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Abstract. We report on an analysis of the polarization of single pulses of PSR B0329+54 at 328 MHz. We find that the
distribution of polarization orientations in the central component diverges strongly from the standard picture of orthogonal
polarization modes (OPMs), making a remarkable partial annulus on the Poincaré sphere. A second, tightly clustered region
of density appears in the opposite hemisphere, at a point antipodal to the centre of the annulus. We argue that this can be
understood in terms of birefringent alterations in the relative phase of two elliptically polarized propagation modes in the
pulsar magnetosphere (i.e. generalised Faraday rotation). The ellipticity of the modes implies a significant charge density in
the plasma, while the presence of both senses of circular polarization, and the fact that only one mode shows the effect, supports
the view that refracted ordinary-mode rays are involved in the production of the annulus. At other pulse longitudes the polar-
ization (including the circular component) is broadly consistent with an origin in elliptical OPMs, shown here quantitatively for
the first time, however considerable non-orthogonal contributions serve to broaden the orientation distribution in an isotropic
manner.
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1. Introduction

Whenever sufficient sensitivity is available, radio pulsar emis-
sions are seen to be rich in phenomenology. Their polarization
is no exception to this rule. The dependence of linear polar-
ization position angle on pulse longitude (i.e. rotational phase)
can, for some pulsars, be explained as arising in the vicinity
of the magnetic pole, polarized linearly at the position angle
of the sky projection of magnetic field lines (Radhakrishnan &
Cooke 1969). For other pulsars this is not the case, and for some
of these the distribution of position angles (PAs) in individual
pulses has been shown to be bimodal about two values sepa-
rated by 90◦ – so-called orthogonal polarization modes (OPMs;
e.g. Manchester et al. 1975; Backer et al. 1976; Cordes et al.
1978; Backer & Rankin 1980; Stinebring et al. 1984a,b). Many
pulsars also show 90◦ “jumps” in their position angle pro-
files, a fact that received explanation in the discovery of OPMs
through a longitude dependence of the relative intensities of the
modes, which themselves tend to have position angle swings
consistent with the magnetic pole model of Radhakrishnan &
Cooke (1969). These studies of OPMs also found evidence for
deviations from orthogonality in the fact that PA distributions
were broader than expected and/or their peaks were not sepa-
rated by 90◦.
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Attempts have been made to explain these deviations from
orthogonality by means of superposition of two modes that
are not orthogonal due to origins on different field lines and
subsequent birefringent refraction (e.g. Stinebring et al. 1984a;
McKinnon 2003a), by means of the superposition of a range of
modal orientations arising from a distribution of field lines that
are visible due to their finite beam width (Gil & Lyne 1995), or
due to the presence of two instantaneously orthogonal modes,
the orientation of which varies with time due to coherent wave
coupling effects (e.g. Cheng & Ruderman 1979; Lyubarskii &
Petrova 1999). Of these, only the first and third scenarios have
been quantitatively tested. McKinnon (2003a) showed that the
distribution of PAs, and the shape of the average PA curve
of PSR B2016+28 are consistent with the superposition of
two non-orthogonal modes. On the other hand, Petrova (2003)
showed that the PA and circular polarization of the average
pulse profiles of PSR B0355+54 and PSR B0628−28 are con-
sistent with the predictions of Lyubarskii & Petrova (1999) for
alterations in the polarization due to coherent effects. However,
neither work examines whether the data are also consistent with
other models, and indeed the statistics considered in each case
are not well suited to distinguishing between models.

The question of the origin of circular polarization in pul-
sars is also not addressed by the magnetic pole model, in which
the polarization is expected to be linear due to the high mag-
netic field strength. The fact that orthogonal linear polarization
states have been found to be associated with opposite signs
of circular polarization leads naturally to the suggestion that



682 R. T. Edwards and B. W. Stappers: Ellipticity and deviations from OPM in PSR B0329+54

the modes are in fact elliptically polarized orthogonal modes
(Cordes et al. 1978), although to our knowledge, to date no
observational tests of the expected proportionality between lin-
ear and circular polarization under this hypothesis have been
made. In explaining the origin of elliptical OPMs, most authors
point to the so-called polarization-limiting region (PLR), where
birefringent propagation effects no longer significantly alter the
relative phase of the modes, as the determinant of the observed
polarization (Cheng & Ruderman 1979). It has been proposed
that either the propagation modes themselves are elliptical at
this point, requiring a net charge density in the plasma (Cheng
& Ruderman 1979; Allen & Melrose 1982; von Hoensbroech
et al. 1998), or that weak birefringence in the vicinity of the
PLR causes initially linearly polarized rays to suffer changes in
their polarization if their position angle deviates from that of
the local linear modes, for example due to rotational aberration
or refraction (Cheng & Ruderman 1979; Lyubarskii & Petrova
1999; Petrova & Lyubarskii 2000; Petrova 2001, 2003).

In this work we make a detailed study of the polarization of
single pulses from PSR B0329+54, employing new techniques
in the hope of placing greater constraints on the nature and ori-
gin of ellipticity and non-orthogonality of pulsar polarization.

2. Methods of analysis

2.1. Stokes parameters of OPM

Since the focus of this study is the inconsistency of observa-
tions with a simple model of superposed OPMs, it is pertinent
to begin with a clear picture of the features expected under
such a model, before discussing ways in which the observa-
tions may deviate from it. The distribution of Stokes parameters
expected under the incoherent superposition of two elliptical
OPMs, and techniques for reconstruction of the modal intensi-
ties have been considered in detail by McKinnon & Stinebring
(2000).We briefly re-iterate in a more compact vector form be-
fore considering the fluctuation statistics.

The modes are taken to be completely polarized, with fixed
position angles and degrees of circular polarization at a given
pulse longitude. This means that the vector pi = (Q U V)T for a
given mode i always has the same orientation, regardless of its
length (i.e. the intensity of the mode). The condition of orthog-
onality of the electric field vectors requires that the polarization
states be antiparallel in the Poincaré sphere (p-space). Since
the Stokes 4-vector of the incoherent sum of two polarization
states is simply the sum of their respective Stokes vectors, all
resultant states must lie on the line defined by the modal ori-
entation. The observed Stokes parameters at any instant can be
written as:

I = I1 + I2 (1)

p = p1 + p2

= (I1 − I2)1m, (2)

where the contributions from the two modes are denoted with
numerical subscripts, with 1m being a unit vector in the direc-
tion associated with the mode denoted “1”.

