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Introduction

Elliptic units, which are obtained by evaluating modular units at quadratic imaginary ar-
guments of the Poincaré upper half-plane, provide us with a rich source of arithmetic ques-
tions and insights. They allow the analytic construction of abelian extensions of imaginary
quadratic fields, encode special values of zeta functions through the Kronecker limit for-
mula, and are a prototype for Stark’s conjectural construction of units in abelian extensions
of number fields. Elliptic units have also played a key role in the study of elliptic curves
with complex multiplication through the work of Coates and Wiles.

This article is motivated by the desire to transpose the theory of elliptic units to the
context of real quadratic fields. The classical construction of elliptic units does not give
units in abelian extensions of such fields1. Naively, one could try to evaluate modular units
at real quadratic irrationalities; but these do not belong to the Poincaré upper half-plane
H. We are led to replace H by a p-adic analogue Hp := P1(Cp) − P1(Qp), equipped with
its structure of a rigid analytic space. Unlike its archimedean counterpart, Hp does contain
real quadratic irrationalities, generating quadratic extensions in which the rational prime p
is either inert or ramified.

Fix such a real quadratic field K ⊂ Cp, and denote by Kp its completion at the unique
prime above p. Chapter 2 describes an analytic recipe which to a modular unit α and to
τ ∈ Hp∩K associates an element u(α, τ) ∈ K×

p , and conjectures that this element is a p-unit
in a specific narrow ring class field of K depending on τ and denoted Hτ . The construction of
u(α, τ) is obtained by replacing, in the definition of “Stark-Heegner points” given in [Dar1],
the weight two cusp form attached to a modular elliptic curve by the logarithmic derivative
of α, an Eisenstein series of weight 2. Conjecture 2.14 of Chapter 2, which formulates a
Shimura reciprocity law for the p-units u(α, τ), suggests that these elements display the
same behavior as classical elliptic units in many key respects.

Assuming Conjecture 2.14, Chapter 3 relates the ideal factorization of the p-unit u(α, τ)
to the Brumer-Stickelberger element attached to Hτ/K. Thanks to this relation, Conjecture
2.14 is shown to imply the prime-to-2 part of the Brumer-Stark conjectures for the abelian
extension Hτ/K—an implication which lends some evidence for Conjecture 2.14 and leads
to the conclusion that the p-units u(α, τ) are (essentially) the p-adic Gross-Stark units which
enter in Gross’s p-adic variant [Gr1] of the Stark conjectures, in the context of ring class
fields of real quadratic fields.

Motivated by Gross’s conjecture, Chapter 4 evaluates the p-adic logarithm of the norm
from Kp to Qp of u(α, τ) and relates this quantity to the first derivative of a partial p-adic
zeta function attached to K at s = 0. The resulting formula, stated in Theorem 4.1, can be
viewed as an analogue of the Kronecker limit formula for real quadratic fields. In contrast
with the analogue given in Ch. II, § 3 of [Sie1] (see also [Za]), Theorem 4.1 involves non-
archimedean integration and p-adic rather than complex zeta-values. Yet in some ways it is
closer to the spirit of the original Kronecker limit formula because it involves the logarithm

1Except when the extension in question is contained in a ring class field of an auxiliary imaginary quadratic
field, an exception which is the basis for Kronecker’s solution to Pell’s equation in terms of values of the
Dedekind η-function.
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of an expression which belongs, at least conjecturally, to an abelian extension of K. Theorem
4.1 makes it possible to deduce Gross’s p-adic analogue of the Stark conjectures for Hτ/K
from Conjecture 2.14.

It should be stressed that Conjecture 2.14 leads to a genuine strengthening of the Gross-
Stark conjectures of [Gr1] in the setting of ring class fields of real quadratic fields, and also of
the refinement of these conjectures proposed in [Gr2]. Indeed, the latter exploits the special
values at s = 0 of abelian L-series attached to K, as well as derivatives of the corresponding
p-adic zeta-functions, to recover the images of Gross-Stark units in K×

p /Ō×
K , where Ō×

K is the
topological closure in K×

p of the unit group of K. Conjecture 2.14 of Chapter 2 proposes an
explicit formula for the Gross-Stark units themselves. It would be interesting to see whether
other instances of the Stark conjectures (both classical, and p-adic) are susceptible to similar
refinements2.

1 A review of the classical setting

LetH be the Poincaré upper half-plane, and let Γ0(N) denote the standard Hecke congruence
group acting on H by Möbius transformations. Write Y0(N) and X0(N) for the modular
curves over Q whose complex points are identified withH/Γ0(N) andH∗/Γ0(N) respectively,
where H∗ := H ∪ P1(Q) is the extended upper half-plane.

A modular unit is a holomorphic nowhere vanishing function on H/Γ0(N) which extends
to a meromorphic function on the compact Riemann surface X0(N)(C). A typical example
of such a unit is the modular function ∆(τ)/∆(Nτ). More generally, let DN be the free
Z-module generated by the formal Z-linear combinations of the positive divisors of N , and
let D0

N be the submodule of linear combinations of degree 0. We associate to each element
δ =

∑
nd[d] ∈ D0

N the modular unit

∆δ(τ) =
∏
d|N

∆(dτ)nd . (1)

Fix such a modular unit α = ∆δ on Γ0(N). Its level N will remain fixed from now on.
Let M0(N) ⊂ M2(Z) denote the ring of integral 2×2 matrices which are upper-triangular

modulo N . Given τ ∈ H, its associated order in M0(N), denoted Oτ , is the set of matrices
in M0(N) which fix τ under Möbius transformations:

Oτ :=

{(
a b
c d

)
∈ M0(N) such that aτ + b = cτ 2 + dτ

}
. (2)

This set of matrices is identified with a discrete subring of C by sending the matrix

(
a b
c d

)
to the complex number cτ + d. Hence Oτ is identified either with Z or with an order in an
imaginary quadratic field K.

2In a purely archimedean context, recent work of Ren and Sczech on the Stark conjectures for a complex
cubic field suggests that the answer to this question should be “yes”.
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Let O be such an order of discriminant −D, relatively prime to N . Define

HO := {τ ∈ H such that Oτ ' O}.

This set is preserved under the action of Γ0(N) by Möbius transformations, and the quotient
HO/Γ0(N) is finite.

If τ = u + iv belongs to HO, then the binary quadratic form

Q̃τ (x, y) = v−1(x− yτ)(x− yτ̄)

of discriminant −4 is proportional to a unique primitive integral quadratic form denoted

Qτ (x, y) = Ax2 + Bxy + Cy2, with A > 0. (3)

Since D is relatively prime to N , we have N |A and B2 − 4AC = −D. We introduce the
invariant

u(α, τ) := α(τ). (4)

The theory of complex multiplication (cf. [KL], Chapter 9, Lemma 1.1 and Chapter 11,
Theorem 1.2) implies that u(α, τ) belongs to an abelian extension of the imaginary quadratic
field K = Q(τ). More precisely, class field theory identifies Pic(O) with the Galois group of
an abelian extension H of K, the so called ring class field attached to O. Let OH denote
the ring of integers of H. If τ belongs to HO, then

u(α, τ) belongs to OH [1/N ]×, (5)

and
(σ − 1)u(α, τ) belongs to O×

H , for all σ ∈ Gal(H/K). (6)

Let
rec : Pic(O)−→Gal(H/K) (7)

denote the reciprocity law map of global class field theory, which for all prime ideals p - D
of K, sends the class of p ∩ O to the inverse of the Frobenius element at p in Gal(H/K).
One disposes of an explicit description of the action of Gal(H/K) on the u(α, τ) in terms of
(7). To formulate this description, known as the Shimura reciprocity law, it is convenient to
denote by ΩN the set of homothety classes of pairs (Λ1, Λ2) of lattices in C satisfying

Λ1 ⊃ Λ2, and Λ1/Λ2 ' Z/NZ. (8)

Let x 7→ x′ denote the non-trivial automorphism of Gal(K/Q). There is a natural bijection
τ from ΩN to H/Γ0(N), defined by sending x = (Λ1, Λ2) ∈ ΩN to the complex number

τ(x) = ω1/ω2, (9)

where 〈ω1, ω2〉 is a basis of Λ1 satisfying

Im(ω1ω
′
2 − ω′1ω2) > 0, and Λ2 = 〈Nω1, ω2〉. (10)
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A point τ ∈ H ∩K belongs to τ(ΩN(K)), where

ΩN(K) := {(Λ1, Λ2) ∈ ΩN with Λ1, Λ2 ⊂ K} /K×. (11)

Given an order O of K, denote by ΩN(O) the set of (Λ1, Λ2) ∈ ΩN(K) such that O is the
largest order preserving both Λ1 and Λ2. Note that

τ(ΩN(O)) = HO/Γ0(N).

Any element a ∈ Pic(O) acts naturally on ΩN(O) by translation:

a ? (Λ1, Λ2) := (aΛ1, aΛ2),

and hence also on HO/Γ0(N). Denote this latter action by

(a, τ) 7→ a ? τ, for a ∈ Pic(O), τ ∈ HO/Γ0(N). (12)

Implicit in the definition of this action is the choice of a level N , which is usually fixed and
therefore supressed from the notation.

Fix a complex embedding H−→C. The following theorem is the main statement that we
wish to generalize to real quadratic fields.

Theorem 1.1. If τ belongs to HO/Γ0(N), then u(α, τ) belongs to H×, and (σ − 1)u(α, τ)
belongs to O×

H , for all σ ∈ Gal(H/K). Furthermore,

u(α, a ? τ) = rec(a)−1u(α, τ), (13)

for all a ∈ Pic(O).

Let log : R>0−→R denote the usual logarithm. The Kronecker limit formula expresses
log |u(α, τ)|2 in terms of derivatives of certain zeta-functions. The remainder of this chapter
is devoted to describing this formula in the shape in which it will be generalized in Chapter
4.

To any positive-definite binary quadratic form Q is associated the zeta-function

ζQ(s) =
∞∑

m,n=−∞

′ Q(m,n)−s, (14)

where the prime on the summation symbol indicates that the sum is taken over pairs of
integers (m,n) different from (0, 0).

If τ belongs to HO, define

ζτ (s) := ζQτ (s), ζ(α, τ, s) :=
∑
d|N

ndd
−sζdτ (s). (15)

Note that, for any d|N ,

Qdτ (x, y) =
A

d
x2 + Bxy + dCy2,

so the terms in the definition of ζ(α, τ, s) are zeta-functions attached to integral quadratic
forms of the same discriminant−D. Note also that ζ(α, τ, s) depends only on the Γ0(N)-orbit
of τ .

The Kronecker limit formula can be stated as follows.
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Theorem 1.2. Suppose that τ belongs to HO. The function ζ(α, τ, s) is holomorphic except
for a simple pole at s = 1. It vanishes at s = 0, and

ζ ′(α, τ, 0) = − 1

12
log NormC/R(u(α, τ)). (16)

Proof. The function ζτ (s) is known to be holomorphic everywhere except for a simple pole
at s = 1. Furthermore, the first Kronecker limit formula (cf. [Sie1], Theorem 1 of Ch. I, § 1)
states that, for all τ = u + iv ∈ HO, the function ζτ (s) admits the following expansion near
s = 1:

ζτ (s) =
2π√
D

(s− 1)−1 +
4π√
D

(
C − 1

2
log(2

√
Dv)− log(|η(τ)|2)

)
+ O(s− 1), (17)

where

C = lim
n→∞

(1 +
1

2
+ · · · 1

n
− log n)

is Euler’s constant, and

η(τ) = eπiτ/12

∞∏
m=1

(1− e2πimτ )

is the Dedekind η-function satisfying

η(τ)24 = ∆(τ).

