ELLIPTICAL AND RADIAL TRUNCATION IN NORMAL
POPULATIONS

By G. M. TaLuis
McMaster Laboratory, C.S.I1.R.0., Glebe, N.S.W.

1. Introduction. Over the past few years, considerable attention has been
devoted to problems of truncation in normal (and other) parent populations,
[see Birnbaum and Meyer (1953), Weiler (1959) and Tallis (1961)]. This work
has been useful in the general theory of selection and has provided the basis for
a number of selection techniques. It is the purpose of this note to introduce the
concept of elliptical truncation in normal populations and to derive the moment
generating function, m.g.f., for the resulting distribution. Some applications of
the results to selection are given in the last section, where also, combined elliptical
and radial truncation is discussed by means of problems in two dimensions.

2. The multinormal distribution under elliptical truncation. Consider the
standardised, n-dimensional multinormal distribution

1) (x) = (2m)"[R[™ exp(—$x'R7'x),
where R is positive definite, and define a set E in n-space by
E={x|a =xRx<b,0<a<b

That is, E is the set of points which lie inside or on the boundary of the ellipsoid
x'R7x = b and outside or on the boundary of the ellipsoid XR™'x = a.
The problem now is to find the m.g.f. for the n variables in the subspace E.
By definition

@) am(t) = (20 R [ exp (—3xR7x + {x) dx,
E
which can be reduced by the non-singular transformation y = P'x (PP’ =R) to

am(t) =207 [ exp (—3y'y + (P0)'y) dy
(3)
= (2r) 7" /; exp [—i(y — P't)'(y — P't)] dy,

where T = 'Rt and F = {y|a = ¥y < b}. From (3) it is clear that the
variable Y'Y = W, say, has a non-central chi-square distribution with para-
meters n and T. Hence, if F,,5;( - ) represents the chi-square distribution function
with parameter n + 2¢,

(4) am(t) = 3= Fasai(®) = Prss @)1

since the distribution function of W, H(w), is H(w) = D 1o Fpi2:(w) T/
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It is now obvious that & = F,(b) — F,(a) and that the mean vector y and
moment matrix M are given by w =0 and M = o [Fays(b) — Fais(a)R.
In fact, all odd order moments vanish and even moments of order 2k are obtained
from those of the multinormal distribution by multiplication by a ‘[F, u(b) —

Frin(a)l.

3. Applications and extensions.

(a) General applications in n-dimensions. A direct application of -elliptical
truncation to selection would require, for instance, that all individuals in the
population satisfying 0 < x’'R™'x < a be retained and the rest discarded. This
procedure would ensure that a proportion « be retained without altering the
means of the n variates concerned. Such a situation may be desirable, for in-
stance, if a breeding population applying zero selection pressure to all characters
is required as a control group. In practice then, the population from which the
selections are made is treated as multinormally distributed with correlation
matrix R. If the population is accessible and finite, R can be calculated; otherwise
R may be an estimate of the true matrix R which is usually unknown. Now, all
individuals with measurement vectors satisfying x'Rx > a are discarded and,
in the remaining group, the desired condltlon E(X;) = 0for all 7 will be approxi-
mately satisfied.

Not only can selection be performed without altering the means of the =
variates, but the following argument shows that a selected group can be formed
such that the covariance matrix also remains unchanged. If selection is carried
out in such a way that individuals with measurement vectors, x,z satisfying
o = X'R7'x < b are retained, then it follows from (4) that if M is to equal R,

(5) Fr12(b) — Fu(b) = Fny2(a) — Fu(a)

is a necessary and sufficient condition. Let G.(x) = F,i(2) — F,(z), then
since G(0) = 0 and Gn.(xz) decreases monotonically and continuously to a
minimum at = n and thereafter increases monotonically to G,() = 0, it
follows that for every a ¢ [0, n] there exists a b € [n, «] such that G,(a) = G.(b).
Moreover, b is a strictly monotone decreasing and continuous function of a and,
as a moves continuously from 0 to n, b moves continuously from « to n. Thus,
F,(b) — F.(a) takes all values of o from 1 to 0. We have shown, therefore, that
selection can in fact be carried out in such a way as to have the first and second
moments of the selected group the same as the parent population.

Values of a and b are given for & = .1(.1).9 and » = 2 in Table 1. The figures
in the table were found as the non-trivial, simultaneous solution to the equations
ye'! —xe " =0ande” — e’ = @, wherex = a/2 and y = b/2.

(b) Extensions for n = 2. The following two problems in two dimensions are
considerably more interesting than the general applications given in (a).

ProBLEM 1. Let S be the sub-space of the plane defined by 2} + 25 — 2pz25 =
(1 — p*)a, where X; and X, have joint frequency function

¢, 2 50) = (20)7(1 = o)

(6) n1 e a
X exp{ —[2(1 — p)]" (21 + 23 — 2p212,)}.
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TABLE 1
Values of a and b for n = 2 and various «

o a b a a b
0.1 1.740 2.285 0.6 0.684 4.411
0.2 1.500 2.601 0.7 0.506 5.144
0.3 1.277 2.956 0.8 0.335 6.161
0.4 1.068 3.361 0.9 0.171 8.632
0.5 0.871 3.836

Consider the sub-space S’ of S enclosed in the sector 8 = 6;, 6 = 6, 6, > 6, ,
and let Pr{(X;, X,) ¢ 8} = a. Then it is required to determine the values of
0,,0, and a, (6, ,8,,3d) which maximise [3,E(X:) + B:E(X,)], where 8; and B,
are arbitrary real numbers.