The procedure of “mode separation” (determination of
modal intensities) follows directly as:

I1 = (I + |p|)/2 (3)

I2 = (I − |p|)/2, (4)

while the modal orientation is simply given by 1m = p/|p|. Here
we have explicitly identified mode 1 as the greater in inten-
sity. Note that |p| is subject to bias in the presence of measure-
ment noise. Although this can be corrected, if some alternative
means is available for determining the modal orientation, since
components of p orthogonal to 1m contribute only noise to |p|
one may eliminate the bias and improve sensitivity by substitut-
ing p·1m for |p|. Prior information on 1m could, for example, be
obtained from studies of the statistics of p (Sect. 2.3.1), or for
mode-separation of individual pulses, from the average profile.

By measuring appropriate statistics of the Stokes vectors,
information is available on the fluctuation statistics of the
OPMs. Characterising the latter by the modal variances σ2

1 and
σ2

2 and their covariance σ12, one observes that

σ2
I = σ

2
1 + σ

2
2 + 2σ12 (5)

σ2
m = σ

2
1 + σ

2
2 − 2σ12, (6)

where σ2
m is the variance of p · 1m. From this the covariance of

the modes can be calculated as

σ12 = (σ2
I − σ2

m)/4. (7)

In practice the measured variances will be biased by the pres-
ence of measurement noise, which can be estimated using the
off-pulse covariances (and the pulsar intensity, if it contributes
appreciably to the system temperature), and subtracted.

2.2. Characterising the distribution on the Poincaré
sphere

The defining feature of elliptical OPMs is the predicted con-
stant orientation of p, regardless of pulse-to-pulse fluctuations
in I and |p|. This fact is put to good use in the display of
histograms of the position angle of linear polarization, ψ =
1
2 tan−1 U/Q, which at a given longitude can take one of two
allowed values offset by 90◦. In the presence of instrumental
noise these broaden to give the characteristic bimodal distribu-
tion of OPM. The position angle distribution gives information
on the orthogonality of the linear component of the polariza-
tion, but the question must also be asked whether the circu-
lar component is as expected under elliptical OPM. Attempts
to answer this question have been hampered in the past due
to the use of inappropriate statistics. McKinnon (2002) notes
that the picture of elliptical OPM is consistent with observa-
tions showing distributions of Stokes V/I that are broad and
centred near zero (Backer & Rankin 1980; Stinebring et al.
1984a) (or equivalently, we note, that 〈|V |〉 tends to greatly ex-
ceed | 〈V〉 |; Karastergiou et al. 2003). However, such a distri-
bution could not be considered a particularly distinctive feature
of OPM and could easily be produced even by a mechanism
for the production of circular polarization that is independent
of the linear OPM phenomenon. A much more stringent test
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is to check that the observed V is, along with Q and U, con-
sistent with a constant orientation of p. The natural comple-
ment to the position angle in this regard is the ellipticity angle,
χ = 1

2 tan−1 V/
√

Q2 + U2 : together they completely specify
the orientation of p via the spherical coordinate angles 2ψ, 2χ.
The distributions in both parameters should be bimodal under
OPM (unless one mode always dominates), unlike the distribu-
tion of V/I, which may be unimodal.

While a measurement of the joint probability density func-
tion, f (ψ, χ), contains sufficient information to detect the pres-
ence of elliptical OPM, this choice of parameterisation is not
ideal. This is because a given solid angle element on the
Poincaré sphere subtends an area in ψ, χ-space that itself de-
pends on χ. Specifically,

da = 4dψdχ cos 2χ. (8)

This means that points closer to the equator (χ = 0) are given
greater weight in the distribution than justified by their density
on the sphere (see also McKinnon 2003b). This problem could
be circumvented by using f (ψ, χ)/ cos 2χ instead, but the prob-
lem remains that the spatial scale with which features in the
distribution are represented in Cartesian ψ, χ coordinates (for
example in a plot) varies with χ.

A solution to this problem is to measure f (2ψ, sin 2χ),
which satisfies the equal-area condition

da = d(2ψ)d(sin 2χ). (9)

This choice of parameterisation is known as Lambert’s cylin-
drical equal-area projection. In fact, any equal-area projection
has the desired properties of providing true solid-angle densi-
ties and representative sizes for features. Lambert’s cylindrical
equal-area projection suffers from severe shape distortions at
both poles (Q = U = 0, i.e. χ = ±45◦) and we shall only make
use of it in the case where one of the two dimensions is to be
averaged in order to use the other along with pulse longitude
in a two-dimensional display. That is, we supplement the tra-
ditional ψ versus longitude density display with a sin 2χ versus
longitude display that gives information on the distribution of
ellipticity as a function of longitude.

To examine the distribution of polarization orientations at a
single pulse longitude, it is desirable to have minimum (zero)
distortion at both of the orientations associated with the OPMs.
A cylindrical equal-area projection with its equator containing
the OPM orientations would suffice, however the nature of de-
viations from OPM in PSR B0329+54 we describe below mo-
tivates the use of a projection where the distortion is axisym-
metric about the modal orientation. The only such projection to
also have the equal area property is Lambert’s azimuthal equal
area projection, f (x, y) where

x = ρ cos λ (10)

y = ρ sin λ (11)

ρ = 2 sin
(
π

4
− θ

2

)
(12)

and λ, θ are the azimuth and latitude of p in a rotated frame
with 1m as its “north” pole. This projection maps the entire
sphere to a disc, with the “north” pole in the centre and the

“south” pole distorted to a ring about the circumference. In or-
der to avoid this severe distortion, we truncate the projection
at θ < 0 and display the southern hemisphere in an adjacent
projection with −1m as its central pole.

2.3. Testing for orthogonality

2.3.1. Eigenanalysis of the covariance matrix

Previous studies of pulsar polarization have frequently revealed
position angle distributions with components that are signif-
icantly broader than that expected due to instrumental noise
alone (e.g. Stinebring et al. 1984a), indicating the presence of
some non-orthogonal radiation. Deriving as it does from the
ratio of two noisy quantities (Q and U), the linear polariza-
tion position angle possesses complicated statistics, depending
not only on the statistics of measurement noise but also on the
statistics of variations in the linear polarization of the source.
Although much effort has been expended modelling them (e.g.
McKinnon 2003b), it is clear that as a means of detecting non-
orthogonality, the PA distribution is less than ideal. The distri-
bution of ellipticity angles suffers from the same problems, in
addition to those discussed in Sect. 2.2. We suggest instead a
more robust test of the consistency of polarization observations
with an origin in OPM.