(The reader should note that Theorem I of Ch. I of [Sie1] is only written down for D = 4—
the case for general D given in (17) is readily deduced from this.) The functional equation
satisfied by ζτ (s) allows us to write its expansion at s = 0 as

ζτ (s) = −1−
(
κ + 2 log(

√
v|η(τ)|2)

)
s + O(s2),

where κ is a constant which is unchanged when τ ∈ HO is replaced by dτ with d dividing
N . It follows that ζ(α, τ, 0) = 0, and a direct calculation shows that ζ ′(α, τ, 0) is given by
(16).

2 Elliptic units for real quadratic fields

Let K be a real quadratic field, and fix an embedding K ⊂ R. Also fix a prime p which is
inert in K and does not divide N , as well as an embedding K ⊂ Cp. Let

Hp = P1(Cp)− P1(Qp)

denote the p-adic upper half-plane. It is endowed with an action of the group Γ0(N) and of
the larger {p}-arithmetic group Γ defined by

Γ =

{(
a b
c d

)
∈ SL2(Z[1/p]) such that N |c

}
. (18)
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Given τ ∈ Hp ∩ K, the associated order of τ in M0(N)[1/p], denoted Oτ , is defined by
analogy with (2) as the set of matrices in M0(N)[1/p] which fix τ under Möbius transforma-
tions, i.e.,

Oτ :=

{(
a b
c d

)
∈ M0(N)[1/p] such that aτ + b = cτ 2 + dτ

}
. (19)

This set is identified with a Z[1/p]-order in K—i.e., a subring of K which is a free Z[1/p]-
module of rank 2.

Conversely, let D > 0 be a positive discriminant which is prime to Np, and let O be the
Z[1/p]-order of discriminant D. Set

HO
p := {τ ∈ Hp such that Oτ = O}.

This set is preserved under the action of Γ by Möbius transformations, and the quotient
HO

p/Γ is finite. Note that the simplifying assumption that N is prime to D implies that the
Z[1/p]-order Oτ is in fact equal to the full order associated to τ in M2(Z[1/p]).

Our goal is to associate to the modular unit α and to each τ ∈ HO
p (taken modulo the

action of Γ) a canonical invariant u(α, τ) ∈ K×
p behaving “just like” the elliptic units of the

previous chapter, in a sense that is made precise in Conjecture 2.14. To begin, it will be
essential to make the following restriction on α.

Assumption 2.1. There is an element ξ ∈ P1(Q) such that α has neither a zero nor a pole
at any cusp which is Γ-equivalent to ξ.

Examples of such modular units are not hard to exhibit. For example, when N = 4 the
modular unit

α = ∆(z)2∆(2z)−3∆(4z) (20)

satisfies assumption 2.1 with ξ = ∞. More generally, this is true of the unit ∆δ of equation
(1), provided that δ satisfies ∑

d

ndd = 0. (21)

Remark 2.2. When N is square-free, two cusps ξ = u
v

and ξ′ = u′

v′
are Γ0(N)-equivalent if

and only if gcd(v, N) = gcd(v′, N). Because p does not divide N , it follows that two cusps
are Γ-equivalent if and only if they are Γ0(N)-equivalent.

Remark 2.3. Note that as soon as X0(N) has at least three cusps, there is a power αe of
α which can be written as

αe = α0α∞,

where αj satisfies Assumption 2.1 with ξ = j. This will make it possible to define the image
of u(α, τ) in K×

p ⊗Q by the rule

u(α, τ) = (u(α0, τ)u(α∞, τ))⊗ 1

e
.

From now on, we will assume that α = ∆δ is of the form given in (1) with the nd satisfying
(21). The construction of u(α, τ) proceeds in three stages which are described in sections
2.1, 2.2 and 2.3.
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2.1 p-adic measures

Recall that a Zp-valued (resp. integral) p-adic measure on P1(Qp) is a finitely additive
function

µ :

{
Compact open
subsets U ⊂ P1(Qp)

}
−→Zp (resp. Z).

Such a measure can be integrated against any continuous Cp-valued function h on P1(Qp)
by evaluating the limit of Riemann sums∫

P1(Qp)

h(t) dµ(t) := lim
{tj∈Uj}

∑
j

h(tj)µ(Uj),

taken over increasingly fine covers of P1(Qp) by mutually disjoint compact open subsets Uj.
If µ is an integral measure, and h is nowhere vanishing, one can define a “multiplicative”
refinement of the above integral by setting

×
∫

P1(Qp)

h(t) dµ(t) := lim
{tj∈Uj}

∏
j

h(tj)
µ(Uj). (22)

A ball in P1(Qp) is a translate under the action of PGL2(Qp) of the basic compact open
subset Zp ⊂ P1(Qp). Let B denote the set of balls in P1(Qp). The following basic facts about
balls will be used freely.

1. A measure µ is completely determined by its values on the balls. This is because any
compact open subset of P1(Qp) can be written as a disjoint union of elements of B.

2. Any ball B = γZp can be expressed uniquely as a disjoint union of p balls,

B = B0 ∪B1 ∪ · · · ∪Bp−1, where Bj = γ(j + pZp). (23)

The following gives a simple criterion for a function on B to arise from a measure on P1(Qp).

Lemma 2.4. If µ is any Zp-valued function on B satisfying

µ(P1(Qp)−B) = −µ(B), µ(B) = µ(B0) + · · ·+ µ(Bp−1) for all B ∈ B,

then µ extends (uniquely) to a measure on P1(Qp) with total measure 0.

Remark 2.5. The proof of lemma 2.4 can be made transparent by using the dictionary
between measures on P1(Qp) and harmonic cocycles on the Bruhat-Tits tree of PGL2(Qp),
as explained in Section 2.6.

Let α∗(z) denote the modular unit on Γ0(Np) defined by

α∗(z) := α(z)/α(pz).
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Note that

p−1∏
j=0

α∗
(

z − j

p

)
=

∏p−1
j=0 α

(
z−j
p

)
α(z)p

=
α(pz)

∏p−1
j=0 α

(
z−j
p

)
α(pz)α(z)p

(24)

=
α(z)p+1

α(pz)α(z)p
= α∗(z), (25)

where (25) follows from the fact that the weight two Eisenstein series dlog α on Γ0(N) (whose
q-expansion is given by (59) and (63) below) is an eigenvector of Tp with eigenvalue p + 1.

The following proposition is a key ingredient in the definition of u(α, τ).

Proposition 2.6. There is a unique collection of integral p-adic measures on P1(Qp), indexed
by pairs (r, s) ∈ Γξ × Γξ and denoted µα{r → s}, satisfying the following axioms for all
r, s ∈ Γξ:

1. µα{r → s}(P1(Qp)) = 0.

2. µα{r → s}(Zp) =
1

2πi

∫ s

r

dlog α∗(z).

3. (Γ-equivariance). For all γ ∈ Γ and all compact open U ⊂ P1(Qp),

µα{γr → γs}(γU) = µα{r → s}(U).

Proof. The key point is that the group Γ acts almost transitively on B. There are two distinct
Γ-orbits for this action, one consisting of the orbit of Zp and the other of its complement
P1(Qp) − Zp. To construct the system of measures µα{r → s} satisfying properties (1)–(3)
above, we first define them as functions on B. If B is any ball then it can be expressed
without loss of generality (after possibly replacing it by its complement) as

B = γZp, for some γ ∈ Γ. (26)

Then properties (2) and (3) force the definition

µα{r → s}(B) :=
1

2πi

∫ γ−1s

γ−1r

dlog α∗(z). (27)

The line integral in (27) converges, since both endpoints belong to the set Γξ = Γ0(N)ξ—this
is the crucial stage where assumption 2.1 is used—and it is an integer by the residue theorem.
Note also that the right-hand side of (27) does not depend on the expression of B chosen in
(26). This is because the element γ that appears in (26) is well-defined up to multiplication
on the right by an element of Γ0(Np) = StabΓ(Zp). Since the integrand dlog α∗ is invariant
under this group, (27) yields a well-defined rule. The function µα{r → s} thus defined on B
extends by additivity to an integral measure on P1(Qp). To see this let

B = B0 ∪ · · · ∪Bp−1 =

p−1⋃
j=0

γ

(
p j
0 1

)
Zp
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be the decomposition appearing in (23). Setting r′ = γ−1r and s′ = γ−1s,

2πi

p−1∑
j=0

µα{r → s}(Bj) =

p−1∑
j=0

∫ s′−j
p

r′−j
p

dlog α∗(z) =

∫ s′

r′
Up dlog α∗(z).

By (25), the differential form dlog α∗(z) is invariant under Up, and it follows that

µα{r → s}(B0) + · · ·+ µα{r → s}(Bp−1) = µα{r → s}(B).

Proposition 2.6 now follows from Lemma 2.4.

Remark 2.7. It follows from property 2 in Proposition 2.6 that

µα{r → s}+ µα{s → t} = µα{r → t},

for all r, s, t ∈ Γξ. In the terminology introduced in Section 2.5, µα can thus be viewed as a
partial modular symbol with values in the Γ-module of measures on P1(Qp).

2.2 Double integrals

Let
ordp : C×

p −→Q ⊂ Kp, logp : C×
p −→Cp

be the p-adic ordinal and Iwasawa’s p-adic logarithm respectively, satisfying logp(p) = 0.
Motivated by Definition 1.9 of [Dar1], we set∫ τ2

τ1

∫ s

r

dlog α :=

∫
P1(Qp)

logp

(
t− τ2

t− τ1

)
dµα{r → s}(t) (28)

for τ1, τ2 ∈ Hp and r, s ∈ Γξ. Note that this new integral—which is Cp-valued—is completely
different from the complex line integral of dlog α of equation (40) and so there is some abuse
of notation in designating the integrand in the same way. However this notation is suggestive,
and should result in no confusion since double integral signs are always used to describe the
integral of (28).

The expression defined by (28) is additive in both variables of integration. Properties 1
and 3 of Proposition 2.6 imply that it is also Γ-invariant, i.e.,∫ γτ2

γτ1

∫ γs

γr

dlog α =

∫ τ2

τ1

∫ s

r

dlog α, for all γ ∈ Γ.

Noting that the measures µα{r → s} involved in the definition of the double integral in
(28) are actually Z-valued, it is possible to perform the same multiplicative refinement as in
equation (71) of [Dar1] to define the K×

p -valued multiplicative integral:

×
∫ τ2

τ1

∫ s

r

dlog α = ×
∫

P1(Qp)

(
t− τ2

t− τ1

)
dµα{r → s}(t), (29)

for τ1, τ2 ∈ Hp ∩Kp and r, s ∈ Γξ.
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2.3 Splitting a two-cocycle

Using the double multiplicative integral of equation (29), we may associate to any τ ∈ Hp∩Kp

and to any choice of base point x ∈ Γξ a K×
p -valued two-cocycle

κτ ∈ Z2(Γ, K×
p )

by the rule

κτ (γ1, γ2) = ×
∫ γ1τ

γ1γ2τ

∫ γ1x

x

dlog α.

It is instructive to compare the following proposition with Conjecture 5 of [Dar1].

Proposition 2.8. The two-cocycles

ordp(κτ ), logp(κτ ) ∈ Z2(Γ, Kp)

are two-coboundaries. Their image in H2(Γ, Kp) does not depend on τ or x.

An explicit splitting of ordp(κτ ) will be given in section 3 (Proposition 3.4), and of logp(κτ )
in section 4 (Proposition 4.7); see section 2.7 for the connection between the indefinite
integrals appearing in those propositions and the two-cocycle κτ .

Given any integer e > 0, let K×
p [e] denote the e-torsion subgroup of K×

p . Proposition 2.8
implies the existence of an element ρτ ∈ C1(Γ, K×

p ) satisfying

κτ = dρτ (mod K×
p [eα]) (30)

for some eα dividing p2 − 1. The minimal such integer eα depends only on α and not on τ .
It is natural to expect that

eα
?
= 1,

but we have not attempted to show this. One strategy to do so would be to apply the
techniques of section 4.7 in a “mod p−1 refined” context, as in the work of deShalit ([deS1],
[deS2]).

