
Elliptical Slice Sampling for Probabilistic Verification of
Stochastic Systems with Signal Temporal Logic Specifications

Guy Scher

gs679@cornell.edu

Sibley School of Mechanical and Aerospace Engineering,

Cornell University

Ithaca, NY, USA

Sadra Sadraddini

sadra@dexai.com

Dexai Robotics

Boston, MA, USA

Russ Tedrake

russt@mit.edu

Computer Science and Artificial Intelligence Laboratory

(CSAIL), Massachusetts Institute of Technology

Cambridge, MA, USA

Hadas Kress-Gazit

hadaskg@cornell.edu

Sibley School of Mechanical and Aerospace Engineering,

Cornell University

Ithaca, NY, USA

ABSTRACT
Autonomous robots typically incorporate complex sensors in their

decision-making and control loops. These sensors, such as cameras

and Lidars, have imperfections in their sensing and are influenced

by environmental conditions. In this paper, we present a method

for probabilistic verification of linearizable systems with Gaussian

and Gaussian mixture noise models (e.g. from perception modules,

machine learning components). We compute the probabilities of

task satisfaction under Signal Temporal Logic (STL) specifications,

using its robustness semantics, with a Markov Chain Monte-Carlo

slice sampler. As opposed to other techniques, our method avoids

over-approximations and double-counting of failure events. Central

to our approach is a method for efficient and rejection-free sampling

of signals from a Gaussian distribution such that satisfy or violate a

given STL formula.We show illustrative examples from applications

in robot motion planning.

CCS CONCEPTS
• Computer systems organization → Robotics; • Theory of
computation →Modal and temporal logics.

KEYWORDS
Probabilistic verification, Signal Temporal Logic

ACM Reference Format:
Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit. 2022.

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems

with Signal Temporal Logic Specifications. In Proceedings of ACM Conference
(Conference’17).ACM, New York, NY, USA, 12 pages. https://doi.org/xx.xxxx/

xxxxxxx.xxxxxxx

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

1 INTRODUCTION
To deploy autonomous robots, such as self-driving cars or assistive

robots, we seek formal guarantees that they can operate safely and

reliably. Providing such guarantees is challenging due to the sheer

amount of non-determinism in the world including noisy sensors,

uncontrolled environment (humans, other robots) and different

environment conditions (such as lighting, occlusions, etc.). Modern

systems also include machine learning components [7] that can

contribute to uncertainty since they might be deployed in different

settings than the ones they were trained on.

Sensors, from proprioceptive ones that sense the robot’s internal

values such as speed or joint angles, to exteroceptive ones that

sense the environment such as range finders and cameras are usu-

ally modeled with errors coming from a Gaussian distribution or

bounded noises. The system designer needs to reason about the

likelihood that the system will successfully perform the task and

re-design it if needed. The general approach is to find all the states

(e.g. the robot’s positions) that the robot may reach under all cir-

cumstances, i.e. the “reachable set”, and reason about the safety

and task completion. Testing with hardware is limiting, impractical

and intractable because of the variability of tests and environmen-

tal conditions. Finding rigorous formal mathematical guarantees

is usually infeasible for complicated systems performing complex

tasks. Verifying systems using simulations may be the only way,

but they also suffer from long computation times, especially when

searching for rare and hard to find events [5, 27, 35].

Several techniques exist for verifying systems with uncertainty

in the literature. Imposing hard constraints on the state will always

result in violation when dealing with unbounded non-determinism

such as the Gaussian noise model. As such, it makes sense to de-

scribe the constraints with the probability of satisfying them - prob-

abilistic state constraints. One common approach to verifying such

robotic systems is with chance constraints [3, 12]. In these formu-

lations, it is common to do risk allocation and use Boole’s inequality,

which allocates the level of uncertainty for each constraint com-

ponent [23], or use ellipsoidal approximations. However, both are

considered to be conservative [3, 16], as they over approximate fail-

ure probabilities. A known issue with these approaches is “double

counting”. A constraint violation of a trajectory at time 𝑡 might

yield a violation at 𝑡 + 1 as well, and they will be considered as

ar
X

iv
:2

20
3.

00
07

8v
1

 [
ee

ss
.S

Y
]

 2
8

Fe
b

20
22

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

Conference’17, July 2017, Washington, DC, USA Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

two separate violations because of the way they are constructed. In

reality, we would like to consider that trajectory as just one failing

trajectory.

Another common approach is to useMonte-Carlo methods to
verify systems. These methods are very attractive because they can

be applied to non-linear systems, intricate noise models and black-

box simulators. However, they can be computationally inefficient,

especially when trying to detect rare events [4]. The verification

process needs to iterate through many simulations or even guided

simulations to find rare events [11, 27, 29] in order to produce an

accurate estimate of the probability. Other more generic techniques

also exist to improve the performance of a Monte-Carlo simula-

tion [32].

An issue with Monte-Carlo simulations is when there are many

non-deterministic parameters [15]; in such cases, Monte-Carlo tech-

niques may require a prohibitively large number of simulations to

adequately represent the posterior distribution. In our case, a dy-

namic system with multiple noise sources and a long time horizon

can grow to a large parametric space quickly. We, and the work in

[15] which we extend upon, show that our method can yield accu-

rate integrations for Gaussians in high dimensions independent of

the probability mass of the posterior.

Optimization techniques have been used extensively in the lit-

erature to verify systems with uncertainty. There exist numerous

verification algorithms that deal with machine learning compo-

nents in the loop (e.g. [31]). The authors in [33] consider dynamic

systems with a neural network component as the controller. In that

setting, the inputs to the neural network are discretized and a linear

program over-approximates the output. With that, they compute

the over-approximation of the complete system’s reachable set. Op-

timization can even help detect or attenuate cyber-physical attacks

where an attacker can inject noise to a sensor to affect the system’s

outcomes through the controls [20]. This assumes that bounded

noises are selected carefully to achieve the attacker’s goal while

avoiding detection, and thus would be over-conservative in a non-

adversarial setting. In [7], the authors use robust control theory to

provide guarantees for a system where the perception errors can

be bounded using some assumptions on the data used during the

training process versus the data that is collected in real-time.

Another line of work can be categorized as geometric algo-

rithms. Set propagation techniques have been applied to reacha-

bility analysis. Except for a limited number of systems, these tech-

niques always deal with under or over-approximations because

finding the reachable sets is undecidable [2]. These techniques pro-

vide efficient computation frameworks; however, they work only on

uni-model disturbances such as a Gaussian model, or a bounded dis-

turbance. When discussing systems with a large number of states,

one must employ other methods, such as decomposition of the

system dynamics, for the methods to be tractable. The authors in

[1] combined zonotopes and support functions to create an efficient

framework for calculating the reachable sets of linear and switched

dynamics systems. It considers only bounded disturbances.

In this work, we focus on the verification of properties that can

be expressed using Signal Temporal Logic (STL) [10] formulas for

linear or linearizable time-variant robotic systems with Gaussian er-

ror models. We show how our verification technique performs with

a Gaussian mixture noise model (Section 4.6), where the weights or

probabilities of each Gaussian could be either static, come from a

choice model like a Markov chain, or from a black-box choice model.

We provide a verification method for generic STL formulae. We also

describe a special case of reach-avoid [14] type specifications for

which we propose an alternate solution that, in some cases, is more

computationally efficient. We leverage and extend the framework

in [15] to compute the probability that the robot satisfies or violates

its task specification.

Our main contribution is a computation framework for verify-

ing and computing the probability of a high-dimensional system

to satisfy (or violate) complex STL specifications within a finite

horizon using the STL quantitative semantics. The technique is

especially useful (accurate and tractable) when dealing with low

probability events and displays the following properties: 1. We pro-

vide an efficient computation framework that does not suffer from

the combinatorial nature of representing the signals that satisfy

an STL specification. 2. Failure modes are not double-counted and

not over-approximated. The computational framework is solved

efficiently and can be parallelized. 3. Sampling is done from the

posterior distribution in a rejection-free manner. Thus it is sam-

pling efficiently from the target distribution. 4. We can efficiently

sample new trajectories from the failing or succeeding trajectory

sets for analysis purposes, control synthesis, etc. 5. The algorithm

is parameter-free. Meaning, no fine-tuning of hyper-parameters is

required. 6. It can verify systems with more intricate noises than

Gaussian errors thus capturing realistic perception models.

2 PRELIMINARIES
In this section, we provide the necessary background on elliptical

slice sampling and STL specifications.

2.1 Elliptical Slice Sampling (ESS) and the
Holmes-Diaconis-Ross (HDR) algorithm

An adaptive elliptical slicing method is used to sample from a lin-

early constrained domain under Gaussian distributions in [15]. We

show the main concept and idea here for clarity and completeness.

In this paper we extend [15] to compute the probability that the

robot trajectories, represented as a multivariate Gaussian, satisfy

or violate a specification.

