eta function η and the Theta function θ1(z) ≡
θ1(τ |z) are recalled in (A.11) and (A.14), respectively. As customary in the literature, the

convention

θ1(ǫ+ ± (up − ai)) ≡ θ1(ǫ+ + (up − ai)) · θ1(ǫ+ − (up − ai)) (2.12)

etc. is used. Note that the SU(k)m,n,a fugacities need to satisfy (2.5). Collecting all the

individual contributions leads to the expression

Z1−loop(k, l) := Zvec ·Zchiral ·ZFermi ≡
(

2π η3θ1(2ǫ+)

θ1(ǫ1) θ1(ǫ2)

)l l∏

p,q=1
p6=q

D(up −uq) ·
l∏

p=1

Q(up) , (2.13)

where, inspired from [45, 46], the following conventions have been used:

D(up − uq) :=
θ1(up − uq)θ1(up − uq + ǫ1 + ǫ2)

θ1(up − uq + ǫ1)θ1(up − uq + ǫ2)

=
ϑ1(up − uq)ϑ1(up − uq + ǫ1 + ǫ2)

ϑ1(up − uq + ǫ1)ϑ1(up − uq + ǫ2)
, (2.14a)

Q(u) :=

∏k
l=1 θ1(u−ml + b)θ1(−u+ nl + b)

∏k
i=1 θ1(ǫ+ + (u− ai))θ1(ǫ+ − (u− ai))

=

∏k
l=1 ϑ1(u−ml + b)ϑ1(u− nl − b)

∏k
i=1 ϑ1(u− ai + ǫ+)ϑ1(u− ai − ǫ+)

=:
M(u)

P0(u)P0(u+ ǫ1 + ǫ2)
, (2.14b)

with M(u) :=
k∏

l=1

ϑ1(u−ml + b)ϑ1(u− nl − b) , (2.14c)

P0(u) :=
k∏

i=1

ϑ1(u− ai − ǫ+) such that P0(u+ ǫ1 + ǫ2) =
k∏

i=1

ϑ1(u− ai + ǫ+) .

(2.14d)

Note, in particular, the change to ϑ1(τ |z) defined in (A.13), which is more convenient

than the Theta function θ1(τ |z). Lastly, one needs to integrate the several 1-loop deter-

minants (2.13) over the zero modes {up}. As shown in [43, 44], this integral becomes a
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contour integral. The contour integration needs to be performed with care, as the choice

of integration contour determines whether the results yields the partition function or not.

A consistent choice of contour is given by the Jeffrey-Kirwan residue prescription [47]. The

expression becomes

Zl =
1

l!

∮
dlu

(2πi)l
Z1−loop(k, l) =

1

l!

∑

u⋆

JK − Resu⋆Z1−loop(k, l) (2.15)

where the sum is taken over existing poles u⋆ in the integrand Z1−loop. For details on the

computational aspects of the JK residue, the reader is referred to [43, 44]. The following

conventions are useful for the residue calculus of the elliptic genera:

P∨
0 (ai ± ǫ+) :=

k∏

j=1
j 6=i

ϑ1(u− aj − ǫ+)
∣∣∣
u=ai±ǫ+

, (2.16a)

Q∨(ai − ǫ+) :=
M(ai − ǫ+)

P0(ai − ǫ+)P∨
0 (ai + ǫ+)

. (2.16b)

For the Nekrasov-Shatashvili limit, the following abbreviations are used:

L(u) :=
ϑ′

1(u)

ϑ1(u)
, K(u) :=

ϑ′′
1(u)

ϑ1(u)
, (2.17)

where ϑ′
1(u) ≡ ∂

∂uϑ1(u) and ϑ′′
1(u) ≡ ∂2

∂u2ϑ1(u). For later purposes, the l = 1, 2 genera are

computed.

1-string. The l = 1 elliptic genus reads

Z1 =
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

i=1

Q∨(ai − ǫ+) , (2.18)

and the details are presented in appendix A.4.1.

2-string. The l = 2 elliptic genus reads

Z2 =

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2 ∑

1≤i<j≤k

D(ai − aj)D(aj − ai)Q
∨(ai − ǫ+)Q∨(aj − ǫ+) (2.19)

+
ϑ1(2ǫ+)

ϑ1(2ǫ−)

k∑

m=1

Q∨(am − ǫ+)

[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(am − ǫ+ − ǫ1)

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(am − ǫ+ − ǫ2)

]

and the derivation is summarised in appendix A.4.2.

2.1.3 Enhancement of global symmetry

For the case of two NS5 branes, one needs to recover the global symmetry enhancement to

SU(2k), as indicated in (2.1).
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Perturbative part. The perturbative contribution of the 6d N = (1, 0) hypermultiplets

can be rewritten as

Ihyper =

√
p · q

(1 − p)(1 − q)

k∑

i=1

{
k∑

l=1

(
eai−ml+b + eai−nl−b

)
+

k∑

l=1

(
eml−b−ai + enl+b−ai

)}

=

√
p · q

(1 − p)(1 − q)

k∑

i=1

2k∑

l=1

(
eai−yl + eyl−ai

)
(2.20)

with yl =




ml − b , l = 1, . . . , k

nl + b , l = k + 1, . . . , 2k
(2.21)

and one verifies that yl are SU(2k) fugacities via

2k∏

l=1

eyl =
k∏

l=1

eml ·
k∏

l′=1

en′

l ·
k∏

l′′=1

eb−b = 1 (2.22)

using (2.5).

Non-perturbative part. For the 2d elliptic genus (2.15), the Ψ, Ψ′ Fermi multiplet

contributions can also be rearranged

ZFermi ⊃
l∏

p=1

k∏

l=1

θ1(up −ml + b) θ1(up − nl − b)

(i η)2

=
l∏

p=1

k∏

l=1

θ1(up − (ml − b)) θ1(up − (nl + b))

(i η)2

=
l∏

p=1

2k∏

l=1

θ1(up − yl)

i η
(2.23)

with yl fugacities as defined in (2.21).

Enhancement for k = 2. The symmetry enhancement for the case k = 2, has been

discussed via various techniques [38–40]. The global symmetry at the origin of the tensor

branch is enhanced from SU(4) to SO(7), while on the tensor branch it is further enhanced

to SO(8) [38, appendix A]. It has been shown in [39, section 9.2] that the elliptic genera

can be expanded in SO(7) characters.

2.2 Higgs mechanism in partition functions

For later purposes, in which a codimension 2 defect is introduced via a position dependent

vacuum expectation value (VEV), this section reviews the standard Higgs mechanism. To

begin with, consider the Higgsing of the 6d gauge theory on the tensor branch:

SU(k + 1) , Nf = 2k + 2 −→ SU(k) , Nf = 2k . (2.24)

The first task is to find a suitable VEV assignment for a gauge invariant operator and then

derive a condition in terms of fugacities for the gauge invariant operator that realises the

Higgs mechanism on the level of partition functions.
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2.2.1 Standard Higgsing

Consider the field theoretical description of the mesonic Higgs branch deformation (2.24),

but seen as SU(k+1)a gauge theory with SU(k+1)m ×U(1)b ×SU(k+1)n global symmetry.

In other words, there are the flavour hypermultiplets (Q, Q̃) of SU(k+1)m ×U(1)b ×SU(k+

1)a and (Q′, Q̃′) of SU(k+1)n ×U(1)b ×SU(k+1)a. Since each hypermultiplet in (2.1) has

charge (1
2 ,

1
2) under the Cartan generators Jr,l of SU(2)l ×SU(2)r

∼= SO(4)3456, the fugacity

contributions for each chiral are

Qi
l ∈ (k+1)a ⊗ ((k+1)m ⊗ 1n)−1 → √

pqe−ai+ml−b , (2.25a)

Q̃l
i ∈ (k+1)a ⊗

(
(k+1)m ⊗ 1n

)+1
→ √

pqeai−ml+b , (2.25b)

Q′i
l ∈ (k+1)a ⊗ (1m ⊗ (k+1)n)+1 → √

pqe−ai+nl+b , (2.25c)

Q̃′l
i ∈ (k+1)a ⊗

(
1m ⊗ (k+1)n

)−1
→ √

pqeai−nl−b , (2.25d)

with i = 1, . . . , k+1 for SU(k+1)a and l, l′ = 1, . . . , k+1 for SU(k+1)m,n respectively. The

exponent (. . .)±1 denotes the U(1)b charge. There are two possibilities for meson operators

Ml′

l =
k+1∑

i=1

Qi
lQ̃

′l
′

i →
(√

pqeml−b
)

·
(√

pqe−nl′ −b
)

= pqeml−nl′ −2b , (2.26a)

M̃l
l′ =

k+1∑

i=1

Q̃l
iQ

′i
l′ →

(√
pqe−ml+b

)
·
(√

pqenl′ +b
)

= pqe−ml+nl′ +2b , (2.26b)

and one can consider assigning a VEV to the (k + 1, k + 1) meson components. A gauge

transformation is sufficient to see that one only needs to assign VEVs to the following

components

Mk+1
k+1 =

k+1∑

i=1

Qi
k+1Q̃

′k+1

i
∼= Qk+1

k+1Q̃
′k+1

k+1 and M̃k+1
k+1

∼= Q̃k+1
k+1Q

′k+1
k+1 . (2.27)

Following the prescription of [48], see also [19, section 2], Higgsing is achieved in a partition

function via choosing the pole corresponding to the operator acquiring a VEV, i.e.

〈Mk+1
k+1〉 6= 0 ⇔ pqemk+1−nk+1−2b = 1 ⇔




nk+1 = mk+1 − 2b+ 2ǫ+

ak+1 = mk+1 − b+ ǫ+
, (2.28a)

〈M̃k+1
k+1〉 6= 0 ⇔ pqe−mk+1+nk+1+2b = 1 ⇔




nk+1 = mk+1 − 2b− 2ǫ+

ak+1 = mk+1 − b− ǫ+
, (2.28b)

and eliminating the contributions of the flat directions as well as any appearing Goldstone

modes. Note that the condition for ak+1 in (2.28) is derived by requiring that the fugacity

of the chiral Qk+1
k+1 or Q̃k+1

k+1 equals unity, respectively.

In the Type IIA brane configuration, the mesonic Higgsing is realised via aligning

a semi-infinite flavour D6 brane on the left and right hand side with a gauge D6 such
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that a single D6 is free to move along the Higgs branch directions x7,8,9, see figure 1.

The codimension 2 defect is introduced via a D̃4 brane that connects the remaining brane

configuration with the single D6 on the Higgs branch. Moving the D6 to infinity in figure 1,

leads to the natural connection between defect via Higgsing and defect via additional branes,

see also section 2.3.

Perturbative contribution. Consider the perturbative partition function for 6d SU(k+

1) theory with Nf = 2k + 2 flavours

Zk+1
pert = PE

[
1

(1 − p)(1 − q)

(
Q

1 −Q
+

1

2

){
− (p+ q) − (1 + pq)




k+1∑

i,j=1

eai−aj − 1




+
√
pq

k+1∑

i=1

k+1∑

l=1

(
eai(e−ml+b + e−nl−b) + e−ai(eml−b + enl+b)

)}]
. (2.29)

The Higgsing (2.28b) takes the form

eak+1 =
1√
pq

· emk+1−b enk+1 =
1

pq
· emk+1−2b =

1√
pq

· eak+1−b . (2.30)

A straightforward computation, see appendix A.1.1, shows that the Higgsing (2.28b) leads

to the expected result

Zk+1
pert = Zk

pert · ZG (2.31)

where the Goldstone modes for the breaking of the global symmetry

SU(k + 1)m × U(1) × SU(k + 1)n → SU(k)m × U(1) × SU(k)n (2.32)

contribute as

ZG = PE

[ √
pq

(1 − p)(1 − q)

(
Q

1 −Q
+

1

2

)

×
{(

1√
pq

+
√
pq

)
+

k∑

l=1

(
1√
pq
emk+1−ml +

√
pqeml−mk+1

)

+
k∑

l=1

(
1√
pq
emk+1−nl−2b +

√
pqenl−mk+1+2b

)}]
, (2.33)

such that there are 4k + 2 massless chiral fields. Considering the Higgsing (2.24), one

computes that the sub-space of the Higgs branch, where the theory is broken to SU(k),

has complex dimension 4k + 2, which matches the degrees of freedom in (2.33). Taking

the closure of this sub-space, the 2k + 1 quaternionic degrees of freedom parametrise the

closure of the minimal nilpotent orbit of SU(2k + 2), see [49].

Elliptic genus. Consider the elliptic genus (2.15) for the theory without defect. Suppose

one aims to realise the Higgs mechanism (2.24) on the level of the elliptic genus, then
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starting from k + 1 one factorises (2.15) as follows:

Zk+1
l =

1

l!

∮
dlu

(2πi)l
Z1−loop(k + 1, l)

=
1

l!

∮
dlu

(2πi)l

(
2π η3θ1(2ǫ+)

θ1(ǫ1) θ1(ǫ2)

)l

·
l∏

p,q=1
p6=q

D(up − uq)

·
l∏

p=1

( ∏k+1
l=1 θ1(up −ml + b) θ1(up − nl − b)

∏k+1
i=1 θ1(up − ai + ǫ+) θ1(up − ai − ǫ+)

)

=
1

l!

∮
dlu

(2πi)l
Z1−loop(k, l) ·




l∏

p=1

θ1(up −mk+1 + b)θ1(up − nk+1 − b)

θ1(up − ak+1 + ǫ+) θ1(up − ak+1 − ǫ+)


 . (2.34)

Since the Higgsing process should reduce Zk+1
l → Zk

l , the last fraction is expected to be

equal to one upon any of the fugacity assignments of (2.28). Explicitly, for (2.28b) one

verifies that

l∏

p=1

θ1(up −mN+1 + b)θ1(up − nN+1 − b)

θ1(up − aN+1 + ǫ+)θ1(up − aN+1 − ǫ+)

∣∣∣∣
(2.28b)

=
l∏

p=1

θ1(up −mN+1 + b)θ1(up −mN+1 + 2b+ 2ǫ+ − b)

θ1(up −mN+1 + b+ ǫ+ + ǫ+)θ1(up −mN+1 + b+ ǫ+ − ǫ+)
= 1 (2.35)

holds. Therefore, the elliptic genus is compatible with the fugacity assignment (2.28)

derived for the Higgs mechanism.

2.2.2 Higgsing to defects

Building on (2.28), a surface defect of type (r, s) can be introduced via a position dependent

VEV [19, 48, 50] which is related to a pole at

〈Mk+1
k+1〉=fct. ⇔ prqs ·pqemk+1−nk+1−2b =1 ⇔




nk+1 =mk+1−2b+2ǫ++rǫ1+sǫ2

ak+1 =mk+1−b+ǫ+
,

(2.36a)

〈M̃k+1
k+1〉=fct. ⇔ prqs ·pqe−mk+1+nk+1+2b =1 ⇔




nk+1 =mk+1−2b−2ǫ+−rǫ1−sǫ2
ak+1 =mk+1−b−ǫ+

,

(2.36b)

such that the condition for the 6d gauge fugacity remains unchanged.

Without loss of generality, one can restrict to one choice of mesonic VEV. For this note,

consider 〈M̃k+1
k+1〉 such that (2.28b) and (2.36b) are relevant. If the defect is of type (r, 0)

then the codimension 2 defect occupies R2
ǫ2

while being a point on R
2
ǫ1

inside the 4d Omega

background; whereas an (0, s) defect occupies R
2
ǫ1

inside R
4
ǫ1,ǫ2

and is point-like in R
2
ǫ2

.
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2.3 Codimension 2 defect

There are multiple ways to introduce a codimension 2 defect. For instance, one may either

employ a position dependent vacuum expectation value (2.36) as in [19, 48, 50] or one

may include an additional D̃4 brane in the Type IIA brane configuration as in table 1,

see also [51, 52] for surface defects in 4d theories. In the original M-theory setting of

table 1, the defect introduced via the D̃4 brane corresponds to another M̃5 brane filling

(x0, x1, x2, x3, x7, x10), as studied in [53]. Further, codimension 2 defects in 6d N = (1, 0)

SU(N) theories with adjoint matter are studied in [54].

2.3.1 Defect via D4 brane

One way to add a codimension 2 defect into the 6d theory is given by including additional

D-branes. In the Type IIA brane configuration, this can be realised by introducing an

additional D̃4 brane with world-volume (x0, x1, x2, x3, x7) ending on a NS5 brane, see

table 1. This D̃4 is, indeed, of codimension 2 for the 6d world-volume theory on the

D6 branes. One notes that this space-time occupancy of the branes breaks supersymmetry

further to 4 supercharges. Moreover, the D̃4 brane breaks the space-time symmetry (2.7) to

SO(1, 9) → SO(1, 1) × SO(4)2345 × SO(3)789

→ SO(1, 1) × SO(2)23 × SO(2)45 × SO(3)789 .
(2.37)

The world-volume theory on the D2 branes, which now only has N = (0, 2) supersymmetry,

is read off from the open string modes as above. The open strings between the D2-D6-NS5

branes induce the multiplets (2.8) from the original set-up. In addition, the D2-D̃4 open

strings give rise to a pair (σ,Ξ) of N = (0, 2) bosonic and fermionic multiplets charged

under gauge group U(l) of the world-sheet theory, such that the supersymmetry is broken

from N = (0, 4) to N = (0, 2). The charges are summarised in table 2 and the resulting

2d quiver gauge theory is given by

U(l)U(k)m

U(k)a

U(k)n

U(1)x

(2.38)

where the difference compare to (2.9) is given by the U(1)x defect flavour node of the

additional bosonic and fermionic multiplets. Considering the elliptic genus, the 2d

multiplets from the theory without defect contribute the 1-loop determinants (2.13), while
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· · ·

· · ·
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k D5

k D5
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NS5

· · ·

· · ·

x1

x6

x7,8,9

D5

k NS5

· · ·
· · ·

· · ·

x6

x1

x7,8,9

k D6

k D6
k D6

NS5

D̃4

· · ·
· · ·

· · ·

x6

x1

x7,8,9

k D5

k D5
k D5

NS5

D̃3

· · ·

· · ·
D̃3

x1

x6

x7,8,9

D5

k NS5

normal Higgsing defect Higgsing

T-dual
S1⊂R1

T-dual
S1⊂R1

S-dual S-dual

Figure 1. Higgsing in the brane configuration of table 1. The mesonic Higgsing of the 6d theory

SU(k+1) with Nf = 2k+2 to SU(k) with Nf = 2k, is realised by moving one D6 away along the

x7,8,9 direction. For the dual 5d theory, the corresponding baryonic Higgsing of the affine Ak quiver

to the affine Ak−1 quiver is realised by moving one NS5 brane along x7,8,9. A codimension 2 defect

for the 6d brane configuration is introduced via a D̃4 brane that is attached to the D6 brane which is

moved along x7,8,9. In the dual 5d system this becomes a D̃3 brane suspended between the 5-brane

web and the NS5 that is displaced in x7,8,9 direction.
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the additional multiplets σ and Ξ have determinants

ZD̃4
chiral =

l∏

p=1

i η

θ1(up − x)
, (2.39a)

ZD̃4
Fermi =

l∏

p=1

θ1(up − x+ ǫ2)

i η
, (2.39b)

where x denotes the fugacity of the U(1) symmetry. The ǫ2 charge of the new multiplets fol-

lows because the D̃4 occupies R2
23. Collecting the determinants (2.11) and (2.39), one finds

ZD̃4
1−loop(k, l) := ZvecZchiralZFermi · ZD̃4

chiralZ
D̃4
Fermi ≡ Z1−loop(k, l) · ZD̃4

chiralZ
D̃4
Fermi . (2.40)

The claim is that the additional D̃4 brane induces a (r, s) = (0, 1) defect in the sense

of (2.36), see also [19, 48, 50]. As a remark, a (r, s) = (1, 0) defect can be constructed via

a D̃4 brane that extends along (x0, x1, x4, x5, x7), such that the 2d defect multiplets are

charged under ǫ1 instead.

Consequently, one may label the resulting 2d elliptic genera as follows:

Z
(0,1)def
l =

1

l!

∮
dlu

(2πi)l
ZD̃4

1−loop(k, l) . (2.41)

As a next step, the result (2.39) is re-derived and generalised to a (r, s) defect via a

position-dependent vacuum expectation values, as in section 2.2.

2.3.2 Defect via Higgsing: perturbative contribution

Here, the chosen approach is to modify the standard Higgsing (2.28) such that the VEV

becomes dependent on one R
2 plane of the R

4
ǫ1,ǫ2

as in (2.36). For later purposes, one

defines the defect fugacity x in (2.36b) as follows:

ak+1 = mk+1 − ǫ+ − b = x+ ǫ+ ,

nk+1 = mk+1 − 2ǫ+ − 2b− rǫ1 − sǫ2 ≡ x− b− rǫ1 − sǫ2 ,

with x ≡ mk+1 − 2ǫ+ − b .