Remark 2.9. Let µp−1 denote the group of (p − 1)st roots of unity in C×
p . In many cases,

one can give a direct proof that the natural image of κτ in H2(Γ, C×
p /µp−1) vanishes. An

element of H2(Γ, C×
p ) corresponds to a homomorphism

φκ : H2(Γ, Z) → C×
p .

By the independence of the cohomology class κ on τ , this homomorphism takes values in
Q×

p . Up to 2 and 3 torsion,

H2(Γ, Z) = H1(X0(Np)(C)− Γξ, Z)p−new,

where the space on the right is the p-new subspace of the singular homology group of the
modular curve X0(Np) with the cusps in Γξ removed. The homomorphism φκ is Hecke
equivariant, where the Hecke action on Q×

p is given by the eigenvalues of dlog α∗. Thus if
there are no p-new modular units of level Np, regular on Γξ and with the same eigenvalues
as this Eisenstein series—for example, if N is squarefree, or if N = 4—then it follows that
the image of φκ lies in the torsion subgroup of Q×

p .
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The one-cochain ρτ which splits κτ is uniquely defined up to elements in Z1(Γ, K×
p ) =

Hom(Γ, K×
p ). Fortunately, we have:

Lemma 2.10. The abelianization of Γ is finite.

Proof. See Theorem 2 of [Me] or Theorem 3 of [Se2].

Let eΓ denote the exponent of the abelianization of Γ, and let

e = lcm(eα, eΓ), U = K×
p [e].

The image of ρτ in C1(Γ, K×
p /U) depends only on α, τ , and on the base point x, not on the

choice of one-cochain ρτ satisfying (30).
Assume now that τ ∈ Hp ∩K. Let Γτ be the stabilizer of τ in Γ.

Lemma 2.11. The rank of Γτ is equal to one.

Proof. The group Γτ is identified with the group (Oτ )
×
1 of elements of norm 1 in the order

Oτ associated to τ . By the Dirichlet unit theorem this group has rank one, and in fact the
quotient Γτ/〈±1〉 is isomorphic to Z.

Lemma 2.12. The restriction of ρτ to Γτ depends only on α and τ , not on the choice of
base point x ∈ Γξ that was made to define κτ .

Proof. Write κτ,x and ρτ,x for κτ and ρτ respectively to emphasize the dependence of these
invariants on the choice of base point x ∈ Γξ. A direct computation (cf. for example Lemma
8.4 of [Dar2]) shows that if y is another choice of base point, then

κτ,x − κτ,y = dρx,y,

where the one-cochain ρx,y ∈ C1(Γ, K×
p ) vanishes on Γτ . The lemma follows.

Let ε be a fundamental unit of (Oτ )
×
1 ⊂ K×, chosen to be greater than 1 or less than

1 according to whether τ > τ ′ or τ < τ ′, respectively, where τ ′ is the Galois conjugate of
τ. The unit ε is independent of the choice of real embedding of K. Let γτ be the unique
element of Γτ satisfying

γτ

(
τ
1

)
= ε

(
τ
1

)
.

We define u(α, τ) by setting

u(α, τ) := ρτ (γτ ) ∈ K×
p /U. (31)

Note that u(α, τ) depends only on the Γ-orbit of τ .

Remark 2.13. It may not be apparent to the reader why the somewhat intricate construc-
tion of u(α, τ) given above is analogous to the construction of Section 1 leading to elliptic
units. Some further explanation of the analogy (in the context of the Stark-Heegner points
of [Dar1]) can be found in Sections 4 and 5 of [BDG], and in the uniformization theory
developed in [Das1], [Das3].
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2.4 The main conjecture

The elements u(α, τ) ∈ K×
p /U are expected to behave exactly like the elliptic units u(α, τ)

of Chapter 1. To make this statement more precise we now formulate a conjectural Shimura
reciprocity law for these elements.

A Z[1/p]-lattice in K is a Z[1/p]-submodule of K which is free of rank 2. Let K×
+ denote

the multiplicative group of elements of K of positive norm. By analogy with (11) we then
set

ΩN(K) =

{
(Λ1, Λ2), with

Λj a Z[1/p]-lattice in K,
Λ1/Λ2 ' Z/NZ.

}
/K×

+ . (32)

(In this definition it is important to take equivalence classes under multiplication by K×
+

rather than K×; see also Remark 2.19 of Section 2.8.) As in Chapter 1, there is a natural
bijective map τ from ΩN(K) to (Hp ∩K)/Γ, which to x = (Λ1, Λ2) assigns

τ(x) = ω1/ω2, (33)

where 〈ω1, ω2〉 is a Z[1/p]-basis of Λ1 satisfying

ω1ω
′
2 − ω′1ω2 > 0,

ordp(ω1ω
′
2 − ω′1ω2) ≡ 0 (mod 2),

and Λ2 = 〈Nω1, ω2〉. (34)

Recall that O is a Z[1/p]-order of K of discriminant prime to N (and p, by convention).
As before denote by ΩN(O) the set of pairs (Λ1, Λ2) ∈ ΩN(K) such that O is the maximal
Z[1/p]-order of K preserving both Λ1 and Λ2. Note that τ(ΩN(O)) = HO

p/Γ.
Let Pic+(O) denote the narrow Picard group of O, defined as the group of projective

O-submodules of K modulo homothety by K×
+ . Class field theory identifies Pic+(O) with

the Galois group of an abelian extension H of K, the narrow ring class field attached to O.
Let

rec : Pic+(O)−→Gal(H/K) (35)

denote the reciprocity law map of global class field theory. The group Pic+(O) acts naturally
on ΩN(O) by translation, and hence it also acts on τ(ΩN(O)) = HO

p/Γ. Adopting the same
notations as in equation (12) of Chapter 1, denote this latter action by

(a, τ) 7→ a ? τ, for a ∈ Pic+(O), τ ∈ HO
p/Γ. (36)

The following conjecture can be viewed as a natural generalization of Theorem 1.1 for real
quadratic fields.

Conjecture 2.14. If τ belongs to HO
p/Γ, then u(α, τ) belongs to OH [1/p]×/U , and in fact,

u(α, a ? τ) = rec(a)−1u(α, τ) (mod U), (37)

for all a ∈ Pic+(O).
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In spite of its strong analogy with Theorem 1.1, Conjecture 2.14 appears to lie deeper:
its proof would yield an explicit class field theory for real quadratic fields.

Chapter 11 of [Das1] (cf. also [Das2]) describes efficient algorithms for calculating u(α, τ)
and uses these algorithms to obtain numerical evidence for Conjecture 2.14.

Evidence of a more theoretical nature will be given in Chapters 3 and 4 by relating
the analytically defined elements u(α, τ) to special values of zeta-functions, in the spirit of
Theorem 1.2.

The remainder of this chapter contains some preliminaries of a more technical nature
which the reader may wish to skip on a first reading.

2.5 Modular symbols and Dedekind sums

We discuss the notion of partial modular symbols and the associated Dedekind sums that will
be useful for the calculation of the u(α, τ)—both from a computational and a theoretical
point of view.

Partial modular symbols. Let Mξ denote the module of Z-valued functions m on Γξ × Γξ,
denoted (r, s) 7→ m{r → s}, and satisfying

m{r → s}+ m{s → t} = m{r → t}, (38)

for all r, s, t ∈ Γξ. Functions of this sort will be called partial modular symbols with respect
to ξ, and Γ. (This terminology is adopted because m satisfies all the properties of a modular
symbol except that it is not defined on all of P1(Q) but only on a Γ-invariant subset of
it.) More generally, if M is any Γ-module, write Mξ(M) for the group of M -valued partial
modular symbols, equipped with the natural Γ-module structure

(γm){r → s} := γ
(
m{γ−1r → γ−1s}

)
. (39)

To the modular unit α is associated the Z-valued Γ0(N)-invariant partial modular symbol

mα{r → s} :=
1

2πi

∫ s

r

dlog α. (40)

Dedekind sums. The line integrals in (40) defining the modular symbol mα can be expressed
in terms of classical Dedekind sums

D
( a

m

)
:=

m∑
x=1

B1

( x

m

)
B1

(ax

m

)
, for gcd(a, m) = 1, m > 0,

where
B1(x) = {x} − 1/2 = x− [x]− 1/2

is the first Bernoulli polynomial made periodic. Corresponding to the element δ used to
define α = ∆δ in (1), one defines the modified Dedekind sum

Dδ(x) :=
∑
d|N

ndD(dx).
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Following [Maz], II §2, we introduce the modified Dedekind-Rademacher homomorphism on
Γ0(N)

Φδ

(
a b

Nc d

)
:=

{
0 if c = 0;

12 sign(c)Dδ
(

a
N |c|

)
otherwise,

(41)

as well as the corresponding homomorphism of Γ0(Np)

Φ∗
δ

(
a b

Npc d

)
:=

{
0 if c = 0;

12 sign(c)
(
Dδ
(

a
pN |c|

)
−Dδ

(
a

N |c|

))
otherwise.

Note that the assumption (21) that was made on δ created a simplification in the behaviour of
the Dedekind-Rademacher homomorphism, making it vanish on the upper-triangular matri-
ces and eliminating the extra terms appearing in Equation (2.1) of [Maz] when δ = [N ]− [1].
In particular it is clear that Φδ and Φ∗

δ take integer values.
The modified Dedekind-Rademacher homomorphisms Φδ and Φ∗

δ attached to δ encode
the periods of dlog α and dlog α∗ respectively. For any choice of base points x ∈ H∪Γξ and
τ ∈ H, we have

−Φδ(γ) =
1

2πi

∫ γx

x

dlog α =
1

2πi
(log α(γτ)− log α(τ)), (42)

−Φ∗
δ(γ) =

1

2πi

∫ γx

x

dlog α∗ =
1

2πi
(log α∗(γτ)− log α∗(τ)),

for all γ in Γ0(N) and Γ0(Np) respectively. In particular, if r, s belong to Γξ, we may evaluate
the partial modular symbol mα{r → s} by choosing γ ∈ Γ0(N) such that s = γr, and noting
that

1

2πi

∫ s

r

dlog α = −Φδ(γ). (43)

2.6 Measures and the Bruhat-Tits tree

Let T denote the Bruhat-Tits tree of PGL2(Qp), whose set V(T ) of vertices is in bijection
with the Q×

p -homothety classes of Zp-lattices in Q2
p, two vertices being joined by an edge if

the corresponding classes admit representatives which are contained one in the other with
index p. (See Chapter 5 of [Dar2] for a detailed discussion.) The group Γ̃ of matrices
in PGL+

2 (Z[1/p]) which are upper-triangular modulo N acts transitively on V(T ) via its
natural (left) action on Q2

p, and the group Γ0(N) is the stabilizer in Γ̃ of the basic vertex v0

corresponding to the standard lattice Z2
p.

The unramified upper half plane Hnr
p is the set of τ ∈ Hp such that Qp(τ) generates

an unramified extension of Qp. The Bruhat-Tits tree can be viewed as a combinatorial
“skeleton” of Hp, and is the target of the reduction map

r : Hnr
p −→V(T ).

This map is compatible with the natural PGL2(Qp)-actions on both source and target, and
its definition and main properties can be found, for example, in Chapter 5 of [Dar2].
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To each v ∈ V(T ) we associate a well-defined partial modular symbol mv{r → s} by
imposing the rules

mv0{r → s} := mα{r → s}, mγv{γr → γs} = mv{r → s},

for all v ∈ V(T ), γ ∈ Γ̃, and r, s ∈ Γξ. In addition to the built-in Γ-equivariance relation
satisfied by the collection {mv} of partial modular symbols, the assignment v 7→ mv{r → s}
satisfies the following harmonicity property:∑

d(v′,v)=1

mv′{r → s} = (p + 1)mv{r → s}, for all v ∈ v(T ), (44)

in which the sum on the left is taken over the p + 1 vertices v′ which are adjacent to v. The
relation (44) follows from the fact that dlog α is a weight two Eisenstein series on Γ0(N) and
hence an eigenvector for the Hecke operator Tp with eigenvalue p + 1.