Elliptical slice sampling (ESS) [21] is a Markov Chain Monte

Carlo technique (MCMC) for sampling from a posterior when the

prior is a multivariate Gaussian N(`, Σ). In our case, the posterior

will be a Gaussian under constrained linear domains (a truncated

Gaussian). Given a single sample 𝑥0 ∈ R𝑛 inside the linear con-

strained domain L ⊆ R𝑛 , and a new auxiliary point sampled from

the same Gaussian a ∼ N(`, Σ), the approach constructs an ellipse

𝑥 (\) = 𝑥0 cos(\) +a sin(\), parameterized by the scalar \ ∈ [0, 2𝜋].
Using a closed-form solution to the intersections between the aux-

iliary ellipse and the hyperplanes that confine the linear domain L,

we can sample \∗ from a Uniform distribution over the ellipse arc

lengths that lie within the domain, and thus obtain a new sample

𝑥 (\∗) ∈ L. A point on the ellipse is in the domain L, when the

intersection between all𝑑 constraints exceed zero,𝐴𝑥+𝑏 ≥ 0 where

𝐴 ∈ R𝑑×𝑛, 𝑏 ∈ R𝑑 . This process is depicted in Fig.1a where the new

sample 𝑥 is sampled from the constrained Gaussian distribution

N(`, Σ) (for proof, see [15, 21]).

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications Conference’17, July 2017, Washington, DC, USA

(a) Elliptical slice sampling (b) HDR

Figure 1: (a) Sampling a new point 𝑥 (\∗) from the con-
strained domain (blue grid) given an initial point 𝑥0, an aux-
iliary point a ∈ N (`, Σ) and \∗ ∼ U(\𝑚𝑖𝑛, \𝑚𝑎𝑥). The active
intersection is the bold blue line section of the ellipse where
all points within [\𝑚𝑖𝑛, \𝑚𝑎𝑥] are in the linearly constrained
domain. (b) Original constrained domainL𝐾 in the blue grid
and shifted domain L𝐾−1 in yellow divot after producing
samples from N(`, Σ) using the ESS procedure under L𝐾−1.

The Holmes-Diaconis-Ross (HDR) algorithm [8] is one method

from a family of algorithms called multi-level splitting, for estimat-

ing the probability of sampling from a constrained region under

any distribution. Direct Monte-Carlo methods may be inefficient

because most candidate samples may be rejected (low probability

distribution function or high dimensional domain). With HDR, the

probability 𝑝 (L) of sampling from L ⊆ R𝑛 is estimated using the

product of conditional probabilities:

𝑝 (L) = 𝑝 (L0)
𝐾∏
𝑘=1

𝑝 (L𝑘 |L𝑘−1
) (1)

where L0 = R𝑛, 𝑝 (L0) = 1. Each domain L𝑘 (also referred to

as a nesting) is shifted (enlarged, see Fig.1b) to L𝑘−1
by a scalar

𝛾𝑘 > 0 such that the conditional probabilities 𝑝 (L𝑘 |L𝑘−1
) ≈ 1

2
and

𝛾𝐾 = 0 is exactly the target domain L𝐾 = L. Fig.1b depicts this

process where the target domain L (blue grid) is expanded until it

contains enough samples - when the probability to sample from the

shifted region is about 0.5. Then, the algorithm iteratively shrinks

the shifted region to keep the proportion of samples within the new

domain to the previous domain at about half. 𝑛𝑘 samples are drawn

from each domain L𝑘−1
with the ESS algorithm. The probability

𝑝 (L𝑘 |L𝑘−1
) = 𝑁 (𝑘)/𝑛𝑘 , is the ratio between the number of sam-

ples 𝑁 (𝑘) =
∑𝑛𝑘
𝑗=1

𝐼 (𝑥 𝑗 ∈ L𝑘) (𝐼 is the indicator function, equals
one if the argument is true, zero otherwise) to the total number of

samples, 𝑛𝑘 , drawn at that nesting.

We note that closed-form solutions to the integral of a Gaussian

under a linear constrained domain does not exist in the general case,

when the domain is not axis-aligned with the Gaussian. Numerical

methods, such as quadrature algorithms, do not scale well with the

dimensionality of the problem [25].

2.2 Signal Temporal Logic
Signal temporal logic (STL) [19] enables specifying a broad range

of temporal constraints over real-valued signals. Here we consider

STL for discrete-time signals. Continuous-time logics and their

properties can be found in, e.g., [10, 13].

Consider a discrete-time real-valued signal s = 𝑠0, 𝑠1, 𝑠2, · · · ,
where 𝑠𝑡 ∈ R𝑛,∀𝑡 ∈ N. A predicate over R𝑛 is denoted by ` =

(ℎ(𝑠) ≥ 0), where ℎ : R𝑛 → R. A predicate is called linear if ℎ is

an affine function of 𝑠 . Given a set of predicates, STL formulae are

defined recursively using the following operators:

` | ¬𝜑 | 𝜑1 ∧ 𝜑2 | 𝜑1 ∨ 𝜑2 | 𝜑1U[𝑡1,𝑡2]𝜑2 | ^[𝑡1,𝑡2]𝜑 | □[𝑡1,𝑡2]𝜑 (2)

where𝜑, 𝜑1, 𝜑2 are STL formulae,¬ is the negation operator,∧,∨ are

conjunction and disjunction, respectively, andU[𝑡1,𝑡2] ,^[𝑡1,𝑡2] ,□[𝑡1,𝑡2]
are bounded temporal operators, over the time interval [𝑡1, 𝑡2], that
stand for “until”, “eventually”, and “always”, respectively.

Example 2.1. Consider a signal with values in R2
, where 𝑠 =

(𝑠 (1) , 𝑠 (2))′. The specification
𝜑 = □[0,9] (𝑠 (1) + 𝑠 (2) − 10 ≥ 0) ∨ ^[0,15]□[0,5] (−𝑠 (1) ≥ 0)

encodes “for all times in the interval [0,9], the value of 𝑠 (1) + 𝑠 (2)
stays above 10, or, for some time in the interval [0, 15], the value of
𝑠 (1) stays below 0 for 5 consecutive time steps".

Definition 2.2. The STL score, or quantitative semantics [9],
𝜌 (s, 𝜑, 𝑡) is recursively defined as:
• 𝜌 (s, (ℎ(𝑠) ≥ 0), 𝑡) = ℎ(𝑠𝑡),
• 𝜌 (s,¬𝜑, 𝑡) = −𝜌 (s, 𝜑, 𝑡),
• 𝜌 (s, 𝜑1 ∧ 𝜑2, 𝑡) = min(𝜌 (s, 𝜑1, 𝑡), 𝜌 (s, 𝜑2, 𝑡)),
• 𝜌 (s, 𝜑1 ∨ 𝜑2, 𝑡) = max(𝜌 (s, 𝜑1, 𝑡), 𝜌 (s, 𝜑2, 𝑡)),
• 𝜌 (s,^[𝑡1,𝑡2]𝜑, 𝑡) = max

𝜏 ∈𝑡+[𝑡1,𝑡2]
𝜌 (s, 𝜑, 𝜏),

• 𝜌 (s,□[𝑡1,𝑡2]𝜑, 𝑡) = min

𝜏 ∈𝑡+[𝑡1,𝑡2]
𝜌 (s, 𝜑, 𝜏),

• 𝜌 (s, 𝜑1U[𝑡1,𝑡2]𝜑2, 𝑡) = max

𝜏 ∈𝑡+[𝑡1,𝑡2]
min

(
𝜌 (s, 𝜑2, 𝜏), min

𝜏′∈[𝑡,𝜏]
𝜌 (s, 𝜑1, 𝜏

′)
)
.

The STL score provides a metric for distance to satisfaction for a

signal and STL formula. A positive STL score indicates satisfaction

and a negative one stands for violation. To remove ambiguity, we

consider the STL score of 𝜌 (𝑠, 𝜑, 𝑡) = 0 as satisfying. We define the

STL score of a signal s and specification 𝜑 as 𝜌 (s, 𝜑, 0).

Example 2.3. In Example 2.1, let 𝑠𝑡 = (𝑡 − 8, 2)′,∀𝑡 ∈ N. It is
evident that it satisfies 𝜑 . Applying Definition 2.2, we obtain

𝜌 (s,□[0,9] (𝑠 (1) + 𝑠 (2) − 10 ≥ 0), 0) = min

𝑡 ∈[0,9]
(𝑡 − 16) = −16

and

𝜌 (s,^[0,15]□[0,5] (−𝑠 (1) ≥ 0), 0) = max

𝑡 ∈[0,15]
min

𝜏 ′∈[0,5]
(8− (𝑡 + 𝜏 ′)) = 3,

thus 𝜌 (s, 𝜑, 0) = max(−16, 3) = 3. We say signal s satisfies 𝜑 and

its STL score is 3.

Definition 2.4. The 𝜚 -level set of an STL formula 𝜑 is defined as:

L(𝜑, 𝜚) = {s|𝜌 (s, 𝜑, 0) ≥ 𝜚 }. (3)

Definition 2.5. The horizon of the STL formula 𝜑 , denoted by
𝐻𝜑 , is the minimum length of truncated signal s = 𝑠0, 𝑠1, · · · , 𝑠𝐻𝜑−1

such that is required to evaluate 𝜌 (s, 𝜑, 0) and it is recursively given
by:

• 𝐻 (ℎ (𝑠) ≥0) = 1,
• 𝐻¬𝜑 = 𝐻𝜑 ,

Conference’17, July 2017, Washington, DC, USA Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

• 𝐻𝜑1∧𝜑2 = 𝐻𝜑1∨𝜑2 = max(𝐻𝜑1 , 𝐻𝜑2),
• 𝐻^[𝑡

1
,𝑡

2
]𝜑 = 𝐻□[𝑡1

,𝑡
2
]𝜑 = 𝑡2 + 𝐻𝜑

• 𝐻𝜑1U[𝑡
1
,𝑡

2
]𝜑2 = 𝑡2 + max(𝐻𝜑1 , 𝐻𝜑2).