(2.42)

For the exponentiated fugacities, the Higgsing (2.36b) takes the form

eak+1 =
√
pqX , enk+1 =

X

Bprqs
, emk+1 ≡ pqXB , with X ≡ ex , B ≡ eb (2.43)

using the definition of the defect fugacity (2.42). As detailed in appendix A.1.2, this

Higgsing results in

Zk+1
pert

∣∣∣∣
(2.36b)

= Zk
pert · ZG · Z(r,s)def

pert (2.44)

Z
(r,s)def
pert = PE

[
(1 − prqs)

(1 − p)(1 − q)

(
Q

1 −Q
+

1

2

)

×
{

(1 − pr+1qs+1)

prqs
+

√
pq

k∑

i=1

(
−eai

X
+

1

prqs

X

eai

)}]
(2.45)
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and (2.45) contains the additional contributions from the codimension 2 defect, i.e.

Z
k+(r,s)def
pert = Zk

pert · Z(r,s)def
pert , (2.46)

where the Goldstone mode contribution have been removed. Note that Z
(r,s)def
pert = 1 for

(r, s) = (0, 0). To be specific, specialising (2.45) to (r, s) = (0, s) yields

Z
(0,s)def
pert = PE

[
(1 − qs)

(1 − p)(1 − q)

(
Q

1 −Q
+

1

2

){
(1 − pqs+1)

qs
+

√
pq

k∑

i=1

(
1

qs

X

eai
− eai

X

)}]

= PE

[∑s−1
l=0 q

l

(1 − p)

(
Q

1 −Q
+

1

2

){
(1 − pqs+1)

qs
+

√
pq

k∑

i=1

(
1

qs

X

eai
− eai

X

)}]
. (2.47)

In the NS limit q → 1, one obtains

lim
ǫ2→0

Z
(0,s)def
pert = PE

[
s

(1 − p)

(
Q

1 −Q
+

1

2

){
(1 − p) +

√
p

k∑

i=1

(
X

eai
− eai

X

)}]
(2.48)

=

(
lim

ǫ2→0
Z

(0,1)def
pert

)s

.

Thus, the contribution of a (0, s) defect factorises into s copies of a (0, 1) defect in the NS

limit.

2.3.3 Defect via Higgsing: elliptic genus

The fugacity assignment for a Higgsing with a position dependent VEV has been derived

in (2.36b). Inserting the fugacity assignment into (2.34) yields the following:

Zk+1
l

∣∣∣∣
(2.36b)

=
1

l!

∮
dlu

(2πi)l
Z1−loop(k, l) ·

l∏

p=1

θ1(up − x− 2ǫ+)θ1(up − x+ rǫ1 + sǫ2)

θ1(up − x) θ1(up − x− 2ǫ+)

=
1

l!

∮
dlu

(2πi)l
Z1−loop(k, l) ·

l∏

p=1

θ1(up − x+ rǫ1 + sǫ2)

θ1(up − x)
(2.49)

≡ 1

l!

∮
dlu

(2πi)l
Z1−loop(k, l) ·

l∏

p=1

V(r,s)(up)

with the definition

V(r,s)(u) :=
θ1(u− x+ rǫ1 + sǫ2)

θ1(u− x)
=
ϑ1(u− x+ rǫ1 + sǫ2)

ϑ1(u− x)
, (2.50)

which corresponds to the contribution of an (r, s) defect. In other words, (2.50) are the 1-

loop determinants of the Fermi and chiral multiplet that define the defect. In particular, for

(r, s) = (0, 1) the defect contribution reduces to the results (2.39) of the defect introduced

by the D̃4 brane.
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The resulting 1-loop determinant and elliptic genus are then defined as follows:

Z
(r,s)def
1−loop (k, l) := Z1−loop(k, l) ·

l∏

p=1

V(r,s)(up) , (2.51)

Z
(r,s)def
l =

1

l!

∮
dlu

(2πi)l
Z

(r,s)def
1−loop (k, l) , (2.52)

employing the definitions (2.13) and (2.50).

1-string. Performing the integration for l = 1 yields:

Z
(0,s)def
1 =

ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

[
k∑

i=1

(
Q∨(ai − ǫ+) · V(0,s)(ai − ǫ+)

)
+ ϑ1(sǫ2) ·Q(x)

]
. (2.53)

The normalised 1-string contribution in the NS-limit [21] reads

Z̃
(0,s)def
1 = Z

(0,s)def
1 − Z1

lim
ǫ2→0

Z̃
(0,s)def
1 =

s

ϑ′
1(0)

k∑

i=1

Q∨
(0)

(
ai − 1

2
ǫ1

)
· L
(
ai − x− 1

2
ǫ1

)
+ s ·Q(0)(x) (2.54)

= s · lim
ǫ2→0

Z̃
(0,1)def
1

and the (0, s) defect part is the product of s copies of the (0, 1) defect contribution. L(·) is

defined in (2.17). The detailed derivation of (2.53) and (2.54) is provided in appendix A.5.1.

2-string. The l = 2 case yields the following elliptic genus:

Z
(0,s)def
2 =

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2 ∑

1≤i<j≤k

D(ai − aj)D(aj − ai) (2.55)

·Q∨(ai − ǫ+)Q∨(aj − ǫ+)V(0,s)(ai − ǫ+)V(0,s)(aj − ǫ+)

+
ϑ1(2ǫ+)

ϑ1(2ǫ−)

k∑

m=1

Q∨(am − ǫ+)V(0,s)(am − ǫ+)

·
[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(am − ǫ+ − ǫ1)V(0,s)(am − ǫ+ − ǫ1)

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(am − ǫ+ − ǫ2)V(0,s)(am − ǫ+ − ǫ2)

]

+

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2

ϑ1(sǫ2)
k∑

m=1

D(am − x− ǫ+)D(x+ ǫ+ − am)

·Q∨(am − ǫ+)Q(x)V(0,s)(am − ǫ+)

+
ϑ1(2ǫ+)

ϑ1(2ǫ−)
·Q(x)ϑ1(sǫ2) ·

[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(x− ǫ1)V(0,s)(x− ǫ1)

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(x− ǫ2)V(0,s)(x− ǫ2)

]
.
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Consider the normalised 2-string elliptic genus

Z̃
(0,s)def
2 = Z

(0,s)def
2 − Z2 − Z1

(
Z

(0,s)def
1 − Z1

)
, (2.56)

see appendix A.3.1. The full normalised 2-string elliptic genus for the codimension 2 defect

in the NS-limit is given by

Z̃
(0,s)def
l=2 = −s

2

k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2

K

(
aj −x− ǫ1

2

)
(2.57)

+
k∑

j=1

(
Q∨

(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

)2{
s(s+1)

2
L

(
aj −x− ǫ1

2

)2

+2s ·L(ǫ1)L

(
aj −x− ǫ1

2

)

+sL

(
aj −x− ǫ1

2

)[ k∑

i=1

L(aj −ai −ǫ1)+
k∑

i=1
i6=j

L(aj −ai)

−
k∑

i=1

(
L

(
aj − ǫ1

2
−mi +b

)
+L

(
aj − ǫ1

2
−ni −b

))]}

+
k∑

i,j=1
i6=j

Q∨
(0)

(
ai − ǫ1

2

)

ϑ′
1(0)

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

{
s2

2
L

(
ai −x− ǫ1

2

)
L

(
aj −x− ǫ1

2

)

+sL

(
ai −x− ǫ1

2

)[
L(ai −aj +ǫ1)−L(ai −aj)+L(aj −ai +ǫ1)−L(aj −ai)

]}

+s
k∑

j=1

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

Q(0)

(
aj − 3ǫ1

2

)[
L

(
aj −x− ǫ1

2

)
+L

(
aj −x− 3ǫ1

2

)]

+s ·Q(0)(x)
k∑

j=1

Q∨
(0)(aj − ǫ1

2 )

ϑ′
1(0)

[
L

(
aj −x+

ǫ1
2

)
−L

(
aj −x− ǫ1

2

)

+L

(
x−aj +

3ǫ1
2

)
−L

(
x−aj +

ǫ1
2

)
+sL

(
aj −x− ǫ1

2

)]

+s ·Q(0)(x)

(
Q(0)(x−ǫ1)− 1−s

2
Q(0)(x)

)
,

with L(·) and K(·) as defined in (2.17). The computational details of (2.55) and (2.57) are

presented in appendix A.5.2.

Full defect partition function. The 6d partition function in the presence of the codi-

mension 2 defect is then denoted as

Z
(r,s)def
6d := Z

(r,s)def
pert · Z(r,s)def

str (2.58)

in the rest of this paper.

2.4 Codimension 4 defect

A natural candidate for a codimension 4 defect is a Wilson surface Σ [55, 56] that acquires a

vacuum expectation value. The VEV of a Wilson surface in representation R can formally
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be expressed in terms of the two-form potential Bµν and the associated supersymmetric

strings as,

WR[Σ] = TrR

(
P ei

∫
Σ

dσµν(Bµν+...)
)
, (2.59)

where . . . denotes the necessary supersymmetric partners of Bµν . There exists another type

of codimension 4 BPS defects that couples to the 6d gauge symmetry. One can consider

a 2d chiral fermion field ψ localised at the origin of R4 that couples to the bulk 6d gauge

group through the following action:

S2d =

∫
d2x ψ̄−(D0 +D1)ψ− , (2.60)

where Di = ∂i+iAi with i = 0, 1 and Ai is the bulk SU(k) gauge field. Adding this action to

the path integral introduces a codimension 4 defect preserving half the supersymmetries.

This defect is a 6d generalisation of the Wilson loop generating function in a 5d gauge

theory that can also be called the 6d qq-character [57, 58]. The codimension 4 defect that

is discussed below is a product of these two types (2.59) and (2.60) which is called the

Wilson surface defect from now on. Consequently, the Wilson surface defect carries both

tensor and gauge charges.

In practice, because of the lack of a field theoretical formulation of 6d SCFTs, one has

to resort to string theory to formulate the Wilson surface defect and compute it. Wilson

surface defects have, for example, been considered on the Ω-deformed R
4 × T

2 in [57–60],

see also [61]. Following [60], a Wilson surface defect in the 6d N = (1, 0) A1 SCFTs

can be realised in the Type IIA brane construction via an additional D4′ brane filling the

x0, x1, x7, x8, x9 space-time directions, see table 1. As the D4′ occupies different space-

time directions as the D̃4 brane of section 2.3, the codimension 4 defect differs from the

codimension 2 defect. In contrast to the D̃4 brane, the addition of the D4′ brane to the

D2-D6-NS5 brane preserves the broken space-time symmetry (2.7) of the original set-up.

As a consequence, the 2d world-volume theory is composed of the multiplets (2.8) of the

D2-D6-NS5 system which are then supplemented by additional multiplets that originate

from the presence of the D4′ brane. These new multiplets originate from the following:

• The D2-D4′ open string modes give rise to an additional N = (0, 4) twisted hyper

φA and a Fermi multiplet Γα, which do not break the N = (0, 4) supersymmetry of

the resulting 2d quiver theory.

• The D6-D4′ open strings introduce an additional Fermi multiplet ρ, which is a singlet

under the 2d gauge group as well as the SO(4)R R-symmetry.

Decomposing N = (0, 4) multiplets into N = (0, 2) multiplets, yields the field content from

the original theory (2.8) plus the additional N = (0, 2) multiplets due to the additional

D4′ brane. For the latter, one finds [60]

twist hyper (φA, ηα̇) −→ chiral φ (φ1, η1̇) + chiral φ̃† (φ2̇, η2) (2.61a)

Fermi Γα, ρ −→ Fermi Γα, ρ . (2.61b)
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and the charges are detailed in table 2. The resulting 2d quiver gauge theory can be

encoded in

U(l)U(k)m

U(k)a

U(k)n

U(1)z

(2.62)

where the changes due to the D4′ brane are manifest in the additional U(1)z defect flavour

node compared to (2.9).

Analogously to the elliptic genus (2.15) of the theory without defect, the 1-loop de-

terminant contributions from the 2d multiplets include the terms (2.11) form the original

theory plus the following defect parts:

ZD4′

chiral =
l∏

p=1

(i η)2

θ1(−ǫ+ ± (up − z))
, (2.63a)

ZD4′

fermi =
l∏

p=1

θ1(ǫ− ± (up − z))

(i η)2
·

k∏

j=1

θ1(z − aj)

i η
, (2.63b)

where the z-fugacity labels the U(1) charge of the additional twisted hyper multiplet φA and

Fermi multiplets Γα, ρ due to the D4′ brane. Collecting all the contributions from (2.11)

and (2.63), one obtains

ZD4′

1−loop(k, l) := Z1−loop(k, l) · ZD4′

chiralZ
D4′

fermi

= Wpert ·
(

2π η3θ1(2ǫ+)

θ1(ǫ1) θ1(ǫ2)

)l

·
l∏

p,q=1
p6=q

D(up − uq) ·
l∏

p=1

Q(up)W (up) (2.64)

≡ Wpert · ZWilson
1−loop(k, l) ,

where the following definitions have been used

W (u) :=
θ1(ǫ− ± (u− z))

θ1(−ǫ+ ± (u− z))
=
θ1(u− z ± ǫ−)

θ1(u− z ± ǫ+)
=
ϑ1(u− z ± ǫ−)

ϑ1(u− z ± ǫ+)
, (2.65a)

Wpert :=
k∏

j=1

θ1(z − aj)

i η
=

k∏

j=1

ϑ1(z − aj)

iQ− 1
12

. (2.65b)

Note that Wpert is independent of the 2d gauge fugacities such that its contribution in the

contour integral reduces to an identical prefactor for all elliptic genera. Hence, one may

define

ZWilson
l =

1

l!

∮
dlu

(2πi)l
ZWilson

1−loop(k, l) , (2.66)
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using the definitions (2.64)–(2.65). Therefore, the partition function of the theory in the

presence of a Wilson surface is given by

ZWilson
6d = Zpert ·Wpert ·

(
1 +

∞∑

l=1

ql
φ Z

Wilson
l

)
, (2.67)

where Zpert is the perturbative contribution (2.6) of the theory without defect, see also [60,

section 3.3]. Since the interest is placed on the Wilson surface expectation value, one has to

normalise the partition function with respect to the partition function of the theory without

codimension 4 defect. Therefore, the expectation value of Wilson surface is given by

〈W〉 = Wpert ·

(
1 +

∑∞
l=1 q

l
φ Z

Wilson
l

)

(
1 +

∑∞
l′=1 q

l′
φ Zl′

) = Wpert ·
[
1 +

(
ZWilson

1 − Z1

)
qφ + O(q2

φ)
]
, (2.68)

see also appendix A.3.1. Before turning to the computation details, one may wonder in

which representation R the Wilson surface transforms. As argued in [60], the codimension 4

defect of a single D4′ brane introduces a Wilson surface in the fundamental representation.

2.4.1 Wilson surface: perturbative contribution

The perturbative contribution acts as a multiplicative factor. The explicit contribution is

Wpert = (−i)kQ
k
12P0(z + ǫ+) . (2.69)

2.4.2 Wilson surface: elliptic genus

For the non-perturbative contributions of the Wilson surface expectation value, the 1-string

and 2-string contributions are computed in this section.

1-string. Similar to the codimension 2 defect computation (2.53), one finds for the l = 1

case of the contour integral (2.66) the following result

ZWilson
1 =

ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

i=1

Q∨(ai − ǫ+) ·W (ai − ǫ+) +Q(z + ǫ+) . (2.70)

The normalised 1-string contribution in the NS-limit becomes

Z̃Wilson
1 = ZWilson

1 − Z1 , (2.71)

lim
ǫ2→0

Z̃Wilson
1 =

1

ϑ′
1(0)

k∑

i=1

Q∨
(0)

(
ai − 1

2
ǫ1

)
· [L (ai − z − ǫ1) − L (ai − z)] +Q(0)

(
z +

1

2
ǫ1

)
.

The detailed computations that lead to (2.70) and (2.71) are summarised in appendix A.7.1.
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2-string. Consider the l = 2 elliptic genus (2.66), a computation yields

ZWilson
2 =

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2 ∑

1≤i<j≤k

D(ai − aj)D(aj − ai) (2.72)

·Q∨(ai − ǫ+)Q∨(aj − ǫ+)W (ai − ǫ+)W (aj − ǫ+)

+
ϑ1(2ǫ+)

ϑ1(2ǫ−)

k∑

j=1

Q∨(aj − ǫ+)W (aj − ǫ+)

·
[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(aj − ǫ+ − ǫ1)W (aj − ǫ+ − ǫ1)

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(aj − ǫ+ − ǫ2)W (aj − ǫ+ − ǫ2)

]

+
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

j=1

D(aj − z − 2ǫ+)D(z + 2ǫ+ − aj)

·Q∨(aj − ǫ+)Q(z + ǫ+)W (aj − ǫ+) .

The normalised 2-string elliptic genus for the codimension 4 defect reads

Z̃Wilson
2 =

k∑

i,j=1
i6=j

Q∨
(0)(ai − ǫ1

2 )

ϑ′
1(0)

Q∨
(0)(aj − ǫ1

2 )

ϑ′
1(0)

[
1

2
L(ai −z)L(aj −z)

−L(ai −z)L(aj −z−ǫ1)+
1

2
L(ai −z−ǫ1)L(aj −z−ǫ1)

]

+
k∑

i,j=1
i6=j

Q∨
(0)(ai − ǫ1

2 )

ϑ′
1(0)

Q∨
(0)(aj − ǫ1

2 )

ϑ′
1(0)

[L(ai −z−ǫ1)−L(ai −z)]

·
[
L(ai −aj +ǫ1)−L(ai −aj)+L(aj −ai +ǫ1)−L(aj −ai)

]

+
1

2

k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2

[K(aj −z)−K(aj −z−ǫ1)]

+
k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2(
L(aj −z−ǫ1)−L(aj −z)

)[
1

2
L(aj −z−ǫ1)+2L(ǫ1)

+
k∑

i=1

L(aj −ai −ǫ1)+
k∑

i=1
i6=j

L(aj −ai −ǫ1)

−
N∑

i=1

(
L

(
aj − ǫ1

2
−mi +b

)
+L

(
aj − ǫ1

2
−ni −b

))]

+
k∑

j=1

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

Q(0)

(
aj − 3ǫ1

2

)
[L(aj −z−2ǫ1)−L(aj −z)]

+Q(0)

(
z+

ǫ1
2

) k∑

j=1

Q∨
(0)(aj − ǫ1

2 )

ϑ′
1(0)

[L(z−aj +2ǫ1)−L(z−aj +ǫ1)] , (2.73)
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with L(·), K(·) as in (2.17). The derivation of (2.72) and (2.73) is detailed in ap-

pendix A.7.2.

3 Difference equation

In section 2, several partition functions have been discussed. Focusing on the defects

introduced by a single D̃4 and single D4′, the partition functions are related as follows:

Z6d
k+1

normal Higgs (2.28)−−−−−−−−−−−−−−−−−−−→ ZG · Z6d
k , (3.1a)

Z6d
k+1

(0, 1)-defect Higgs (2.36)−−−−−−−−−−−−−−−−−−−→ ZG · Z6d/4d
k (x) , (3.1b)

where Z
6d/4d
k := Z

(0,1)def
6d /Z6d denotes the normalised partition function in the presence of a

codimension 2 defect. Consequently, Z
6d/4d
k depends on the defect fugacity x. In addition,

one may introduce a codimension 4 defect to the 6d theory, which in terms of partition

functions means

Z6d
k

codim 4 defect−−−−−−−−−−−−→ Z
6d/2d
k (z) , (3.2)

where Z
6d/2d
k (z) := ZWilson

6d /Z6d is the normalised partition function in the presence of

the codimension 4 defect. This codimension 4 defect is characterised by another defect

fugacity z.

The aim of this section is to derive a difference operator D, which acts via shifts on

the codimension 2 defect fugacity x, and, similarly to [8, 22, 48, 50, 62, 63], is expected to

generate the partition functions for the 6d theory in the presence of both, the codimension

2 and the codimension 4 defect, i.e.

DZ6d/4d(x) = Z6d/4d/2d(x) . (3.3)

Clearly, since Z6d/4d only depends on the defect fugacity x, and the flavour and gauge

fugacities inherited from the pure 6d theory, the generated Z6d/4d/2d cannot depend on z.

In the NS-limit [21], one expects a factorisation of the latter

Z6d/4d/2d(x)
NS−−−−−→ 〈W〉(x) · Z6d/4d(x) (3.4)

with 〈W〉 being the Wilson surface expectation value of the 6d theory. In other words,

〈W〉 ∼= Z6d/2d for a suitable identification of the defect fugacity z. As a consequence, the

Z6d/4d partition function is annihilated by the following operator in the NS-limit:

D − 〈W〉 ∼= quantised SW-curve (3.5)

which, in the spirit of [19, 64], is expected to yield a quantisation of the Seiberg-Witten

curve of the 6d N = (1, 0) A1 theory. The defect fugacity x becomes the coordinate of the

SW-curve.
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3.1 Path integral representation

As a first step towards the quantised SW-curve, one may try to express the non-perturbative

parts of the partition function with codimension 2 defect as a path integral. Following the

approach of [65], one may write the elliptic genus contributions via (2.14) and (2.50) as

follows:

Z
(r,s)def
str =

∞∑

l=0

1

l!
ql

φ

∮ 


l∏

p=1

dup

2πi



(

2πη3θ1(ǫ1 +ǫ2)

θ1(ǫ1)θ1(ǫ2)

)l l∏

p,q=1
p6=q

D(up −uq)
l∏

p=1

Q(up)
l∏

p=1

V(r,s)(up) .