Let E(T ) denote the set of ordered edges of T , i.e., the set of ordered pairs of adjacent
vertices of T . If e = (vs, vt) is such an edge, it is convenient to write s(e) := vs and t(e) = vt

for the source and target vertex of e respectively, and ē = (vt, vs) for the edge obtained from
e by reversing the orientation.

A (Z-valued) harmonic cocycle on T is a function f : E(T )−→Z satisfying∑
s(e)=v

f(e) = 0, for all v ∈ V(T ), (45)

as well as f(ē) = −f(e), for all e ∈ E(T ).
The collection of partial modular symbols mv gives rise to a system me of partial modular

symbols, indexed this time by the oriented edges of T , by the rule

me{r → s} := mt(e){r → s} −ms(e){r → s}. (46)

Note that, if r and s ∈ Γξ are fixed, the assignment e 7→ me{r → s} is a Z-valued harmonic
cocycle on T . This follows directly from (44).

As explained in Section 1.2 of [Dar1] or in Chapter 5 of [Dar2], to each ordered edge e
of T is attached a standard compact open subset of P1(Qp), denoted Ue. Thanks to this
assignment, the Zp-valued harmonic cocycles on T are in natural bijection with the Zp-valued
measures on P1(Qp) by sending a cocycle c to the measure µ satisfying

µ(Ue) := c(e), for all e ∈ E(T ). (47)

The harmonic cocycles me{r → s} of (46) give rise in this way to the p-adic measures
µα{r → s} of Proposition 2.6, satisfying:

µα{r → s}(Ue) = me{r → s}. (48)
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2.7 Indefinite integrals

The double multiplicative integral of (29) can be used to associate to α and τ an Mξ(K
×
p )-

valued one-cocycle

κ̃τ ∈ Z1(Γ,Mξ(K
×
p )) defined by κ̃τ (γ){r → s} = ×

∫ γτ

τ

∫ s

r

dlog α.

Let Fξ(K
×
p ) denote the space of K×

p -valued functions on Γξ, and denote by

d : Fξ(K
×
p )−→Mξ(K

×
p )

the Γ-module homomorphism defined by the rule

(df){r → s} := f(s)/f(r).

Finally, denote by
δ : H1(Γ,Mξ(K

×
p ))−→H2(Γ, K×

p )

the connecting homomorphism arising from the Γ-cohomology of the exact sequence

0−→K×
p −→Fξ(K

×
p )−→Mξ(K

×
p )−→0.

One can see (cf. the discussion in Section 9.6 of [Dar2]) that

(δκ̃τ )(γ
−1
2 , γ−1

1 ) = κτ (γ1, γ2).

Proposition 2.8 is a consequence of the following more precise statement whose proof will be
given in Chapters 3 and 4.

Proposition 2.15. The one-cocycles ordp(κ̃τ ) and logp(κ̃τ ) are one-coboundaries.

As in the discussion following the statement of Proposition 2.8, Proposition 2.15 implies
the existence of a U ⊂ (Kp)

×
tors such that

κ̃τ = dρ̃τ (mod U), for some ρ̃τ ∈Mξ(K
×
p ), (49)

and the image of ρ̃τ in Mξ(K
×
p /U) is unique.

Define the indefinite integral involving only one p-adic endpoint of integration by the rule

×
∫ τ∫ s

r

dlog α := ρ̃τ{r → s} ∈ K×
p /U.

This indefinite integral is completely characterized by the following three properties:

×
∫ τ∫ s

r

dlog α××
∫ τ∫ t

s

dlog α = ×
∫ τ∫ t

r

dlog α, for all r, s, t ∈ Γξ, (50)

×
∫ τ1
∫ s

r

dlog α÷×
∫ τ2
∫ s

r

dlog α = ×
∫ τ1

τ2

∫ s

r

dlog α, for all τ1, τ2 ∈ Hp, (51)
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×
∫ γτ∫ γs

γr

dlog α = ×
∫ τ∫ s

r

dlog α, for all γ ∈ Γ. (52)

Letting x ∈ Γξ be the base point that was used to construct ρτ , we have

ρτ (γ) = ×
∫ τ∫ γx

x

dlog α (mod U). (53)

In particular,

Lemma 2.16. The following equality holds in K×
p /U :

u(α, τ) = ×
∫ τ∫ γτ x

x

dlog α,

for any base point x ∈ Γξ.

2.8 The action of complex conjugation and of Up

The partial modular symbol mα used to define u(α, τ) is odd in the sense that

mα{−x → −y} = −mα{x → y}

for all x, y ∈ Γξ (cf. [Maz], Chapter II, §3).
The complex conjugation associated to either of the infinite places ∞1 or ∞2 of K is

the same in Gal(H/K) since H is a ring class field of K. Let τ∞ ∈ Gal(H/K) denote this
element. The parity of mα implies the following behaviour of the elements u(α, τ) under the
action of τ∞.

Proposition 2.17. Assume conjecture 2.14. For all τ ∈ HO
p ,

τ∞u(α, τ) = u(α, τ)−1.

Proof. The fact that the partial modular symbol mα is odd implies that the sign denoted
w∞ in proposition 5.13 of [Dar1] satisfies

w∞ = −1.

The proof of Proposition 2.17 is then identical to the proof of Proposition 5.13 of [Dar1].

Remark 2.18. In the context of a modular elliptic curve E treated in [Dar1], the sign w∞
can be chosen to be either 1 or −1 by working with either the even or odd modular symbol
of E, corresponding to the choice of the real or imaginary period attached to E respectively.
In the situation treated here, where E is replaced by the multiplicative group, only the
odd modular symbol mα remains available, in harmony with the fact that the multiplicative
group has a single period, 2πi, which is purely imaginary.
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Remark 2.19. Suppose that O has a fundamental unit of negative norm. Then equivalence
of ideals in the strict and usual sense coincide, so that the narrow ring class field H associated
to O is equal to the ring class field taken in the non-strict sense, which is totally real.
Conjecture 2.14 predicts that τ∞ should act trivially on u(α, τ) in this case, and that the
p-units u(α, τ) should be trivial. In fact it can be shown, independently of any conjectures,
that

u(α, τ) = 1, for all τ ∈ HO
p .

This suggests that interesting elements of H× are obtained only when H is a totally complex
extension of K. This explains why it is so essential to work with equivalence of ideals in the
narrow sense and with narrow ring class fields to obtain useful invariants.

Similarly to the proof of Proposition 2.17, the fact that the Eisenstein series dlog α∗ is
fixed by the Up operator implies that the sign denoted w in Proposition 5.13 of [Dar1] equals
1. Thus the invariance of the indefinite integral given in (52) holds for all γ ∈ Γ̃ ⊃ Γ/〈±1〉.
In particular, the element u(α, τ) depends only on the Γ̃ orbit of τ .

3 Special values of zeta-functions

It will be assumed for simplicity in this section that p is inert (and not ramified) in K/Q.
Recall the p-adic ordinal

ordp : K×
p −→Z

mentioned in Section 2.3. The goal of this section is to give a precise formula for ordp(u(α, τ))
when τ ∈ Hp ∩K, in terms of the special values of certain zeta-functions.

3.1 The zeta function

Given τ ∈ HO
p , the primitive integral binary quadratic form Qτ associated to τ can be defined

as in (3). This time Qτ is non-definite. Its discriminant is positive and is of the form Dpk

for some integer k ≥ 0, where D is the discriminant of the Z[1/p]-order O. (By convention,
the integer D is taken to be prime to p.) By replacing τ by a Γ̃-translate, we may assume
without loss of generality that

the discriminant of Qτ is equal to D. (54)

We will make this assumption from now on. In that case the generator γτ of Γτ/〈±1〉 belongs
to Γ0(N). Note that the matrix γτ fixes the quadratic form Qτ under the usual action of
SL2(Z) on the set of binary quadratic forms. Furthermore, the simplifying assumption that
gcd(D, N) = 1 implies that γτ = γ̃τ , where the latter matrix is taken to be the generator of
the stabilizer of the form Qτ in SL2(Z).

Given any non-definite binary quadratic form Q whose discriminant is not a perfect
square, let γQ be a generator of its stabilizer in SL2(Z). Note that Q takes on both positive
and negative integer values, and that each value in the range of Q is taken on infinitely often,
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since Q is constant on the γQ-orbits in Z2. The definition of ζQ(s) given in (14) needs to be
modified accordingly, by setting

W := (Z2 − {0})/〈γQ〉,

and letting

ζQ(s) =
∑

(m,n)∈W

sign(Q(m,n))|Q(m,n)|−s, (55)

where sign(x) = ±1 denotes the sign of a non-zero real number x.
Equivalence classes of binary quadratic forms of discriminant D are in natural bijection

with narrow ideal classes of O∩OK-ideals, by associating to such an ideal class the suitably
scaled norm form attached to a representative ideal. The partial zeta-function attached to
the narrow ideal class A is defined in the usual way by the rule

ζ(s,A) :=
∑
I∈A

Norm(I)−s.

If A is a narrow ideal class, let A∗ be the ideal class corresponding to αA for some α ∈ K× of
negative norm, and let Q be a quadratic form of discriminant D associated to A. A standard
calculation (cf. the beginning of Section 2 of [Za], for example) shows that

ζQ(s) = ζ(s,A)− ζ(s,A∗). (56)

Note in particular that ζQ(s) = 0 if O contains a unit of negative norm, since A = A∗ in
that case.

We mimic the definitions of equation (15) and define

ζτ (s) := ζQτ (s), ζ(α, τ, s) :=
∑
d|N

ndd
sζdτ (s). (57)

(Observe that s rather than −s appears as the exponent of d in the definition of ζ(α, τ, s).)
As in (15), the function ζ(α, τ, s) is a simple linear combination of zeta-functions atttached to
integral quadratic forms of the same (positive) discriminant D. Note that ζ(α, τ, s) depends
only on the Γ0(N)-orbit of the element τ ∈ HO

p normalized to satisfy (54).
Let AK denote the ring of adeles of K. A finite order idele class character

χ =
∏

v

χv : A×
K/K×−→C×

is called a ring class character if it is trivial on A×
Q. If χ is such a character, then its two

archimedean components χ∞1 and χ∞2 attached to the two real places of K are either both
trivial, or both equal to the sign character. In the former case χ is called even and in the
latter, it is said to be odd. Any ring class character can be interpreted as a character on the
narrow Picard group GO := Pic+(O) of narrow ideal classes attached to a fixed order O of
K whose conductor is equal to the conductor of χ.
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Formula (56) shows that the zeta-functions ζτ (s) with τ ∈ HO
p can be interpreted in terms

of partial zeta-functions encoding the zeta-function of K twisted by odd ring class characters
of GO. More precisely, letting τ0 be any element of HO

p which is equivalent to
√

D under the
action of SL2(Z), we have:∑

σ∈GO

χ(σ)ζσ∗τ0(s) =

{
0 if χ is even;
L(K, χ, s) if χ is odd.

(58)

The main formula of this chapter is

Theorem 3.1. Suppose that τ belongs to HO
p , and is normalized by the action of Γ̃ to satisfy

(54). Then

ζ(α, τ, 0) =
1

12
· ordp(u(α, τ)).