From the fact that OPMs contribute to the observed values
of p only along a single vector, it follows that a simple and
direct means of detecting non-orthogonal emission is to check
the statistics of the components of p perpendicular to 1m. In
order to do this, it is necessary to define a new orthogonal ba-
sis for p, which has 1m as one of the basis vectors. The ques-
tion then arises of what to use for a working value of 1m, since
when the orthogonality of all states is in question, the mean po-
larization vector may not be parallel to 1m. Under the assump-
tion that the majority of the fluctuations in p are directed along
1m, a sensible choice for this vector is the direction of greatest
variance in p, which is also the least-squares estimate of the
direction of fluctuations. The method of Principal Components
Analysis (PCA; e.g. Jollife 1986) is suggested as a means of
finding this vector. PCA is based on the fact that the set of
eigenvectors of the covariance matrix of a multivariate statistic
represent an orthogonal basis in which the variations in the dif-
ferent axes have zero covariance1. That is, given the covariance
matrix

C =
〈
(p− 〈p〉) (p− 〈p〉)T

〉
(13)

where p is a column vector, there exists a set of 3 orthonor-
mal vectors ei (eigenvectors) and scalars λi (eigenvalues)
such that

Cei = λiei. (14)

1 We note that a similar technique was independently described for
OPM use by McKinnon (2004) while this paper was in the final stages
of preparation.



684 R. T. Edwards and B. W. Stappers: Ellipticity and deviations from OPM in PSR B0329+54

It is easily shown that the covariance matrix is diagonal if the
vectors are expressed using the eigenvectors as a basis. That is:

C′ =
〈[

M (p− 〈p〉)] [M (p− 〈p〉)]T 〉 (15)

=


λ1 0 0
0 λ2 0
0 0 λ3

 , (16)

where M is a matrix with the eigenvectors as its rows.
Clearly, the eigenvalues are equal to the variances in the

components aligned with the corresponding vectors. The eigen-
vector with the greatest eigenvalue corresponds to our choice
of 1m, while the other vectors and their associated eigenval-
ues present a convenient basis for detection and characteri-
sation of non-orthogonal radiation. In theory there may be
fewer than three distinct eigenvalues indicating axisymmetry
(two eigenvalues) or isotropy (one eigenvalue) in the direc-
tional variance, although the presence of measurement noise
makes this have zero probability in practice. However, mea-
surement noise also introduces bias to the covariance matrix
that should be corrected by subtraction of the covariance of
the noise, estimated from off-pulse longitudes and including
also the contribution of the pulsar to the system temperature if
significant. Where the intrinsic covariance is of a similar mag-
nitude to the uncertainty in the off-pulse covariance, this may
result in negative eigenvalues, which presents a problem if λ1/2

i
is to be used as a measure of the scale of intensity fluctuations,
and it must be accepted that estimates will be unavailable in
some longitude bins. This problem is also familiar from, for
example, bias-corrected estimates of the linearly polarized in-
tensity, L = (Q2 + U2 − σ2

Q − σ2
U )1/2.

Having measured the variance of fluctuations in compo-
nents parallel to and perpendicular to the modal orientation,
it is useful to define a measure of the degree of deviation from
purely linear fluctuations. After Cloude & Pottier (1995), we
define the polarization entropy as:

H = −
3∑

i=1

Pi log3 Pi , Pi =
λi∑
j λ j

, (17)

where λi is the ith eigenvalue. This quantity is confined to the
range [0, 1], where H = 0 corresponds to fluctuations com-
pletely confined to one direction, and H = 1 corresponds to an
isotropic distribution of p− 〈p〉.

2.3.2. Effects of scintillation

The methods of the previous section work from the covari-
ance of the observed signal, which in practice may reflect not
only the intrinsic variations of the pulsar, but also the effects
of the interstellar medium on the propagating signal. Of princi-
ple importance is the variable effective gain of the interstellar
medium induced by two types of propagation effect, refractive
and diffractive scintillation. For most pulsars, the time scale for
variations due to refractive scintillation is long (∼15 days for
PSR B0329+54; Stinebring et al. 2000), so the effects can be
neglected over short observations. Time scales for diffractive
scintillation, on the other hand, are much shorter. In some cases

the time scale may be long enough that one can simply limit
the analysis to a segment of time over which the flux density is
constant (e.g. McKinnon 2004), but in other cases such inter-
vals do not last long enough to sensitively obtain representative
statistics. With a diffractive scintillation time scale of ∼148 s at
328 MHz (Cordes 1986), this is the case for the observations of
PSR B0329+54 reported here.

In order to separate the (co-)variance induced by scintil-
lation from that intrinsic to the pulsar, we employ fluctuation
spectral techniques (Edwards & Stappers 2003). We define the
(longitude-resolved) polarization spectral density tensor as the
element-wise product of the (discrete, vector) Fourier trans-
form of pj−

〈
pj

〉
with its Hermitian transpose, where j indexes

pulse number and the longitude dependence is implicit as else-
where in this work. That is,

Sk = Pk Pk
†,where (18)

Pk =
1
N

N∑
j=1

e−2πi jk/N
(
pj −
〈

pj

〉)
, (19)

i =
√−1, N is the number of pulses, and † denotes the

Hermitian transpose. Here k is a frequency index (correspond-
ing to a frequency of k/N cycles per pulse period), which is
most easily interpreted if it is taken in the range (−N/2,N/2].
For convenience, in practice the observation can be broken into
segments for which S is computed, and the results averaged.
The tensor S contains a wealth of information about the polar-
ization fluctuations, offering among other possibilities, a means
for distinguishing different sources of variation in p via their
different fluctuation frequency structure, and a chance to form
the complex covariance matrix of the analytic signal and check
for periodic patterns of elliptical (rather than only linear) form
(Edwards 2004, in preparation). In the present context we sim-
ply make use of the fact that the sum of Sk over all k gives, via
Parseval’s theorem, the covariance matrix (Eq. (13)), while the
covariance matrix of a bandpass-filtered version of the data can
be computed as a sum over a suitably limited range of k.