(3.6)

For all specific considerations, the defect is specialised to (r, s) = (0, s). Next, introduce

the density

ρ̄(u) =
l∑

p=1

(#)−1 · δ(u− up) with # :=
2πη3θ1(ǫ1 + ǫ2)

θ1(ǫ1)θ1(ǫ2)
(3.7)

and rewrite the partition function

Z
(r,s)def
str =

∞∑

l=0

1

l!
ql

φ

∮ 


l∏

p=1

dup

2πi


 · (#)l

∫
Dρ(u)δ


ρ(u) −

l∑

p=1

(#)−1 · δ(u− up)




· exp

[ ∫
du du′(#)2ρ(u) log(D(u− u′))ρ(u′)

+

∫
du# ρ(u)(log(Q(u)) + log(V(r,s)(u)))

]
. (3.8)

With the Fourier representation

δ (ρ(u) − ρ̄) =

∫
Dλ exp

[
i

∫
du λ(u) (ρ(u) − ρ̄)

]
(3.9)

of the Delta function, one obtains

Z
(r,s)def
str =

∞∑

l=0

1

l!
ql

φ

∫ 


l∏

p=1

dup

2πi


 · (#)l

∫
Dρ(u)

∫
Dλ(u)

l∏

p=1

e−i
∫

du(#)−1δ(u−up)λ(u)

· exp

[ ∫
du du′(#)2ρ(u) log(D(u− u′))ρ(u′)

+

∫
du
(
iλ(u) · ρ(u) + # ρ(u)

[
log(Q(u)) + log(V(r,s)(u))

]) ]

=
∞∑

l=0

1

l!
ql

φ

∫ 


l∏

p=1

dup

2πi


 · (#)l

∫
Dρ(u)

∫
Dλ(u)

l∏

p=1

e−i (#)−1λ(up)

· exp

[ ∫
du du′(#)2ρ(u) log(D(u− u′))ρ(u′)

+

∫
du
(
iλ(u) · ρ(u) + # ρ(u)

[
log(Q(u)) + log(V(r,s)(u))

]) ]
. (3.10)
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The sum over l can be evaluated

∞∑

l=0

1

l!
ql

φ

∫ 


l∏

p=1

dup

2πi


 · (#)l

l∏

p=1

e−i (#)−1λ(up) =
∞∑

l=0

1

l!

(
qφ #

∫
du

2π i
e−i (#)−1λ(u)

)l

= exp

[
qφ #

∫
du

2π i
e−i (#)−1λ(u)

]
(3.11)

such that

Z
(r,s)def
str =

∫
Dρ(u)

∫
Dλ(u) exp

[∫
dudu′(#)2ρ(u) log(D(u−u′))ρ(u′) (3.12)

+

∫
du

(
iλ(u) ·ρ(u)+#ρ(u)

[
log(Q(u))+log(V(r,s)(u))

]
+

#qφ

2π i
e−i (#)−1λ(u)

)]
.

Analogous to [65], one may employ a shift in the auxiliary variable1

λ(u) = λ′(u) − i # log(−qφ) such that e−i (#)−1λ(u) = − 1

qφ
e−i (#)−1λ′(u) (3.13)

which yields

Z
(r,s)def
str =

∫
Dρ(u)

∫
Dλ′(u) exp

[∫
dudu′(#)2ρ(u) log(D(u−u′))ρ(u′) (3.14)

+

∫
du

(
iλ′(u) ·ρ(u)+#

[
ρ(u) log

(
−qφQ(u)V(r,s)(u)

)
− 1

2π i
e−i (#)−1λ′(u)

])]
.

This represents a path integral representation of the elliptic genera for the theory with

codimension 2 defect. For the theory without defect, one simply puts (r, s) = (0, 0) because

V(0,0)(u) = 1.

3.1.1 Leading and next-to-leading order

Following [65], consider the behaviour as ǫ2 → 0. One computes the following expansions:

# =
1

ǫ2
+ L(ǫ1) + O(ǫ2) , (3.15a)

where the abbreviation L(·) is defined in (2.17). For the D(u− u′)-terms one considers
∫

du du′(#)2ρ(u) log(D(u− u′))ρ(u′)

= (#)2
∫

du

∫ u

−∞
du′ρ(u)

[
log(D(u− u′)) + log(D(u′ − u))

]
ρ(u′) ,

such that the ǫ2-expansion leads to

log(D(u− u′)) + log(D(u′ − u)) = G1(u− u′) · ǫ2 +G2(u− u′) · ǫ22 + O(ǫ32) , (3.15b)

G1(u− u′) = L(u− u′ + ǫ1) − L(u− u′ − ǫ1) ,

G2(u− u′) =

[
L(u− u′)2 −K(u− u′) +

1

2
K(u− u′ + ǫ1) − 1

2
L(u− u′ + ǫ1)2

+
1

2
K(u− u′ − ǫ1) − 1

2
L(u− u′ − ǫ1)2

]
,

1The shift here differs from the 4d case in [65] by a minus sign in front of qφ. The alteration seems neces-

sary as the quantised 6d SW-curve derived in this way passes nontrivial consistency checks, see section 3.4.
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using the L(·), K(·) notation (2.17). Similarly, for the Q(u)-terms the ǫ2 expansion yields

logQ(u) = Q0 + Q1 · ǫ2 + O(ǫ22) , (3.15c)

Q0 = logQ(u)|ǫ2=0 ,

Q1 = −
k∑

i=1

[
L

(
ǫ1
2

− (u− ai)

)
+ L

(
ǫ1
2

+ (u− ai)

)]
,

and similarly for the (0, s) defect terms V(0,s)(u) one finds

log V(0,s)(u) = V(0,s)
1 · ǫ2 + O(ǫ22) , (3.15d)

V(0,s)
1 = s · L(u− x) ≡ s · V(0,1)

1 .

The ǫ2 expansion of the path integral for ǫ2 ≪ 1 becomes

Z
(0,s)def
str =

∫
Dρ(u)

∫
Dλ′(u) exp

[
1

ǫ2

∫
du du′ 1

2
ρ(u)G1(u− u′)ρ(u′) (3.16)

+
1

ǫ2

∫
du

(
ρ(u) (log(−qφ) + Q0) − 1

2π i
e−iǫ2λ′(u)

)

+

∫
du du′ρ(u)

(
1

2
G2(u− u′) + L(ǫ1)G1(u− u′)

)
ρ(u′)

+

∫
du

(
ρ(u)

(
iλ′(u) + Q1 + V(0,s)

1 + L(ǫ1) (log(−qφ) + Q0)
)

− L(ǫ1)
1

2π i
e−iǫ2λ′(u)

)

+ O(ǫ2)

]

and the expression for Zstr ≡ Z
(0,0)def
str is obtained by setting all the codimension 2 defect

contributions Vn to zero, i.e. r = s = 0.

3.1.2 Saddle point analysis

Considering (3.16), the saddle point contribution comes from the leading order term

δ

δρ(u)
Z

(0,s)def
str ∼ Z

(0,s)def
str · 1

ǫ2

(∫
du′G1(u− u′)ρ(u′) + log(−qφ) + Q0(u)

)
(3.17)

such that the saddle point equation is

∫
du′G1(u− u′)ρ(u′) + log(−qφ) + Q0(u) = 0 , (3.18)

which then defines a critical density ρ∗. Inspired by [46], define the following objects:

Y(u) := exp

[
−
∫

du′ ρ(u′)
d

du
log(ϑ1(u− u′))

]
, (3.19)

ω(u) :=
Y(u− ǫ1)

Y(u)P0(u)
, (3.20)
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and observe that

∫
du′ρ(u′)G1(u− u′) = log

Y(u− ǫ1)

Y(u+ ǫ1)
, (3.21a)

Q0(u) = log(M(u)) − log(P0(u)) − log(P0(u+ ǫ1))

= log
Y(u+ ǫ1)

Y(u− ǫ1)
+ log (M(u)ω(u)ω(u+ ǫ1)) . (3.21b)

The saddle point equation (3.18) becomes

log (−qφM(u∗)ω(u∗)ω(u∗ + ǫ1)) = 0 ⇔ 1 + qφM(u∗)ω(u∗)ω(u∗ + ǫ1) = 0 , (3.22)

for some points u∗. Next, define the following function:

f(u) :=
1 + qφM(u− ǫ1)ω(u)ω(u− ǫ1)

ω(u)
(3.23)

the properties of f indicate that it can be written as a product of k Theta functions

f(u) ≡ P (u) =
k∏

l=1

ϑ1(u− el) (3.24)

with roots el to be determined. The saddle point equation (3.22) becomes equivalent to

− qφM(u− ǫ1)ω(u)ω(u− ǫ1) + ω(u)P (u) − 1 = 0 . (3.25)

From (3.25) one can now derive a difference equation for the defect partition function.

3.2 Shift operator

Having derived a path integral expression (3.14), which is dominated by the contribution

of the saddle point (3.25), the next step is to define a shift operator. For this, the (expo-

nentiated) defect fugacity X is promoted to a non-commutative parameter together with

conjugate coordinate Y such that

Y X =
1

p
XY (3.26)

i.e. Y f(x) = f(x− ǫ1). Now, one can act with the shift operator Y on the two parts of the

partition function. For the perturbative part, one proceeds with the natural expressions;

while the Y -action on the non-perturbative part is greatly simplified by the path integral

representation.

Perturbative contribution. The normalised perturbative part (2.48) for an (0, s) defect

can be written as

Z̃
(0,s)def
pert = PE

[
s

2(1 − p)

(
1 +Q

1 −Q

){
(1 − p) +

√
p

k∑

i=1

(
X

Ai
− Ai

X

)}]
, (3.27)
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for Ai = eai . A direction computation, see appendix A.6.1, shows that the action of Y is

given by

Y Z̃
(0,s)def
pert =




√√√√√
(

k∏

i=1

1

ϑ1(ai − x+ 1
2ǫ1, τ)

)2




s

Z̃
(0,s)def
pert =

[
1

P0(x)

]s

Z̃
(0,s)def
pert . (3.28)

Note that the sign of the argument of the theta function can be flipped without any conse-

quence.

Elliptic genus. Consider the defect contribution (2.50), (3.15d), which one may write as

Z̃
(0,s)def
str ⊃ exp

[∫
duρ∗(u)V(0,s)

1

]
= exp

[
s ·
∫

duρ∗(u)∂u log θ1(u− x)

]
(3.29)

= exp

[
−s ·

∫
duρ∗(u)∂x log θ1(u− x)

]
= (Y(x))s .

The shift operator acting on the normalised instanton-strings partition function yields

Y Z̃
(0,s)def
str ∼ Y

∫
Dρ exp

[∫
duρ(u)V(0,s)

1 (u, x)

]

∼ Y exp

[∫
duρ∗(u)V(0,s)

1 (u, x)

]

∼ exp

[∫
duρ∗(u)V(0,s)

1 (u, x− ǫ1)

]
. (3.30)

Consequently, one arrives at

Y Z
(0,s)def
str =

(Y(x− ǫ1)

Y(x)

)s

· Z̃(0,s)def
str in leading order

= (ω(x)P0(x))s · Z̃(0,s)def
str using (3.20) . (3.31)

Alternatively, a direct computation on the defect contribution (2.50) leads to the same

conclusion as in (3.31), as detailed in appendix A.6.2.

Full partition function. Combining (3.31) and (3.28) implies that

Y
(
Z̃

(0,s)def
pert · Z̃def

str

)
= Y Z̃

(0,s)def
pert · Y Z̃(0,s)def

str =

[
1

P0(x)

]s

Z̃
(0,s)def
pert · [ω(x)P0(x)]s · Z̃(0,s)def

str

= [ω(x)]s ·
(
Z̃

(0,s)def
pert · Z̃(0,s)def

str

)
, (3.32)

where one notes the cancellation of the contribution from the perturbative part. In partic-

ular, notice the ratio

Z̃
(0,1)def
tot (x− ǫ1)

Z̃def
tot (x)

≡
Y
(
Z̃

(0,1)def
pert · Z̃(0,1)def

str

)

Z̃
(0,1)def
pert · Z̃(0,1)def

str

= ω(x) , (3.33)

which is reminiscent of [46, eq. (55)].
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3.3 Difference equation

Finally, following the logic of [46, 66], the saddle point equation can be used to derive a

difference equation on the level of the normalised codimension 2 partition function. For this,

one starts from the saddle point equation (3.25) and performs the following manipulations:

0=−qφM(x−ǫ1)ω(x)ω(x−ǫ1)+ω(x)P (x)−1

=−qφM(x)ω(x+ǫ1)ω(x)+ω(x+ǫ1)P (x+ǫ1)−1 by shifting x→x+ǫ1

=−qφM(x)
Z̃(0,1)def(x)

Z̃(0,1)def(x+ǫ1)

Z̃(0,1)def(x−ǫ1)

Z̃(0,1)def(x)
+P (x+ǫ1)

Z̃(0,1)def(x)

Z̃(0,1)def(x+ǫ1)
−1 using (3.33)

=−qφM(x)· Z̃
(0,1)def(x−ǫ1)

Z̃(0,1)def(x+ǫ1)
+P (x+ǫ1)

Z̃(0,1)def(x)

Z̃(0,1)def(x+ǫ1)
−1

=−qφM(x)·Z̃(0,1)def(x−ǫ1)+P (x+ǫ1)Z̃(0,1)def(x)−Z̃(0,1)def(x+ǫ1)

=
[
−qφM(x)·Y +P (x+ǫ1)−Y −1

]
Z̃(0,1)def(x). (3.34)

Hence, (3.34) shows the existence of an operator that annihilates the codimension 2 defect

partition function. Nevertheless, the expression needs to be considered with care. Com-

paring to the results of [17], the form is already suggestive of the Seiberg-Witten curve. In

order to consolidate this further, one can equivalently rewrite (3.34) as

[
qφM(x) · Y + Y −1

]
Z̃(0,1)def(x) = P (x+ ǫ1) · Z̃(0,1)def(x) (3.35)

where the left-hand-side contains expressions that are fully known, while the right-hand-

side contains the degree k modular form P (u) of (3.24), whose existence follows from the

saddle point analysis. Therefore, the purpose of the remainder of this section is to establish

a physical interpretation of P (x+ ǫ1). As it turns out, the codimension 4 defect in form of

the VEV of a Wilson surface is a suitable object to consider.

3.4 Comparison to Wilson surface

The strategy for determining the physical meaning of P (x+ ǫ1) has two steps:

(i) Starting from (3.35), together with the known normalised codimension 2 defect par-

tition function Z̃(0,1)def(x), one can compute P (x+ ǫ1) order by order in qφ.

(ii) The predictions for P (x + ǫ1) are compared to the normalised codimension 4 defect

partition function Z̃Wilson
2 (z), i.e. the Wilson surface VEV. This determines z as a

function of x.

To begin with, consider the difference equation (3.34) or (3.35) together with the qφ-

expansions

Z̃(0,1)def(x) = Z̃
(0,1)def
0 (x)

(
1 +

∞∑

l=1

ql
φ Z̃

(0,1)def
l (x)

)
, P (x) = P0(x)

(
1 +

∞∑

l=1

ql
φ Pl(x)

)
,

(3.36)
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such that (3.34) becomes

0 =

[
P0(x+ ǫ1) − Y −1 + qφ (P0(x+ ǫ1)P1(x+ ǫ1) −M(x)Y )

+
∞∑

l=2

ql
φP0(x+ ǫ1)Pl(x+ ǫ1)

]
Z̃

(0,1)def
0 (x)


1 +

∞∑

j=1

qj
φZ̃

(0,1)def
j (x)


 . (3.37)

Next, one can try to match the predictions for Pl(x+ ǫ1) with the results from the Wilson

surface. Based on the explicit computations detailed below, the claim is that

Pl(x+ ǫ1) = Z̃Wilson
l (z) ∀l ⇔ z = x+

1

2
ǫ1 , (3.38)

i.e. the fugacities x and z are suitably identified.

3.4.1 Perturbative level

The lowest order in the qφ expansion reads

0 =
[
P0(x+ ǫ1) − Y −1

]
Z̃

(0,1)def
0 (x) (3.39)

and one finds

P0(x+ ǫ1) =
Y −1Z̃

(0,1)def
0 (x)

Z̃
(0,1)def
0 (x)

. (3.40)

Comparing to Wpart in the NS-limit yields

P0(x+ ǫ1) =
Wpart(z)

(−i)NQ
k
12

⇔ z = x+
ǫ1
2
. (3.41)

3.4.2 1-string level

Next, the linear qφ order reads

0 =
[
P0(x+ ǫ1) − Y −1

]
Z̃

(0,1)def
0 (x)Z̃

(0,1)def
1 (x)

+ [P0(x+ ǫ1)P1(x+ ǫ1) −M(x)Y ] Z̃
(0,1)def
0 (x) ,

(3.42)

and, using (3.39), one finds

P1(x+ ǫ1) = Q(0)(x) + Y −1Z̃
(0,1)def
1 (x) − Z̃

(0,1)def
1 (x) . (3.43)

Using the results from above, one computes the prediction (3.43) to be

P1(x+ǫ1) =Q(0)(x+ǫ1)+
1

ϑ′
1(0)

k∑

i=1

Q∨
(0)

(
ai − 1

2
ǫ1

)
·
[
L

(
ai −x− 3

2
ǫ1

)
−L

(
ai −x− 1

2
ǫ1

)]
,

(3.44)

see appendix A.8.1 for details. Comparing to the Wilson surface result (2.71), one finds

P1(x+ ǫ1) = Z̃Wilson
1 (z) ⇔ z = x+

ǫ1
2
. (3.45)
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3.4.3 2-string level

Lastly, the quadratic qφ order in the expansion reads

0 =
[
P0(x+ ǫ1) − Y −1

]
Z̃

(0,1)def
0 (x)Z̃

(0,1)def
2 (x)

+ [P0(x+ ǫ1)P1(x+ ǫ1) −M(x)Y ] Z̃
(0,1)def
0 (x)Z̃

(0,1)def
1 (x)

+ P0(x+ ǫ1)P2(x+ ǫ1)Z̃
(0,1)def
0 (x) ,

(3.46)

and using (3.39) and (3.42) one finds

P2(x+ ǫ) = Q(0)(x) [Y − 1] Z̃
(0,1)def
1 (x) +

[
Y −1 − 1

]
Z̃

(0,1)def
2 (x)

− Z̃
(0,1)def
1 (x)

[
Y −1 − 1

]
Z̃

(0,1)def
1 (x) .

(3.47)

Using the results from above, one compute the prediction (3.47) to be

P2(x+ǫ1) = −1

2

k∑

j=1



Q∨

(0)

(
aj − 1

2ǫ1
)

ϑ′
1(0)




2 [
K

(
aj −x− 3

2
ǫ1

)
−K

(
aj −x− 1

2
ǫ1

)]
(3.48)

+
k∑

j=1



Q∨

(0)

(
aj − 1

2ǫ1
)

ϑ′
1(0)




2

×
{
L

(
aj −x− 3

2
ǫ1

)[
L

(
aj −x− 3

2
ǫ1

)
−L

(
aj −x− 1

2
ǫ1

)]

+2L(ǫ1)

[
L

(
aj −x− 3

2
ǫ1

)
−L

(
aj −x− 1

2
ǫ1

)]}

+
k∑

i,j=1
i6=j

Q∨
(0)

(
ai − 1

2ǫ1
)

ϑ′
1(0)

Q∨
(0)

(
aj − 1

2ǫ1
)

ϑ′
1(0)

[
L

(
ai −x− 3

2
ǫ1

)
−L

(
ai −x− 1

2
ǫ1

)]

·
{
L(ai −aj −ǫ1)+L(aj −ai −ǫ1)−L(ai −aj)−L(aj −ai)

}

+
k∑

i,j=1
i6=j

Q∨
(0)

(
ai − 1

2ǫ1
)

ϑ′
1(0)

Q∨
(0)

(
aj − 1

2ǫ1
)

ϑ′
1(0)

[
1

2
L

(
ai −x− 3

2
ǫ1

)
L

(
aj −x− 3

2
ǫ1

)

−L

(
ai −x− 1

2
ǫ1

)
L

(
aj −x− 3

2
ǫ1

)
+

1

2
L

(
ai −x− 1

2
ǫ1

)
L

(
aj −x− 1

2
ǫ1

)]

+
k∑

j=1

Q∨
(0)

(
aj − 1

2ǫ1
)

ϑ′
1(0)

Q(0)

(
aj − 3

2
ǫ1

)[
L

(
aj −x− 5

2
ǫ1

)
−L

(
aj −x− 1

2
ǫ1

)]

+Q(0)(x+ǫ1)
k∑

j=1

Q∨
(0)

(
aj − 1

2ǫ1
)

ϑ′
1(0)

[
L

(
x+

5

2
ǫ1 −aj

)
−L

(
x+

3

2
ǫ1 −aj

)]
,

see appendix A.8.2 for details. Comparing to the Wilson surface result (2.73), one finds

P2(x+ ǫ1) = Z̃Wilson
2 (z) ⇔ z = x+

ǫ1
2
. (3.49)
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3.4.4 Implications

The results of sections 3.4.1–3.4.3 provide evidence that the claim (3.38) is correct. Thus,

the difference equation (3.35) can be re-written

DNSZ̃
(0,1)def(x) ≡

[
qφM(x) · Y + Y −1

]
Z̃(0,1)def(x)

= P (x+ ǫ1) · Z̃(0,1)def(x) ≡ 〈W〉
(
z = x+

ǫ1
2

)
· Z̃(0,1)def(x) , (3.50)

which identifies the operator D of (3.3) in the NS limit. In addition, the degree k modular

form P of (3.24) has been identified with the expectation value of the Wilson surface defect.