Example 2.6. In Example 2.1, the horizon of the formula is 𝐻𝜑 =

max(9 + 1, 15 + 5 + 1) = 21. The values of 𝑠21, 𝑠22, · · · do not affect

𝜌 (s, 𝜑, 0).

Given 𝜑 , we only need the truncated signal 𝑠0, 𝑠1, · · · , 𝑠𝐻𝜑−1 to

check whether it satisfies 𝜑 . Thus, we can stack the truncated signal

into a vector denoted by 𝑠𝜑 := (𝑠 ′
0
, 𝑠 ′

1
, · · · , 𝑠 ′

𝐻𝜑−1
)′ ∈ R𝑛 ·𝐻𝜑

. With

a slight abuse of notation we extend the STL score and level-set

definitions to the following function and set in R𝑛 ·𝐻
𝜑
:

𝜌 (𝑠𝜑) := 𝜌 (s, 𝜑, 0). (4)

L(𝜑, 𝜚) := {𝑠𝜑 ∈ R𝑛 ·𝐻
𝜑

|𝜌 (𝑠𝜑) ≥ 𝜚 }. (5)

It is straightforward to show that given 𝜑 with linear predicates on

R𝑛 , we have the following properties:

• The function 𝜌 : R𝑛 ·𝐻
𝜑 → R is piecewise affine and Lips-

chitz continuous.

• For a given 𝜚 , the set L(𝜑, 𝜚) is a union of polyhedra in

R𝑛 ·𝐻
𝜑
.

3 PROBLEM SETUP
3.1 System
We consider discrete linear(izable), possibly time-varying, systems

(LTV) with the dynamic and measurement equations:

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 +𝑤𝑡 , (6)

𝑦𝑡 = 𝐶𝑡𝑥𝑡 + 𝑣𝑡
where 𝑥𝑡 ∈ R𝑛 is the state at time 𝑡 , 𝑢𝑡 ∈ R𝑚 is the control input

and 𝑦𝑡 ∈ R𝑞 is the measurement vector. The process noise 𝑤𝑡 ∈
R𝑛 and the measurement noise 𝑣𝑡 ∈ R𝑞 are described in more

detail in Section 3.2. 𝐴𝑡 , 𝐵𝑡 and 𝐶𝑡 are the relationships between

the states and measurements and are assumed known. The discrete

system has a time step size of Δ𝑡 . The system can have a linear

state observer, and a closed loop feedback controller for tracking a

reference trajectory 𝑟𝑡 :

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝐿𝑡 (𝑦𝑡 −𝐶𝑡𝑥𝑡) (7)

𝑢𝑡 = 𝑟𝑡 − 𝐾𝑡𝑥𝑡 (8)

or, directly using the measurement for feedback:

𝑢𝑡 = 𝑟𝑡 − 𝐾𝑡𝑦𝑡 . (9)

3.2 Noise model
In this paper we focus on Gaussian errors, 𝑣𝑡~N(`𝑣𝑡 , Σ𝑣𝑡) and𝑤𝑡~
N(`𝑤𝑡 , Σ𝑤𝑡). We assume that all the noises are independent and

identically distributed (iid). Note that one can augment the system’s

states if the noise is colored.

In Sec. 4.6 we discuss a more intricate noise model,

where the noise is modelled as a Gaussian mixture, meaning

𝑣𝑡~
∑𝑀𝑣

𝑚=1
𝜋𝑣𝑚N(`𝑣𝑚, Σ𝑣𝑚) where 𝜋𝑣𝑚 is the probability of choosing

Gaussian distribution𝑚 (similarly for𝑤𝑡). While a single Gaussian

is a special case of the mixture, we separate the discussion because

we can provide stricter guarantees for this case.

3.3 Specification
We consider STL specifications where the underlying signal is the

system trajectories:

x = 𝑥0, 𝑥1, · · · . (10)

We limit ourselves to linear predicates on the system’s state in the

form of ` = (𝑎′𝑥+𝑏 ≥ 0), 𝑎 ∈ R𝑛, 𝑏 ∈ R. The assumption of linearity

is essential since later in the paperwewill use a closed-form solution

for intersections of an ellipse and a hyperplane (Section 4.4). While

it is possible to consider specific forms of nonlinear predicates and

still retain closed-form solutions, we leave that to future work.

Example 3.1. A common STL formula is reach-avoid. Consider a
continuous-time system with a time horizon 𝑇 with an STL specifi-

cation of this structure:

𝜑𝑅/𝐴 := 𝜙0 ∧
𝑁unsafe∧
𝑖=1

□[0,𝑇]¬𝜙unsafe,𝑖 ∧
𝑁goals∧
𝑗=1

^[𝑇0𝑗
,𝑇1𝑗

]𝜙goal, 𝑗 , (11)

where 𝑇 ≥ 𝑇1𝑗
, 𝑗 = 1, · · · , 𝑁

goals
and 𝜙0 =

∧𝑁0

𝑖=1
(𝑎′0
𝑖
𝑥 + 𝑏0

𝑖
≥ 0)

defines a polyhedron in the state-space with 𝑁0 hyperplanes each

represented by a linear predicate. Similar notation is used to define

sets of polyhedra for the unsafe sets (e.g. obstacles) and the goals.

In words, the system satisfies the specification when it is able to

start in the set defined by Init, avoid all obstacles Unsafe for the

entire trajectory and reach each Goal𝑗 at some 𝑡 ∈ [𝑇0𝑗
,𝑇1𝑗

]. Given
Δ𝑡 and 𝑇 , a trajectory of the system contains 𝑡𝐻 = ⌈𝑇 /Δ𝑡⌉ discrete
time steps. To be able to correctly verify the specification 𝜑 , we

require 𝑡𝐻 ≥ 𝐻𝜑 .

An advantage of our approach is the ability to efficiently address

the combinatorial aspect of all possible trajectory classes that may

satisfy or violate the specification without double counting them.

3.4 Problem formulation
Problem 1. Given a linear system in the form of (6)-(9), a Gauss-

ian (mixture) noise model and an STL formula𝜑 with linear predicates
over 𝑥 , find the probability that 𝜑 is satisfied.

4 APPROACH
We illustrate our approach through an example of a holonomic

robot navigating in a workspace (Fig. 2).

Example 4.1. A holonomic robot’s state is b = [𝑥,𝑦, ¤𝑥, ¤𝑦] ′ with
the discrete-time dynamics:

b𝑡+1 =

1 0 Δ𝑡 0

0 1 0 Δ𝑡
0 0 1 0

0 0 0 1

 b𝑡 +

Δ𝑡 2/2𝑚 0

0 Δ𝑡 2/2𝑚

Δ𝑡/𝑚 0

0
Δ𝑡/𝑚

 𝑢𝑡 +𝑤𝑡 (12)

𝑢𝑡 =𝑟𝑡 − 𝐾𝑓 𝑏[𝑡
We use the discrete Linear Quadratic Regulator (LQR) algorithm

[17] with the desired Δ𝑡 to compute the optimal controller 𝐾𝑓 𝑏 . We

assume full-state measurement:

[𝑡 = b𝑡 + 𝑣𝑡 (13)

The noise 𝑣𝑡 is normally distributed and𝑤𝑡 is omitted for brevity.

We consider an arbitrary STL specification 𝜑 for the rest of the

section unless otherwise specified.

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications Conference’17, July 2017, Washington, DC, USA

4.1 Integral over Trajectory Space
The first step is to derive the relationship between the process

and measurement noises to the trajectories by turning the tra-

jectories into Gaussians in a higher dimensional space 𝑥𝑡𝑟𝑎 𝑗 ≜
[𝑥 ′

0
, . . . , 𝑥 ′

𝑡𝐻−1
] ′ ∈ R𝑛 ·𝑡𝐻 . In our robot example, this means the con-

catenated states for every time step in the horizon, x𝑡𝑟𝑎 𝑗 ∈ R4·𝑡𝐻
.

We consider 𝑤𝑡 = 0 and 𝐴𝑡 = 𝐴, 𝐵𝑡 = 𝐵 and 𝐶𝑡 = 𝐶 without loss

of generality to simplify the following expressions. Based on Eq.