The effect of scintillation on the observed signal pj is a
time-varying, multiplicative gain. The observed signal can be
written

pj =
(
1 + mρ j

)
pi

j
, (20)

where m is the modulation index due to scintillation, ρ j is a
realisation of a random process of zero mean and unit variance,
and pi is the intrinsic signal. Breaking the intrinsic signal into
a mean contribution plus a variable contribution, Eq. (20) can
be expanded to give

pj − 〈p〉 =
(
1 + mρ j

) (
pi

j
−
〈

pi
〉)
+ mρ j

〈
pi
〉
· (21)

Assuming that the instrinsic and scintillative variations are in-
dependent, the covariance matrix (Eq. (13)) becomes

C =
(
1 + m2

)
Ci + m2

〈
pi
〉 〈

pi
〉T · (22)

This shows that the uncorrected covariance matrix is biased
and scaled by the presence of scintillation2. Replacing multi-
plications in the time domain of Eq. (21) with convolutions

2 As an aside we note that the presence of scaling implies, surpris-
ingly, that scintillation can improve sensitivity to intrinsic variance,
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in the frequency domain, one finds that the vector spectrum
of Eq. (19) consists of the sum of the spectrum of intrinsic
variations from the mean, its convolution with the spectrum of
the scintillation variations, and the convolution of the spectrum
of the scintillation variations with the spectrum of

〈
pi
〉
, i.e. a

scaled sinc function at zero frequency. The condition of inde-
pendence implies that this sum carries over to Eq. (18) just as it
did to Eq. (22). The spectral response of the scintillation varia-
tions has a characteristic width 1/τ (where τ is the scintillation
timescale), corresponding to ∆k = NP/τ, where P is the pulse
period. In the usual case that P/τ � 1, we see that the bias
term in the observed covariance is confined to a small fraction
of the spectral density tensor around zero frequency. Under the
reasonable assumption that the fraction of intrinsic fluctuation
energy at these frequencies is small, this region can simply be
omitted in the sum over k that is performed to form the covari-
ance matrix, to eliminate the bias. The remaining scale factor
1+m2 can be obtained (given 〈p〉) from the complementary sum
of the spectral tensor over small |k|, which is over-constrained,
necessitating a fit. In practice, since m and (to first order) ρ j are
independent of pulse longitude, it can be obtained easily and
accurately by adding all on-pulse longitude bins in the Stokes
I signal and extracting the analogous quantity from the fluctu-
ation power spectrum of the result.

3. Observations and discussion

3.1. Observations

We used the Westerbork Synthesis Radio Telescope with
the PuMa pulsar backend (Voûte et al. 2002) to observe
PSR B0329+54 in a 10 MHz band centred at 328 MHz. PuMa
was configured as a digital filterbank, producing samples in
all four Stokes parameters over 128 frequency channels with
a sample interval of 409.6 µs. We found that our standard digi-
tisation using 2 bits per sample per channel was insufficient to
avoid clipping the brightest pulses, and caution that this may
also have been a problem in previously published polarime-
try of this and other bright pulsars. This problem was avoided
by re-observation of the pulsar with 8 bits of digitisation. In
offline analysis the data were corrected for instrumental po-
larization effects determined using the procedure described in
the Appendix, followed by removal of the frequency-dependent
position angle rotation caused by interstellar Faraday rotation,
and samples were summed across all frequency channels af-
ter correcting for delays due to interstellar dispersion. The re-
sultant time series was divided into segments corresponding to
the apparent pulse period to give an array of 16400 pulses in
1744 pulse longitude bins, 220 of which were used in further
analysis.

This pulsar is known to exhibit at least four main modes of
emission, each with a different pulse profile (Bartel et al. 1982),
two of which are commonly seen at low frequencies. By form-
ing pulse profiles in sub-integrations of 100 pulses, we deter-
mined that the pulsar underwent a mode change at pulse num-
ber ∼12 800. The profiles formed by adding pulses 0–12 500

even when the data contain an equal balance of scintillative amplifica-
tion and deamplification events.

and 13 000–16 400 are consistent with the so-called “normal”
and “abnormal” modes reported by previous authors.

3.2. Distribution of polarization orientations

As a first step in the characterisation of the distribution of ori-
entations of the polarization vector p, we formed frequency of
occurrence histograms in position angle and sin 2χ (Sect. 2.2)
as a function of pulse longitude. To reduce the effect of noise,
only those samples with |p| > 10σp, where σp is the quadra-
ture mean of the variance measured in Stokes Q, U and V in
off-pulse longitude bins, were included in the histograms. The
result for the normal profile mode is shown in Fig. 1.

The histograms for the abnormal mode were qualitatively
very similar to those of the normal mode, upon which the re-
mainder of the discussion will focus. However, we note as an
aside that the position angle distributions appeared offset be-
tween the two profile modes. Although the presence of non-
OPM means that the magnetic pole model of Radhakrishnan &
Cooke (1969) is not strictly applicable, for the purpose of quan-
tifying the offset, after Gil & Lyne (1995) we attempted to fit
the model to position angles determined using local maxima in
the histograms near to a curve made by eye to approximately fit
the less distorted of the polarization modes (Fig. 1). We found
that for the abnormal mode, a fit to the fiducial position angle
parameter ψ0 while using values determined from the normal
mode for other parameters performed much better than a fit
where ψ0 was fixed and all others allowed to vary (rms devia-
tion 3.13◦ versus 3.91◦), and was comparable to the best fit with
all parameters allowed to vary (rms 3.06◦). We therefore con-
clude that the offset is consistent with a shift in position angle
of ∼−5.5◦, rather than a change in the apparent viewing geom-
etry or a longitude offset as might be induced by differential
aberration and retardation.