As a comment, the found identification (3.38) is a qualitatively new feature of the

N = (1, 0) theories in contrast to the N = (2, 0) case discussed in the next section. As

shown in the 6d N = (2, 0) A1 case [60], the Wilson surface expectation value is independent

of the defect fugacity z; similarly, the dual 5d picture has been considered in [64], where

the Wilson loop expectation values also has no dependence on the defect fugacity.

4 2 M5 branes: matching 6d and 5d with enhanced SUSY

In this section, the methods developed in the above sections are applied to the simplest 6d

N = (1, 0) theory with SU(2) gauge group and 4 flavours. The interest in this model comes

because Higgsing the SU(2) gauge group as above leads to a theory with no gauge theory

left. Put differently, in the Type IIA brane construction the Higgsing is realised by removing

a D6 brane, see figure 1. Starting from the 2 D6 branes for the SU(2) theory and removing

one of them, leads to a single D6 which is dual to C
2/Z1

∼= C
2, i.e. the A0 singularity in the

original M-theory setup. Thus, the Higgsing leads to a system of M5 branes which preserve

16 supercharges instead of the 8 supersymmetries of the generic case with an Ak singularity.

Building on section 2.2, one can study the N = (2, 0) A1 theory in the presence of a

codimension 2 defect by Higgsing the N = (1, 0) SU(2) theory with a position dependent

VEV. In addition, the path integral formalism developed in previous section allows one

to derive the quantised Seiberg-Witten curve therein. As a consistency check, it is verify

in this section that the established SW-curve matches the result obtained from the 5d/3d

perspective by compactifying the 6d N = (2, 0) A1 theory onto S1 [64].

4.1 Defects in 6d N = (2, 0) A1 theory

To begin with, one computes the partition function for the 6d case. In order to find

agreement with the 5d result of section 4.2, the derivation is repeated in a slightly different

manner compared to sections 2 and 3.

4.1.1 Elliptic genus

Firstly, the saddle point approach is used to derive the difference equation of the non-

perturbative part of the partition function, analogously to section 3.1. The SU(2) gauge

and SU(4) ⊂ SO(8) flavour fugacities are labeled in terms of α, µi and t as

α = ea , em1 = tµ1 , em2 =
t

µ1
, em3 =

µ2

t
, and em4 =

1

tµ2
. (4.1)
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The instanton partition function Zk for N = (1, 0) SU(2) with 4 flavours is thus given by

the l-th elliptic genus, contributing to the non-perturbative partition function (2.3)

Zl =
1

l!

∮ l∏

I=1

dφI

2πi

l∏

I,J=1

ϑ∨
1 (φIJ)ϑ1(φIJ + 2ǫ+)

ϑ1(φIJ + ǫ1,2)
·

l∏

I=1

∏4
i=1 ϑ1(φI −mi)

ϑ1(φI ± a± ǫ+)
, (4.2)

with φIJ := φI −φJ . Here, ϑ∨
1 (φIJ) means that those terms in ϑ1(φIJ) with φI = φJ are re-

placed by ϑ′
1(0). Next, a (0, 1) codimension 2 defect is introduced via the Higgsing (2.36b),

which becomes

a = m3 − ǫ+ and m4 = m3 − 2ǫ+ − ǫ2 ≡ x− ǫ2 , (4.3a)

or α =

√
q

t
and µ2 =

√
pq2 , (4.3b)

such that the elliptic genus of the N = (2, 0) theory with defect is given by

Zdef
l =

1

l!

∮ l∏

I=1

dφI

2πi

l∏

I,J=1

ϑ∨
1 (φIJ)ϑ1(φIJ + 2ǫ+)

ϑ1(φIJ + ǫ1,2)

·
l∏

I=1

ϑ1(φI −m1)ϑ1(φI −m2)ϑ1(φI −m3 + 2ǫ+ + ǫ2)

ϑ1(φI +m3)ϑ1(φI +m3 − 2ǫ+)ϑ1(φI −m3 + 2ǫ+)
.

(4.4)

Further notice that

em1+m3 = µ1µ2 and em2+m3 = µ−1
1 µ2 . (4.5)

For convenience, one defines µ1 ≡ em−ǫ2/2, and, additionally, shifts the 2d gauge variables as

φI 7→ φI −m3 + ǫ+ . (4.6)

Finally, one ends up with the instanton partition function for the theory with a codimension

2 defect of type (0, 1), which is given by

Zdef
l =

1

l!

∮ l∏

I=1

dφI

2πi

l∏

I,J=1

ϑ1(φIJ)ϑ1(φIJ + 2ǫ+)

ϑ1(φIJ + ǫ1,2)
·

l∏

I=1

ϑ1(φI −m)ϑ1(φI +m− ǫ2)

ϑ1(φI ± ǫ+)

·
l∏

I=1

ϑ1(φI − 2x− ǫ−)

ϑ1(φI − 2x− ǫ+)
,

(4.7)

and, following the definitions (2.14) of section 2, one defines

D(u) =
ϑ1(u)ϑ1(u+ 2ǫ+)

ϑ1(u+ ǫ1)ϑ1(u+ ǫ2)
, (4.8a)

Q(u) =
ϑ1(u−m)ϑ1(u+m− ǫ2)

ϑ1(u+ ǫ+)ϑ1(u− ǫ+)
, (4.8b)

V (u) =
ϑ1(u− 2x− ǫ−)

ϑ1(u− 2x− ǫ+)
. (4.8c)
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Having set-up the notation, one recasts the instanton partition function in a path integral,

analogous to section 3.1, as follows:

Zdef
str ∼

∫
Dρ(u)exp

[
1

ǫ2

∫
dudu′ 1

2
ρ(u)G1(u−u′)ρ(u′)+

1

ǫ2

∫
du log(−qφQ0(u))+O(ǫ02)

]
,

(4.9)

with the expansion coefficients

G1(u−u′) = L(u−u′+ǫ1)−L(u−u′−ǫ1) , and Q0(u) = Q(u)|ǫ2=0 =
ϑ1(u±m)

ϑ1(u± ǫ1
2 )

, (4.10)

with L(·) introduced in (2.17). As in (3.19), one may define

Y(u) = exp

[
−
∫

du′ρ(u′)
ϑ′

1(u− u′)
ϑ1(u− u′)

]
, (4.11)

such that the saddle point equation can be written as

log

(
−qφ

Y(u∗ − ǫ1)

Y(u∗ + ǫ1)
Q0(u∗)

)
= 0 , or 1 + qφ

Y(u∗ − ǫ1)

Y(u∗ + ǫ1)
Q0(u∗) = 0 (4.12)

for certain specified solutions ρ∗ and u∗.

On the other hand, one can apply the saddle point equation to the normalised Zdef
str

and take the NS-limit, ǫ2 → 0 and q → 1,

Z̃def
str (x) ≡ lim

ǫ2→0

Zdef
str

Zstr
= exp

[∫
duρ∗(u)V1(u)

]
, (4.13)

with V1(u) = log V (u)|O(ǫ1
2) = L

(
u− 2x− ǫ1

2

)
= −L

(
2x+

ǫ1
2

− u

)
. (4.14)

Therefore, by the virtue of (4.11), one finds

Z̃def
str (x) = Y

(
2x+

ǫ1
2

)
(4.15)

For a shift operator Y : x 7→ x− ǫ1, the action on the partition function is

Y · Z̃def
str (x) = Y

(
2x− 3ǫ1

2

)
=

Y
(
2x− 3ǫ1

2

)

Y (2x+ ǫ1
2

) Z̃def
str (x) . (4.16)

Next, consider the left-hand-side of (4.12) for arbitrary values of u, i.e.

L ≡ 1 + qφ
Y (u− ǫ1)

Y (u+ ǫ1)
Q0(u) . (4.17)

whose purpose is clarified shortly. For u = 2x− ǫ1
2 , one has

Q0

(
2x− ǫ1

2

)
=
ϑ1(2x±m− ǫ1/2)

ϑ1(2x)ϑ1(2x− ǫ1)
≡ θ̃1(p−1Xη−1)θ̃1(p−2Xη)

θ̃1(p−1X)θ̃1(p−2X)
, (4.18)

due to (A.14). To compare with the results in [64], one defines the following variables

X ≡ e2x+ǫ1 = t−2 and η ≡ em+ǫ1/2 =
√
pqµ1 . (4.19)
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Therefore, using (4.16), one finds

L = 1 + qφ
θ̃1(p−1Xη−1)θ̃1(p−2Xη)

θ̃1(p−1X)θ̃1(p−2X)
· Y(2x− 3ǫ1

2 )

Y(2x+ ǫ1
2 )

= 1 + qφ
θ̃1(p−1Xη−1)θ̃1(p−2Xη)

θ̃1(p−1X)θ̃1(p−2X)

Y · Z̃def
str (x)

Z̃def
str (x)

. (4.20)

Notice that Y X = p−2XY , for convenience, one defines

YXX :− p−1XYX meaning Y 2
X = Y , (4.21a)

Z̃(X) :− Z̃def
str (x) , such that Z̃(p−1X) = YX Z̃

def
str (x) . (4.21b)

Now (4.20) can be recast as

Y −1
X · Z̃(p−1X) + qφ

θ̃1(p−1Xη−1)θ̃1(p−2Xη)

θ̃1(p−1X)θ̃1(p−2X)
YX · Z̃(p−1X) = L Y −1

X · Z̃(p−1X) . (4.22)

Lastly, one shifts X → pX and re-defines the right-hand-side of (4.22) to be

Y −1
X · Z̃(X) + qφ

θ̃1(Xη−1)θ̃1(p−1Xη)

θ̃1(X)θ̃1(p−1X)
YX · Z̃(X) =: W(X) · Z̃(X) , (4.23)

where W is identified with the 6d partition function of the codimension 4 defect, i.e.

the Wilson surface, in section 4.1.3. Therefore, (4.23) is exactly the difference equation

obtained from 5d/3d perspective in [64].

4.1.2 Perturbative part

Next, the difference equation for the perturbative part of the N = (2, 0) A1 theory is

derived. As above, the starting point is the 6d N = (1, 0) SU(2) theory with 4 flavours,

whose perturbative contributions to the partition function are given by

Zpert
N =(1,0) A1

= PE[It +Iv +Ih] , (4.24a)

with It = − p+q

(1−p)(1−q)

Q

1−Q
, (4.24b)

Iv = − 1+pq

(1−p)(1−q)(1−Q)

(
α2 +α−2Q+Q

)
, (4.24c)

Ih =

√
pq

(1−p)(1−q)(1−Q)

(
α+α−1Q

)(
t+ t−1

)(
µ1 +µ−1

1 +µ2 +µ−1
2

)
, (4.24d)

where the contributions of the tensor, vector, and hyper multiplets It, Iv and Ih, respec-

tively, have been flopped compared to (2.4), for comparison with the 5d result.

Before introducing the codimension 2 defect, one first computes the contribution of

Goldstone bosons from the usual Higgsing procedure by assigning

α = t−1 and µ2 =
√
pq . (4.25)
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The Goldstone boson part is given by

ZG = PE

[ √
pq

(1 − p)(1 − q)(1 −Q)

(
α+ α−1Q

) (
t+ t−1

) (
µ1 + µ−1

1

)] ∣∣∣∣∣
α=t−1

= PE

[ √
pq

(1 − p)(1 − q)(1 −Q)

(
t−1 + tQ

) (
t+ t−1

) (
µ1 + µ−1

1

)]
. (4.26)

With this preparation, one can introduce a (0, 1) codimension 2 defect as in (4.3). The

partition function Zpert
N =(1,0) A1

can be factorised as

Zpert
N =(1,0) A1

= Zpert
N =(2,0) A1

· ZG · Zdef
pert(X) , (4.27)

where only Zdef
pert(X) is a function of the defect parameter X. Using (4.3), computing Iv

and the µ2-dependent part of Ih leads to

Z1 = PE

[
Iv +

√
pq

(1 − p)(1 − q)(1 −Q)

(
α+ α−1Q

) (
t+ t−1

) (
µ2 + µ−1

2

)] ∣∣∣∣∣α=
√

qt−1

µ2=
√

pq2

= PE

[
1

(1 − p)(1 −Q)

(
t−2 − t2pQ

)]
+ etc.

=
∞∏

i=0

1

θ̃1(Xpi)
+ etc. (4.28)

using (4.19) in the last line. Further, all irrelevant terms independent of the defect param-

eter X have been omitted.

On the other hand, one also needs to extract additional Zdef
pert(X) contributions,2 which

are µ1-dependent, from the Goldstone part ZG. In detail

Z2 = PE

[ √
pq

(1 − p)(1 − q)(1 −Q)

(
α+ α−1Q

) (
t+ t−1

) (
µ1 + µ−1

1

)] ∣∣∣∣∣α=
√

qt−1

µ2=
√

pq2

µ1→√
qµ1

· 1

ZG
, (4.29)

where one has shifted µ1 → √
qµ1 in order to compare with the contribution of Goldstone

bosons. With some algebra, apart from some irrelevant terms, one finds

Z2 = PE

[
1

(1 − p)(1 −Q)

(
−Xη + (Xη)−1pQ

)]

=
∞∏

i=0

θ̃1(Xη pi) , (4.30)

using (4.19). Hence, combining the various parts, one arrives at

Zdef
pert(X) = Z1 · Z2 =

∞∏

i=0

θ̃1(Xη pi)

θ̃1(Xpi)
. (4.31)

2Different from the generic N = (1, 0) case, there is an additional contribution depending on the defect

parameter X and flavour fugacity η. Because the (2, 0) A1 theory contains no vector multiplet, the new

piece thus originates from the term depending on the a1 gauge fugacity and the left flavour fugacity η.

Since the SU(2) fugacities satisfy a1 + a2 = 0, both a1 and a2 have been replaced by the defect parameter

X after Higgsing.
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By acting with YX on it, one finds the following difference equation

YX · Zdef
pert(X) =

θ(p−1Xη)

θ(p−1X)
Zdef

pert(X) . (4.32)

Therefore, the full partition function

Z(X) = Zdef
pert(X) · Z̃(X) , (4.33)

satisfies the following difference equation in the NS-limit q → 1:

θ̃1(Xη)

θ̃1(X)
Y −1

X · Z(X) + qφ
θ̃1(Xη−1)

θ̃1(X)
YX · Z(X) =: W(X) · Z(X)

⇔
[
θ̃1(Xη)

θ̃1(X)
Y −1

X + qφ
θ̃1(Xη−1)

θ̃1(X)
YX − W(X)

]
Z(X) = 0 ,

(4.34)

where the last line already bears resemblance to (4.50). As in (4.23), one still has to provide

an interpretation of W, which is the subject of the next section.

4.1.3 Wilson surface

In this subsection, W is identified with the Wilson surface from 6d perspective as discussed

above for the generic 6d N = (1, 0) case. As in section 3.4, the identification proceeds in

two steps:

(i) Computation of the prediction for W from the difference equation (4.23).

(ii) Direct evaluation of the Wilson surface expectation value.

Firstly, one computes W from (4.23) up to one-instanton order. A computation shows that

W =
Y −1

X Z̃(X)

Z̃(X)
+ qφ

θ̃1(Xη−1)θ̃1(p−1Xη)

θ̃1(X)θ̃1(p−1X)

YX Z̃(X)

Z̃(X)

= 1 + qφ

(
Z̃1(pX) − Z̃1(X) +

θ̃1(Xη−1)θ̃1(p−1Xη)

θ̃1(X)θ̃1(p−1X)

)
+ O(q2

φ)

= 1 + qφ

(
θ̃1(pXη−1)θ̃1(Xη)

θ̃1(X)θ̃1(pX)
+ pX

θ̃1(η)θ̃1(pη−1)θ̃′
1(pX)

θ̃′
1(1)θ̃1(p)θ̃1(pX)

−X
θ̃1(η)θ̃1(pη−1)θ̃′

1(X)

θ̃′
1(1)θ̃1(p)θ̃1(X)

)

+ O(q2
φ) , (4.35)

where θ̃′
1(X) denotes the derivative of θ̃1(X). As it turns out, the W expression is inde-

pendent on X, as can be verified by expanding (4.35) with respect to Q, i.e.

W = 1+qφ

(
1+

(1−η)2(1−p−1η)2

p−1η2
Q+

(1−η)2(1−p−1η)2(p−2 +4p−1 +1)

p−2η2
Q2 +O(Q3)

)

+O(q2
φ) . (4.36)

In fact, q
−1/2
φ W coincides with the Wilson line WSU(2) computed from the 5d SU(2) SYM

via compactifying the 6d theory on a circle as in [60, 64].
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Secondly, one can directly compute the expectation value of the 6d Wilson surface

in the 6d N = (2, 0) A1 theory, as studied in [60]. For a Wilson surface in a minuscule

representation, for instance the fundamental representation, one finds either from [60] or

section 2.4 that

W(2,0) =
∞∑

l=0

ql
φWl (4.37)

Wl =
1

l!

∫ l∏

I=1

dφI

2πi

l∏

I,J=1

ϑ1(φIJ)ϑ1(φIJ +2ǫ+)

ϑ1(φIJ +ǫ1,2)

l∏

I=1

ϑ1(m±φI)

ϑ1(ǫ+ ±φI)

l∏

I=1

ϑ1(ǫ− ±(φI −z))

ϑ1(−ǫ+ ±(φI −z))
,

where z denotes the U(1) fugacity from D4′ brane, see table 1. Up to one-instanton order,

one finds

W(2,0) = 1 + qφ

(
θ̃1(pZη−1)θ̃1(Zη)

θ̃1(pZ)θ̃1(Z)
+ pZ

θ̃1(η)θ̃1(pη−1)θ̃′
1(pZ)

θ̃1(p)θ̃1(pZ)θ̃′
1(1)

− Z
θ̃1(η)θ̃1(pη−1)θ̃′

1(Z)

θ̃1(q)θ̃1(Z)θ̃′
1(1)

)

+ O(q2
φ) , (4.38)

which is the same as (4.35) by replacing Z ≡ ez with X. However, as shown in (4.36),

W(2,0) is independent of Z or X. As a consequence, the direct 6d computation of the Wilson

surface, which coincides with the 5d Wilson loop result [60], also verifies the quantised SW-

curve (4.23) proposed in the subsection above for the 6d N = (2, 0) A1 case.

4.2 Codimension 2 defect in 5d N = 2 SU(2) SYM

A circle compactification of the 6d N = (2, 0) A1 theory gives rise to the 5d N = 2 maximal

supersymmetric Yang-Mills theory with gauge group SU(2). In fact, the instanton states

in this 5d theory capture the Kaluza-Klein momentum modes. Therefore, the 5d SU(2)

maximal SYM theory at strong coupling is conjectured to be dual to the 6d N = (2, 0) A1

theory [67–69].

A codimension 2 defect preserving half of the supersymmetries in the 5d N = 2 SU(2)

gauge theory has been studied in [64]. This defect was introduced as a monodromy defect.

However, the same defect can also be introduced by Higgsing the SU(2) × SU(2) affine

quiver theory with two bi-fundamental hypermultiplets with position dependent VEV of a

baryonic operators formed by one of the bi-fundamental hypermultiplets. In terms of a 8

supercharges quiver, the Higgsing is summarised as follows:

SU(2)1 SU(2)2

baryonic−−−−−→
Higgsing

SU(2)

. (4.39)

Equivalently, the Higgsing of a 5d N = 1 affine Ak quiver gauge theory with a constant or

position dependent VEV is realised in Type IIB superstring theory as shown in figure 1.