(6)-(9), we can express the full trajectory in vector form with (14)

by iteratively substituting the states and controls:

x𝑡𝑟𝑎 𝑗 = Φ0𝑥0 + Φ𝑟R + Φ𝑣V (14)

Where R = [𝑟 ′
0
, . . . , 𝑟 ′

𝑡𝐻−1
] ′ ∈ R𝑚 ·𝑡𝐻

, and V = [𝑣 ′
0
, . . . , 𝑣 ′

𝑡𝐻−1
] ′ ∈

R𝑞 ·𝑡𝐻 . Φ0,Φ𝑟 ,Φ𝑣 are the matrix coefficients that transfer the initial

state, the extended reference inputs and measurement noises to the

full trajectory, respectively. All components in (14) are deterministic

except for the stochastic V according to the sampled noise mode:

𝑉 ∼ N([`𝑣
′

0
, · · · , `𝑣

′
𝑡𝐻−1

] ′, 𝑑𝑖𝑎𝑔([Σ𝑣
0
, · · · , Σ𝑣𝑡𝐻−1

]) (15)

We can extract the multivariate Gaussian in the trajectory space

which is the distribution over which we integrate:

x𝑡𝑟𝑎 𝑗 ∼ N
(
Φ0𝑥0 + Φ𝑟R + Φ𝑣 M,Φ𝑣ΣΦ

′
𝑣

)
(16)

𝑀 = [`𝑣′
0
, · · · , `𝑣′

𝑡𝐻−1
] ′. In a similar manner, it is possible to derive

the Gaussian of a trajectory with both 𝑣𝑡 and 𝑤𝑡 (and possibly,

𝑥0 ∼ N).

Other work, e.g. chance constraints that are typically imple-

mented and over-approximated with Boole’s inequality, deal with

constraints on the state-level. We work with the full trajectory.

This difference is one of the reasons we do not double count events.

When computing the probability of failures, the trajectory Gaussian

is integrated with respect to the trajectory-level constraints.

The evaluation of the probability in Problem 1 is equivalent to

computing the following integral:

𝑝 (𝜑) =
∫

𝑥𝜑 ∈L(𝜑,0)

pdf (𝑥𝜑)𝑑𝑥𝜑 , (17)

where pdf (𝑥𝜑) is the probability density function of the trajectories,
the Gaussian in this case from (16). L(𝜑, 0) is the set where the
trajectories satisfy the specification 𝜑 .

4.2 Monte-Carlo Sampling
We propose a guided Monte-Carlo approach for verifying a dynam-

ical system with fixed controls (they can be time-varying but not

state-dependent) and Gaussian noise sources over a fixed horizon

with respect to STL specification. We represent the full trajectories

as Gaussian, and use the HDR and ESS algorithms to integrate the

probability density function under the domains that satisfy the STL

formula.

The advantages of the approach are threefold: 1. Efficient

(rejection-free and parameter-free) sampling of trajectories that

satisfy a STL specification and computation of the probability of

satisfaction, without over-approximations and double-counting,

such as with the use of Boole’s inequality on each separate state

in the trajectory. 2. Efficiently finding events with low probability

Figure 2: Example of a robot in 2-D. The initial, unsafe and
goal sets are depicted in the figure. Successful and failing
trajectories of a 5-step horizon are shown with an added in-
termediate point. We define failure trajectories that hit an
obstacle, but reach the goal on time as type 𝑎; type 𝑏 failing
trajectories that do not reach the goal on time. In Section 4.5
wemake use of these failures for reach-avoid specifications.

that would be otherwise intractable to compute with naive Monte-

Carlo simulations. 3. It enables longer horizons and more random

variables without suffering from the dimension explosion problem

(the ill-sampling of the posterior distribution).

The first point is achieved by sampling, with ESS, trajectories

that are within the set of trajectories that satisfy the specification.

The second point is achieved using the HDR algorithm as we can

construct the required number of nestings to evaluate the prob-

ability. In fact, once all nestings are set up, the sampling time of

the rejection-free ESS algorithm is not influenced by the proba-

bility mass. Regarding the third point, the variance of the error

of the quantity we wish to estimate with a Monte-Carlo simula-

tion 𝜎2

𝑥 = 𝜎2

𝑥/𝑛𝑠𝑖𝑚 decreases with the number of simulations 𝑛𝑠𝑖𝑚 .

However, we cannot accurately estimate the value of 𝜎2

𝑥 from the

sampled simulations when we ill-sample the posterior distribu-

tion. We do not know the true variance a priori and in fact, the

variance itself may increase rapidly as the number of variables

increase. Intuitively, there are more combinations of noise errors

which may cause the robot to violate the specification and it is

harder to sample “useful” (for the purpose of correctly estimating

the probability) combinations. Our approach, on the other hand, is

sampling rejection-free from the constrained posterior distribution

to the requisite level of accuracy.

4.3 STL-Score-Guided Elliptical Slice Sampling
Here we describe how we draw sample points from pdf(𝑥) that
are inside L(𝜑, 𝜚) - trajectories that have an STL score ≥ 𝜚 . As

mentioned earlier, the naiveway is to draw samples from pdf(𝑥) and
reject those that fall outside of L(𝜑, 𝜚). However, if the probability
mass inside L(𝜑, 𝜚) is too small, the procedure will be inefficient

as most of the samples will be rejected.

We use ESS as described in Section 2. The explicit representa-

tion of L(𝜑, 0) - the domain of the integral in (17) - as a union of

polyhedra requires an enumeration of all of the possible convex

Conference’17, July 2017, Washington, DC, USA Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

sets. The number of such sets can grow exponentially in the size of

the formula (see, e.g., [28]). We avoid explicit enumeration of the

polyhedra in L(𝜑, 0) while computing the integral in (17). The key

insight is that we only need the STL score function [22].

Theorem 4.2. Given a STL formula𝜑 with a set of linear predicates
`𝑖 = (𝑎′

𝑖
𝑥 + 𝑏𝑖 ≥ 0), 𝑖 = 1, · · · , 𝑁𝜑 , where 𝑁𝜑 is the total number of

predicates. Given an existing sample trajectory 𝑥𝜑𝑒 ∈ L(𝜑, 𝜚) and free
sample trajectory 𝑥𝜑

𝑓
(not necessarily in L(𝜑, 𝜚)), construct the ellipse

E = {𝑥𝜑𝑒 cos\ + 𝑥𝜑
𝑓

sin\ | \ ∈ [0, 2𝜋]} in R𝑛.𝐻𝜑
. Then construct the

following sorted list of real numbers in [0, 2𝜋]:

Θ = sorted
{

\ | ∃𝑡 ∈ {0, 1, · · · , 𝐻𝜑 − 1}, 𝑖 ∈ {1, · · · , 𝑁𝜑 },
s.t. 𝑎′

𝑖
𝑥𝑡 + 𝑏𝑖 = ±𝜚,

𝑥𝜑 = 𝑥
𝜑
𝑒 cos\ + 𝑥𝜑

𝑓
sin\,

𝑥𝜑 = (𝑥 ′
0
, 𝑥 ′

1
, · · · , 𝑥 ′

𝐻𝜑)′
}
.

(18)

Then for any two consecutive elements \1, \2 ∈ Θ (cyclic), one of the
following statements is correct:

∀\ ∈ [\1, \2], 𝜌 (𝑥𝜑𝑒 cos\ + 𝑥𝜑
𝑓

sin\) ≥ 𝜚, or (19)

∀\ ∈ [\1, \2], 𝜌 (𝑥𝜑𝑒 cos\ + 𝑥𝜑
𝑓

sin\) ≤ 𝜚 . (20)

Proof. In order for 𝜌 (𝑥𝜑) = 𝜚 , the value inside the function of at

least one of the predicates should be equal to ±𝜚 - this predicate

becomes the maximizer/minimizer in the STL score function. Note

that we have ± as negation might be in the formula. Therefore, the

set Θ contains all the roots for 𝜌 (𝑥𝜑) − 𝜚 = 0 - but can contain

spurious elements. Since 𝜌 is Lipschitz continuous, 𝜌 (𝑥𝜑) − 𝜚 is

sign-stable on E between two consecutive roots. □
Theorem 4.2 paves our way to compute portions of the ellipse

that fall into L(𝜑, 0) by only computing the roots of the robustness

function on the ellipse. Furthermore, (18), provides all the candi-

dates with the complexity of solving 2 · 𝐻𝜑𝑁𝜑 intersections of the

ellipse with a hyperplane, for which closed-form solutions exist [15].

Then, using Theorem 4.2, we can sample \ ∈ [\1, \2] within each

pair, to assign if [\1, \2] is in L(𝜑, 0). See Fig. 3 for an illustration

of the adjusted ESS procedure. Thus, the complexity of obtaining

the intersection of the ellipse and L(𝜑, 𝜚) is O(𝐻𝜑𝑁𝜑), and thus

we avoided any exponential blow up due to explicit combinatorial

representation of L(𝜑, 𝜚).

4.4 Holmes-Diaconis-Ross for STL
Now that we have a method to draw samples from L(𝜑, 𝜚), we use
it for our HDR-based Monte-Carlo method.

4.4.1 Nesting partitioning. To perform HDR where the probability

density function is low, we need to account for the multi-level

splitting described in the preliminaries. This means that when

sampling from the nesting 𝑘 , a larger domain than what we would

like to evaluate, we shift 𝜚 to a new value (usually it will be a

negative value, allowing more trajectories that violate 𝜑 , where

about half the trajectories have robustness greater than 𝜚) as the

new cutoff level instead of 0. On the other hand, we also need to

shift the linear predicates, to get the new intersections of L(𝜑, 𝜚).
For a general specification, we do not know whether to shift the

predicates with a positive or a negative 𝜚 due to the structure of

Figure 3: Hyperplanes, representing predicates in the STL
formula, projected on the auxiliary ellipse. Somemaynot in-
tersect, and some may intersect but not change L(𝜑, 𝜚) thus
are in the domain. Dashed lines represent hyperplanes of
predicates that are not in the time bounds described in 𝜑 .

the sub-formulas. For example, consider the difference between

𝜑1 := h(𝑠) versus 𝜑2 := ¬ h(𝑠). In 𝜑1, a violating sample would

require increasing the domain, while a violating sample on𝜑2 would

decrease the domain to make it satisfying. Instead of analyzing each

component of the specification, we shift each predicate by +𝜚 and

by −𝜚 as shown in (18).