While the position angle distribution of Fig. 1 is consistent
with previously published results of lower resolution showing
quasi-orthogonal modes (Gil & Lyne 1995), the ellipticity dis-
tribution shows features of a kind never seen before in any pul-
sar, owing most likely to the fact that previous studies have
used V/I instead of ellipticity, causing OPM-related features
to be washed out due to fluctuations in |p|/I. Most striking is
the strong right-circular polarization seen under the main cen-
tral component, which has no corresponding left-circular com-
ponent of equal ellipticity as would be expected if the circu-
lar polarization is due to the OPM clearly seen in the position
angle distribution (Sects. 2.1 and 2.2). Also of interest is that
the trailing component (longitude ∼64◦) has a distribution that
is roughly bimodal about the zero line, as expected under el-
liptical OPM, while the leading component (longitude ∼ 41◦)
appears to have a unimodal ellipticity distribution. Also appar-
ent is that polarized emission is occasionally detected in the
vicinity of pulse longitudes 33◦ and 70◦, corresponding to the
additional emission components detected in total intensity by
Gangadhara & Gupta (2001).

Much more intriguing behaviour is made apparent when
the full two-dimensional orientation distribution is considered
for particular longitude ranges. In Fig. 2 we display these
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Fig. 1. Longitude-dependent polarization behaviour of PSR B0329+54 in its normal profile mode at 328 MHz. Plotted are the mean total and
polarized intensity (black and red, top panel) and histograms of position angle (middle panel, plotted twice for continuity) and sin 2χ where χ
is the ellipticity angle, along with the corresponding parameters of the mean polarization vector (black lines). For convenience the ordinate
scale of the bottom panel is labelled non-linearly in terms of χ. The histograms are normalised by the peak density and plotted in the colour
scale shown at the bottom. The dashed line in the middle panel shows the prediction under the magnetic pole model (Radhakrishnan & Cooke
1969), see text. The smooth behaviour seen is intrinsic to the pulsar, the longitude bin spacing is determined by the instrumental resolution.

distributions averaged over several longitude intervals, using
the projection described in Sect. 2.2. In what follows we re-
fer to the modes occurring in the left and right halves of each
projection as modes “1” and “2” respectively. Addressing the
distributions in longitude order, we see that the leading com-
ponent is consistent with purely linear OPM in mode 2, while
by pulse longitude 50◦ the modes have switched in dominance
and become somewhat elliptical. As the pulsar rotates, mode 2

begins to increase again in strength, and apparently has a
greater spread in its orientations than mode 1. Over the course
of the central component the distribution associated with
mode 2 deforms into an arc and eventually an almost com-
plete annulus, while mode 1 remains tightly distributed around
an elliptical orientation and eventually concedes dominance to
mode 2. Finally, in the trailing component the modes are of
comparable strength and distributed tightly around orthogonal
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Fig. 2. Distribution of polarization orientations in eight longitude intervals, marked in the pulse profile at the bottom and shown in left-to-
right, top-to-bottom order. Each panel shows the distribution in Lambert’s azimuthal equal-area projection with poles set near to the typical
orientation of the mode showing the least scatter. The projection is interrupted at the equator and plotted in two hemispheres, to give low
distortion near both poles, marked by asterisks. Lines of constant ψ and χ are marked for reference; meridians (constant ψ) converge at χ = 45◦

(pure right-circular polarization) near the top of the projection. The colour scale is shown in Fig. 1, each density being normalised by the peak
in each longitude interval.
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elliptical orientations. We discuss our interpretation of this re-
markable behaviour in Sect. 3.4 but first discuss the remaining
observational results.

3.3. Covariance analysis
The results of the previous section leave no doubt that the cen-
tral component shows strong deviation from the behaviour ex-
pected under OPM. The case of the leading and trailing compo-
nents is more difficult to assess due to the fact that the expected
spread in orientations under instrumental noise depends in a
complicated way on the distribution of |p|. Instead, we used the
method of eigenanalysis described in Sect. 2.3.1. In our case
the dispersed pulsar signal contributes at most about one fifth
of the total system temperature, justifying the use of a single,
longitude-independent correction to the spectral density ten-
sor for the off-pulse noise, under the caveat that a very small
(σ � 0.003 normalized flux units) amount of measurement
noise contaminates the variances for the central component.
The characterstic frequency corresponding to scintillation on
the diffractive time scale (148 s; Cordes 1986) is ∼1/200 cy-
cles per period. To ensure the response was eliminated over
its full frequency extent, we excluded elements of the spectral
density tensor with |k|/N ≤ 1/50 when computing the covari-
ance matrix. Using power from |k|/N ≤ 1/50 in the fluctua-
tion spectrum of the pulse energy, we measure a modulation
index of 0.16 due to scintillation, in agreement with the mea-
surements and empirical model of Cordes (1986), given our ob-
serving band. This value was used to correct the overall scale of
the covariance matrix. The results of the eigenanalysis of this
matrix are shown in Fig. 3.

Beginning with the polarization entropy (Eq. (17)), we see
that the polarization is most disordered in the central compo-
nent, as one might expect from the distributions seen in the
previous sections, but still shows detectable entropy in all other
pulse longitudes accessible to measurement. That the diver-
gence from pure OPM is significant is confirmed by the fact
that significant variance is detected in the second and third
eigenvalues under every component. The fact that the second
and third eigenvalues are nearly equal in all components ex-
cept the central peak indicates that, for these pulse longitudes,
the deviations from OPM show no preferred direction, and
cannot be caused by position angle distortions or a random
circular component alone. This is consistent with the analy-
sis of PSR B1929+10 and PSR B2020+28 at 1404 MHz per-
formed by McKinnon (2004), who suggests the superposition
of (isotropic) randomly polarized radiation (RPR) as the cause.
On the other hand, in the central component of PSR B0329+54
all three eigenvalues are significantly different, and indeed the
analysis of the directional distribution in the preceding section
shows that the distribution of p cannot be ellipsoidal. This im-
plies that the deviations are themselves associated with the pro-
duction of OPM, as discussed further below.

It is also interesting to note that there is a suggestion of
correspondence between transitions in the mean modal dom-
inance (e.g. Fig. 1) and local minima in the polarization en-
tropy (Fig. 3). This appears to be the case around pulse lon-
gitudes ∼42◦, ∼52◦, and ∼63◦, however the correspondence is

Fig. 3. Results of eigenanalysis. The top panel shows the average in-
tensity profile (thick solid line), the square roots of the eigenvalues
(solid, dashed, dotted thin lines, in descending order of value), and the
polarization entropy (Eq. (17); thick dotted line). The middle panel
shows the position angle of the mean polarization vector (thick line,
plotted repeatedly at offsets of 180◦ for continuity) and of the first
eigenvector (thin line, plotted repeatedly at offsets of 90◦ for continu-
ity under the equivalence of antiparallel vectors as eigenvectors). The
bottom panel shows the ellipticity angle of the mean polarization vec-
tor (thick line) along with the ellipticity angle of the first eigenvector,
plotted twice with opposite signs.

not exact, particularly in the leading component. If the trend is
in fact real and confirmed in other pulsars, it would require that
any mechanism for the production of two OPMs predicts that
under conditions leading to OPMs of similar intensity, OPM-
related fluctuations dominate more strongly over the randomly
polarized fluctuations than elsewhere in the pulse profile. This
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could be the case if the modal intensities tend to be more vari-
able or more negatively correlated (Eq. (6)), and/or the ran-
domly polarized component is weaker or less isotropic. A de-
tailed study of a larger sample of pulsars would be necessary to
distinguish between these possibilities.