From the 6d viewpoint, this corresponds to a mesonic Higgsing of the SU(2) gauge theory

with 4 flavours towards the N = (2, 0) A1 theory with a codimension 2 defect. The duality

between the 5d and 6d description can be verified on the level of partition functions.
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Partition function before Higgsing. Let us start with the partition function of the

5d SU(2) × SU(2) affine quiver gauge theory on R
4
ǫ1,ǫ2

× S1. The perturbative partition

function can be written as

Z5d,pert
SU(2)2 =PE

[
− 1+pq

(1−p)(1−q)(A2
1+A2

2)+

√
pq

(1−p)(1−q)A1(A2+A−1
2 )(µ1+µ2+µ−1

1 +µ−1
2 )

]
,

(4.40)

where A1,2 ≡ ea1,2 are the gauge fugacities for two SU(2) gauge groups in (4.39) and

µ1 ≡ eM1 , µ2 ≡ eM2 are the fugacities for the bi-fundamental flavours. The instanton

partition function can be evaluated from a 1d gauged quantum mechanics and is given by

Z5d,inst
SU(2)2 =

∞∑

k1,k2=0

yk1

(
Q

y

)k2

Z5d
k1,k2

(4.41)

Z5d
k1,k2

=
1

k1!k2!

∮ 


k1∏

I=1

dφI

2πi






k2∏

J=1

dφ̃J

2πi



∏k1

I 6=J sh(φIJ)
∏k1

I,J sh(φIJ + 2ǫ+)
∏k1

I,J sh(φIJ + ǫ1,2)

·
∏k2

I 6=J sh(φ̃IJ)
∏k2

I,J sh(φ̃IJ + 2ǫ+)
∏k2

I,J sh(φ̃IJ + ǫ1,2)

·
k1∏

I=1

k2∏

J=1

sh(φI ± a2 +M1,2)sh(φ̃J ± a1 −M1,2)

sh(φI ± a1 ± ǫ+)sh(φ̃J ± a2 ± ǫ+)
· sh(φI − φ̃J +M1,2 ± ǫ−)

sh(φI − φ̃J +M1,2 ± ǫ+)
,

where y and Q/y are the instanton fugacities for the SU(2) gauge groups, respectively, and

sh(x) ≡ 2 sinh(x
2 ) as well as φIJ = φI − φJ , φ̃IJ = φ̃I − φ̃J . The contour integral (4.41)

at each instanton sector can again be evaluated by using the JK-prescription [70]. As

expected from the duality between the 5d SU(2)×SU(2) affine quiver gauge theory and

the 6d SCFT for 2 M5-branes on A1 singularity, the full partition function for the 5d

SU(2)×SU(2) affine quiver theory coincides with the partition function of the 6d SCFT

given in section 2.1. Namely,

Z6d
N =(1,0) A1

= Z5d
SU(2)2 · Zextra

Z6d
N =(1,0) A1

≡ Zpert
N =(1,0) A1

·
∞∑

l=0

ql
φZl , Z5d

SU(2)2 ≡ Z5d,pert
SU(2)2 · Z5d,inst

SU(2)2 ,
(4.42)

with the identification of the 5d/6d fugacities as

(A1, A2, y, µ1,2)5d = (q
1/2
φ α−1t, q

1/2
φ , t2, µ1,2)6d . (4.43)

Here, Zpert
N =(1,0) A1

and Zl are given in (4.24) and (4.2), respectively; and Zextra is an extra

factor independent of dynamical fugacities defined as

Zextra = PE


− (1 + p)(1 + q)Q

(1 − p)(1 − q)(1 −Q)
−

(
t2µ1

µ2
+ µ2

t2µ1
Q+ pqt2 µ2

µ1
+ pq µ1

t2µ2
Q
)

(1 − p)(1 − q)(1 −Q)


 . (4.44)

One can check the equality (4.42) by expanding both sides in terms of Q and qφ.

– 41 –



J
H
E
P
0
3
(
2
0
2
1
)
0
2
8

Higgsing. Higgsing (4.39) to the 5d N = 2 SU(2) gauge theory can be performed by

tuning the fugacities in the partition function as

A1 → A2 , µ2 → 1√
pq

. (4.45)

This leads to the partition function of the 5d N = 2 SU(2) gauge theory as

Z5d
SU(2)2

∣∣∣∣ A1→A2
µ2→1/

√
pq

= Z5d
N =2 SU(2)·Zextra′ , Zextra′ = PE


−

(1 − pq)
(
1 − pq

µ2
1

)
µ1

√
pq(1 − p)(1 − q)

y


 , (4.46)

up to the extra factor Zextra′ independent of the dynamical fugacity A2. After the Higgsing,

A2 becomes the fugacity for the SU(2) gauge symmetry and µ1 becomes the fugacity for

the SU(2) ⊂ SO(5) flavour symmetry.

Next consider the Higgsing with a position dependent VEV that introduces a codi-

mension 2 defect in the 5d N = 2 SU(2) theory. The Higgsing can achieve by the following

fugacity assignment:

A1 → A2
√
q , µ2 → 1√

pq2
, µ1 → µ1

√
q . (4.47)

With this specialisation of the fugacities, the partition function reduces to that of the 5d

N = 2 SU(2) theory in the presence of the monodromy defect, called Z[1,1], introduced

in [64]:

Z5d
SU(2)2

∣∣∣∣ A1→A2
√

q

µ2→1/
√

pq2

µ1→µ1
√

q

= Z[1,1] · Zextra′ . (4.48)

This shows that the codimension 2 defect introduced by the Higgsing is identical to the

monodromy defect considered in [64]. The instanton part of the codimension 2 defect

partition function is expanded in terms of y and Q/y, and the first few terms are given by

Z inst
[1,1] = 1 − (η − 1)(η −A2

2)

(1 − p)(1 −A2
2/p)η

y − (η − 1)(1 − ηqA2
2)p

(1 − p)(1 − pqA2
2)η

Q

y
+ . . . , (4.49)

with η defined in (4.19).

In the NS limit q → 1, the codimension 2 defect partition function satisfies the following

difference equation [64]:

[
A−1

2

θ̃(yη)

θ̃1(y)
Y −1

y +A2
θ̃1(y/η)

θ̃1(y)
Yy − 〈WSU(2)〉

]
lim
q→1

Z inst
[1,1] = 0 , (4.50)

where Yyy = pyYy and 〈WSU(2)〉 is the SU(2) fundamental Wilson loop expectation value in

the 5d maximal SYM discussed in [59, 64]. This is the difference equation of the two-body

elliptic Ruijsenaars-Schneider integrable system. Here, the Wilson loop expectation value

〈WSU(2)〉 of the 5d theory is related to the VEV of Wilson surface W(2,0) in the 6d (2,0)

A1 theory in [60] as

W(2,0) = q
1/2
φ 〈WSU(2)〉 . (4.51)
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One can verify that, by replacing

X = y−1 and YX = η−1Y −1
y , (4.52)

eq. (4.34) becomes (4.50). Hence, the difference equations agree.

5 Conclusions

In this paper we explored elliptic difference equations arising from quantisation of Seiberg-

Witten curves of compactified 6d A-type N = (1, 0) SCFTs. In order to obtain a 4d

N = 2 supersymmetric theory, the 6d theory is compactified on a two-torus together with

an Omega-background. This allows to compute the BPS partition function of the theory

together with expectation values of various defect operators using localisation. We ex-

plicitly showed, using a matrix-model approach, that the corresponding quantum curves

annihilate expectation values of codimension 2 surface defects inside the 6d theory. More-

over, we found that our difference equations can be rewritten as eigenvalue equations with

eigenvectors being our codimension 2 defects and eigenvalues corresponding to expectation

values of codimension 4 defects arising from Wilson surfaces wrapping the two-torus.

One important insight of our analysis is the fact that our difference operator equally

well applies to the 5d dual of the 6d SCFT. This duality, as for example recently explored

in [5–7], results in a 5d supersymmetric gauge theory admitting an affine quiver description.

In our case, this is an affine A-type quiver with SU(N) gauge nodes [17]. BPS partition

functions of the circle-compactified 5d theory are then equal to the torus-compactified 6d

partition function. The codimension 2 defect of the 6d theory is mapped to a codimension

2 defect inside the 5d theory giving rise to a coupled 3d/5d system. Difference operators

for such systems are not easy to obtain, but our approach via the dual 6d theory gives a

recipe to construct such operators from first principles.

Another direction, particularly interesting for future research, is the realisation of 4d

N = 1 SCFTs as surface defects inside a 6d SCFT. Indeed, our codimension 2 defect is itself

such a 4d theory extended over T
2 ×ǫ2 R

2. The expectation value of the defect operator

on such a geometry is related to the supersymmetric index of the corresponding 4d N = 1

SCFT and, thus, it is expected that such indices satisfy similar difference equation. For

instance, the superconformal indices for the 4d class Sk theories with surface defects have

been computed via the action of a difference operator in [8, 62, 63]. The rough expectation

is as follows: the 6d partition function with codimension 2 defect corresponds to the 4d

index of the 4d theory obtained via compactifiying the pure 6d theory on a Riemann

surface (with punctures). The addition of a surface defect in the 4d theory is realised via

a difference operator acting on the 4d index. Similarly, the codimension 4 defect in the 6d

theory is introduced via a difference operator, which yields a quantisation of the SW-curve

in the NS-limit. Thus, one expects an identification between the 4d difference operator

and the 6d difference operator, as the codimension 4 defect in 6d reduces to a surface

defect in 4d. In fact, the same codimension 2 defect was interpreted as a flux leading to a

minimal puncture on the Riemann surface in the context of the 4d class Sk theories in [71].

We expect our difference operator is related to a difference operator acting on the flavor
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fugacity associated to the minimal puncture in the 4d class Sk theory. However, further

detailed analysis is require for a precise statement.

From this point of view, it would be interesting to ask whether the knowledge of the

difference operator is enough to reconstruct the index of the corresponding 4d SCFT. First

steps in this direction have been taken in [8, 22, 48]. In particular, in [22] the authors give

a detailed derivation of the difference operator associated to N = 1 compactifications of

E-string theory. It would be interesting to extend these results by applying our techniques

to the torus-compactified E-string theory. The corresponding difference operator should in

this case arise from the quantisation of the SW-curve derived in [72]. We leave this and

the derivation of quantum curves for a wider class of 6d SCFTs for future work. Likewise,

the difference equations of other 6d SCFTs and their relation to integrable models, as for

example considered in [54], are interesting future directions.
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A Details of partition functions

The computational details of the various partition functions are provided in this appendix.

A.1 Perturbative contribution

The perturbtative part of the partition function is composed of the single letter contribu-

tions (2.4) for the 6d N = (1, 0) multiplets.

A.1.1 Higgsing: constant VEV

The perturbative part can be written as

Zk+1
pert = Zk

pert · PE

[
1

(1 − p)(1 − q)

(
Q

1 −Q
+

1

2

)

×
{

− (1 + pq)
k∑

i=1

(
eai−ak+1 + eak+1−ai

)− (1 + pq)

+
√
pq

k∑

l=1

(
eak+1(e−ml+b + e−nl−b) + e−ak+1(eml−b + enl+b)

)

+
√
pq

k∑

i=1

(
eai(e−mk+1+b + e−nk+1−b) + e−ai(emk+1−b + enk+1+b)

)

+
√
pq
(
eak+1(e−mk+1+b + e−nk+1−b) + e−ak+1(emk+1−b + enk+1+b)

)}]
(A.1)
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such that Higgsing (2.28b) yields for the different parts

− (1 + pq)
k∑

i=1

(
eai−ak+1 + eak+1−ai

)

= −(1 + pq)
k∑

i=1

(
√
pqeai−mk+1+b +

1√
pq
emk+1−b−ai

)
(A.2a)

√
pq

k∑

l=1

(
eak+1(e−ml+b + e−nl−b) + e−ak+1(eml−b + enl+b)

)

=
√
pq

k∑

l=1

(
1√
pq
emk+1−b(e−ml+b + e−nl−b) +

√
pqe−mk+1+b(eml−b + enl+b)

)
(A.2b)

√
pq

k∑

i=1

(
eai(e−mk+1+b + e−nk+1−b) + e−ai(emk+1−b + enk+1+b)

)

=
√
pq

k∑

i=1

(
eai(e−mk+1+b + pqe−mk+1+b) + e−ai

(
emk+1−b +

1

pq
emk+1−b

))

= (1 + pq)
k∑

i=1

(
√
pqeai−mk+1+b +

1√
pq
e−ai+mk+1−b

)
(A.2c)

√
pq
(
eak+1(e−mk+1+b + e−nk+1−b) + e−ak+1(emk+1−b + enk+1+b)

)

=
√
pq

(
1√
pq
emk+1−b(e−mk+1+b + pqe−mk+1+b) +

√
pqe−mk+1+b

(
emk+1−b +

1

pq
emk+1−b

))

= 2(1 + pq) (A.2d)

and collecting all the pieces leads to

Zk+1
pert =Zk

pert ·PE

[
1

(1−p)(1−q)

(
Q

1−Q
+

1

2

)
(A.3)

×
{

−(1+pq)
k∑

i=1

(
√
pqeai−mk+1+b +

1√
pq
emk+1−b−ai

)
−(1+pq)

+(1+pq)
k∑

i=1

(
√
pqeai−mk+1+b +

1√
pq
emk+1−b−ai

)
+2(1+pq)

+
√
pq

k∑

l=1

(
1√
pq
emk+1−b(e−ml+b +e−nl−b)+

√
pqe−mk+1+b(eml−b +enl+b)

)}]

=Zk
pert ·PE

[
1

(1−p)(1−q)

(
Q

1−Q
+

1

2

){
(1+pq) (A.4)

+
√
pq

k∑

l=1

(
1√
pq
emk+1−ml +

√
pqeml−mk+1

)

+
√
pq

k∑

l=1

(
1√
pq
emk+1−nl−2b +

√
pqenl−mk+1+2b

)}]
,
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where the additional pieces are attributed to the Goldstone modes for the reduced global

symmetry. In detail,

ZG =PE

[
1

(1−p)(1−q)

(
Q

1−Q+
1

2

){
(1+pq)+

√
pq

k∑

l=1

(
1√
pq
emk+1−ml +

√
pqeml−mk+1

)

+
√
pq

k∑

l=1

(
1√
pq
emk+1−nl−2b+

√
pqenl−mk+1+2b

)}]
,

=PE

[ √
pq

(1−p)(1−q)

(
Q

1−Q+
1

2

){(
1√
pq

+
√
pq

)
+

k∑

l=1

(
1√
pq
emk+1−ml +

√
pqeml−mk+1

)

+
k∑

l=1

(
1√
pq
emk+1−nl−2b+

√
pqenl−mk+1+2b

)}]
. (A.5)

A.1.2 Higgsing: position dependent VEV

Inspecting the different contributions to (A.1) yields for the position dependent Higgs-

ing (2.36b) the following:

− (1 + pq)
k∑

i=1

(
eai−ak+1 + eak+1−ai

)

= −(1 + pq)
k∑

i=1

(
1√
pq

eai

X
+

√
pq
X

eai

)
(A.6a)

√
pq

k∑

l=1

(
eak+1(e−ml+b + e−nl−b) + eak+1(eml−b + enl+b)

)

=
√
pq

k∑

l=1

(
√
pqX(e−mlB + e−nlB−1) +

1√
pqX

(emlB−1 + enlB)

)

=
√
pq

k∑

l=1

(
√
pqXBe−ml +

1√
pqXB

eml +
√
pqXe−nl +

1√
pqX

enl

)
(A.6b)

√
pq

k∑

i=1

(
eai(e−mk+1+b + e−nk+1−b) + e−ai(emk+1−b + enk+1+b)

)

=
√
pq

k∑

i=1

(
eaiX−1

(
1

pq
+ prqs

)
+ e−aiX

(
pq +

1

prqs

))

=
√
pq

k∑

i=1

(
eaiX−1

(
1 +

1

pq
− 1 + prqs

)
+ e−aiX

(
1 + pq − 1 +

1

prqs

))

= (1 + pq)
k∑

i=1

(
eai

√
pqX

+

√
pqX

eai

)
+ (1 − prqs)

√
pq

k∑

i=1

(
−eai

X
+

1

prqs

X

eai

)
(A.6c)

√
pq
(
eak+1(e−mk+1+b + e−nk+1−b) + e−ak+1(emk+1−b + enk+1+b)

)

=
√
pq

(
√
pq

(
1

pq
+ prqs

)
+

1√
pq

(
pq +

1

prqs

))

=
1

prqs
(1 + prqs)(1 + pr+1qs+1) (A.6d)
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and collecting all the pieces leads to

Zk+1
pert =Zk

pert ·PE

[
1

(1−p)(1−q)

(
Q

1−Q
+

1

2

)

×
{

−(1+pq)
k∑

i=1

(
1√
pq

eai

X
+

√
pq
X

eai

)
−(1+pq)

+
√
pq

k∑

l=1

(
√
pqXBe−ml +

1√
pqXB

eml +
√
pq
X

B
e−nl +

B√
pqX

enl

)

+(1+pq)
k∑

i=1

(
eai

√
pqX

+

√
pqX

eai

)
+(1−prqs)

√
pq

k∑

i=1

(
−eai

X
+

1

prqs

X

eai

)

+
1

prqs
(1+prqs)(1+pr+1qs+1)

}]

=Zk
pert ·PE

[
1

(1−p)(1−q)

(
Q

1−Q
+

1

2

)

×
{

−(1+pq)+
√
pq

k∑

l=1

(
√
pqXBe−ml +

1√
pqXB

eml +
√
pq
X

B
e−nl +

B√
pqX

enl

)

+(1−prqs)
√
pq

k∑

i=1

(
−eai

X
+

1

prqs

X

eai

)
+

1

prqs
(1+prqs)(1+pr+1qs+1)

}]
. (A.7)

Recalling the contribution (2.33) from the Goldstone bosons, one formally arrives at

Zk+1
pert =Zk

pert ·ZG ·PE

[
1

(1−p)(1−q)

(
Q

1−Q
+

1

2

){
(1−prqs)

√
pq

k∑

i=1

(
−eai

X
+

1

prqs

X

eai

)

+
1

prqs
(1+prqs)(1+pr+1qs+1)−2(1+pq)

}]
(A.8)

Z
(r,s)def
pert = PE

[
1

(1−p)(1−q)

(
Q

1−Q
+

1

2

){
−2(1+pq)+

1

prqs
(1+prqs)(1+pr+1qs+1)

+(1−prqs)
√
pq

k∑

i=1

(
−eai

X
+

1

prqs

X

eai

)}]

= PE

[
1

(1−p)(1−q)

(
Q

1−Q
+

1

2

){
1

prqs
(1−prqs)(1−pr+1qs+1) (A.9)

+(1−prqs)
√
pq

k∑

i=1

(
−eai

X
+

1

prqs

X

eai

)}]

= PE

[
(1−prqs)

(1−p)(1−q)

(
Q

1−Q
+

1

2

){
(1−pr+1qs+1)

prqs
+

√
pq

k∑

i=1

(
−eai

X
+

1

prqs

X

eai

)}]

and (2.45) contains the additional contributions from the codimension 2 defect, i.e.

Z
k+(r,s)def
pert = Zk

pert · Z(r,s)def
pert (A.10)

where the Goldstone mode contribution have been removed. Note that Z
(r,s)def
pert = 1 for

(r, s) = (0, 0).
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A.2 Elliptic functions

The non-perturbative contributions of the 6d partition function on T
2 × R

4
ǫ1,ǫ2

equals the

infinite sum of 2d elliptic genera. These elliptic genera are naturally composed of elliptic

modular forms, whose definitions and properties are summarised in this appendix.

A.2.1 Theta functions

There are various different definitions; here, the relevant definitions are recalled. Use the

conventions Q = e2πi τ , x = e2πi z and the Dedekind eta function [44, eq. (A.1)]

η(τ) = Q
1

24

∞∏

n=1

(1 −Qn) . (A.11)

Then, the different definitions are as follows:

[44, eq. (A.3)]
[73, eq. (D.6)]
[74, eq. (A.10)]

θ1(τ |z) = −iQ
1
8x

1
2

∞∏

k=1

(1 −Qk)(1 − xQk)(1 − x−1Qk−1) , (A.12a)

[18, eq. (3.7)] θ1(τ |z) = iQ
1
8x

1
2

∞∏

k=1

(1 −Qk)(1 − xQk)(1 − x−1Qk−1) , (A.12b)

[73, eq. (D.9)]
[18, eq. (3.43)] θ̂1(τ |z) =

∞∏

n=0

(1 − xQn)(1 −Qn+1)(1 − x−1Qn+1) , (A.12c)

[18, eq. (A.4)] θ̃1(τ |z) =
∞∏

j=0

(1 − x−1Qj+1)(1 − xQj) . (A.12d)

Notice that θ̂1(τ |z) has been called basic pseudo-elliptic θ-function in [73, appendix D]. For

this note, the following definition is useful

ϑ1(τ |z) :=
θ1(τ |z)
Q

1
12 η(τ)

such that





ϑ1(τ | − z) = −ϑ1(τ |z)
∂k

zϑ1(τ |z) = ∂k
z θ1(τ |z)

limτ→i∞ ϑ1(τ |z) = i
(

1√
x

− √
x
) , x ≡ e2πiz .