4.4.2 Error Analysis. Monte-Carlo methods by nature give differ-

ent results every time they are executed. It is necessary to have an

estimate on the variance of the computed probability 𝑝 (𝜑). For the
HDR nesting 𝑘 , we sample𝑛𝑘 samples, and as discussed in Section 2,

we aim for the conditional probability to be 𝑝𝑘 | 𝑘−1
≈ 0.5. In prin-

cipal, ESS is a MCMC method, thus the samples are by definition

dependent and the central limit theorem (CLT) does not apply. To

mitigate this limitation, we keep only every 𝑛𝑑 -th sample from the

ESS, thus making the dependency between the sampled 𝑥𝑖 to 𝑥𝑖+𝑛𝑑
practically non-existent (in all our examples we used 𝑛𝑑 = 4). This

is sometimes referred to as the “burn-in” phase, and its purpose

here is to weaken the dependency between samples. In practice,

our experience shows (see Fig. 6) that the dependency is weak,

due to the “burn-in” process and sampling \ independently from a

uniform distribution, and the following error analysis applies.

Using the CLT (𝑛𝑘𝑝𝑘 |𝑘−1
≫ 1), we can assess that the vari-

ance for nesting 𝑘 is 𝜎2

𝑘
≈ 𝑝𝑘 |𝑘−1

(1 − 𝑝𝑘 |𝑘−1
)/𝑛𝑘 where 𝑝𝑘 |𝑘−1

=

N(𝑘)/𝑛𝑘 and N(𝑘) is the number of points sampled within L𝑘 .
Therefore, for nestings 𝑘 = {1, . . . , 𝐾 − 1}, a good approximation

for the variance is 𝜎2

𝑘
≈ 1

4𝑛𝑘
, such that 𝑝𝑘 |𝑘−1

~N(1

2
, 1

4𝑛𝑘
). With a

slight abuse of notation, we define 𝑝𝑘 ≡ 𝑝𝑘 | 𝑘−1
for clarity. Each

𝑝𝑘 is a Gaussian iid, we can compute the variance of the product of

the conditionals:

Var[𝑝1 · · · 𝑝𝐾] = E[(𝑝1 · · · 𝑝𝐾)2] − (E[𝑝1 · · · 𝑝𝐾])2
(21)

= E[𝑝2

1
· · · 𝑝2

𝐾] − (E[𝑝1] · · ·E[𝑝𝐾])2

= E[𝑝2

1
] · · ·E[𝑝2

𝐾] − (E[𝑝1])2 · · · (E[𝑝𝐾])2

=

𝐾∏
𝑘=1

(
Var[𝑝𝑘] + (E[𝑝𝑘])2

)
−

𝐾∏
𝑘=1

(E[𝑝𝑘])2

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications Conference’17, July 2017, Washington, DC, USA

(a) (b)

Figure 4: (a) The effect of the number of nestings and the
number of sampled points on the confidence interval of the
HDR algorithm on a nominal 𝑝𝑘 = 0.5. (b) Extending [15] to
a union of polytopes.

Substituting for our nominal parameters we obtain the approxima-

tion:

Var[𝑝1 · · · 𝑝𝐾] =
𝐾∏
𝑘=1

(
1

4𝑛𝑘
+ 1

4

)
−

𝐾∏
𝑘=1

(
1

4

)
(22)

In practice, we compute the variance with the actual sampled values

and not (22). The point is that when the number of points in a

nesting is large enough, the variance is proportional to (1/4)𝐾−1
.

For example, selecting 64 points per nesting with 𝐾 = 5 yields a

standard deviation 𝜎 = 0.031.

4.4.3 Adaptive nesting samples. Using (21), we can compute an

expected minimal number of samples for a desired value of

𝑝 (L𝑘 |L𝑘−1
). Fig.4a shows how increasing the number of samples

decreases the uncertainty. Increasing the number of nestings, de-

creases the uncertainty as well. However, the number of nestings is

not a design parameter but rather depends on the problem at hand.

The number of nestings is approximately 𝐾 = ⌈− log
2
𝑝⌉. We can

automatically select the number of samples to use per nesting by

utilizing (21) and Fig.4a. The benefit of using this is shorter compu-

tation times; in problems with a high number of nestings (i.e. low

probability), we can get the desired confidence interval with less

samples.

4.5 Special case: Reach-avoid specifications
In Eq. (11) we showed a common specification for robotic appli-

cations. In some cases, it might be more efficient to construct the

union of polyhydra that represent the predicates in 𝜑𝑅/𝐴 explicitly,

rather than use the STL score-based ESS and HDR (due to the num-

ber of hyperplanes and STL score computations discussed in Section

4.3). Consider finding the probability of violating Example 3.1, i.e.

L(¬𝜑𝑅/𝐴, 0). We define two possible ways of violating𝜑𝑅/𝐴 (i) type

𝑎:𝜑𝑎 := 𝜙0∧^[0,𝑇]𝜙unsafe∧^[𝑇0,𝑇1]𝜙goal, “hit an obstacle and reach
the goals on time”. (ii) type 𝑏: 𝜑𝑏 := 𝜙0 ∧ □[𝑇0,𝑇1]¬𝜙goal, “do not

reach the goals on time”. Thus,L(𝜑𝑎, 0)
⋃L(𝜑𝑏 , 0) = L(¬𝜑𝑅/𝐴, 0).

We compute the integral of the Gaussian under the constrained

domain by modifying the procedure in [15]; we consider a union

of polytopes instead of only one. This means that as long as ∃𝑙 ∈

Set(𝑝𝑜𝑙𝑦.) such that the intersection of all its constraints exceed

zero, then it is a valid point in the domain. There may be numerous

intersections of the constructed ellipse with the faces of the different

polytopes. We extend [15] (Fig. 4b) to find the active segments of

the union of polytopes and sample points from the active domain.

We consider discrete time systems; however, there is a gap when

verifying the system that is in fact continuous. There could be

situations where all the discrete states in the horizon are satisfying

the specification, yet the system might collide with an obstacle in

between the states. See Fig. 2 for an example near the obstacle.

There are several ways to address this. First, we can either in-

crease the sampling rate or bloat the obstacles. The former will

increase the dimension of the problem, while the latter would con-

strain the problem even more. In both cases, it will increase the

computational load by increasing the dimensions in the trajectory

space or by reducing the probability mass function under the do-

mains (need more nestings).

The second approach, if we assume constant velocity between

two consecutive states (valid in short time spans), we can introduce

more constraints without increasing the problem dimensions. These

intermediate points will add robustness by adding more area of the

polytopes without as many computations as increasing the number

of states. It can also be introduced only in parts of the trajectory

that are susceptible to failure. Fig. 2 shows an example of a point

added in the middle between 𝑡2 to 𝑡3. To add constraints for an

intermediate centroid point between two trajectory points:

𝑎′𝑖 (0.5𝑥𝑡 + 0.5𝑥𝑡+1) + 𝑏𝑖 ≥ 0

This additive technique can also be applied to compute the 𝜌 (𝑥𝜑)
if the STL library can compute the score of signals with dense time

steps.

4.6 Gaussian Mixture models
Our approach may also be used to verify systems where the under-

lying noise model is better described with a Gaussian mixture. For

example, a common model for range finders is the Beam model [30]

(Ch. 6). It incorporates several modes of sensing errors that depend

on the physical interaction of the sensor with its environment and

may be approximated by a Gaussian mixture. Another example

is a camera that is tracking cars but due to occlusions or errors

in its neural net, it starts to track clutter or a different car in its

field of view. The noise distribution at time 𝑡 might depend on the

distribution at 𝑡 − 1, making 𝜋𝑣𝑚 come from a Markov chain or a

black-box choice model:

𝑣𝑡~
𝑀∑︁
𝑚=1

𝜋𝑣𝑚N(`𝑣𝑚, Σ𝑣𝑚) (23)

Where𝑀 is the number of distributions and can also vary between

time steps. In this case, computing the tree of possible combinations

of the Gaussian distributions and noises throughout the trajectory

and their weights is intractable. However, we suggest a procedure

for computing the total probability. The first step samples just the

mixing factors 𝜋𝑚 from their underlying distributions, for the entire

horizon. When the mixing factors are fixed, the problem reduces

to Problem 1. We compute the probability 𝑝 (𝜑) and variance, and

repeat this procedure for 𝑁 iterations. Then, we compute the un-

biased mean estimate and the variance of the 𝑁 iterations. This

Conference’17, July 2017, Washington, DC, USA Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

method still relies on Monte-Carlo simulation to compute the prob-

ability and variance estimation. However, only the trajectory modes

are sampled, thus reducing the problem’s input dimensions con-

siderably. A full Monte-Carlo simulation will have the modes and

the actual values to sample from and can thus be susceptible to the

dimension explosion problem.