Such a maximisation is desirable, for instance, when animals are selected for
breeding. In this case, the 8’s are the appropriate regression functions of the
X’s on the particular genotype considered and the problem posed above is
analogous to the one discussed by Young and Weiler (1960). These authors
investigated the problem of the maximisation of [3.E(X;) + B.E(X:)] under
rectangular trunecation in X; and X, and published several charts for this purpose.
From the point of view of maximisation, the system of combined radial and
elliptical truncation is much more easily handled, since the maxima can be
obtained directly from a single table such as Table 2. With rectangular trunca-
tion, maximisation in general can only be achieved iteratively with the aid of a
complicated six-dimensional chart.

In order to find (8, 6;, @), make the transformation x = Py where

b_ [ 271 — p)t 271 + pﬁ}
=27 = o)t 2+ ]

Now BE(X:1) + BE(X:) = mE(Y) + vE(Y2), m= (6 — )27 (1 — p)?,
ve = (B1 + 32)2"*(1 + p)*, and the new angle 6, (¢ = 1, 2), are given by the
formula

tan6; = [(1 — p)/(1 + p)I'[(1 + tans;)/(1 — tane)).

Another transformation, this time orthogonal, subsequently simplifies the
problem. Let z = Hy, where

|: v+ )7 i+ 73)—*:'
(i + )7 mGi 4+ )

Upon making the above two transformations in (6) and letting 2z = rcosé,
2, = rsind we obtain finally
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0% poo
aBli X1+ 8:X5] = (21) 7 (vi + v3)? f,2 f cos 0% dr do
(7) 01 a

= (’yf + 'yg)*E(zl) = F(O]/,/, 0;/) a’), say,
and by assumption

(14 )
(2r)™ fo ’ f re ™ dr do = (20)76! — 07)e " = g,
Let
(8) H(6,65,a) = (20)7(6] —6])e™™ —a=0
and G = F + A\H, then
(a) 9G/967 = (2m) (4% + 42)} (f e dr) cos 07

+ @2r) A% =0

(9) (b) 8G/o63 = (2x) 7 (47 + ~i)} (j:o P2 dr) cos 0y

+ @2r) ™2 =0
(¢) 3G/oa = (2m) 7 (vi + v2)la%"*(sin 67 — sin 67)
+ (20707 — 6])ae = 0

Substract 9(b) from 9(a) to obtain cos 67 = cos 6; or ; = —6y, and for
a > 0, divide 9(c) through by a(8; — 6{) and subtract it from 9(b) to give
(10) {1 + [1l —®(a)]/dp(@)} cos B — sin 05 /67 = 0.

By using the relation ¢(a) = a/6; - (x/2)}, (10) can be solved iteratively for
92. The quantities 87 and & are obtained immediately and back substitution
gives f; and 8. If @ = 0, it is found that 6; = —67, as previously, and 6, = ar.

If the constraints (8) and 6, = —6; are introduced into (7), F becomes a
function of ¢ only and
00
(11) F(a) = K sin (rae®'?) f e dy
a
TABLE 2
Values of 6, a and E(z1) for various o
a 65 a E(z) a 05 a E(z)
1 0.877 1433  1.722 6 1.8 0  0.632
.2 1.044 1.008 1.375 7 2.199 0 0.461
.3 1.196 0.691 1.144 .8 2.513 0 0.293
4 1.357 0.393 0.960 .9 2.827 0 0.137
.5 1.571 0.000 0.798
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where K = 7 (v} +13)%. For a <%, (10) has a unique root, 0 < & <
(—21n 2a)?, and from an inspection of (11), F(a) is clearly a maximum. When
a = % (10) has no solution, but F(a) is monotone decreasing in ¢ and hence
attains its maximum when @ = 0. Points of maximisation and values of E(z;)
are given for various values of « in Table 2.

A referee has pointed out that (7) can be maximised readily without using
the Lagrange procedure. First make the transformation e= 27'(67 + 67)
and A = 27'(6] — 6;) to show that, for all A and @, (7) is maximum when
e = 0. By introducing the constraint A = mae®*’%, (7) can be written in the form
(11) and the extreme points investigated in the usual manner. Both methods
lead to the same result.

ProBrEM 2. It was shown above that, from an original population, a control
population can be constructed so that no changes in means or second order
moments occur, provided the radii ¢ and b are suitably chosen. However, the
problem of simultaneously establishing a control group of proportion « and a
selection group of proportion § < 1 — o from a single base population often
arises. In this case it may be desirable to leave the first and second moments in
the control group the same as the base population and, at the same time, maxi-
mise E[8: X1 + B8:X5] in the selection group to obtain the greatest possible selec-
tion differential using a single sector.

The control group is established by means of the elliptical truncation
a < X¥R7'x < b, where a and b are determined from Table 1. In order to find
the region from which the selection group is formed, notice that

03 a 0
SE[BL X1 + B2 X2l = (2r) (v} + 72)*f cos d (f + f ) %1% dr do
0% o b
and H(6!,67) = (2r)7"(65 — 67)(1 — exp(—d’/2) + exp(—b*/2)) — & = 0.
It is found immediately that 87 = —8;, as previously, and

0 = om/(1— ¢ 4 )
E(z) = (2/)}sin (87)[bé(b) — ad(a) + 1 + &(a) — &(b)].

Thus, all those individuals lying in the sector (87, 8z ) and outside the control
group form the selection group.
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