3.2 Values at negative integers

In this section we give a formula for the value of ζ(α, τ, 0) in terms of complex periods of
dlog α. This formula is a special case of a more general one expressing ζ(α, τ, 1− r) in terms
of periods of certain Eisenstein series of weight 2r, for odd r ≥ 1. The logarithmic derivatives
dlog α and dlog α∗ can be written as

dlog α(z) = 2πiF2(z) dz, dlog α∗(z) = 2πiF ∗
2 (z) dz, (59)

where F2(z) and F ∗
2 (z) are the weight two Eisenstein series on Γ0(N) and Γ0(Np), respec-

tively, given by the formulae

F2(z) = −24
∑
d|N

dndE2(dz), F ∗
2 (z) = F2(z)− pF2(pz), (60)

and E2(z) is the standard Eisenstein series of weight 2

E2(z) =
1

(2πi)2

ζ(2) +
1

2

∞∑
m=−∞
m6=0

∞∑
n=−∞

1

(mz + n)2

 = − 1

24
+

∞∑
n=1

σ1(n)qn, q = e2πiτ . (61)

(We remark that the double series used to define E2 is not absolutely convergent and the
resulting expression is not invariant under SL2(Z). For a discussion of the weight two
Eisenstein series, see Section 3.10 of [Ap] for example.)

The Eisenstein series of (61) and (60) are part of a natural family of Eisenstein series of
varying weights. For even k ≥ 2, consider the standard Eisenstein series of weight k:

Ek(z) =
2(k − 1)!

(2πi)k

∞∑
m,n=−∞

′ 1

(mz + n)k
= −Bk

2k
+

∞∑
n=1

σk−1(n)qn. (62)
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Define likewise, as a function of the element δ =
∑

d ndd used to define the modular unit α,
the higher weight Eisenstein series

Fk(z) = −24
∑
d|N

nd · d · Ek(dz)

= −48(k − 1)!

(2πi)k

∞∑
m,n=−∞

′

 1

(mz + n)k

∑
d|(N,m)

ndd


= −24

∞∑
n=1

σk−1(n)
∑
d|N

nddqnd. (63)

The Fk are modular forms of weight k on Γ0(N), holomorphic on the upper half plane. Note
that these Eisenstein series have no constant term and hence are holomorphic at the cusp
i∞. We also define, for the purposes of p-adic interpolation, the function

F ∗
k (z) = Fk(z)− pk−1Fk(pz).

We extend the definition of Ek(z) and Fk(z) to all k ≥ 2 by letting Ek = Fk = 0 for k odd.
Recalling the standard right action of GL+

2 (R) on the space of modular forms of weight
k, given by

F |γ(z) =
det(γ)

(cz + d)k
F (γz) when γ =

(
a b
c d

)
,

the definition of F ∗
k can be written

F ∗
k = Fk − pk−2Fk|P (z), where P =

(
p 0
0 1

)
.

The following proposition expresses ζ(α, τ, 1− r) in terms of periods of F2r.

Proposition 3.2. For all odd integers r > 0,

12 · ζ(α, τ, 1− r) =

∫ γτ ξ

ξ

Qτ (z, 1)r−1F2r(z) dz.

Proof. Let k ≥ 2 be a positive integer and let Ẽk denote the weight k Eisenstein series

Ẽk =
(2πi)k

2(k − 1)!
Ek(z)

(
=
∑
m,n

′ 1

(mz + n)k
if k > 2

)
.

By Hilfsatz 1 of [Sie2], letting z0 ∈ H be an arbitrary base point, the following identity holds
for all integers r > 1:∫ γτ z0

z0

Qr−1
τ Ẽ2r(z) dz = (−1)r−1 (r − 1)!2

(2r − 1)!
Dr− 1

2

∑
W

Qτ (m, n)−r. (64)
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Suppose that r > 1 is an odd integer. Then∑
W

Qτ (m,n)−r =
∑
W

sign(Qτ (m,n))|Qτ (m, n)|−r = ζτ (r),

so that ∫ γτ z0

z0

Qr−1
τ Ẽ2r(z) dz =

(r − 1)!2

(2r − 1)!
Dr− 1

2 ζτ (r). (65)

On the other hand, it follows from the relation (58) and from the functional equation for
L(K, χ, s) for odd characters (cf. [La], Corollary 1 after Theorem 14 of §8, Chapter XIV)
that ζτ (s) satisfies the functional equation

ζτ (1− s) =
Ds− 1

2

π2s−1
Γ

(
s + 1

2

)2

Γ

(
2− s

2

)−2

ζτ (s). (66)

Hence if r ≥ 2 is an even positive integer,

ζτ (1− r) = 0,

while if r ≥ 1 is odd,

ζτ (1− r) =
4Dr− 1

2

(2π)2r
(r − 1)!2ζτ (r). (67)

Combining this functional equation with (65), we obtain∫ γτ z0

z0

Qr−1
τ Ẽ2r(z) dz =

(2π)2r

4(2r − 1)!
ζτ (1− r).

Since

Ek(z) =
2(k − 1)!

(2πi)k
Ẽk(z),

it follows that ∫ γτ z0

z0

Qr−1
τ E2r(z) dz = −1

2
ζτ (1− r). (68)

From the definition of Fk, we have∫ γτ z0

z0

Qr−1
τ F2r(z) dz = −24

∑
d|N

nd · d ·
∫ γτ z0

z0

Qr−1
τ E2r(dz) dz.

Making the change of variables w = d · z, we obtain

d ·
∫ γτ z0

z0

Qr−1
τ E2r(dz) dz =

∫ d·γτ z0

d·z0

Qτ

(w

d
, 1
)r−1

E2r(w) dw.

Recall that γ̃dτ denotes the generator of the stabilizer of dτ in SL2(Z) (chosen in such a way
that γdτ is a positive power of γ̃dτ ). Note that we have

dγτz0 = γ̃dτ (dz0), Qτ

(w

d
, 1
)

=
1

d
Qdτ (w, 1).
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Hence

d ·
∫ γτ z0

z0

Qr−1
τ E2r(dz) dz =

∫ γ̃dτ (dz0)

dz0

1

dr−1
Qdτ (w)r−1E2r(w) dw.

The expression on the right is equal to −d1−r

2
ζdτ (1− r), by (68). It follows that, for all odd

r > 1, ∫ γτ z0

z0

Qr−1
τ F2r(z) dz = 12

∑
d|N

ndd
1−rζdτ (1− r) = 12 · ζ(α, τ, 1− r). (69)

The integrand in the left-hand expression involves an Eisenstein series which is holomorphic
at ∞, hence we may replace the base point z0 ∈ H by the cusp ∞ (or any other cusp which
belongs to the same Γ0(N)-orbit).

In the case where r = 1, using (59), (42), and (41), we see that the expression on the left
of (69) is equal to∫ γτ z0

z0

F2(z) dz =
1

2πi

∫ γτ z0

z0

dlog α = Φδ(γτ ) = 12 sign(c)Dδ

(
a

N |c|

)
, (70)

where

γτ =

(
a b

Nc ∗

)
and Dδ is the modified Dedekind sum introduced previously. Meyer’s formula expressing the
special values of partial zeta-functions attached to real quadratic fields at s = 0 in terms of
Dedekind sums can be used to derive the identity

12ζ(α, τ, 0) = −Φδ(γτ ). (71)

(Cf. [Za], equation (4.1) for a statement of Meyer’s formula in the case where D is fundamen-
tal; the general case can be derived from equation (18) in §5 of [CS] for example.) It follows
that Proposition 3.2 holds for r = 1 as well, in light of the fact that dlog α is holomorphic
at ξ so that the base point z0 can be replaced by the cusp ξ in the expression on the left of
(70).

The evaluation of the right-hand side in Theorem 3.1 is taken up in the next section.

3.3 The p-adic valuation

To compute ordp(u(α, τ)), it will be useful to have at our disposal a formula for the p-adic
valuation of a p-adic (multiplicative) line integral. We describe such a formula in the case
where the p-adic endpoints of integration belong to the unramified upper half-plane Hnr

p , in
terms of the reduction map from Hnr

p to V(T ) introduced in Section 2.6.

Lemma 3.3. For all τ1, τ2 ∈ Hnr
p and for all r, s ∈ Γξ,

ordp

(
×
∫ τ2

τ1

∫ s

r

dlog α

)
=

∑
e:r(τ1)−→r(τ2)

me{r → s},
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where the sum on the right is taken over the ordered edges in the path of T joining r(τ1) to
r(τ2).

A complete proof of this formula is given, for example, in Lemma 2.5 of [BDG]. �

Proposition 3.4. Let v = r(τ). Then

ordp

(
×
∫ τ∫ s

r

dlog α

)
= mv{r → s}.

Proof. By Lemma 3.3, for all γ ∈ Γ we have

ordp

(
×
∫ γτ

τ

∫ s

r

dlog α

)
=
∑

e:v→γv

me{r → s}, (72)

where the sum on the right is taken over the ordered edges in the path joining v to γv. By
(46), this sum is equal to the telescoping sum∑

e:v→γv

mt(e){r → s} −ms(e){r → s} = mγv{r → s} −mv{r → s}

= mv{γ−1r → γ−1s} −mv{r → s}
= (dmv)(γ){r → s},

so that ordp(κ̃τ ) = dmv. It follows from the defining equation (49) for ρ̃τ and from the fact
that Mξ(Z)Γ = 0 that

ordp(ρ̃τ ) = mv. (73)

The lemma follows.

Assume without loss of generality that τ has been normalized to satisfy (54), so that
r(τ) = v0, where v0 is the vertex of T corresponding to the standard lattice Z2

p. In this case
the matrix γτ belongs to Γ0(N) and generates the stabilizer of τ in that group; furthermore
we have mv0 = mα.

Corollary 3.5. Let x be any base point in Γξ. Then

ordp(u(α, τ)) =
1

2πi

∫ γτ x

x

dlog α = −Φδ(γτ ).

Proof. By Lemma 2.16 and Proposition 3.4, we have

ordp(u(α, τ)) = ordp

(
×
∫ τ∫ γτ x

x

dlog α

)
= mα{x → γτx}. (74)

The lemma follows from the definition of mα given in (40) and from (42).

The proof of Theorem 3.1 now follows by combining (71) and Corollary 3.5.
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3.4 The Brumer-Stark conjecture

Given τ ∈ HO
p , let BSτ denote the Brumer-Stickelberger element in the integral group ring

of GO = Pic+(O), defined by

BSτ :=
∑

σ∈GO

ζσ∗τ (0) · σ−1.

This element is independent of the choice of τ ∈ HO
p , up to multiplication by an element

of GO. Relation (58) implies that BSτ agrees with the usual Brumer-Stickelberger element
attached to the extension H/K.

To any modular unit α and τ ∈ HO
p we may also associate the modified Brumer-

Stickelberger element by setting

BS(α, τ) =
∑

σ∈GO

ζ(α, σ ∗ τ, 0)σ−1. (75)

Let Cl(H) denote the class group of H, viewed as a Z[GO]-module in a natural way. Let I
denote the augmentation ideal of Z[GO]. The following conjecture is a reformulation of the
usual Brumer-Stark conjecture for H/K generalising Stickelberger’s theorem on class groups
of abelian extensions of Q.

Conjecture 3.6. The element BSτ annihilates I Cl(H)⊗ Z[1/2].

Conjecture 3.6 is proved in this case thanks to the work of Wiles [Wi]. We give a more
direct proof which is conditional on conjecture 2.14, in the spirit of Stickelberger’s original
proof in the abelian case. Because it is only conditional, this result is more notable for what
it says about conjecture 2.14 than about the Brumer-Stark conjectures.

Proposition 3.7. Assume conjecture 2.14. Then the Brumer-Stickelberger element BSτ

annihilates I Cl(H)⊗ Z[1/2].

Proof. For any modular unit α, we have the relation

BS(α, τ) = Jα · BSτ ,

where Jα ∈ I is an element which depends on α and τ and is defined as follows. The integral
quadratic form Qτ = Ax2 + Bxy + Cy2 attached to τ ∈ HO

p determines an O-ideal of norm
d, for each d|N , by the rule

ad = 〈d,B −
√

D〉.
Then

Jα =
∑
d|N

nd · rec(ad).