5 CASE STUDIES
5.1 Robot navigation - reach-avoid
We demonstrate verification for Example 4.1. The noises

are: 𝑣𝑥~N(0, 0.06
2), 𝑣𝑦~N(0, 0.06

2), 𝑣 ¤𝑥~N(0.0, 0.04
2),

𝑣 ¤𝑦~N(0.0, 0.04
2) and 𝑤𝑡 = 0. Fig. 5a presents the static ob-

stacles, goal, and the reference trajectory. To increase the fidelity

of the simulation, we add intermediate points as discussed in

Section 4.5. In the first scenario, the horizon 𝑇 = 5sec with

Δ𝑡 = 1sec. The STL specification:

𝜑1 := 𝜙0 ∧ □[0,5]¬𝜙obs1 ∧ ^[5,5]𝜙goal (24)

Where 𝜙𝑧 = True if the intersection of all predicates of 𝑧 over

the state 𝑥 is greater than zero. In this case, 𝜙𝑜𝑏𝑠1 is non-convex

thus we use Delaunay triangulation [18] to decompose it into two

convex polytopes 𝜙obs1:1, 𝜙obs1:2 . We have not considered any other

restrictions on the state except on the pose.

5.1.1 Setup. We compute 𝑝 (𝑓 𝑎𝑖𝑙) = 𝑝 (¬𝜑1). We construct a dis-

junction between the trajectory-spaceH -polytopes of failing tra-

jectories of type L(𝜑𝑎, 0) and L(𝜑𝑏 , 0) as discussed in Section 4.5.

5.1.2 Results. Fig.5a shows a sample of the trajectories of both fail-

ure modes. Computing the probability with our proposed algorithm

yields 𝑝 (𝑓 𝑎𝑖𝑙) = 7.43%±0.8% and took 25sec. Verifying the same sys-

tem with Monte-Carlo simulations yields 𝑝𝑀𝐶 (𝑓 𝑎𝑖𝑙) = 7.66%±0.5%

and took 13.0sec. To estimate the probability of failing with Monte-

Carlo, we use 𝑛𝑀𝐶 = 2400 simulations, where 𝜎2 = 𝑝 (1 − 𝑝)/𝑛𝑀𝐶 .
The experiments were done on an Intel(R) Core(TM) i7-6700 and

𝑛𝑘 = 𝑛 = 256 samples in each nesting of the HDR algorithm (to get

a comparable standard deviation). Monte-Carlo yields faster results

because the probability to fail is relatively high.

Using a horizon of 5 steps yields a simulation of 20 random

variables which can be considered a relatively small parameter

space. Fig.5b depicts the second scenario with similar settings (ini-

tial conditions were changed to induce failures because the LQR

controller with the new time step performs differently) for a horizon

of 𝑇 = 5sec and Δ𝑡 = 0.1sec. This time, the problem dimension is

200. With our algorithm, 𝑝 (𝑓 𝑎𝑖𝑙) = 0.83% ± 0.26% and took 110sec

to complete with 𝑛𝑘 = 64. Monte-Carlo simulation takes 327sec and

yields 𝑝𝑀𝐶 (𝑓 𝑎𝑖𝑙) = 1.2% ± 0.2% in 2400 simulations. Fig.6 shows

the distribution of running our algorithm and MC 100 times with

different seeds and the results match for 𝑝 (¬𝜑1), 𝜎 depends on 𝑛𝑘 .

5.2 Car passing an intersection - reach-avoid
5.2.1 Setup. We consider a controlled car (Ego-vehicle, 𝐸) driv-

ing along the 𝑥-axis and an uncontrolled car (Other vehicle, 𝑂)

driving along the 𝑦-axis, as shown in Fig. 7a. Each car’s dynamic

equations follow the holonomic robot in (12). Since 𝑂 is uncon-

trolled we model its dynamics with a process noise𝑤𝑂¤𝑦
~N(0, 0.22).

𝐸 is measuring the distance 𝑑 to 𝑂 using a Lidar and has errors

(a) Scenario 1: Δ𝑡 = 1sec.
𝑝 (𝑓 𝑎𝑖𝑙) = 7.43% ± 0.8%.

(b) Scenario 2: Δ𝑡 = 0.1sec.
𝑝 (𝑓 𝑎𝑖𝑙) = 0.83% ± 0.26%.

Figure 5: X-Y projection of a robot maneuvering in a field
with obstacles (red) and goal (green). In orange, the failing
trajectories of type (𝑎). In gray, the failing trajectories of
type (𝑏). In black, the reference trajectory.

Figure 6: Running our approach (HDR) and MC (mean of
2400 runs) a 100 times each, and the comparison of themean
𝑝 (𝑓 𝑎𝑖𝑙) estimation and its standard deviation.

[30]. The error modes are a Gaussian about the true value, and

a maximum range error 𝑣𝐸
𝑑
~𝜋1N(0, 0.04

2) + 𝜋2N(5, 0.62). The
transitions between the Gaussians are expressed with a Markov

chain 𝑝 (𝜋1 (𝑡) | 𝜋1 (𝑡 − 1)) = 0.98, 𝑝 (𝜋2 (𝑡) | 𝜋1 (𝑡 − 1)) = 0.02,

𝑝 (𝜋1 (𝑡) | 𝜋2 (𝑡 − 1)) = 0.6, 𝑝 (𝜋2 (𝑡) | 𝜋2 (𝑡 − 1)) = 0.4 indicat-

ing the probability of having a bad measurement after a previ-

ous bad measurement is higher (occlusion, multipath). 𝐸 needs

to cross the intersection safely and uses the control law: 𝑢𝐸𝑡 =

𝑢0 −𝐾𝑑 = 𝑢0 −𝐾 (
√︃
(𝑥𝑂𝑡 − 𝑥𝐸𝑡)2 − (𝑦𝑂𝑡 − 𝑦𝐸𝑡)2 + 𝑣𝑑). The time hori-

zon is 𝑇 = 3sec and Δ𝑡 = 0.1sec. The cars’ lengths are 𝐿 = 1.0m

and widths𝑊 = 0.5m. 𝐾 = −0.1 and 𝑢0 = 0.075 such that when the

distance between the cars 𝑑 ≤ 0.5(𝐿 +𝑊), the control yields 𝑢𝑘 = 0

and 𝐸 stops until 𝑂 crosses the intersection.

We derive a new state variable 𝑧 = [𝑥𝐸
𝑘
− 𝑥𝑂

𝑘
, 𝑦𝐸
𝑘
− 𝑦𝑂

𝑘
, ¤𝑥𝐸
𝑘
−

¤𝑥𝑂
𝑘
, ¤𝑦𝐸
𝑘
− ¤𝑦𝑂

𝑘
] ′ with the initial conditions 𝑧0 = [−5, 5, 2,−2] ′, as

shown in Fig. 7a. In this new state variable, it is easy to show that

the unsafe set (the “obstacle”) is a square centered at the origin of

𝑧𝑥 , 𝑧𝑦 where the lengths of all the sides are 𝐿 +𝑊 . The goal is for

𝐸 to cross to the other side, 𝑧𝑥 ≥ 0.5(𝐿 +𝑊). The polytope sets are

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications Conference’17, July 2017, Washington, DC, USA

shown in Fig. 7b. The STL specification:

𝜑𝑖𝑛𝑡 := □[0,3]¬𝜙unsafe ∧ ^[2.9,3]𝜙goal (25)

Here, the measurement equation is non-linear. We find the trajec-

tory’s Gaussian distribution by linearizing the distance measure-

ment in (26) evaluated at the expected value of the state, (27).

𝐶𝑡 =
𝜕𝑑

𝜕𝑧
| 𝑧=𝐸 [𝑧𝑡] =

1

𝑑
[𝑧𝑥 , 𝑧𝑦, 0, 0] (26)

E[𝑧𝑡+1] =(𝐴 − 𝐵𝐾𝐶𝑡) E[𝑧𝑡] + 𝐵𝑢0 + E[𝑤𝑂𝑡] − 𝐵𝐾 E[𝑣𝐸𝑡] (27)

(a) (b)

(c)

Figure 7: (a) Controlled car (yellow, left) entering an inter-
section with an uncontrolled car (black, bottom). (b) A sat-
isfying trajectory (𝑧1), and a violating trajectory (𝑧2) in the
Z coordinate frame. (c) A single noise sequence example of
failing trajectories that intersect with the unsafe set.

5.2.2 Results. Fig. 7c shows the failing trajectory samples of one

iteration of sampled noise mixing factors (Sec. 4.6). Total probability

to fail 𝑝 (𝑓 𝑎𝑖𝑙) = 54.68% with 95% confidence level [52.73%, 56.63%].
We compare with Simple Random Sampling (SRS) with 𝑛𝑀𝐶 = 2500

for the Monte-Carlo simulations of the full non-linear system. The

probability estimate 𝑝𝑀𝐶 (𝑓 𝑎𝑖𝑙) = 54.08% ± 1.0% took 𝑇 = 32sec to

run, while using our method took 𝑇 = 130sec (again, the times are

due to the high probability of failure).