We also note that a smooth position angle curve can be
constructed from the eigenvector corresponding to the largest
eigenvalue, in contrast to the position angle of the average po-
larization vector, which shows gradual 90◦ transitions rather
than sharp flips as would be needed for reconstruction of a con-
tinuous smooth curve. Also the ellipticity angle curve of the
first eigenvector avoids the problem seen at longitude ∼39◦,
where near complete cancelling of the linear contributions
of the OPMs is not accompanied by cancelling of the circu-
lar component, giving rise to a “spike” in χ where 〈p〉 / |〈p〉|
sweeps over the left-circular pole (indicating, incidentally, non-
orthogonal modes, or a consistent, superposed left-circularly
polarized component). These properties will likely make
eigenanalysis a useful technique for detecting polarization fluc-
tuations driven by OPMs and determining the longitude depen-
dence of their polarization orientations, even when the signal-
to-noise ratio is insufficient to detect individual pulses.

3.4. Interpretation of strong deviations from OPM

The results of the preceding sections show that, while at some
pulse longitudes the circular polarization is typically in propor-
tion with the linear polarization such that two clusters are pro-
duced in the orientation distribution at antipodal points on the
Poincaré sphere, at no pulse longitude is the scatter in orienta-
tions consistent with instrumental noise alone. Moreover, near
the peak of the average profile, one mode shows extreme diver-
gence from the expected orientation, with a correlation between
position angle and ellipticity that is complex in form. The shape
is consistent with a broad, incomplete annulus centred upon the
point opposite to the orientation of the other mode.

A possible origin for this behaviour lies in birefringent ef-
fects in the magnetosphere. Specifically, the annular form is
suggestive of a propagation effect whereby the polarization
state of incoming rays as represented on the Poincaré sphere
are rotated by a time-varying angle about the axis defined by
the central point of the annulus. Such an effect is expected if
the observed radiation passes through a region of plasma where
the natural propagation modes are different to the ray polariza-
tion, and a net phase delay occurs between the components of
the electric field in each of the two modes due to their differ-
ent group velocities. This effect has been termed Generalised
Faraday Rotation (GFR; Kennett & Melrose 1998) and is fa-
miliar from, but not theoretically limited to, ordinary Faraday
rotation in the interstellar medium (about Stokes V , due to the
circular modes of cold, non-relativistic magnetised plasma),
and from the effect of retardation plates (rotation of p about
a linear orientation defined by the optical axis of the material).
In the case of the pulsar, the polarization of the plasma modes
can be identified with the slightly elliptical polarization states
that appear antipodal on the Poincaré sphere at the centre of
the annulus and at the typical orientation of states dominated

by the other, well-behaved mode. The incoherent superposi-
tion of radiation in the other polarization mode, which appar-
ently does not suffer this effect, would cause the annulus to
broaden outwards, helping to explain the spread of the observed
distribution.

This kind of effect was predicted for pulsar magnetospheres
by Cheng & Ruderman (1979) and given a quantitative treat-
ment by Lyubarskii & Petrova (1999). In their formulation the
change in polarization is effected in the vicinity of the polar-
ization limiting region (PLR; Sect. 1), where the plasma den-
sity is insufficient to cause total decoherence of the modes, yet
densities are still high enough to cause significant phase delays
between the modes. Radiation enters this region as an inco-
herent mixture of the local plasma modes, but due to changes
in the modal orientation along the ray path caused by the ro-
tation of the magnetosphere, each of the incoming rays ac-
quires components in both of the propagation modes, which
propagate at different speeds and alter the polarization of the
ray accordingly. This picture deviates from our observations in
several ways. Firstly, Lyubarskii & Petrova (1999) assume lin-
early polarized propagation modes, whereas the observations
indicate elliptical modes, implying plasma with a net charge
density rather than a pure pair plasma. Secondly, the predicted
effect is not as simple as rotation about a given axis, for the
modal polarization orientation, and thus the axis of rotation,
varies along the ray path. The presence of an annular shape, as
expected from a near-constant polarization of the propagation
modes, may therefore place some constraints on the size of the
region of the magnetosphere contributing significant, variable
amounts of GFR. Finally, the effect should only be capable of
inducing one sense of circular polarization (Radhakrishnan &
Rankin 1990; Lyubarskii & Petrova 1999), and should affect
both rays equally apart from a reversal in the sense of circular
polarization (Petrova 2001).

An alternative cause of the misalignment of the polarization
of the propagation modes and the incoming rays, is refraction.
Petrova & Lyubarskii (2000) show that, while the extraodi-
nary mode propagates under a vacuum dispersion law, the ordi-
nary mode can suffer from significant refraction, which, under
a non-axisymmetric plasma distribution, can cause it to move
out of the plane of the magnetic field line from which it orig-
inated (and obtained its initial polarization). The calculations
of Petrova & Lyubarskii (2000) show that the subsequent al-
teration of the polarization state at the PLR can produce ei-
ther sense of circular polarization, as seen in our observa-
tions. Moreover, since the extraordinary mode is immune to
refraction, it should not suffer the same PLR effects, consistent
with the tight, centrally peaked distributions of orientations ob-
served here in mode 1. Should one of the modes be produced
by conversion from the other, as in Petrova (2001), this would
imply that refraction occurs above the conversion region. An
alternative means of producing mode-dependent PLR effects
is the invocation of [anti-]correlation between the efficiency
of conversion and the physical conditions in the PLR (Petrova
2001), however for this to be the case the correlation must be
very strong, given the complete absence of an annulus in the
distribution of states apparently dominated by mode 2. That
refraction-driven PLR effects only occur close to the magnetic
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axis (Petrova & Lyubarskii 2000) is another prediction borne
out by the observation that only the central profile component
shows the annular distribution. Many pulsars show strong mean
circular polarization in central, so-called “core” components
(Rankin 1983), which tends to show a central sense reversal
(Radhakrishnan & Rankin 1990, although see also Han et al.
1998) taken by Petrova & Lyubarskii (2000) as support for
their model of the refraction-driven PLR effect. The probable
direct detection of this effect in PSR B0329+54 opens the pos-
sibility of good tests of the model through applications of the
techniques used here on a larger sample of pulsars with and
without “core” components, and examination of the frequency
dependence.