(A.13)

Comparison. The differently defined functions are related as follows:

θ1(τ |z) = −θ1(τ |z) , (A.14a)

θ̂1(τ |z) =
x

1
2

iQ
1
8

θ1(τ |z) , (A.14b)

θ̃1(τ |z) =
x

1
2Q− 1

12

i η(τ)
θ1(τ |z) . (A.14c)

Reflection property. Consider the shift property following [44, eq. (A.5)]:

θ1(τ | − z) = −θ1(τ |z) , (A.15a)

θ1(τ | − z) = −θ1(τ |z) , (A.15b)

θ̂1(τ | − z) = −x−1θ̂1(τ |z) , (A.15c)

θ̃1(τ | − z) = −x−1θ̃1(τ |z) . (A.15d)

Note that the transformation rule for θ̂1 agrees with [73, eq. (D.10)].
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Shift properties. Next, compute the shift properties following [44, eq. (A.4)] for a, b ∈ Z:

θ1(τ |z + a+ bτ) = (−1)a+bx−bQ− b2

2 θ1(τ |z) , (A.16a)

θ1(τ |z + a+ bτ) = (−1)a+bx−bQ− b2

2 θ1(τ |z) , (A.16b)

θ̂1(τ |z + a+ bτ) = (−1)bx−bQ− b(b−1)
2 θ̂1(τ |z) , (A.16c)

θ̃1(τ |z + a+ bτ) = η(τ)(−1)bx−bQ− b(b−1)
2 θ̃1(τ |z) . (A.16d)

Residue. According to [43, eq. (B.7)] or [44, eq. (A.7)], the residue at the pole a+ bτ is

1

2πi

∮

u=a+bτ

du

θ1(u)
=

(−1)a+beiπb2τ

2πη3
⇒

∮

u=0

du

θ1(u)
=

i

η3
, (A.17a)

which implies
∮

u=0

du

ϑ1(u)
=
iQ

1
12 η

η3
=
iQ

1
12

η2
(A.17b)

for the modified function (A.13).

A.2.2 Hierarchy of multiple elliptic gamma functions

Following for instance [18, appendix A], the definition of the multiple elliptic gamma func-

tion Gr(z|τ) includes

G0(z|τ) = θ̃1(z, τ) and G1(z|τ, σ) = Γ(z, τ, σ) , (A.18)

see (A.14) for the definition of θ̃1. These functions satisfy the following useful identity

Gr(z + τj |τ) = Gr−1(z|τ−(j))Gr(z|τ) , (A.19)

such that one finds

log θ̃1(z, τ) = log Γ(z + ǫ1, τ, ǫ1) − log Γ(z, τ, ǫ1) . (A.20)

A.3 Conventions for NS-limit

The NS-limit ǫ2 → 0 only yields a finite defect partition function if a suitable normalisation

is chosen. In addition, the expansion coefficients in the ǫ2 expansion need to be defined.

A.3.1 Normalised defect partition function

For the 6d theory with and without a defect, one has the following qφ expansions:

Z6d = Z6d
pert

(
1 +

∞∑

l=1

Z6d
l

)
, Z6d+def = Z6d

pert+def

(
1 +

∞∑

l=1

Z6d+def
l

)
, (A.21)
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such that the normalised defect partition function is defined as

Z̃6d+def :=
Z6d+def

Z6d
≡ Z̃6d+def

pert

(
1 +

∞∑

l=1

Z̃6d+def
l ql

φ

)
. (A.22)

The qφ expansion of the normalisation factor reads

1

Z6d
=

1

Z6d
pert

[
1 − Z6d

1 φ−
(
Z6d

2 −
(
Z6d

1

)2
)
φ2 −

(
Z6d

3 − 2Z6d
1 Z6d

2 +
(
Z6d

1

)3
)
φ3 + O(φ4)

]

(A.23)

and the standard expansion coefficients of the normalised defect partition function Z̃6d+def

are

Z̃6d+def
pert =

Z6d+def
pert

Z6d
pert

, (A.24a)

Z̃6d+def
1 = Z6d+def

1 − Z6d
1 , (A.24b)

Z̃6d+def
2 = Z6d+def

2 − Z6d
2 − Z6d

1

(
Z6d+def

1 − Z6d
1

)
, (A.24c)

and similarly for higher orders in qφ.

A.3.2 Notation and expansion coefficients

Some frequently appearing combinations of Theta functions have the following expansions:

ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)
=

1

ϑ′
1(0)

1

ǫ2
+B(0) + O(ǫ2) with B(0) =

1

ϑ′
1(0)

L(ǫ1) , (A.25a)

ϑ1(2ǫ+)ϑ1(sǫ2)

ϑ1(ǫ1)ϑ1(ǫ2)
= s+A(1)ǫ2 + O(ǫ22) with A(1) = sL(ǫ1) . (A.25b)

The ǫ2 expansion of functions defined in (2.14), (2.16), (2.50), and (2.65) are given by

V(0,s)(u− ǫ+) = 1 + V (1)
s (u− ǫ+) · ǫ2 + V (2)

s (u− ǫ+) · ǫ22 + O(ǫ32) (A.25c)

with V (1)
s (u− ǫ+) = sL

(
u− x− 1

2
ǫ1

)

V (2)
s (u− ǫ+) =

s

2
L

(
u− x− 1

2
ǫ1

)2

+
s

2
(s− 1)K

(
u− x− 1

2
ǫ1

)
,

Q∨(ai − ǫ+) = Q∨
(0)(ai − ǫ+) +Q∨

(1)(ai − ǫ+) · ǫ2 + O(ǫ22) (A.25d)

with Q∨
(0)(ai − ǫ+) = Q∨(ai − ǫ+)

∣∣
ǫ2=0

Q∨
(1)(ai − ǫ+) = Q∨

(0)(ai − ǫ+)
∑

k

[
L(aj − ak − ǫ1)

− 1

2
L

(
aj − 1

2
ǫ1 −mk + b

)
− 1

2
L

(
aj − 1

2
ǫ1 − nk − b

)]
,

W (ai − ǫ+) = 1 +W(1)(ai − ǫ+) · ǫ2 +W(2)(ai − ǫ+) · ǫ22 + O(ǫ32) (A.25e)

with W(1)(ai − ǫ+) = L(u− z − ǫ1) − L(u− z)

– 50 –



J
H
E
P
0
3
(
2
0
2
1
)
0
2
8

W(2)(ai − ǫ+) =
1

2
(K(u− z) −K(u− z − ǫ1))

+ L(u− z − ǫ1) (L(u− z − ǫ1) − L(u− z)) ,

with L(·), K(·) as defined in (2.17). In addition, for certain relevant combinations one

finds

V(0,s)(u1−ǫ+)V(0,s)(u2−ǫ+)−1=V(1)

(
u1− 1

2
ǫ1,u2− 1

2
ǫ1

)
·ǫ2 (A.25f)

+V(2)

(
u1− 1

2
ǫ1,u2− 1

2
ǫ1

)
·ǫ22+O(ǫ32)

with V(1)

(
u1− 1

2
ǫ1,u2− 1

2
ǫ1

)
=s

(
L

(
u1−x− 1

2
ǫ1

)
+L

(
u2−x− 1

2
ǫ1

))

V(2)

(
u1− 1

2
ǫ1,u2− 1

2
ǫ1

)
=
s

2

{
L

(
u1−x− 1

2
ǫ1

)2

+L

(
u2−x− 1

2
ǫ1

)2
}

+s2L

(
u1−x− 1

2
ǫ1

)
L

(
u2−x− 1

2
ǫ1

)

+
s

2
(s−1)

{
K

(
u1−x− 1

2
ǫ1

)
+K

(
u2−x− 1

2
ǫ1

)}

W (u1−ǫ+)W (u2−ǫ+)−1=W(1)

(
u1− 1

2
ǫ1,u2− 1

2
ǫ1

)
·ǫ2 (A.25g)

+W(2)

(
u1− 1

2
ǫ1,u2− 1

2
ǫ1

)
·ǫ22+O(ǫ32)

with W(1)

(
u1− 1

2
ǫ1,u2− 1

2
ǫ1

)
=

2∑

J=1

[L(uJ −z−ǫ1)−L(uJ −z)]

W(2)

(
u1− 1

2
ǫ1,u2− 1

2
ǫ1

)
=

2∑

J=1

[
1

2
(K(uJ −z)−K(uJ −z−ǫ1))

+L(uJ −z−ǫ1)(L(uJ −z−ǫ1)−L(uJ −z))
]

+L(u1−z)L(u2−z)−L(u1−z−ǫ1)L(u2−z)
−L(u1−z)L(u2−z−ǫ1)+L(u1−z−ǫ1)L(u2−z−ǫ1)

W (aj −ǫ+)W (aj −ǫ+−ǫκ)−1=W(1)(aj −ǫ+,aj −ǫ+−ǫκ)·ǫ2 (A.25h)

+W(2)(aj −ǫ+,aj −ǫ+−ǫκ)·ǫ22+O(ǫ32) , κ∈{1,2}
with W(1)(aj −ǫ+,aj −ǫ+−ǫ1)=L(aj −z−2ǫ1)−L(aj −z)

W(1)(aj −ǫ+,aj −ǫ+−ǫ2)=2[L(aj −z−ǫ1)−L(aj −z)]

W(2)(aj −ǫ+,aj −ǫ+−ǫ1)=
1

2
[K(aj −z)−K(aj −z−2ǫ1)]

+L(aj −z−2ǫ1)[L(aj −z−2ǫ1)−L(aj −z)]
W(2)(aj −ǫ+,aj −ǫ+−ǫ2)=2[K(aj −z)−K(aj −z−ǫ1)]

+4L(aj −z−2ǫ1)[L(aj −z−ǫ1)−L(aj −z)]
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Q̃

(
aj − 1

2
ǫ1

)
=

1

ϑ′
1(0)

Q∨
(0)

(
aj − 1

2
ǫ1

){∑

i

[
3

2
L

(
aj − 1

2
ǫ1−mi+b

)

+
3

2
L

(
aj − 1

2
ǫ1−ni−b

)
−2L(aj −ai−ǫ1)

]

−
∑

i6=j

L(aj −ai)

}

A.4 Elliptic genera for theory without defect

For the theory without defects of section 2.1, the non-perturbative contributions can be

computed via (2.15). In this section, the details of the 1 and 2-string calculation are

presented. As detailed in [43, 44], the JK-residue prescription requires the choice of an

auxiliary vector that determines the poles which contribute to the contour integral. While

the final result is independent of the choice made, the individual residues do not have an

invariant meaning. For this paper, the auxiliary vector is chosen to be +1 on 1-string level

and (1, 1) on 2-string level.

A.4.1 1-string

For the evaluation of the 1-string contribution, the residues of the following poles are

relevant:

ǫ+ + u− ai = 0 . (A.26)

Since Q(u) = M(u)
P0(u)P0(u+2ǫ+) , this choice of poles corresponds to the zeros of P0(u + 2ǫ+).

Using (A.17), one computes

∮
du

f(u)

P0(u+ 2ǫ+)
=

k∑

i=1

f(u)∏
j 6=i ϑ1(u− aj + ǫ+)

∣∣∣∣
u=ai−ǫ+

∮

u=ai−ǫ+

du

ϑ1(u− ai + ǫ+)

=
k∑

i=1

f(u)∏
j 6=i ϑ1(u− aj + ǫ+)

∣∣∣∣
u=ai−ǫ+

iQ
1

12 η

η3

=
iQ

1
12 η

η3

k∑

i=1

f(u)

P∨
0 (u+ 2ǫ+)

∣∣∣∣
u=ai−ǫ+

=
iQ

1
12 η

η3

k∑

i=1

f(ai − ǫ+)

P∨
0 (ai + ǫ+)

(A.27)

where the definitions (2.16) have been used. With this preparation, the elliptic genus

becomes

Z1 =

∮
du

(2πi)

(
2π η3θ1(2ǫ+)

θ1(ǫ1) θ1(ǫ2)

)
Q(u) =

ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

i=1

Q∨(ai − ǫ+) , (A.28)

using (A.13).

A.4.2 2-string

For l = 2, the elliptic genus becomes

Z2 =
1

2

∮
du1du2

(2πi)2

(
2π η3θ1(2ǫ+)

θ1(ǫ1)θ1(ǫ2)

)2

D(u1 − u2)D(u2 − u1)
2∏

p=1

Q(up) (A.29)

and the relevant poles are as follows:
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• Both poles originate from P0(up + ǫ1 + ǫ2) i.e.

(u1, u2) = (ai − ǫ+, aj − ǫ+) for i 6= j . (A.30)

• One pole from P0(up + ǫ1 + ǫ2) and one from D(±(u1 − u2)), i.e.

(u1, u2) = (am − ǫ+, am − ǫ+ − ǫ1,2) and

(u1, u2) = (am − ǫ+ − ǫ1,2, am − ǫ+) .
(A.31)

In order to compute the residues, the following intermediate results are useful:

∮

u=−ǫ2

du f(u)D(u) =

∮

u=−ǫ2

du f(u)
ϑ1(u)ϑ1(u+ ǫ1 + ǫ2)

ϑ1(u+ ǫ1)ϑ1(u+ ǫ2)

=
iQ

1
12 η

η3
f(−ǫ2)

ϑ1(−ǫ2)ϑ1(ǫ1)

ϑ1(ǫ1 − ǫ2)
(A.32a)

∮

u=−ǫ1

du f(u)D(u) =

∮

u=−ǫ1

du f(u)
ϑ1(u)ϑ1(u+ ǫ1 + ǫ2)

ϑ1(u+ ǫ1)ϑ1(u+ ǫ2)

=
iQ

1
12 η

η3
f(−ǫ1)

ϑ1(−ǫ1)ϑ1(ǫ2)

ϑ1(ǫ2 − ǫ1)
, (A.32b)

as well as

D(ǫ1) =
ϑ1(ǫ1)ϑ1(2ǫ1 + ǫ2)

ϑ1(2ǫ1)ϑ1(ǫ1 + ǫ2)
=
ϑ1(ǫ1)ϑ1(ǫ1 + 2ǫ+)

ϑ1(2ǫ1)ϑ1(2ǫ+)
, (A.32c)

D(ǫ2) =
ϑ1(ǫ2)ϑ1(ǫ1 + 2ǫ2)

ϑ1(ǫ1 + ǫ2)ϑ1(2ǫ2)
=
ϑ1(ǫ2)ϑ1(ǫ2 + 2ǫ+)

ϑ1(2ǫ+)ϑ1(2ǫ2)
. (A.32d)

Firstly, consider the contributions for (u1, u2) = (ai − ǫ+, aj − ǫ+)

Z2 ⊃ 1

2

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2

D(ai − aj)D(aj − ai)Q
∨(ai − ǫ+)Q∨(aj − ǫ+) . (A.33)

Secondly, both (u1, u2) = (am − ǫ+, am − ǫ+ − ǫ1) and (u1, u2) = (am − ǫ+ − ǫ1, am − ǫ+)

yield

Z2 ⊃ 1

2

ϑ1(2ǫ+)ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ−)ϑ1(2ǫ1)
Q∨(am − ǫ+)Q(am − ǫ+ − ǫ1) . (A.34)

Thirdly, both (u1, u2) = (am − ǫ+, am − ǫ+ − ǫ2) and (u1, u2) = (am − ǫ+ − ǫ2, am − ǫ+)

yield

Z2 ⊃ 1

2

−1 · ϑ1(2ǫ+)ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ−)ϑ1(2ǫ2)
Q∨(am − ǫ+)Q(am − ǫ+ − ǫ2) . (A.35)

Summing up all the individual contributions yields

Z2 =

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2 ∑

1≤i<j≤k

D(ai −aj)D(aj −ai)Q
∨(ai −ǫ+)Q∨(aj −ǫ+) (A.36)

+
ϑ1(2ǫ+)

ϑ1(2ǫ−)

k∑

j=1

Q∨(aj −ǫ+)

[
ϑ1(ǫ1 +2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(aj −ǫ+ −ǫ1)− ϑ1(ǫ2 +2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(aj −ǫ+ −ǫ2)

]

where the notation (2.16) has been used.
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A.5 Elliptic genera for theory with codimension 2 defect

In section 2.3, the theory with codiemnsion 2 defect is introduced. The non-perturbative

contributions are computed via (2.49), and in this section the 1 and 2-string results are

detailed. Again, choice of the auxiliary vector in the JK-residue is +1 on 1-string level and

(1, 1) on 2-string level.

A.5.1 1-string

The 1-string elliptic genus is given by

Z
(0,s)def
1 =

∮
du

2πi
Z

(0,s)def
1−loop (k, 1) ≡

∮
du

2πi
Z1−loop(k, 1) · V(0,s)(u) (A.37)

and the contour integral is evaluated by selecting the residues of the following poles:

• u = ai − ǫ+ for i = 1, . . . , k

Z
(0,s)def
1 ⊃ ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

i=1

(
Q∨(ai − ǫ+) · V(0,s)(ai − ǫ+)

)
(A.38)

• u = x

Z
(0,s)def
1 ⊃ ϑ1(2ǫ+)ϑ1(sǫ2)

ϑ1(ǫ1)ϑ1(ǫ2)
Q(x) (A.39)

such that the elliptic genus for l = 1 reads

Z
(0,s)def
1 =

ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

[
k∑

i=1

(
Q∨(ai − ǫ+) · V(0,s)(ai − ǫ+)

)
+ ϑ1(sǫ2) ·Q(x)

]
.

Following section A.3.1, the normalised 1-string contribution in the NS-limit reads

Z̃
(0,s)def
1 = Z

(0,s)def
1 − Z1

lim
ǫ2→0

Z̃
(0,s)def
1 = lim

ǫ2→0

{
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

i=1

(
Q∨(ai − ǫ+) ·

[
V(0,s)(ai − ǫ+) − 1

] )

+
ϑ1(2ǫ+)ϑ1(sǫ2)

ϑ1(ǫ1)ϑ1(ǫ2)
Q(x)

}
. (A.40)

To further evaluate the limit, consider

lim
ǫ2→0

V(0,s)(ai − ǫ+) − 1

ϑ1(ǫ2)
= s

1

ϑ′
1(0)

L(ai − x− 1

2
ǫ1) ,

lim
ǫ2→0

ϑ1(sǫ2)

ϑ1(ǫ2)
= s and lim

ǫ2→0

ϑ1(2ǫ+)

ϑ1(ǫ1)
= 1 , (A.41a)

such that

lim
ǫ2→0

Z̃
(0,s)def
1 =

s

ϑ′
1(0)

k∑

i=1

(
Q∨

(0)

(
ai − 1

2
ǫ1

)
· L
(
ai − x− 1

2
ǫ1

))
+ s ·Q(0)(x) (A.42)

= s · lim
ǫ2→0

Z̃
(0,1)def
1 ,

using the notation (A.25). Therefore, the (0, s) defect part is the product of s (0, 1) defect

contributions.
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A.5.2 2-string

Consider the l = 2 elliptic genus with defect given by

Z
(0,s)def
2 =

1

2

∮
du1du2

(2πi)2

(
2π η3θ1(2ǫ+)

θ1(ǫ1)θ1(ǫ2)

)2

D(u1 −u2)D(u2 −u1)
2∏

p=1

Q(up)V(0,s)(up) (A.43)

and the relevant poles can be split into poles that come from the theory without defect

such as:

• Both poles originate from P0(up + ǫ1 + ǫ2) i.e.

(u1, u2) = (ai − ǫ+, aj − ǫ+) for i 6= j . (A.44)

• One pole from P0(up + ǫ1 + ǫ2) and one from D(±(u1 − u2)), i.e.

(u1, u2) = (am − ǫ+, am − ǫ+ − ǫ1,2) and

(u1, u2) = (am − ǫ+ − ǫ1,2, am − ǫ+) .
(A.45)

In addition, there are new poles from the defect part. These are

• One pole from P0(up + ǫ1 + ǫ2) and one from V(0,s)(up), i.e.

(u1, u2) = (am − ǫ+, x) and (u1, u2) = (x, am − ǫ+) . (A.46)

• One pole from D(±(u1 − u2)) and one from V(0,s)(up), i.e.