By the Chebotarev density theorem, the elements Jα generate I as α ranges over the possible
modular units. Hence it is enough to show that

BS(α, τ) annihilates Cl(H)⊗ Z[1/2].
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Let H̃ denote the maximal subfield of the Hilbert class field of H which is of odd degree over
H. Note that H̃ is Galois over K, and even over Q. Class field theory identifies Gal(H̃/H)
with

M := Cl(H)⊗ Z[1/2]

as modules over Z[GO][1/2]. Since Gal(H/Q) is a generalized dihedral group, the generator of
Gal(K/Q) lifts to an involution ι ∈ Gal(H/Q). Lift ι further to an involution in Gal(H̃/Q).
(This can be done since H̃ is of odd degree over H.) Choose any σ ∈ M . By the Chebotarev
density theorem, there exists a rational prime p such that

Frobp(H̃/Q) = σι.

In particular, p is inert in K. Note that p, as a prime ideal of K, splits completely in H/K.
Choosing a prime p of H above p, we have

Frobp(H̃/K) = Frobp(H̃/H) = σισι = σσι.

The factorization of u(α, τ) and its conjugates given by Theorem 3.1 implies that

BS(α, τ) annihilates Frobp(H̃/H) = σ1+ι.

Since σ was chosen arbitrarily, it follows that

BS(α, τ) annihilates (1 + ι)M. (76)

Let c∞ ∈ Gal(H/K) denote complex conjugation. Since ι was an arbitrary lift of the
generator of Gal(K/Q), we could have replaced it by ιc∞ in the preceeding argument, yielding

BS(α, τ) annihilates (1 + ιc∞)M. (77)

Note furthermore that by definition (1 + c∞) BS(α, τ) = 0, so a fortiori

BS(α, τ) annihilates (1 + c∞)M. (78)

Since the module M has odd order, it decomposes as a direct sum of simultaneous eigenspaces
for the action of the commuting involutions ι and c∞. Each eigenspace belongs to at least
one of the subspaces in (76), (77), or (78). The result follows.

3.5 Connection with the Gross-Stark conjecture

A general result of Deligne and Ribet (cf. the discussion in [Gr1], §2) implies the existence
of a p-adic meromorphic function ζp(α, τ, s) of the variable s ∈ Zp characterized by its values
on a dense set of negative integers:

ζp(α, τ, n) = (1− p−2n)ζ(α, τ, n), for all n ≤ 0, n ≡ 0 (mod 2(p− 1)). (79)

Let UH,p denote the group of p-units of H defined by Gross in Proposition 3.8 of [Gr1]:

UH,p := {ε ∈ H× : ||ε||D = 1 for all places D which do not divide p}.
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Since the places D involved in the definition of UH,p include all the archimedean ones, it
follows that UH,p is infinite only when H has no real embeddings, and that images of the
elements of UH,p under all the complex embeddings of H lie on the unit circle.

Proposition 2.17 implies that the p-unit u(α, τ) belongs to UH,p (assuming, of course,
conjecture 2.14). Since

ordp(u(α, τ)) = 12 · ζ(α, τ, 0),

Conjecture (2.12) of [Gr1] (cf. the formulation given in Proposition 3.8 of [Gr1]) suggests
that one should have

logp NormKp/Qp(u(α, τ)) = −12 · ζ ′p(α, τ, 0). (80)

In fact, the relation (80) is essentially equivalent (by varying α appropriately) to the Gross-
Stark conjecture for H/K, assuming conjecture 2.14. The next chapter is devoted to the
explicit construction of ζp(α, τ, s) and to a proof of (80).

4 A Kronecker limit formula

The first three sections of this chapter give an explicit construction of the p-adic zeta-function
ζp(α, τ, s) satisfying the interpolation property (79). The following theorem is then proved.

Theorem 4.1. Suppose that τ belongs to HO
p , and is normalized by the action of Γ̃ to satisfy

(54). Then

ζ ′p(α, τ, 0) = − 1

12
· logp NormKp/Qp(u(α, τ)).

Note the clear analogy between this formula and the classical Kronecker limit formula
stated in Theorem 1.2. Theorem 4.1 allows us to deduce the Gross-Stark conjecture for H/K
from Conjecture 2.14. It should be pointed out that Conjecture 2.14 is stronger and more
precise than Gross’s conjecture in that setting, since it gives a formula for the Gross-Stark
unit u(α, τ) itself, and not just its norm to Qp.

4.1 Measures associated to Eisenstein series

Let
X := (Zp × Zp)

′ ⊂ (Qp ×Qp − {0}),

considered as column vectors, where (Zp×Zp)
′ denotes the set of primitive vectors (x, y) ∈ Z2

p

satisfying gcd(x, y) = 1. The space Q2
p − {0} is endowed with a natural action of Γ by left

multiplication. There is a Z×
p -bundle map

π : X → P1(Qp) given by (x, y) 7→ x/y.

The crucial technical ingredient in the construction of ζp(α, τ, s) and in the proof of
Theorem 4.1 is the following result, which can be viewed as an extension of Proposition 2.6
to the family of Eisenstein series introduced in the previous section.
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Theorem 4.2. Fix α and ξ as before. There is a unique collection of p-adic measures on
the space Q2

p − {0}, indexed by pairs (r, s) ∈ Γξ × Γξ and denoted µ{r → s}, satisfying the
following properties:

1. For every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2,∫
X

h(x, y) dµ{r → s}(x, y) = Re

(
(1− pk−2)

∫ s

r

h(z, 1)Fk(z) dz

)
. (81)

2. (Γ-equivariance) For all γ ∈ Γ and all compact open U ⊂ Q2
p − {0},

µ{γr → γs}(γU) = µ{r → s}(U).

3. (Invariance under multiplication by p).

µ{r → s}(pU) = µ{r → s}(U).

Furthermore this measure satisfies:
4. For every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2,∫

Zp×Z×p
h(x, y) dµ{r → s}(x, y) = Re

(∫ s

r

h(z, 1)F ∗
k (z) dz

)
.

Remark 4.3. The function (r, s) 7→ µ{r → s} defines a partial modular symbol with values
in the space of measures on Q2

p−{0}. Objects of this type appear in Glenn Stevens’ study of
two-variable p-adic L-functions attached to Hida (and Coleman) families of eigenforms. More
precisely, when dlog α is replaced by a weight two cuspidal eigenform f which is ordinary at
p, Stevens attaches to f a measure-valued modular symbol via Hida’s theory of families of
eigenforms, and uses it to define the two-variable p-adic L-function attached to this family.
There is also a theory in the non-ordinary setting, where it becomes necessary to replace
p-adic measures by locally analytic distributions in the sense of Stevens.

The proof of Theorem 4.2 is postponed to the end of the paper (beginning with Section
4.4). The following lemma shows how the measures µ{r → s} are related to the measures
µα{r → s} of the previous section.

Lemma 4.4. For all compact opens U ⊂ P1(Qp),

µ{r → s}(π−1U) = µα{r → s}(U). (82)

Recall that π−1(U) ⊂ X by definition.

Proof. Define a collection of measures π∗µ{r → s} on P1(Qp) by the rule

π∗µ{r → s}(U) := µ{r → s}(π−1(U)).

Theorem 4.2 implies that the collection of measures π∗µ{r → s} satisfies all the properties of
µα spelled out in Proposition 2.6. To see that π∗µ{r → s} satisfies the required Γ-invariance
property, note that

π∗µ{γr → γs}(γU) = µ{γr → γs}(π−1(γU)) = µ{γr → γs}(γπ−1(U)),
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where the last equality follows from the fact that both π−1(γU) and γπ−1(U) are fundamental
regions for the action of 〈p〉 on the inverse image of γU in Q2

p − {0}. Hence

π∗µ{γr → γs}(γU) = µ{r → s}(π−1(U)) = π∗µ{r → s}(U).

Lemma 4.4 follows from the uniqueness in proposition 2.6.

4.2 Construction of the p-adic L-function

The special values of ζ(α, τ, s) at certain even negative integers can be expressed in terms of
the measure µ described in Section 4.1.

Lemma 4.5. For all odd integers r > 0

12(1− p2r−2) · ζ(α, τ, 1− r) =

∫
X

Qτ (x, y)r−1 dµ{ξ → γτξ}(x, y).

Proof. This follows directly from Proposition 3.2 in light of the properties of the measure µ
spelled out in Theorem 4.2.

Suppose that the integer r (in addition to being odd) is congruent to 1 modulo p − 1.
Then by Lemma 4.5,

12(1− p2r−2) · ζ(α, τ, 1− r) =

∫
X
〈Qτ (x, y)〉r−1 dµ{ξ → γτξ}(x, y), (83)

where for x ∈ Z×
p , the expression 〈x〉 denotes the unique element in 1+pZp which differs from

x by a (p − 1)st root of unity. The advantage of the expression (83) is that it interpolates
p-adically, expressing ζ(α, τ, 1 − r) with its Euler factor at p removed, as a function of the
p-adic variable r. This leads us to define

ζp(α, τ, s) =
1

12

∫
X
〈Qτ (x, y)〉−s dµ{ξ → γτξ}(x, y)

for all s ∈ Zp. Note that one recovers the p-adic L-function introduced in section 3.5 which
is uniquely characterized by the interpolation property (79).

In terms of this explicit definition of ζp(α, τ, s), we have

Lemma 4.6. The derivative ζ ′p(α, τ, s) at s = 0 is given by

ζ ′p(α, τ, 0) = − 1

12

∫
X

logp (Qτ (x, y)) dµ{ξ → γτξ}(x, y).

Proof. This is a direct consequence of the definition.
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4.3 An explicit splitting of a two-cocycle

We now turn to the calculation of the one-cochain ρτ , or, equivalently, of the expression

×
∫ τ∫ s

r

dlog α.

A formula for this indefinite integral can be given in terms of the system of p-adic measures
µ of Theorem 4.2.

Proposition 4.7. Let µ be as in Theorem 4.2. Then

logp

(
×
∫ τ∫ s

r

dlog α

)
=

∫
X

logp(x− τy) dµ{r → s}(x, y).

Proof. If we define ∫ τ∫ s

r

dlog α? :=

∫
X

logp(x− τy) dµ{r → s}(x, y),

then a direct calculation shows that the resulting expression satisfies∫ τ∫ s

r

dlog α? +

∫ τ∫ t

s

dlog α? =

∫ τ∫ t

r

dlog α?, for all r, s, t ∈ Γξ, (84)∫ τ1
∫ s

r

dlog α? −
∫ τ2
∫ s

r

dlog α? =

∫ τ1

τ2

∫ s

r

dlog α, (85)

as well as ∫ γτ∫ γs

γr

dlog α? =

∫ τ∫ s

r

dlog α?, for all γ ∈ Γ. (86)

These properties are the additive counterparts of equations (50), (51) and (52) of Section
2.7, which uniquely determine the p-adic indefinite multiplicative integral attached to dlog α.
It follows that ∫ τ∫ s

r

dlog α? = logp

(
×
∫ τ∫ s

r

dlog α

)
,

as was to be shown.

We can now prove theorem 4.1:

Proof of Theorem 4.1. By Lemma 2.16, we have

logp NormKp/Qp(u(α, τ)) = logp

(
×
∫ τ∫ γτ r

r

dlog α××
∫ τ ′∫ γτ r

r

dlog α

)
,

for any r ∈ Γξ. By Proposition 4.7, using the fact that Qτ (x, y) is proportional to (x −
τy)(x− τ ′y) and that µ(X) = 0, the expression on the right is equal to∫

X
logp Qτ (x, y) dµ{r → γτr}(x, y).

The result now follows from Lemma 4.6.

The remainder of the paper is devoted to the proof of Theorem 4.2.