Detailed modelling of this effect is beyond the scope of this
work, however to prove the basic assertion that GFR can pro-
duce the spread of orientations observed, we have performed
some basic numerical simulations. We simulated the observed
polarization vector as the sum of three components, the ordi-
nary ray, the extraordinary ray and an RPR component:

p = po + pe + pr. (23)

We assume that certain parameters are independently dis-
tributed according to chosen “reasonable” distributions. These
are merely intended to provide variation in order to produce
the qualitative features of the model, and are not expected to
necessarily closely resemble the distributions under a complete
physical model. The ordinary mode was presumed to have an
initially linear polarization orientation with a position angle
drawn from a von Mises distribution:

f (2ψ) =
eκ cos(2ψ−µv)

2πI0(κ)
(24)

(where I0 is a modified Bessel function of the first kind) with
µv = 50◦, κ = 20, while its (polarized) intensity was drawn
from an exponential distribution:

f (I) =



1
µ

e−I/µe I ≥ 0

0 I < 0,
(25)

with µe = 1. To model the effect of GFR, the initial state for
the ordinary mode was rotated by an angle θ about an axis 1m

oriented with ψ = 90◦, χ = 4◦, where θ was also drawn from a
von Mises distribution (µv = 90◦, κ = 1), to give the computed
po. The extraordinary mode (pe) was presumed to be always
oriented with ψ = 0◦, χ = −4◦, with a (polarized) intensity
drawn from an exponential distribution of mean µe = 0.2. The
contribution of RPR (pr) was calculated by drawing its compo-
nents Q, U, V from independent Gaussian distributions:

f (x) =
1

σ
√

2π
e

(x−µg )2

2σ2 , (26)

with µg = 0 and σ = 0.05. This model was realised 106 times
to produce the distribution of orientations depicted in Fig. 4.
Although clearly the chosen distributions are not perfect, the
resemblance to the observed distributions is striking, confirm-
ing the possibility that GFR is in effect.

Fig. 4. Distribution of polarization orientations deriving from a sim-
ulation involving GFR (see text). The projection used is as in Fig. 2,
plotted in a linear grey density scale.

4. Conclusions

We have performed a detailed analysis of the polarization of
individual pulses from PSR B0329+54 at 328 MHz. The use of
statistics involving the ellipticity angle instead of Stokes V or
V/I enabled us to reveal for the first time the rich structure of
the circular polarization distribution, which is correlated with
the position angle distribution.

Displaying the distribution of polarization orientations in
an equal-area projection, a remarkable structure was uncov-
ered for pulse longitudes near the centre of the average pulse.
The annulus-like form of the distribution in one mode is, in
our view, indicative of Generalised Faraday Rotation (GFR) in
the pulsar magnetosphere, while the fact that it apparently only
affects one polarization mode, and is capable of producing ei-
ther sense of circular polarization, is taken as an indication that
refraction of the ordinary mode is taking place. The apparent
ellipticity of the polarization state upon which the annulus cen-
tres and orthogonal to the typical polarization of states domi-
nated by the other mode are taken to indicate that the GFR oc-
curs in a region with elliptically polarized plasma propagation
modes, indicating a net charge density in the plasma.

Through the analysis of the covariance of the Stokes pa-
rameters, by means of eigenvector decomposition, we have
shown quantitatively for the first time that the circular po-
larization is consistent with an origin in elliptically polarized
orthogonal polarization modes. Moreover, we find that a sig-
nificant apparently randomly polarized component dilutes the
purity of OPM-driven variations in polarization state, as also
found recently by McKinnon (2004) for PSR B1929+10 and
PSR B2020+28 at 1404 MHz.

In this work we have shown how to detect and charac-
terise deviations from OPM in more powerful ways than previ-
ously available. Future application of these techniques to other
pulsars over a broad frequency range should allow renewed
progress in the resolution of decades-long debate about the ori-
gin of pulsar polarization.
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Appendix A: Polarization calibration

The Westerbork Synthesis Radio Telescope (WSRT) is an array
of 14 dishes, each of two nominally linear dipoles, which is
configured as a tied array during pulsar or VLBI observations.
Assuming that the response of each telescope to the incident
electric field is linear, the observed voltages can be described
using a Jones matrix (Jones 1941) for each dish, i:

ui = J ie. (A.1)

The procedure for forming a tied array is to add the voltages
of all telescopes after correcting them for relative phase (due to
the source direction):

utot =

N∑
i=1

e−iθi J ie. (A.2)

where N is the number of telescopes. It is therefore trivially
true that the tied array signal can be calibrated by determining
an overall system Jones matrix, i.e.:

utot = J tote, (A.3)

J tot =

N∑
i=1

e−iθi J i. (A.4)

The problem of tied array calibration is thus no different to the
calibration of single-dish observations, for which several recent
treatments are available that avoid potentially dangerous sim-
plifying assumptions of earlier works (Hamaker et al. 1996;
Sault et al. 1996; Hamaker 2000; Britton 2000; van Straten
2002; Johnston 2002; van Straten 2004). These approaches
are based on the Jones matrix formalism, which has seven de-
grees of freedom in the instrumental model of each frequency
channel (the eighth, absolute phase, is lost in the computa-
tion of the self coherency matrix for single dish or tied ar-
ray observations). Hamaker (2000) divides these into a “pol-
rotation”, which causes a pure rotation of p about an arbitrary
axis by an arbitrary angle (3 degrees of freedom), a “poldistor-
tion”, which exchanges an arbitrary amount of power between
Stokes I and and an arbitrarily oriented component of p (3 de-
grees of freedom), and an overall system gain (one degree of
freedom). A similar decomposition was made independently by
Britton (2000), who notes that Jones matrix transformations are
isomorphic with the Lorentz group, with the type of transfor-
mation called a “poldistortion” by Hamaker (2000) correspond-
ing to a Lorentz boost. Apart from providing a convenient ge-
ometric interpretation of the kinds of transformations effected
by linear system components, as Hamaker (2000) notes this
decomposition suggests a calibration strategy that begins with
the observation of a presumed unpolarized source, immediately
giving the gain and poldistortion. The polrotation can then be
obtained by observations of a further two sources about which
some assumptions can safely be made (for example, that they
are linearly polarized and/or have a given position angle).