(u1, u2) = (x, x− ǫ1,2) and (u1, u2) = (x− ǫ1,2, x) . (A.47)

Now, one can work out the residues for the individual poles as before: firstly, consider the

contributions for (u1, u2) = (ai − ǫ+, aj − ǫ+)

Z
(0,s)def
2 ⊃ 1

2

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2

D(ai − aj)D(aj − ai)

·Q∨(ai − ǫ+)Q∨(aj − ǫ+)V(0,s)(ai − ǫ+)V(0,s)(aj − ǫ+) . (A.48)

Secondly, both (u1, u2) = (am − ǫ+, am − ǫ+ − ǫ1) and (u1, u2) = (am − ǫ+ − ǫ1, am − ǫ+)

yield

Z
(0,s)def
2 ⊃ 1

2

ϑ1(2ǫ+)ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ−)ϑ1(2ǫ1)
Q∨(am − ǫ+)Q(am − ǫ+ − ǫ1)

· V(0,s)(am − ǫ+)V(0,s)(am − ǫ+ − ǫ1) (A.49)

Thirdly, both (u1, u2) = (am − ǫ+, am − ǫ+ − ǫ2) and (u1, u2) = (am − ǫ+ − ǫ2, am − ǫ+)

yield

Z
(0,s)def
2 ⊃ 1

2

−1 · ϑ1(2ǫ+)ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ−)ϑ1(2ǫ2)
Q∨(am − ǫ+)Q(am − ǫ+ − ǫ2)

· V(0,s)(am − ǫ+)V(0,s)(am − ǫ+ − ǫ2) (A.50)
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Fourthly, both (u1, u2) = (am − ǫ+, x) and (u1, u2) = (x, am − ǫ+) yield

Z
(0,s)def
2 ⊃ 1

2

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2

D(am − x− ǫ+)D(x+ ǫ+ − am)

·Q∨(am − ǫ+)Q(x)V(0,s)(am − ǫ+)ϑ1(sǫ2) (A.51)

Fifthly, both (u1, u2) = (x, x− ǫ1) and (u1, u2) = (x− ǫ1, x)

Z
(0,s)def
2 ⊃ 1

2

ϑ1(2ǫ+)ϑ1(ǫ1 + 2ǫ+)

ϑ1(2ǫ−)ϑ1(ǫ2)ϑ1(2ǫ1)
·Q(x)Q(x− ǫ1)V(0,s)(x− ǫ1)ϑ1(sǫ2) (A.52)

Lastly, both (u1, u2) = (x, x− ǫ2) and (u1, u2) = (x− ǫ2, x) yield

Z
(0,s)def
2 ⊃ −1

2

ϑ1(2ǫ+)ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ−)ϑ1(2ǫ2)
·Q(x)Q(x− ǫ2)V(0,s)(x− ǫ2)ϑ1(sǫ2) (A.53)

Summing up all the individual contributions leads to

Z
(0,s)def
2 =

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2 ∑

1≤i<j≤k

D(ai − aj)D(aj − ai) (A.54)

·Q∨(ai − ǫ+)Q∨(aj − ǫ+)V(0,s)(ai − ǫ+)V(0,s)(aj − ǫ+)

+
ϑ1(2ǫ+)

ϑ1(2ǫ−)

k∑

j=1

Q∨(aj − ǫ+)V(0,s)(aj − ǫ+)

·
[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(aj − ǫ+ − ǫ1)V(0,s)(aj − ǫ+ − ǫ1)

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(aj − ǫ+ − ǫ2)V(0,s)(aj − ǫ+ − ǫ2)

]

+

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2

ϑ1(sǫ2)
k∑

j=1

D(aj − x− ǫ+)D(x+ ǫ+ − aj)

·Q∨(aj − ǫ+)Q(x)V(0,s)(aj − ǫ+)

+
ϑ1(2ǫ+)

ϑ1(2ǫ−)
·Q(x)ϑ1(sǫ2) ·

[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(x− ǫ1)V(0,s)(x− ǫ1)

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(x− ǫ2)V(0,s)(x− ǫ2)

]
.

Next, consider the normalised 2-string elliptic genus, see appendix A.3.1,

Z̃
(0,s)def
2 = Z

(0,s)def
2 − Z2 − Z1

(
Z

(0,s)def
1 − Z1

)
and Zaux

2 = Z
(0,s)def
2 − Z2 . (A.55)

Firstly, focus on the 1-string contributions

Z
(0,s)def
1 − Z1 = Z̃1

∣∣
fin

+ Z̃1

∣∣
ǫ2

· ǫ2 + O(ǫ22) (A.56)
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with ǫ2 expansion coefficients

Z̃1

∣∣
fin

=
1

ϑ′
1(0)

∑

j

Q∨
(0)

(
aj − 1

2
ǫ1

)
V (1)

s

(
aj − 1

2
ǫ1

)
+ sQ(0)(x) ,

Z̃1

∣∣
ǫ2

=
1

ϑ′
1(0)

∑

j

Q∨
(0)

(
aj − 1

2
ǫ1

)
V (2)

s

(
aj − 1

2
ǫ1

)

+
1

ϑ′
1(0)

∑

j

Q∨
(1)

(
aj − 1

2
ǫ1

)
V (1)

s

(
aj − 1

2
ǫ1

)

+B(0)
∑

j

Q∨
(0)

(
aj − 1

2
ǫ1

)
V (1)

s

(
aj − 1

2
ǫ1

)
+A(1)Q(0)(x) + sQ(1)(x) .

Secondly, consider pure 2-string contributions

Zaux
k=2 = I1 + I2 + I3 + I4 (A.57)

with the following four parts:

I1 =

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2 ∑

1≤i<j≤k

D(ai − aj)D(aj − ai)

·Q∨(ai − ǫ+)Q∨(aj − ǫ+)
[
V(0,s)(ai − ǫ+)V(0,s)(aj − ǫ+) − 1

]
,

I2 =
ϑ1(2ǫ+)

ϑ1(2ǫ−)

k∑

j=1

Q∨(aj − ǫ+)

·
[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(aj − ǫ+ − ǫ1)

[
V(0,s)(aj − ǫ+)V(0,s)(aj − ǫ+ − ǫ1) − 1

]

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(aj − ǫ+ − ǫ2)

[
V(0,s)(aj − ǫ+)V(0,s)(aj − ǫ+ − ǫ2) − 1

] ]
,

I3 =

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2

ϑ1(sǫ2)
k∑

j=1

D(aj − x− ǫ+)D(x+ ǫ+ − aj)

·Q∨(aj − ǫ+)Q(x)V(0,s)(aj − ǫ+) ,

I4 =
ϑ1(2ǫ+)

ϑ1(2ǫ−)
ϑ1(sǫ2) ·Q(x) ·

[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(x− ǫ1)V(0,s)(x− ǫ1)

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(x− ǫ2)V(0,s)(x− ǫ2)

]
.

The ǫ2 expansion is defined as

Iµ = Iµ

∣∣
( 1

ǫ2
)2 · 1

ǫ22
+ Iµ

∣∣
1

ǫ2

· 1

ǫ2
+ Iµ

∣∣
fin

+ Iµ

∣∣
ǫ2

· ǫ2 + O(ǫ22) . (A.58)

The inspection of the most singular terms reveals

Iµ

∣∣
( 1

ǫ2
)2 = 0 , ∀µ ⇒

(
Z

(0,s)def
k=2 − Zk=2

) ∣∣
( 1

ǫ2
)2 = 0 , (A.59)
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which is required to vanish by consistency. The less singular expansion coefficients are

given by

I1

∣∣
1

ǫ2

=

(
1

ϑ′
1(0)

)2∑

i<j

Q∨
(0)

(
ai−

1

2
ǫ1

)
Q∨

(0)

(
aj − 1

2
ǫ1

)
V (1)

(
ai−

1

2
ǫ1,aj − 1

2
ǫ1

)

I1

∣∣
fin

=

(
1

ϑ′
1(0)

)2∑

i<j

Q∨
(0)

(
ai−

1

2
ǫ1

)
Q∨

(0)

(
aj − 1

2
ǫ1

)
V (2)

(
ai−

1

2
ǫ1,aj − 1

2
ǫ1

)

+

(
1

ϑ′
1(0)

)2∑

i<j

{
Q∨

(0)

(
ai−

1

2
ǫ1

)
Q∨

(1)

(
aj − 1

2
ǫ1

)
+Q∨

(1)

(
ai−

1

2
ǫ1

)
Q∨

(0)

(
aj − 1

2
ǫ1

)}

×V (1)
(
ai−

1

2
ǫ1,aj − 1

2
ǫ1

)

+

(
1

ϑ′
1(0)

)2∑

i<j

{
D(1)(ai−ǫ+)+D(1)(aj −ǫ+)

}
Q∨

(0)(ai−ǫ+)Q∨
(0)(aj −ǫ+)

×V (1)
(
ai−

1

2
ǫ1,aj − 1

2
ǫ1

)

+
2B(0)

ϑ′
1(0)

∑

i<j

Q∨
(0)(ai−ǫ+)Q∨

(0)(aj −ǫ+)V (1)(ai−ǫ+,aj −ǫ+)

I2

∣∣
1

ǫ2

=

(
1

ϑ′
1(0)

)2∑

j

(
Q∨

(0)

(
aj − 1

2
ǫ1

))2

V (1)
s (aj − 1

2
ǫ1)

I2

∣∣
fin

=
1

ϑ′
1(0)

∑

j

Q∨
(0)

(
aj − 1

2
ǫ1

)
Q(0)

(
aj − 3

2
ǫ1

)(
V (1)

s

(
aj − 1

2
ǫ1

)
+V (1)

s

(
aj − 3

2
ǫ1

))

− 1

ϑ′
1(0)

∑

j

Q∨
(0)

(
aj − 1

2
ǫ1

)
Q̃

(
aj − 1

2
ǫ1

)
V (1)

s

(
aj − 1

2
ǫ1

)

+2
B(0)

ϑ′
1(0)

∑

j

(
Q∨

(0)

(
aj − 1

2
ǫ1

))2

V (1)
s

(
aj − 1

2
ǫ1

)

+

(
1

ϑ′
1(0)

)2∑

j

(
2
ϑ′

1(ǫ1)

ϑ1(ǫ1)
Q∨

(0)

(
aj − 1

2
ǫ1

)
+Q∨

(1)

(
aj − 1

2
ǫ1

))

×Q∨
(0)

(
aj − 1

2
ǫ1

)
V (1)

s

(
aj − 1

2
ǫ1

)

+
1

2(ϑ′
1(0))2

∑

j

(
Q∨

(0)

(
aj − 1

2
ǫ1

))2

V (2)(aj −ǫ+,aj −ǫ+−ǫ2)

I3

∣∣
1

ǫ2

=
1

ϑ′
1(0)

sQ(0)(x)
∑

j

Q∨
(0)

(
aj − 1

2
ǫ1

)

I3

∣∣
fin

=
1

ϑ′
1(0)

sQ(0)(x)
∑

j

[
D(1)

(
aj −x− 1

2
ǫ1

)
+D(1)

(
x+

1

2
ǫ1−aj

)]
Q∨

(0)

(
aj − 1

2
ǫ1

)
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+
1

ϑ′
1(0)

s
∑

j

[
Q∨

(1)

(
aj − 1

2
ǫ1

)
Q(0)(x)+Q∨

(0)

(
aj − 1

2
ǫ1

)
Q(1)(x)

+Q∨
(0)

(
aj − 1

2
ǫ1

)
Q(0)(x)V (1)

s

(
aj − 1

2
ǫ1

)]

+2B(0)s
∑

j

Q∨
(0)

(
aj − 1

2
ǫ1

)
Q(0)(x)

I4

∣∣
1

ǫ2

=0

I4

∣∣
fin

=sQ(0)(x)

[
Q(0)(x−ǫ1)+

s−1

2
Q(0)(x)

]
.

Another consistency check is given by the vanishing of the 1
ǫ2

terms if one considers the pure

2-string terms together with the product of the 1-string contributions. Explicitly, one finds

(
Z

(0,s)def
2 − Z2

) ∣∣
1

ǫ2

− Z1

∣∣
1

ǫ2

·
(
Z

(0,s)def
1 − Z1

) ∣∣
fin

= 0 , (A.60)

as expected. Recalling the notation (A.25), the full normalised 2-string elliptic genus for

the codimension 2 defect in the NS-limit is given by

Z̃
(0,s)def
l=2 =

s(s+1)

2

k∑

j=1

(
Q∨

(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

L

(
aj −x− ǫ1

2

))2

− s

2

k∑

j=1

(
Q∨

(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

)2

K

(
aj −x− ǫ1

2

)

+
s2

2

k∑

i,j=1
i6=j

Q∨
(0)

(
ai − ǫ1

2

)

ϑ′
1(0)

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

L

(
ai −x− ǫ1

2

)
L

(
aj −x− ǫ1

2

)

+2s ·L(ǫ1)
k∑

j=1

(
Q∨

(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

)2

L

(
aj −x− ǫ1

2

)

+s
k∑

i,j=1
i6=j

Q∨
(0)

(
ai − ǫ1

2

)

ϑ′
1(0)

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

L

(
ai −x− ǫ1

2

)[
L(ai −aj +ǫ1)−L(ai −aj)

+L(aj −ai +ǫ1)−L(aj −ai)

]

+s
k∑

j=1

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

Q(0)

(
aj − 3ǫ1

2

)[
L

(
aj −x− ǫ1

2

)
+L

(
aj −x− 3ǫ1

2

)]

+s
k∑

j=1

(
Q∨

(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

)2

L

(
aj −x− ǫ1

2

)[ k∑

i=1

L(aj −ai −ǫ1)+
k∑

i=1
i6=j

L(aj −ai)

−
k∑

i=1

(
L

(
aj − ǫ1

2
−mi +b

)
+L

(
aj − ǫ1

2
−ni −b

))]
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+s ·Q(0)(x)
l∑

j=1

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

[
L

(
aj −x+

ǫ1
2

)
−L

(
aj −x− ǫ1

2

)

+L

(
x−aj +

3ǫ1
2

)
−L

(
x−aj +

ǫ1
2

)
+sL

(
aj −x− ǫ1

2

)]

+sQ(0)(x)

(
Q(0)(x−ǫ1)− 1−s

2
Q(0)(x)

)
(A.61)

the computation has been check against the NS-limit performed with Mathematica for

k = 2, 3.

A.6 Shift operator acting on defect partition function

The shift operator Y defined in (3.26) acts on the codimension 2 defect fugacity x. In

the appendix, the action on the perturbative and non-perturbative part of the partition

function is derived.

A.6.1 Perturbative contribution

The normalised perturbative part (2.48) for an (0, s) defect can be written as

Z̃
(0,s)def
pert = PE

[
s

2(1 − p)

(
1 +Q

1 −Q

){
(1 − p) +

√
p

k∑

i=1

(
X

Ai
− Ai

X

)}]
with Ai = ea

= PE

[
1

(1 − p)

(
1 +Q

1 −Q

){
(1 − p) +

√
p

k∑

i=1

(
X

Ai
− Ai

X

)}] s
2

(A.62)

=
∞∏

j,h=0

PE

[ (
Qj +Qj+1

){
1 + ph+ 1

2

k∑

i=1

(
L−1

i − Li

)}] s
2

with Li =
Ai

X
.

Focusing only on the X-dependent part, one proceeds further

f(X) =
k∏

i=1

∞∏

j,h=0

PE
[ (
Qj +Qj+1

)
ph+ 1

2

(
L−1

i − Li

) ] 1
2

=
k∏

i=1

∞∏

j,h=0

PE
[
Qjph+ 1

2L−1
i −Qjph+ 1

2LiQ
j+1ph+ 1

2L−1
i −Qj+1ph+ 1

2Li

] 1
2

=
k∏

i=1

∞∏

j,h=0

√√√√ (1 −Qjph+ 1
2Li)(1 −Qj+1ph+ 1

2Li)

(1 −Qjph+ 1
2L−1

i )(1 −Qj+1ph+ 1
2L−1

i )
,

which can be expressed in different forms:

• As elliptic Gamma functions

f(X) =
k∏

i=1

√√√√√



∞∏

j,h=0

(1 −Qj+1ph+1 Li√
p)

(1 −Qjph
√

p
Li

)




2

·
∞∏

h=0

(
1 − ph

√
p

Li

)(
1 − ph+1

Li√
p

)

=
k∏

i=1

√(
Γ

(
x+

1

2
ǫ1 − ai, τ, ǫ1

))2

· θ̃1

(
x+

1

2
ǫ1 − ai, ǫ1

)
, (A.63)

and the silly looking notation turns out to be useful to resolve a potential sign issues.
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• As inverse of Gamma functions

f(X) =
k∏

i=1

√√√√√



∞∏

j,h=0

(1 − phQj(
√
pLi))

(1 − ph+1Qj+1 1√
pLi

)




2

·
∞∏

h=0

1

(1 − ph(
√
pLi))(1 − ph+1 1√

pLi
)

=
k∏

i=1

√√√√ 1

θ̃1(ai − x+ 1
2ǫ1, ǫ1)

·
(

1

Γ(ai − x+ 1
2ǫ1, τ, ǫ1)

)2

, (A.64)

and the clumpsy looking notation is kept on purpose.

The perturbative part becomes

Z̃
(0,s)def
pert =

(
PE

[
1 +Q

1 −Q

]
· f(X)

) s
2

. (A.65)

Using the shift property in (A.16) and the expression in terms of elliptic Gamma func-

tions (A.63) and (A.64), one can straightforwardly show that

Y
√
θ̃1(yi, ǫ1) ·(Γ(yi, τ, ǫ1))2 =

√
θ̃1(yi −ǫ1, ǫ1) ·(Γ(yi −ǫ1, τ, ǫ1))2 with yi =x+

1

2
ǫ1 −ai

=

√√√√−e(yi−ǫ1)θ̃1(yi, ǫ1) ·
(

Γ(yi, τ, ǫ1)

θ̃1(y−ǫ1, τ)

)2

using (A.20)

=

√√√√−e(yi−ǫ1)θ̃1(yi, ǫ1) ·
(

iQ
1

12 η(τ)

e
1
2

(yi−ǫ1)θ1(y−ǫ1, τ)

)2

(Γ(yi, τ, ǫ1))2

=

√(
1

ϑ1(y−ǫ1, τ)

)2

·
√
θ̃1(yi, ǫ1)(Γ(yi, τ, ǫ1))2 (A.66)

and similarly

Y

√
1

θ̃1(zi, ǫ1)
· 1

(Γ(zi, τ, ǫ1))2 =

√
1

θ̃1(zi +ǫ1, ǫ1)
· 1

(Γ(zi +ǫ1, τ, ǫ1))2 with zi = ai −x+
1

2
ǫ1

=

√√√√
1

−e−zi θ̃1(zi, ǫ1)
· 1
(
θ̃1(zi, τ)Γ(zi, τ, ǫ1)

)2 using (A.20)

=

√√√√√
1

−e−zi
·
(
iQ

1
12 η(τ)

e
zi
2 θ1(zi, τ)

)2
1

(
θ̃1(zi, ǫ1)Γ(zi, τ, ǫ1)

)2

=

√(
1

ϑ1(zi, τ)

)2

·
√

1

θ̃1(zi, ǫ1)(Γ(zi, τ, ǫ1))2
(A.67)

such that both calculations (A.66) and (A.67) lead to (3.28).
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A.6.2 Elliptic genus

The defect part (3.15d) can be written as

V(0,s)
1 = s · ∂u log ϑ1(u− x) = s · ∂u log

[
i ηQ

1
12

e
u−x

2

θ̃1(u− x)

]
using (A.14)

= s · ∂u

(
log θ̃1(u− x) + log

[
i ηQ

1
12

]
− 1

2
(u− x)

)

= s · ∂u

(
log Γ(u− x+ ǫ1, τ, ǫ1) − log Γ(u− x, τ, ǫ1) + log

[
i ηQ

1
12

]
− 1

2
(u− x)

)

= s · ∂u

(
log Γ(u− x+ ǫ1, τ, ǫ1) − log Γ(u− x, τ, ǫ1) − 1

2
(u− x)

)
(A.68)

where the log[i ηQ
1

12 ] term vanishes due to the derivative. Then, the shift has the following

effect:

V(0,s)
1 (x→x−ǫ1) = s ·∂u

(
logΓ(u−x+2ǫ1, τ, ǫ1)− logΓ(u−x+ǫ1, τ, ǫ1)− 1

2
(u−x+ǫ1)

)

= s ·∂u

(
logΓ(u−x+ǫ1, τ, ǫ1)+log θ̃1(u−x+ǫ1, τ)

− logΓ(u−x,τ,ǫ1)− log θ̃1(u−x,τ)− 1

2
(u−x+ǫ1)

)
using (A.20)

= V(0,s)
1 (x)+s ·∂u

(
log θ̃1(u−x+ǫ1, τ)− log θ̃1(u−x,τ)− 1

2
ǫ1

)

= V(0,s)
1 (x)+s ·∂u

(
log

[
θ̃1(u−x+ǫ1, τ)

θ̃1(u−x,τ)
·e− 1

2
ǫ1

])

= V(0,s)
1 (x)+s ·∂u

(
log

[
ϑ1(u−x+ǫ1, τ)

ϑ1(u−x,τ)

])
using (A.14), (A.13)

= V(0,s)
1 (x)−s ·∂x

(
log

[
ϑ1(u−x+ǫ1, τ)

ϑ1(u−x,τ)

])
. (A.69)

Therefore, it follows that

∫
du ρ∗(u)V(0,s)

1 (x→x−ǫ1)=

∫
du ρ∗(u)V(0,s)

1 (x)−s·
∫

du ρ∗(u)∂x

(
log

[
θ1(u−x+ǫ1,τ)

θ1(u−x−b,τ)

])

=

∫
du ρ∗(u)V(0,s)

1 (x)+

(
log

[Y(x−ǫ1)

Y(x)

])s

(A.70)

and one arrives at (3.31).