5.3 Data-based simulation - reach-avoid
In this example we show how this technique can be used in a

scenario where the noises or system dynamics are not known.

For this demonstration we run the Jackal [6] robot in the Gazebo

simulator [26] with the Robot Operating System (ROS) [24]. We use

the built-in controllers and estimation algorithms provided with

and for the robot, and send it a goal command. With probability of

5%, a maximum range noise [30] is injected to any of the Lidar’s ray

Figure 8: Jackal navigating in the environment (left). Lidar
measurements and robot’s current mapping (right).

Figure 9: Data-based verification - 𝑥𝜑 comes from simula-
tions. 16.0% of the trajectories are not at the goal at 13.2sec.

measurements. Fig. 8 shows the environment the robot is navigating

through. Our purpose is to verify that the system can reach the goal

safely. However, running a single run takes approximately 15sec,

thus making a Monte-Carlo simulation intractable when the failure

rate is low.

In our approach, we first run 𝑛 simulations and fit a multivariate

Gaussian (e.g. robustcov in Matlab) to the set of (ground truth)

trajectories.𝑛must be at least twice the number of variables (states x

time steps). We now have 𝑥𝑡𝑟𝑎 𝑗 ∼ N(`, Σ) and we directly compute

the probability to collide with a tree, miss the goal or violate any

other temporal constraint.

In Fig. 9 we show the verification results for the system with

𝜑𝐺𝑎𝑧𝑒𝑏𝑜 := □[0,13.2] (¬Tree1 ∧¬Tree2) ∧ □[13.2,13.2] Goal

where Goal is the region defined by the box 5.5 ≤ 𝑥 ≤ 7.5, 0 ≤
𝑦 ≤ 0.5. The time step in this scenario is Δ𝑡 = 0.4sec and a horizon

of 13.2sec. We see that 16.0% of the trajectories fail to reach the

goal on time (or overshoot it). We stopped the computation of the

probability of hitting a tree (“𝜑𝑎”) at 𝑘 = 24 nestings, which means

that a crash is less likely than about 6 · 10
−6

%.

5.4 Robot navigation - Full STL
In this example we consider the robot in Example 4.1 and a complex

STL specification:

𝜑𝑆𝑇𝐿 :=□[0,𝑇]¬
(
𝜙

Obs1
∨ 𝜙

Obs2

)
∧ (28)

□[0,𝑇] (𝜙Goal1
=⇒ ^[0,0.25]𝜙Goal2

)
where (𝑎 =⇒ 𝑏) = (¬𝑎 ∨ 𝑏). Since our technique computes the

probability of satisfying the STL formula, to find the probability of

failure, we use ¬𝜑𝑆𝑇𝐿 in our computations. Following a single run

Conference’17, July 2017, Washington, DC, USA Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

(a) (b)

Figure 10: (a) Failing trajectories of the STL formula𝜑𝑆𝑇𝐿 . (b)
Statistics for a 100 trials for HDR, and for 100MC, each with
10

4 simulations.

of our method, we are able to find violating trajectories (Fig. 10a)

even though 𝑝 (𝑓 𝑎𝑖𝑙) = 0.027%. To find just one event with this

probability we would need to run approx. 4000 simulations with

MC. We ran 100 trials with our technique, and 100 trials with MC

with 10
4
simulations each. The results are shown in Fig. 10b. 60%

of the MC runs end with no failing examples, and about a third end

with one failing example. The mean time to run MC is 626 ± 10sec

and our method is 333 ± 35sec. The minimal probability computed

by our method is 𝑝 (𝑓 𝑎𝑖𝑙) = 0.001%.

Due to the use of the STL score for full STL, one cannot identify

the specific cause of the failure. Furthermore, the sampled trajec-

tories that fail the specification do not necessarily represent the

proportions of the different failure causes. This is due to two rea-

sons - first, we cannot guarantee how many trajectories are present

in the final nesting, as explained in Section 2. Second, because this

is a MCMC approach, the samples might be biased towards a cer-

tain region given an initial sample within that region. However, we

show that if we sample new trajectories, we will get the correct

proportions on average given enough samples. For example, in

the previous scenario, the ratio between the probability mass for

hitting the obstacle at 𝑡14 and not making the second goal on time,

is approximately 4:1. We ran our approach 100 times. After each

iteration finished, we sampled five sets of 1000 samples that violate

𝜑𝑆𝑇𝐿 and computed how many of those hit the obstacle and how

many violated the goal requirement. Results are shown in Fig. 11;

although at specific instances we can even get more trajectories

of goal violations than obstacle violations, we see that on aver-

age, we sample the correct proportions. This means that with our

method, we are able to “jump” from an active domain to another

active domain even if it is clearly distinct (different predicates and

different time bounds). Of course, regions may be overshadowed

by regions with considerably higher probability mass and if one

wants to check those too, then they might need to decompose the

specification to capture only those.

5.5 Adversarial Scenarios - Full STL
In [34] the authors developed a synthesis guided approach to find

adversarial examples that falsify a dynamical system with respect

to reach-avoid type specifications. An example from that paper

(Example 2) finds a series of measurement noises that causes the

Figure 11: The assignation between trajectories that fail due
to obstacle collision and due to missing the goal in time. We
collect five ×1000 new trajectories with ESS after each round
of 𝑝 (𝜑𝑆𝑇𝐿) computation. Themarkers are themeans, and the
error bars are 1 standard deviation.

Figure 12: Discovering adversarial noise sequences that lead
to unsafe behaviors.

system (29) and its regulator to enter the unsafe zone.

b𝑡+1 =

[
0.9745 0.2132

0.002547 1.151

]
b𝑡 +

[
0.01959

0.1961

]
𝑢𝑡 +

[
0.01959

−0.04509

]
𝑤𝑡

(29)

𝑢𝑡 = −
[
1 1

]
[𝑡 ; [𝑡 = b𝑡 + 𝑣𝑡

In [34], the noises 𝑣𝑡 = [−0.1, 0.1]2
and 𝑤𝑡 = [−0.2, 0.2] are uni-

form and bounded. Here we approximate them with an appropriate

Gaussian. The unsafe set is defined Unsafe(b) = [1, 2] × [−0.5, 0.5]
and the system starts in Init(b) = [−0.15×0.15]2

. To find adversarial

trajectories, we consider the STL formula:

𝜑𝑎𝑑𝑣 := Init(b) ∧ ^[0,115] Unsafe(b) (30)

In addition to finding the probability, our approach can find adver-

sarial examples, as done in [34]. In Fig. 12 we show a trajectory,

sampled from the set of satisfying trajectories, that eventually en-

ters the unsafe zone. In this example, the probability that the system

may enter the unsafe zone is 0.09% where the different trajectories

may enter the unsafe zone at different times; our apporach can

provide several such examples.

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications Conference’17, July 2017, Washington, DC, USA

6 DISCUSSIONS AND CONCLUSIONS
In this paper we introduced a method to accurately compute the

probability that a linearizable system will satisfy an STL specifi-

cation. The framework is general and can accommodate various

sensor, estimator and perception errors. We provide two methods

for calculating the probability - for full STL and for reach-avoid

specifications.

Our method, while including computation overhead, is scalable

to high dimensions (longer horizons or models with more states)

and its computational complexity does not depend on the com-

binatorially many solutions of the specification. The sampling is

efficient, especially in low probability events where a naive Monte-

Carlo approach may not be tractable. The latter may suffer from

dimension explosion, leading to the need for a large number of

simulations to adequately sample the posterior. Our method is sam-

pling from the posterior in a rejection-free and parameter-free (no

hyper parameters needed for the slice sampler) manner.

Our method lends itself to parallel implementation, thereby re-

ducing the computation time. Every nesting from the ESS and HDR

can be run in parallel. By increasing the computation speed, our

method can potentially be used as a step in motion planning, where,

for example, we can check the output of a rapidly exploring ran-

dom tree (RRT) generated path to check feasibility given noises or

complex specifications.

In future work we will use this framework to synthesize con-

trollers that can minimize the probability of failure. Another di-

rection is to use the sampled failed trajectories to gain insight and

requirements on the perception system that would be the most

beneficial in reducing failure.

ACKNOWLEDGMENTS
This work is supported by ONR PERISCOPE MURI award N00014-

17-1-2699.

REFERENCES
[1] Matthias Althoff and Goran Frehse. 2016. Combining zonotopes and support

functions for efficient reachability analysis of linear systems. In 2016 IEEE 55th
Conference on Decision and Control (CDC). IEEE, Las Vegas, NV, USA, 7439–7446.
https://doi.org/10.1109/CDC.2016.7799418

[2] Matthias Althoff, Goran Frehse, and Antoine Girard. 2021. Set propagation

techniques for reachability analysis. Annual Review of Control, Robotics, and
Autonomous Systems 4 (2021), 369–395.

[3] Lars Blackmore and Masahiro Ono. 2009. Convex chance constrained predictive

control without sampling. In AIAA Guidance, Navigation, and Control Conference.
AIAA, Chicago, IL, USA, 5876.