31



4.4 Generalized Dedekind Sums

In this section we evaluate the integrals appearing in the right of (81) in Theorem 4.2, which
characterize the partial modular symbol of measures µ. The computations of this section
are not new, but we include them for completeness and notational consistency. Let f denote
a modular form and let af (0) denote the constant term of its q-expansion at ∞. For any
relatively prime integers a and c with c ≥ 1, the function

Af (s; a, c) = eπis/2cs−1

∫ ∞

0

(f(it + a/c)− af (0)) ts−1 dt

is well defined for Re(s) large enough, and has a meromorphic continuation to all of C. For
the Eisenstein series E2k with k > 1, this is given by

AE2k
(s; a, c) = eπis/2c2k−2 Γ(s)

(2π)s

c∑
h=1

[
ζ(s + 1− 2k, h/c)

∞∑
m=1

1

ms
e2πimha/c

]
, (87)

where ζ(s, b) denotes the Hurwitz zeta function. This is a relatively standard computation,
carried out for example in Proposition 3.1 of [Fuk]. Let us calculate the real part of this
expression for s an integer, 1 ≤ s ≤ 2k− 1. Note that when s = 1, the term for h = c in (87)
is taken to be

lim
s→1

ζ(s + 1− 2k)ζ(s) ∈ R.

The Hurwitz zeta function has the well known value ζ(1 − n, b) = −Bn(b)/n, where the
Bernoulli polynomials Bn are defined by the power series

etb

et − 1
=

∞∑
n=0

Bn(b)

n!
tn−1.

Furthermore, for any real number x,

Re

(
is(s− 1)!

(2π)s

∞∑
m=1

1

ms
e2πimx

)
=

is(s− 1)!

2(2π)s

∞∑
m=−∞
m6=0

1

ms
e2πimx

=
(−1)s+1

2
· B̃s(x)

s
,

where

B̃s(x) :=

{
0 if s = 1 and x ∈ Z
Bs({x}) = Bs(x− [x]) otherwise.

(See Section II of [Hal] for this last equation.) Hence we obtain

Re (AE2k
(s; a, c)) = c2k−2 (−1)s

2

c∑
h=1

B2k−s(h/c)

2k − s
· B̃s(ha/c)

s
. (88)
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We would like to replace the term B2k−s(h/c) by B̃2k−s(h/c) in the sum above. Only the term
for h = c, which we now consider, may cause difficulty. If s is even, then B2k−s(1) = B2k−s(0)
since in general one has

Bn(1− x) = (−1)nBn(x).

If s is odd then the other term in the product is B̃s(ha/c) = 0. Thus in either case we may
replace the term B2k−s(h/c) by B̃2k−s(h/c). This motivates the following definition.

Definition 4.8. Let s, t ≥ 0. For a and c relatively prime and c > 0, the generalized Dedekind
sum D̃s,t(a/c) is defined by

D̃s,t(a/c) := cs−1

c∑
h=1

B̃s(h/c)B̃t(ha/c).

Note that the sum may be taken over any complete set of representatives h mod c. For
s, t ≥ 1, define

Ds,t(a/c) :=
D̃s,t(a/c)

st
.

Remark 4.9. When s = t = 1, we have

D1,1(a/c) = D̃1,1(a/c) = D(a/c)− 1

4
.

Equation (88) may be written in terms of the generalized Dedekind sums as

Re (AEk
(s; a, c)) = cs−1 (−1)s

2
Dk−s,s(a/c). (89)

This formula continues to hold when k is odd, since then the Dedekind sum Dk−s,s(a/c)
vanishes (using the relation

B̃s(−x) = (−1)sB̃s(x).)

From the definition of Fk, we find

AFk
(s; a, Nc) = −24

∑
d|N

ndAEk
(s; a, Nc/d). (90)

We are now ready to evaluate the integrals appearing in (81). Let 0 ≤ n ≤ k− 2. Using the
change of variables z = it + a/(Nc), we find∫ i∞

a/Nc

znFk(z) dz =
n∑

`=0

(
n

`

)( a

Nc

)n−`

(Nc)−`AFk
(` + 1; a, Nc)

= −24
n∑

`=0

(
n

`

)( a

Nc

)n−`

(Nc)−`
∑
d|N

ndAEk

(
` + 1; a,

Nc

d

)
. (91)
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In view of (89), the real part of (91) is equal to

12
n∑

`=0

(
n

`

)( a

Nc

)n−`

(−1)`
∑
d|N

ndd
−`Dk−`−1,`+1

(
a

Nc/d

)
. (92)

As we now check, equation (92) remains valid for k = 2. In this case the desired formula
simplifies to ∫ i∞

a/Nc

F2(z) dz = 12
∑
d|N

ndD1,1

(
a

Nc/d

)
= 12Dδ

( a

Nc

)
,

which is nothing but equation (43).

4.5 Measures on Zp × Zp

Let ξ = a
Nc
∈ Γ∞, and assume that p does not divide c. In this section we prove the following

crucial lemma.

Lemma 4.10. Let ξ ∈ Γ∞ have denominator not divisible by p. There exists a unique
Zp-valued measure νξ on Zp × Zp such that∫

Zp×Zp

h(x, y) dνξ(x, y) = Re

(
(1− pk−2)

∫ i∞

ξ

h(z, 1)Fk(z) dz

)
(93)

for every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2.

Equation (93) is equivalent to the statement that∫
Zp×Zp

xnym dνξ(x, y) = Re

(
(1− pn+m)

∫ i∞

a/Nc

znFn+m+2(z) dz

)

= 12(1− pn+m)
n∑

`=0

(
n

`

)( a

Nc

)n−`

(−1)`
∑
d|N

ndd
−`Dn+m−`+1,`+1

(
a

Nc/d

)
(94)

for all integers n,m ≥ 0. Denote the last expression appearing in equation (94) by In,m ∈ Q.
Our key tool in showing the existence and uniqueness of νξ is the following result, which is
the two-variable version of a classical theorem of Mahler (see Theorem 3.3.1 of [Hida]).

Lemma 4.11. Let bn,m ∈ Zp be constants indexed by integers n, m ≥ 0. There exists a
unique measure ν on Zp × Zp such that∫

Zp×Zp

(
x

n

)(
y

m

)
dν(x, y) = bn,m.
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Thus to prove lemma 4.10, we must show that the rational numbers

Jn,m :=
n∑

i=0

m∑
j=0

cn,icm,jIi,j

lie in Zp, where the rational numbers cn,i are defined by the equation(
x

n

)
=

n∑
i=0

cn,ix
i.

Our proof of this fact will follow the proof of the existence of p-adic Dirichlet L-functions,
as in Section 3.4 of [Hida].

Consider the rightmost term appearing in the definition (94) of In,m (here k = n+m+2):

d−`Dk−`−1,`+1

(
a

Nc/d

)
= d−`

(
Nc

d

)k−`−2 Nc/d∑
h=1

B̃k−`−1(
h

Nc/d
)

k − `− 1

B̃`+1(
ha

Nc/d
)

` + 1

=

(
Nc

d

)k−`−2 Nc∑
h=1

B̃k−`−1(
h

Nc/d
)

k − `− 1

B̃`+1(
ha
Nc

)

` + 1
, (95)

where (95) follows from the distribution relation for Bernoulli numbers. For each h =
1, . . . , Nc, write θ = {ha/Nc}. Let x be a formal variable and write u = ex. Then the
Bernoulli numbers are given by the power series

uθ

u− 1
− 1

x
+ Fh =

∞∑
s=0

B̃s+1(
ha
Nc

)

(s + 1)!
xs, (96)

where Fh = 1/2 when h = Nc and Fh = 0 otherwise (the error term Fh deals with the
discrepancy between B̃1(0) and B1(0)). Similarly, write βd = {hd/Nc}, let y be a formal
variable and write v = ey; we then have∑

d|N

nd
vβd/d

v1/d − 1
+ Gh =

∞∑
t=0

∑
d|N

nd

B̃t+1(
hd
Nc

)

(t + 1)!

(y

d

)t

, (97)

where Gh is a constant in 1
2
Z. Multiplying (96) and (97), and summing over all h, we obtain

H(u, v) :=
Nc∑
h=1

∑
d|N

nd
vβd/d

v1/d − 1
+ Gh

( uθ

u− 1
+ Fh

)
(98)

=
∞∑

s,t=0

Nc∑
h=1

∑
d|N

nd

B̃s+1(
ha
Nc

)

(s + 1)!

B̃t+1(
hd
Nc

)

(t + 1)!
xs
(y

d

)t

. (99)

Note that the −1/x terms from (96) have dropped out in (98) since summing (97) over all

h gives the value 0. By the same reasoning, we may replace uθ

u−1
in equation (98) defining
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H(u, v) by uθ−1
u−1

(this will be useful in later computations). Recalling that u = ex and v = ey,
we define the commuting differential operators

Du = u
∂

∂u
=

∂

∂x
and Dv = v

∂

∂v
=

∂

∂y
.

Using (95) and (99), we then have

(1− pn+m)
∑
d|N

ndd
−`

Dn+m−`+1,`+1

(
a

Nc/d

)
(n + m− ` + 1)(` + 1)

=

(Nc)n+m−`(D`
uD

n+m−`
v H∗(u, v))|(u,v)=(1,1),

where
H∗(u, v) := H(u, v)−H(up, vp).

We thus find that

In,m = 12
n∑

`=0

(
n

`

)( a

Nc

)n−`

(−1)`(Nc)n+m−`(D`
uD

n+m−`
v H∗(u, v))|(1,1)

= (NcDv)
m(aDv −Du)

n(12H∗(u, v))|(1,1). (100)

If we define a change of variables (u, v) = (z−1, wNcza), then Dw = NcDu and Dz = aDu−Dv.
Hence we obtain

Jn,m =

(
Dw

m

)(
Dz

n

)
(12H∗(u, v))|(1,1).

The following lemma will allow us to prove that these rational numbers lie in Zp.

Lemma 4.12. Consider the subset R of Zp(u
1/Nc, v1/Nc) defined by

R :=

{
P

Q
where P, Q ∈ Zp[u

1/Nc, v1/Nc] and Q(1, 1) ∈ Z×
p

}
.

Then R is a ring stable under the operators
(

Dw

m

)
and

(
Dz

n

)
.

Proof. The proof of this proposition follows exactly as in Lemma 3.4.2 of [Hida], except for
the subtlety that we must check that Zp[u

1/Nc, v1/Nc] is stable under the given differential
operators; for this it suffices to check that for example(

Dz

n

)
(v1/Nc) =

zn

n!

∂n

∂zn
(wza/Nc) =

(
a/Nc

n

)
wza/Nc,

which lies in Zp[u
1/Nc, v1/Nc] because p does not divide Nc; similarly for the other cases.
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Thus to prove that Jn,m ∈ Zp, it suffices to prove that H∗(u, v) is an element of R, and
for this it suffices to prove that H(u, v) ∈ R. Writing

Ψd(v) := 1 + v1/d + · · ·+ v(d−1)/d,

we have ∑
d|N

nd
vβd/d

v1/d − 1
=

1

v − 1

∑
d|N

ndv
βd/dΨd(v)

=
1

ΨNc(v)
·
∑

d|N ndv
βd/dΨd(v)

v1/Nc − 1
. (101)

Since the numerator of the rightmost term in (101) is a polynomial in v1/Nc which vanishes
when v1/Nc = 1, the rightmost term itself is a polynomial in v1/Nc. Since we are assuming
that p does not divide Nc, equation (101) then implies that

∑
d|N

nd
vβd/d

v1/d − 1
∈ R.

Similarly one shows that uθ−1
u−1

∈ R, and it follows that H(u, v) ∈ R. This concludes the proof
of Lemma 4.10.