A.7 Elliptic genera for theory with codimension 4 defect

In section 2.4, the theory in the presence of a codimension 4 defect has been considered.

The elliptic genus can be computed via (2.66), and the 1 and 2-string computations are

detailed here. The chosen auxiliary vector in the JK-residue is +1 on 1-string level and

(1, 1) on 2-string level.
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A.7.1 1-string

For 1-string contribution, one needs to evaluate the contour integral of (2.66) for l = 1, i.e.

ZWilson
1 =

∮
du

2πi

(
2π η3θ1(2ǫ+)

θ1(ǫ1) θ1(ǫ2)

)
·Q(u) ·W (u) . (A.71)

Similar to the codimension 2 defect computation (2.53), there are two types of poles:

• u = ai − ǫ+ for i = 1, . . . , k

ZWilson
1 ⊃ ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

i=1

(
Q∨(ai − ǫ+) ·W (ai − ǫ+)

)
. (A.72)

• u = z + ǫ+

ZWilson
1 ⊃ Q(z + ǫ+) . (A.73)

In total, the l = 1 genus reads

ZWilson
1 =

ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

i=1

Q∨(ai − ǫ+) ·W (ai − ǫ+) +Q(z + ǫ+) , (A.74)

where the notation (2.16) has been used. The normalised 1-string contribution in the

NS-limit is derived as follows:

Z̃Wilson
1 = ZWilson

1 − Z1 (A.75)

lim
ǫ2→0

Z̃Wilson
1 = lim

ǫ2→0

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

i=1

Q∨(ai − ǫ+) · [W (ai − ǫ+) − 1] +Q(z + ǫ+)

)

=
1

ϑ′
1(0)

k∑

i=1

Q∨
(0)

(
ai − 1

2
ǫ1

)
· [L(ai − z − ǫ1) − L(ai − z)] +Q(0)

(
z +

1

2
ǫ1

)
,

using (2.17), (A.25), and

lim
ǫ2→0

W (ai − ǫ+) − 1

ϑ1(ǫ2)
=

1

ϑ′
1(0)

[L(ai − z − ǫ1) − L(ai − z)] . (A.76)

A.7.2 2-string

Consider the following l = 2 elliptic genus

ZWilson
2 =

1

2

∮
du1du2

(2πi)2

(
2π η3θ1(2ǫ+)

θ1(ǫ1)θ1(ǫ2)

)2

D(u1 − u2)D(u2 − u1)
2∏

p=1

Q(up)W (up) (A.77)

and the relevant poles can be split into poles that come from the theory without defect

such as:

• Both poles originate from P0(up + ǫ1 + ǫ2) i.e.

(u1, u2) = (ai − ǫ+, aj − ǫ+) for i 6= j . (A.78)
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• One pole from P0(up + ǫ1 + ǫ2) and one from D(±(u1 − u2)), i.e.

(u1, u2) = (am − ǫ+, am − ǫ+ − ǫ1,2) and

(u1, u2) = (am − ǫ+ − ǫ1,2, am − ǫ+) .
(A.79)

In addition, there are new poles from the codimension 4 defect part. These are

• One pole from P0(up + ǫ1 + ǫ2) and one from W (up), i.e.

(u1, u2) = (am − ǫ+, z + ǫ+) and (u1, u2) = (z + ǫ+, am − ǫ+) . (A.80)

• One pole from D(±(u1 − u2)) and one from V(0,s)(up), i.e.

(u1, u2) = (z+ ǫ+, z+ ǫ+ − ǫ1,2) and (u1, u2) = (z+ ǫ+ − ǫ1,2, z+ ǫ+) . (A.81)

Now, one can work out the residues for the individual poles as before: firstly, consider the

contributions for (u1, u2) = (ai − ǫ+, aj − ǫ+)

ZWilson
2 ⊃ 1

2

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2

D(ai − aj)D(aj − ai)

·Q∨(ai − ǫ+)Q∨(aj − ǫ+)W (ai − ǫ+)W (aj − ǫ+) . (A.82)

Secondly, both (u1, u2) = (am − ǫ+, am − ǫ+ − ǫ1) and (u1, u2) = (am − ǫ+ − ǫ1, am − ǫ+)

yield

ZWilson
2 ⊃ 1

2

ϑ1(2ǫ+)ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ−)ϑ1(2ǫ1)
Q∨(am − ǫ+)Q(am − ǫ+ − ǫ1)

·W (am − ǫ+)W (am − ǫ+ − ǫ1) . (A.83)

Thirdly, both (u1, u2) = (am − ǫ+, am − ǫ+ − ǫ2) and (u1, u2) = (am − ǫ+ − ǫ2, am − ǫ+)

yield

ZWilson
2 ⊃ −1

2

ϑ1(2ǫ+)ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ−)ϑ1(2ǫ2)
Q∨(am − ǫ+)Q(am − ǫ+ − ǫ2)

·W (am − ǫ+)W (am − ǫ+ − ǫ2) . (A.84)

Fourthly, both (u1, u2) = (am − ǫ+, z + ǫ+) and (u1, u2) = (z + ǫ+, am − ǫ+) yield

ZWilson
2 ⊃ 1

2

ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)
D(am − z − 2ǫ+)D(z + 2ǫ+ − am)

·Q∨(am − ǫ+)Q(z + ǫ+)W (am − ǫ+) . (A.85)

Fifthly, both (u1, u2) = (z + ǫ+, z + ǫ+ − ǫ1) and (u1, u2) = (z + ǫ+ − ǫ1, z + ǫ+)

ZWilson
2 ⊃ 1

2

ϑ1(ǫ1)ϑ1(ǫ1 + 2ǫ+)

ϑ1(2ǫ−)ϑ1(2ǫ1)
·Q(z + ǫ+ − ǫ1)Q(z + ǫ+)W (z + ǫ+ − ǫ1) = 0 , (A.86)

because W (z + ǫ+ − ǫ1) = 0. Lastly, both (u1, u2) = (z + ǫ+, z + ǫ+ − ǫ2) and (u1, u2) =

(z + ǫ+ − ǫ2, z + ǫ+) yield

ZWilson
2 ⊃ −1

2

ϑ1(ǫ2)ϑ1(ǫ2 + 2ǫ+)

ϑ1(2ǫ−)ϑ1(2ǫ2)
·Q(z + ǫ+ − ǫ2)Q(z + ǫ+)W (z + ǫ+ − ǫ2) = 0 , (A.87)
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because W (z + ǫ+ − ǫ2) = 0. Summing up all the individual contributions leads to

ZWilson
2 =

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2 ∑

1≤i<j≤k

D(ai − aj)D(aj − ai) (A.88)

·Q∨(ai − ǫ+)Q∨(aj − ǫ+)W (ai − ǫ+)W (aj − ǫ+)

+
ϑ1(2ǫ+)

ϑ1(2ǫ−)

k∑

j=1

Q∨(aj − ǫ+)W (aj − ǫ+)

·
[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(aj − ǫ+ − ǫ1)W (aj − ǫ+ − ǫ1)

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(aj − ǫ+ − ǫ2)W (aj − ǫ+ − ǫ2)

]

+
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

j=1

D(aj − z − 2ǫ+)D(z + 2ǫ+ − aj)

·Q∨(aj − ǫ+)Q(z + ǫ+)W (aj − ǫ+)

For the evaluation of the normalised partition function in the NS-limit, the computation

is split into several steps as above:

ZWilson
2 − Z2 = J1 + J2 + J3 (A.89)

with the following parts:

J1 =

(
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

)2 ∑

1≤i<j≤k

D(ai − aj)D(aj − ai) (A.90)

·Q∨(ai − ǫ+)Q∨(aj − ǫ+) [W (ai − ǫ+)W (aj − ǫ+) − 1] ,

J2 =
ϑ1(2ǫ+)

ϑ1(2ǫ−)

k∑

j=1

Q∨(aj − ǫ+) (A.91)

·
[
ϑ1(ǫ1 + 2ǫ+)

ϑ1(ǫ2)ϑ1(2ǫ1)
Q(aj − ǫ+ − ǫ1) [W (aj − ǫ+)W (aj − ǫ+ − ǫ1) − 1]

− ϑ1(ǫ2 + 2ǫ+)

ϑ1(ǫ1)ϑ1(2ǫ2)
Q(aj − ǫ+ − ǫ2) [W (aj − ǫ+)W (aj − ǫ+ − ǫ2) − 1]

]
,

J3 =
ϑ1(2ǫ+)

ϑ1(ǫ1)ϑ1(ǫ2)

k∑

j=1

D(aj − z − 2ǫ+)D(z + 2ǫ+ − aj)

·Q∨(aj − ǫ+)Q(z + ǫ+)W (aj − ǫ+) , (A.92)

and the ǫ2 expansion yields

J1

∣∣
1

ǫ2

=

(
1

ϑ′
1(0)

)2∑

i<j

Q∨
(0)

(
ai−

1

2
ǫ1

)
Q∨

(0)

(
aj − 1

2
ǫ1

)
W(1)

(
ai−

1

2
ǫ1,aj − 1

2
ǫ1

)

J1

∣∣
fin

=

(
1

ϑ′
1(0)

)2∑

i<j

Q∨
(0)

(
ai−

1

2
ǫ1

)
Q∨

(0)

(
aj − 1

2
ǫ1

)
W(2)

(
ai−

1

2
ǫ1,aj − 1

2
ǫ1

)

+

(
1

ϑ′
1(0)

)2∑

i<j

{
Q∨

(0)

(
ai−

1

2
ǫ1

)
Q∨

(1)

(
aj − 1

2
ǫ1

)
+Q∨

(1)

(
ai−

1

2
ǫ1

)
Q∨

(0)

(
aj − 1

2
ǫ1

)}
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·W(1)

(
ai−

1

2
ǫ1,aj − 1

2
ǫ1

)

+

(
1

ϑ′
1(0)

)2∑

i<j

(
D(1)(ai−aj)+D(1)(aj −ai)

)
Q∨

(0)

(
ai−

1

2
ǫ1

)
Q∨

(0)

(
aj − 1

2
ǫ1

)

·W(1)

(
ai−

1

2
ǫ1,aj − 1

2
ǫ1

)

+2
B(0)

ϑ′
1(0)

∑

i<j

Q∨
(0)

(
ai−

1

2
ǫ1

)
Q∨

(0)

(
aj − 1

2
ǫ1

)
W(1)

(
ai−

1

2
ǫ1,aj − 1

2
ǫ1

)
,

J2

∣∣
1

ǫ2

=
1

2

(
1

ϑ′
1(0)

)2∑

j

Q∨
(0)(aj −ǫ+−ǫ2)Q∨

(0)(aj −ǫ+)W(1)(aj −ǫ+,aj −ǫ+−ǫ2)

J2

∣∣
fin

=
1

ϑ′
1(0)

∑

j

Q∨
(0)

(
aj − 1

2
ǫ1

)
Q(0)

(
aj − 3

2
ǫ1

)
W(1)(aj −ǫ+,aj −ǫ+−ǫ1)

− 1

2ϑ′
1(0)

∑

j

Q∨
(0)

(
aj − 1

2
ǫ1

)
Q̃

(
aj − 1

2
ǫ1

)
W(1)(aj −ǫ+,aj −ǫ+−ǫ2)

+
B(0)

ϑ′
1(0)

∑

j

(
Q∨

(0)

(
aj − 1

2
ǫ1

))2

W(1)(aj −ǫ+,aj −ǫ+−ǫ2)

+
1

2

(
1

ϑ′
1(0)

)2∑

j

[
2L(ǫ1)Q∨

(0)

(
aj − 1

2
ǫ1

)
+Q∨

(1)

(
aj − 1

2
ǫ1

)]

·Q∨
(0)

(
aj − 1

2
ǫ1

)
W(1)(aj −ǫ+,aj −ǫ+−ǫ2)

+
1

2(ϑ′
1(0))2

∑

j

(
Q∨

(0)

(
aj − 1

2
ǫ1

))2

W(2)(aj −ǫ+,aj −ǫ+−ǫ2),

J3

∣∣
1

ǫ2

=
1

ϑ′
1(0)

Q(0)(z+ǫ+)
∑

j

Q∨
(0)(aj −ǫ+)

J3

∣∣
fin

=
1

ϑ′
1(0)

∑

j

(
D(1)(aj −z−2ǫ+)+D(1)(z+2ǫ+−aj)

)
Q∨

(0)

(
aj − 1

2
ǫ1

)
Q(0)(z+ǫ+)

+
1

ϑ′
1(0)

∑

j

[
Q∨

(1)

(
aj − 1

2
ǫ1

)
Q(0)(z+ǫ+)+Q∨

(0)

(
aj − 1

2
ǫ1

)
Q(1)(z+ǫ+)

+Q∨
(0)

(
aj − 1

2
ǫ1

)
Q(0)(z+ǫ+)W(1)(aj −ǫ+)

]

+B(0)Q(0)(z+ǫ+)
∑

j

Q∨
(0)(aj −ǫ+).

With the conventions (2.17) and (A.25), the normalised 2-string elliptic genus in presence

of a codimension 4 defect reads

Z̃Wilson
2 =

k∑

i,j=1
i6=j

Q∨
(0)(ai − ǫ1

2 )

ϑ′
1(0)

Q∨
(0)(aj − ǫ1

2 )

ϑ′
1(0)

[
1

2
L(ai − z)L(aj − z)

− L(ai − z)L(aj − z − ǫ1) +
1

2
L(ai − z − ǫ1)L(aj − z − ǫ1)

]
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+
1

2

k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2

[K(aj − z) −K(aj − z − ǫ1)]

+
1

2

k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2

L(aj − z − ǫ1) [L(aj − z − ǫ1) − L(aj − z)]

+ 2L(ǫ1)
k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2

[L(aj − z − ǫ1) − L(aj − z)]

+
k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2

[L(aj − z − ǫ1) − L(aj − z)]

·
[ k∑

i=1

L(aj − ai − ǫ1) +
k∑

i=1
i6=j

L(aj − ai − ǫ1)

−
k∑

i=1

(
L

(
aj − ǫ1

2
−mi + b

)
+ L

(
aj − ǫ1

2
− ni − b

))]

+
k∑

i,j=1
i6=j

Q∨
(0)(ai − ǫ1

2 )

ϑ′
1(0)

Q∨
(0)(aj − ǫ1

2 )

ϑ′
1(0)

[L(ai − z − ǫ1) − L(ai − z)]

·
[
L(ai − aj + ǫ1) − L(ai − aj) + L(aj − ai + ǫ1) − L(aj − ai)

]

+
k∑

j=1

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

Q(0)

(
aj − 3ǫ1

2

)
[L(aj − z − 2ǫ1) − L(aj − z)]

+Q(0)

(
z +

ǫ1
2

) k∑

j=1

Q∨
(0)(aj − ǫ1

2 )

ϑ′
1(0)

[L(z − aj + 2ǫ1) − L(z − aj + ǫ1)] , (A.93)

which has been checked against the explicit NS-limit for k = 2, 3 via Mathematica.

A.8 Computation of P (x + ǫ1) coefficients

In section 3, the function P (x) appeared in the derivation of the difference equation (3.34).

The main focus of section 3.4 is to argue that P is related to the expectation value of a

Wilson surface. Here, the details of the 1 and 2-string comparison are presented.

A.8.1 1-string

Consider the prediction (3.43), then start by computing

(Y −1 − 1)Z̃
(0,1)def
1 =

1

ϑ′
1(0)

k∑

i=1

Q∨
(0)

(
ai − 1

2
ǫ1

)
·
[
L

(
ai − x− 3

2
ǫ1

)
− L

(
ai − x− 1

2
ǫ1

)]

+Q(0)(x+ ǫ1) −Q(0)(x) (A.94)

such that the addition of Q(0)(x) results in (3.44).
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A.8.2 2-string

Work out the 2-string prediction (3.47) with the results from above. To begin with, set

s = 1 then detail (Y −1 − 1)Z2 with Y −1f(x) = f(x+ ǫ1)

(Y −1−1)Z̃
(0,1)def
k=2 =

k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2(
L

(
aj −x− 3ǫ1

2

))2

−
(
L

(
aj −x− ǫ1

2

))2

− 1

2

k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2[
K

(
aj −x− 3ǫ1

2

)
−K

(
aj −x− ǫ1

2

)]

+
1

2

k∑

i,j=1
i6=j

Q∨
(0)(ai− ǫ1

2 )

ϑ′
1(0)

Q∨
(0)(aj − ǫ1

2 )

ϑ′
1(0)

·
[
L

(
ai−x− 3ǫ1

2

)
L

(
aj −x− 3ǫ1

2

)
−L

(
ai−x− ǫ1

2

)
L

(
aj −x− ǫ1

2

)]

+2·L(ǫ1)
k∑

j=1

(
Q∨

(0)(aj − ǫ1
2 )

ϑ′
1(0)

)2[
L

(
aj −x− 3ǫ1

2

)
−L

(
aj −x− ǫ1

2

)]

+
k∑

i,j=1
i6=j

Q∨
(0)

(
ai− ǫ1

2

)

ϑ′
1(0)

Q∨
(0)(aj − ǫ1

2 )

ϑ′
1(0)

L

(
ai−x− ǫ1

2

)[
L(ai−aj +ǫ1)−L(ai−aj)

+L(aj −ai+ǫ1)−L(aj −ai)
]

+
k∑

j=1

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

Q(0)

(
aj − 3ǫ1

2

)[
L

(
aj −x− 3ǫ1

2

)
+L

(
aj −x− ǫ1

2

)]

+
k∑

j=1

(
Q∨

(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

)2[
L

(
aj −x− 3ǫ1

2

)
−L

(
aj −x− ǫ1

2

)]

·
[ k∑

i=1

L(aj −ai−ǫ1)+
N∑

i=1
i6=j

L(aj −ai)

−
k∑

i=1

(
L

(
aj − ǫ1

2
−mi+b

)
+L

(
aj − ǫ1

2
−ni−b

))]

+
k∑

j=1

Q∨
(0)

(
aj − ǫ1

2

)

ϑ′
1(0)

{
Q(0)(x+ǫ1)

[
L

(
aj −x− ǫ1

2

)
+L

(
x−aj +

5ǫ1
2

)

−L
(
x−aj +

3ǫ1
2

)]

−Q(0)(x)

[
+L

(
aj −x+

ǫ1
2

)
+L

(
x−aj +

3ǫ1
2

)
−L

(
x−aj +

ǫ1
2

)]}

+Q(0)(x)
[
Q(0)(x+ǫ1)−Q(0)(x−ǫ1)

]
. (A.95)
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Next, one needs to work out the following contribution:

(Y − 1)Z̃
(0,1)def
1 =

k∑

i=1

Q∨
(0)

(
ai − 1

2ǫ1
)

ϑ′
1(0)

·
[
L

(
ai − x+

1

2
ǫ1

)
− L

(
ai − x− 1

2
ǫ1

)]

+Q(0)(x− ǫ1) −Q(0)(x) , (A.96)

such that

Q(0)(x)(Y −1)Z̃
(0,1)def
1 =Q(0)(x)

k∑

i=1

Q∨
(0)(ai − 1

2ǫ1)

ϑ′
1(0)

·
[
L

(
ai −x+

1

2
ǫ1

)
−L

(
ai −x− 1

2
ǫ1

)]

+Q(0)(x)
(
Q(0)(x−ǫ1)−Q(0)(x)

)
. (A.97)

In addition, one needs the following contribution:

Z̃
(0,1)def
1 ·(Y −1−1)Z̃

(0,1)def
1 =




k∑

j=1

Q∨
(0)

(
aj − 1

2ǫ1
)

ϑ′
1(0)

·L
(
aj −x− 1

2
ǫ1

)
+Q(0)(x)




·
(

k∑

i=1

Q∨
(0)

(
ai− 1

2ǫ1
)

ϑ′
1(0)

·
[
L

(
ai−x− 3

2
ǫ1

)
−L

(
ai−x− 1

2
ǫ1

)]

+Q(0)(x+ǫ1)−Q(0)(x)

)

=
k∑

i,j=1

Q∨
(0)(aj − 1

2ǫ1)

ϑ′
1(0)

Q∨
(0)(ai− 1

2ǫ1)

ϑ′
1(0)

L

(
aj −x− 1

2
ǫ1

)

·
[
L

(
ai−x− 3

2
ǫ1

)
−L

(
ai−x− 1

2
ǫ1

)]

+Q(0)(x)·
k∑

i=1

Q∨
(0)(ai− 1

2ǫ1)

ϑ′
1(0)

·
[
L

(
ai−x− 3

2
ǫ1

)
−2L

(
ai−x− 1

2
ǫ1

)]

+Q(0)(x+ǫ1)·
k∑

j=1

Q∨
(0)

(
aj − 1

2ǫ1
)

ϑ′
1(0)

·L
(
aj −x− 1

2
ǫ1

)

+Q(0)(x)
(
Q(0)(x+ǫ1)−Q(0)(x)

)
. (A.98)

Combining the individual terms, one finds (3.48)
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