[4] Drive Tesla Canada. 2021. Tesla Q1 2021 Safety Report: Autopilot nearly 10X safer
than Humanpilot. https://driveteslacanada.ca/news/tesla-q1-2021-safety-report-

autopilot-nearly-10x-safer-than-humanpilot

[5] Glen Chou, Yunus Emre Sahin, Liren Yang, Kwesi J Rutledge, Petter Nilsson, and

Necmiye Ozay. 2018. Using control synthesis to generate corner cases: A case

study on autonomous driving. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37, 11 (2018), 2906–2917.

[6] Clearpath Robotics. 2020. Jackal UGV - Small Weatherproof Robot - Clearpath.

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle

[7] Sarah Dean, Nikolai Matni, Benjamin Recht, and Vickie Ye. 2020. Robust Guar-

antees for Perception-Based Control. In Proceedings of the 2nd Conference on
Learning for Dynamics and Control (Proceedings of Machine Learning Research,
Vol. 120), Alexandre M. Bayen, Ali Jadbabaie, George Pappas, Pablo A. Parrilo,

Benjamin Recht, Claire Tomlin, and Melanie Zeilinger (Eds.). PMLR, 350–360.

https://proceedings.mlr.press/v120/dean20a.html

[8] Persi Diaconis and Susan Holmes. 1995. Three Examples of Monte-Carlo Markov

Chains: At the Interface Between Statistical Computing, Computer Science, and

Statistical Mechanics. In Discrete Probability and Algorithms, David Aldous, Persi

Diaconis, Joel Spencer, and J. Michael Steele (Eds.). Springer New York, New

York, NY, 43–56.

[9] Alexandre Donzé, Thomas Ferrère, and Oded Maler. 2013. Efficient Robust

Monitoring for STL. In Computer Aided Verification, Natasha Sharygina and

Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 264–279.

[10] Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic

over Real-Valued Signals. In Formal Modeling and Analysis of Timed Systems, Kr-
ishnendu Chatterjee and Thomas A. Henzinger (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 92–106.

[11] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ra-

vanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. 2019. VerifAI: A

Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Sys-

tems. In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer
International Publishing, Cham, 432–442.

[12] Noel E Du Toit and Joel W Burdick. 2011. Probabilistic collision checking with

chance constraints. IEEE Transactions on Robotics 27, 4 (2011), 809–815.
[13] Georgios E Fainekos and George J Pappas. 2009. Robustness of temporal logic

specifications for continuous-time signals. Theoretical Computer Science 410, 42
(2009), 4262–4291.

[14] Chuchu Fan, Umang Mathur, Sayan Mitra, and Mahesh Viswanathan. 2018. Con-

troller Synthesis Made Real: Reach-Avoid Specifications and Linear Dynamics.

In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.).

Springer International Publishing, Cham, 347–366.

[15] Alexandra Gessner, Oindrila Kanjilal, and Philipp Hennig. 2020. Integrals over

Gaussians under Linear Domain Constraints. In Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics (Proceedings of
Machine Learning Research, Vol. 108), Silvia Chiappa and Roberto Calandra (Eds.).

PMLR, 2764–2774. https://proceedings.mlr.press/v108/gessner20a.html

[16] Nikolaos Kariotoglou, Sean Summers, Tyler Summers, Maryam Kamgarpour,

and John Lygeros. 2013. Approximate dynamic programming for stochastic

reachability. In 2013 European Control Conference (ECC). IEEE, Zurich, Switzerland,
584–589. https://doi.org/10.23919/ECC.2013.6669603

[17] Huibert Kwakernaak and Raphael Sivan. 1972. Linear optimal control systems.
Vol. 1. Wiley-interscience New York.

[18] Der-Tsai Lee and Bruce J Schachter. 1980. Two algorithms for constructing a

Delaunay triangulation. International Journal of Computer & Information Sciences
9, 3 (1980), 219–242.

[19] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-

tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer, 152–166.

[20] Carlos Murguia, Nathan van de Wouw, and Justin Ruths. 2017. Reachable sets of

hidden cps sensor attacks: Analysis and synthesis tools. IFAC-PapersOnLine 50, 1
(2017), 2088–2094.

[21] Iain Murray, Ryan Adams, and David MacKay. 2010. Elliptical slice sampling.

In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics (Proceedings of Machine Learning Research, Vol. 9), Yee Whye Teh

and Mike Titterington (Eds.). PMLR, Chia Laguna Resort, Sardinia, Italy, 541–548.

https://proceedings.mlr.press/v9/murray10a.html

[22] Dejan Ničković and Tomoya Yamaguchi. 2020. RTAMT: Online robustness

monitors from STL. In International Symposium on Automated Technology for
Verification and Analysis. Springer, 564–571.

[23] Masahiro Ono and Brian C. Williams. 2008. An Efficient Motion Planning Algo-

rithm for Stochastic Dynamic Systems with Constraints on Probability of Failure.

In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 3
(Chicago, Illinois) (AAAI’08). AAAI Press, 1376–1382.

[24] Open Robotics. 2020. ROS.org | Powering the world’s robots. https://www.ros.org

[25] Ramón Orive, Juan C Santos-León, and Miodrag M Spalević. 2020. Cubature

formulae for the Gaussian weight. Some old and new rules. Electronic Transactions
on Numerical Analysis 53 (2020), 426–439.

[26] OSRF. 2020. Gazebo. http://gazebosim.org

[27] Matthew O' Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, and John C

Duchi. 2018. Scalable End-to-End Autonomous Vehicle Testing via Rare-event

Simulation. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),

Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/

653c579e3f9ba5c03f2f2f8cf4512b39-Paper.pdf

[28] Sadra Sadraddini and Calin Belta. 2016. Feasibility envelopes for metric temporal

logic specifications. In 2016 IEEE 55th Conference on Decision and Control (CDC).
IEEE, 5732–5737.

[29] Edward Schmerling and Marco Pavone. 2016. Evaluating trajectory collision

probability through adaptive importance sampling for safe motion planning.

arXiv preprint arXiv:1609.05399 (2016).
[30] Sebastian Thrun. 2002. Probabilistic robotics. Commun. ACM 45, 3 (2002), 52–57.

[31] Hoang-Dung Tran, Weiming Xiang, and Taylor T. Johnson. 2020. Verification

Approaches for Learning-Enabled Autonomous Cyber-Physical Systems. IEEE
Design Test (2020), 1–1. https://doi.org/10.1109/MDAT.2020.3015712

[32] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood.

2018. An Introduction to Probabilistic Programming. arXiv e-prints, Article

https://doi.org/10.1109/CDC.2016.7799418
https://driveteslacanada.ca/news/tesla-q1-2021-safety-report-autopilot-nearly-10x-safer-than-humanpilot
https://driveteslacanada.ca/news/tesla-q1-2021-safety-report-autopilot-nearly-10x-safer-than-humanpilot
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle
https://proceedings.mlr.press/v120/dean20a.html
https://proceedings.mlr.press/v108/gessner20a.html
https://doi.org/10.23919/ECC.2013.6669603
https://proceedings.mlr.press/v9/murray10a.html
https://www.ros.org
http://gazebosim.org
https://proceedings.neurips.cc/paper/2018/file/653c579e3f9ba5c03f2f2f8cf4512b39-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/653c579e3f9ba5c03f2f2f8cf4512b39-Paper.pdf
https://doi.org/10.1109/MDAT.2020.3015712

Conference’17, July 2017, Washington, DC, USA Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

arXiv:1809.10756 (Sept. 2018), arXiv:1809.10756 pages. arXiv:1809.10756 [stat.ML]

[33] Weiming Xiang and Taylor T. Johnson. 2018. Reachability Analysis and

Safety Verification for Neural Network Control Systems. arXiv e-prints, Article
arXiv:1805.09944 (May 2018), arXiv:1805.09944 pages. arXiv:1805.09944 [cs.SY]

[34] Liren Yang and Necmiye Ozay. 2021. Synthesis-Guided Adversarial Scenario

Generation for Gray-Box Feedback Control Systems with Sensing Imperfections.

ACM Trans. Embed. Comput. Syst. 20, 5s, Article 102 (Sept. 2021), 25 pages. https:

//doi.org/10.1145/3477033

[35] Huafeng Yu, Xin Li, Richard MMurray, S Ramesh, and Claire J Tomlin. 2018. Safe,
Autonomous and Intelligent Vehicles. Springer.

https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1805.09944
https://doi.org/10.1145/3477033
https://doi.org/10.1145/3477033

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Elliptical Slice Sampling (ESS) and the Holmes-Diaconis-Ross (HDR) algorithm
	2.2 Signal Temporal Logic

	3 Problem setup
	3.1 System
	3.2 Noise model
	3.3 Specification
	3.4 Problem formulation

	4 Approach
	4.1 Integral over Trajectory Space
	4.2 Monte-Carlo Sampling
	4.3 STL-Score-Guided Elliptical Slice Sampling
	4.4 Holmes-Diaconis-Ross for STL
	4.5 Special case: Reach-avoid specifications
	4.6 Gaussian Mixture models

	5 Case studies
	5.1 Robot navigation - reach-avoid
	5.2 Car passing an intersection - reach-avoid
	5.3 Data-based simulation - reach-avoid
	5.4 Robot navigation - Full STL
	5.5 Adversarial Scenarios - Full STL

	6 Discussions and Conclusions
	Acknowledgments
	References