4.6 A partial modular symbol of measures on Zp × Zp

In this section, we use the measures νξ to construct a partial modular symbol of measures on
Zp × Zp encoding the periods of Fk. Note that Zp × Zp is stable under the action of Γ0(N).

Lemma 4.13. There exists a unique Γ0(N)-invariant partial modular symbol ν of Zp-valued
measures on Zp × Zp such that∫

Zp×Zp

h(x, y) dν{r → s}(x, y) = Re

(
(1− pk−2)

∫ s

r

h(z, 1)Fk(z) dz

)
(102)

for r, s ∈ Γ∞, and every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2.

Proof. Uniqueness follows from Lemma 4.11; we must show existence. Let M denote the
Γ-module of degree zero divisors on the set Γ∞. Let M ′ ⊂ M be the set of divisors m for
which there exists a Zp-valued measure ν{m} on Zp × Zp such that∫

Zp×Zp

h(x, y) dν{m}(x, y) = Re

(
(1− pk−2)

∫
m

h(z, 1)Fk(z) dz

)
.

(Here
∫

m
is defined by

∫
[x]−[y]

:=
∫ y

x
, and extending by linearity.) We must show that

M ′ = M .
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It is clear that M ′ is a subgroup of M . We will show that M ′ is a Γ0(N)-stable submodule.

Let m ∈ M ′ and γ =

(
A B
C D

)
∈ Γ0(N) ; for compact open U ⊂ Zp × Zp define

ν{γm}(U) := ν{m}(γ−1U).

Define a right action of Γ0(N) on the space of polynomials in two variables by

h|γ(x, y) = h(Ax + By,Cx + Dy).

We calculate∫
Zp×Zp

h(u, v) dν{γm}(u, v) =

∫
Zp×Zp

h(u, v) dν{m}(γ−1(u, v))

=

∫
Zp×Zp

h|γ(x, y) dν{m}(x, y)

= Re

(
(1− pk−2)

∫
m

h|γ(z, 1)Fk(z) dz

)
= Re

(
(1− pk−2)

∫
γm

h(u, 1)Fk(u) du

)
, (103)

where equation (103) uses the change of variables u = γz and the fact that Fk|γ−1 = Fk.
Therefore, M ′ is a Γ0(N)-stable submodule of M . Lemma 4.10 shows that [a/Nc]−[∞] ∈ M ′

when p does not divide c. Since the Γ0(N)-module generated by these elements is all of M ,
we indeed have M ′ = M . Furthermore, the Γ0(N)-invariance of ν follows from uniqueness
and the calculation of (103) above.

4.7 From Zp × Zp to X
In this section we show that the measures ν{x → y} of Lemma 4.13 are supported on the
set X ⊂ Zp × Zp of primitive vectors.

Lemma 4.14. Let r, s ∈ Γ∞. We have∫
Zp×Z×p

h(x, y) dν{r → s}(x, y) = Re

(∫ s

r

h(z, 1)F ∗
k (z) dz

)
for every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k − 2.

Proof. The characteristic function of the open set Zp×Z×
p is limj→∞ y(p−1)pj

. For notational
simplicity, let g = (p − 1)pj throughout the remainder of this section. Then for n,m ≥ 0
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and k = n + m + 2, we have∫
Zp×Z×p

xnym dν
{ a

Nc
→∞

}
(x, y)

= lim
j→∞

∫
Zp×Zp

xnym+g dν
{ a

Nc
→∞

}
(x, y)

= lim
j→∞

12(1− pk+g−2)
n∑

`=0

(
n

`

)( a

Nc

)n−`

(−1)` ×

∑
d|N

nd

d`
Dk+g−`−1,`+1

(
a

Nc/d

)

= 12
n∑

`=0

(
n

`

)( a

Nc

)n−`

(−1)`
∑
d|N

nd

d`
lim
j→∞

Dk+g−`−1,`+1

(
a

Nc/d

)
. (104)

Meanwhile we calculate

Re

(∫ i∞

a
Nc

znF ∗
k (z) dz

)

= Re

(∫ i∞

a
Nc

znFk(z) dz − pk−n−2

∫ i∞

pa
Nc

znFk(z) dz

)

= 12
n∑

`=0

(
n

`

)( a

Nc

)n−`

(−1)` ×

∑
d|N

nd

d`

[
Dk−`−1,`+1

(
a

Nc/d

)
− pk−`−2Dk−`−1,`+1

(
pa

Nc/d

)]
. (105)

The following lemma implies that (104) and (105) are equal, and finishes the proof.

Lemma 4.15. Let s, t ≥ 0. For any rational number x, we have in Qp:

lim
j→∞

D̃s+g,t(x) = D̃s,t(x)− ps−1D̃s,t(px). (106)

Proof. This essentially follows from the generalized Kummer congruences for Bernoulli poly-
nomials. Let x = a/c and assume first that p does not divide c. Let b denote an integer such
that abp ≡ 1 (mod c). Note that

D̃s,t(a/c) = cs−1

c∑
`=1

B̃s(`bp/c)B̃t(`/c). (107)

Similarly

D̃s+g,t(a/c) = cs+g−1

c∑
`=1

B̃s+g(`bp/c)B̃t(`/c)
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and

D̃s,t(pa/c) = cs−1

c∑
`=1

B̃s(`b/c)B̃t(`/c).

Write y = {`bp/c} and y′ = {`b/c}. Since cg → 1, it suffices to prove that

lim
j→∞

Bs+g(y) = Bs(y)− ps−1Bs(y
′).

For s > 0, this follows from the proof of Theorem 3.2 of [You], which applies for our purposes
even in the case s ≡ 0 (mod p − 1). For s = 0, the desired equality follows from the fact
that the p-adic L-function Lp(s, χ) for a Dirichlet character χ is analytic at s = 1 unless
χ = 1, in which case Lp has a simple pole with residue 1− 1/p. This completes the proof for
the case x ∈ Zp.

We now handle the case x 6∈ Zp. From equation (107), one sees that

D̃s,t(a/c) = cs−tD̃t,s(bp/c).

Thus the result proved above is that

lim
j→∞

D̃t,s+g(bp/c) = D̃t,s(bp/c)− ps−1D̃t,s(b/c) (108)

whenever p - c. By switching indices in a similar fashion, equation (106) for x = a/bp
becomes

lim
j→∞

(bp)s+g−tD̃t,s+g(c/bp) = (bp)s−tD̃t,s(c/bp)− ps−1bs−tD̃t,s(c/b) (109)

where ac ≡ 1 (mod bp). We will reduce equation (109) to equation (108) by means of the
reciprocity law for these generalized Dedekind sums, given in Theorem 2 of [Hal]. Let b > 0;
the reciprocity law then states

bs−tD̃t,s(c/b) = sign(c)
t∑

`=0

s

s + `

(
t

`

)
(−1)s+`b−`cs−t+`D̃t−`,s+`(b/c) (110)

+
s+t∑
σ=0

(
s+t−σ−1

t−1

)(
s+t
σ

)(
s+t
t

) (−1)σbσ−tcs−σD̃t+s−σ,σ(0) (111)

+

{
− sign(c)/4 if s = t = 1

0 otherwise.

Note that the sum in (110) is taken to be 0 if s = 0. We will call the terms in the sum on line
(110) “type I” terms and those on line (111) “type II” terms. Using the Dedekind reciprocity
law on each of the terms in (109), one easily checks that the desired limit holds for the type
I terms by (108). The same is true for each of the type II terms with σ = 0, . . . , s + t. To
conclude the proof, one checks that each of the type II terms for σ = s + t + 1, . . . , s +
t + g arising from the reciprocity law for (bp)s+g−tD̃t,s+g(c/bp) has ordp greater than ordp(g)
minus some constant depending only on s and t. Thus in the limit, the sum of these terms
vanishes.
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We can now prove:

Lemma 4.16. The measures ν{r → s} are supported on X.

Proof. Let γ ∈ Γ0(N). As in (103) above, we calculate for a homogeneous polynomial h(x, y)
of degree k − 2,∫

γ(Zp×Z×p )

h(x, y) dν{r → s}(x, y) = Re

(∫ s

r

h(z, 1)F ∗
k |γ−1(z) dz

)
. (112)

Let {γi}p+1
i=1 be a set of left coset representatives for Γ0(N)/Γ0(Np). Then

p+1⋃
i=1

γi(Zp × Z×
p )

is a degree p cover of X. Hence from (112) we find that

p

∫
X

h(x, y) dν{r → s}(x, y) =

p+1∑
i=1

Re

(∫ s

r

h(z, 1)F ∗
k |γ−1

i
(z) dz

)
. (113)

Now
p+1∑
i=1

F ∗
k |γ−1

i
=

p+1∑
i=1

(
Fk|γ−1

i
− pk−2Fk|Pγ−1

i

)
= (p + 1)Fk − TpFk = (p− pk−1)Fk,

since Fk is evidently an eigenform for Tp with eigenvalue 1 + pk−1. Thus (113) becomes∫
X

h(x, y) dν{r → s}(x, y) = Re

(
(1− pk−2)

∫ s

r

h(z, 1)Fk(z) dz

)
.

Therefore, the integral on X of any polynomial h(x, y) equals the integral on Zp × Zp of
h(x, y); this implies that the measure ν{r → s} is supported on X.

4.8 The measures µ and Γ-invariance

The compact open set X is a fundamental domain for the action of multiplication by p on
Q2

p − {0}. Hence if we define for compact open U ⊂ X:

µ{r → s}(U) := ν{r → s}(U),

then µ extends uniquely to a Γ0(N)-invariant partial modular symbol of Zp-valued measures
on Q2

p − {0} which is invariant under the action of multiplication by p:

µ{r → s}(pU) = µ{r → s}(U)

for all compact open U ⊂ Q2
p − {0}. Lemmas 4.13, 4.14, and 4.16 show that µ satisfies

properties (1) and (4) of Theorem 4.2. Furthermore, property (3) is satisfied by construction.
Thus to complete the proof of Theorem 4.2, it remains to show that the partial modular
symbol of measures µ is Γ-invariant.
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Lemma 4.17. The partial modular symbol µ is invariant under Γ̃.

Proof. Since Γ̃ is generated by Γ0(N) and P =

(
p 0
0 1

)
, it suffices to show that µ is

invariant for the action of P . For a homogeneous polynomial h(x, y) of degree k−2, we have∫
X

h(x, y) dµ{P−1r → P−1s}(P−1(x, y))

=

∫
P−1X

h(pu, v) dµ

{
r

p
→ s

p

}
(u, v). (114)

Writing P−1X as a disjoint union

P−1X = (Zp × Z×
p )
⊔(

p 0
0 p

)−1

(Z×
p × pZp)

and using the invariance of µ under multiplication by p, (114) becomes∫
Zp×Z×p

h(pu, v) dµ

{
r

p
→ s

p

}
(u, v) +

∫
Z×p ×pZp

h(u, v/p) dµ

{
r

p
→ s

p

}
(u, v).

By the homogeneity of h, one simplifies the above expression:

p2−k

∫
X

h(pu, v) dµ

{
r

p
→ s

p

}
(u, v)

+(1− p2−k)

∫
Zp×Z×p

h(pu, v) dµ

{
r

p
→ s

p

}
(u, v)

= Re

(
p2−k(1− pk−2)

∫ s
p

r
p

h(pz, 1)Fk(z) dz+

(1− p2−k)

∫ s
p

r
p

h(pz, 1)F ∗
k (z) dz

)

= Re

(
(p2−k − 1)

∫ s
p

r
p

h(pz, 1)pk−1Fk(pz) dz

)
(115)

= Re

(
(1− pk−2)

∫ s

r

h(u, 1)Fk(u) du

)
, (116)

where (115) uses the definition of F ∗
k and (116) uses the change of variables u = pz. Since

this equals the integral over X of h(x, y) against the measure µ{r → s}, we find that µ is
indeed invariant for the action of P .
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