Unfortunately efforts to calibrate the WSRT in tied array
mode are severely hampered by the inclusion of non-linear sys-
tem components. Specifically, the voltage signals from each
telescope are sampled using thresholds that are dynamically

determined using a control system that attempts to maintain
the variances of the sampled signals at a constant level, based
on averaging with some time constant of the order 1 ms. These
are known as the automatic gain controllers (AGCs). Although
these components might at first appear disastrous for the detec-
tion of non-stationary signals, the fact that they normalise the
individual telescope powers while the source signal adds coher-
ently means that the distortion is reduced for N � 13. However,
the fact remains that the AGCs introduce an unknown, time-
varying gain to each of the real and imaginary parts of each po-
larization channel of each telescope, making precise calibration
impossible for tied array observations, and we strongly suggest
that future telescope arrays provide tied-array systems free of
AGCs. Since the system is not precisely calibratable, we limit
the scope of our calibration to the grossest of instrumental ef-
fects, differential gain and phase between the summed X and
Y polarization channels. Remaining effects are expected in any
case to be small, due to the high accuracy of dipole setting at
WSRT (Weiler & Wilson 1977), and the tendency for random
error terms to cancel in the sum of Eq. (A.4). By comparison of
our observations with published polarimetric profiles available
via the EPN database4, we estimate that our results are accurate
to within a few percent, certainly sufficient for examination of
the basic polarization properties of the source.

The procedure we use for determining the differential phase
and gain is based on the differential Faraday rotation across the
observing band. This provides a variety of input polarization
states incident on the telescope, with a known relationship be-
tween them, allowing one to fit simultaneously for the source
polarization and the instrumental response. In this regard the
technique is similar to previous strategies employing the par-
allactic angle rotation during long observations of a source
(Stinebring et al. 1984a), which cannot be used at the WSRT
because its equatorial mounts cause the dipoles to track the par-
allactic rotation (by the same token, this eliminates a potential
source of time-variability in incompletely calibrated measure-
ments). Just as the parallactic technique is limited to the as-
sumption that neither the source polarization nor the telescope
response changes with time, our method assumes frequency in-
dependence except for an overall factor incorporating the gain
and intrinsic intensity spectrum of the source. The technique
is also limited by the commutativity of certain transformations
with the known transformation effected by Faraday or paral-
lactic rotation, about Stokes V . That is, for any solution of the
system Mueller matrix (which is constructed from the Jones
matrix, see e.g. Hamaker et al. 1996) satisfying

S′i = MRV(2θi)S, (A.5)

where S is the intrinsic Stokes 4-vector, S′i is a measured (un-
calibrated) Stokes 4-vector observed under a known Faraday
or parallactic rotation angle θi and RV(2θi) is a Mueller matrix
effecting a rotation of angle 2θi about Stokes V , there exists an
infinite number of other solutions

S′i = MERV(2θi)E−1S, (A.6)

3 See the PuMa manual,
http://www.astron.nl/wsrt/WSRTobs/PuManual.pdf

4 http://www.mpifr-bonn.mpg.de/div/pulsar/data/
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where E is any matrix that commutes with RV(2θi). Without
additional constraints, this approach is therefore only able to
determine the system response to within an arbitrary rota-
tion (“polrotation”) and boost (“poldistortion”) in Stokes V .
However, as stated above we have chosen to use a reduced
description of the system response, parameterised only by
frequency-dependentgain, and X-Y differential gain and phase.
For assumed perfect linear dipoles, differential phase and gain
errors correspond to rotations and boosts about Stokes Q (e.g.
Britton 2000), which do not commute with RV , obviating the
need for additional constraints. Our model is thus:

S′(ν) = g(ν)RQ(2RM(c/ν)2 + θ)BQ(β)S + noise, (A.7)

where g(ν) models the frequency dependent gain and source
spectrum, RM is the rotation measure of the propagation path
between the source and Earth, θ is the phase offset between X
and Y channels, and β = ln gx/gy where gx and gy are the (volt-
age) gains of the X and Y channels.

We define the best-fit system response as the one that min-
imises the global χ2:

χ2 =
∑

i


D2

iI

σ2
I,i

+
D2

iQ

σ2
Q,i

+
D2

iU

σ2
U,i

+
D2

iV

σ2
V,i

 , (A.8)

where i indexes all measured Stokes vectors (i.e. all frequency
channel/pulse longitude pairs), σ2

{IQUV} are the variances of
each of the Stokes parameters in off-pulse regions (potentially
also dependent on i), and

Di = S′i − MiRV(2θi)S, (A.9)

where in our case, Mi = g(νi)RQ(2RM(c/νi)2 + θ)BQ(β). In the
general case where a full system calibration is achievable M
should be parameterised as a function of frequency by the
seven real and imaginary components of the elements of the
Jones matrix (the imaginary part of one of the diagonals can be
set to zero since absolute phase is irrelevant). Johnston (2002)
describes a similar scheme to that described above, employing
a Jones matrix formalism and parallactic angle rotation, from
which we differ in several respects. Firstly rather than minimis-
ing χ2, which corresponds to the maximum likelihood estima-
tor, Johnston (2002) minimises the Manhattan distance, which
is likely to have poorer estimation accuracy than maximum
likelihood. Secondly, Johnston (2002) discusses the difficulties
of multi-step calibration schemes but does not propose an
alternative. Including all measurements of all sources in the
global χ2, including any injected noise sources and continuum
calibrators, and minimising it in one step is in our view the
best way to avoid these difficulties. Finally, we caution against

Fig. A.1. Observed values of Stokes I (open circles), Q (triangles),
U (squares) and V (filled circles) in the peak longitude bin of
PSR B0329+54, as a function of frequency. Predictions of the best-
fitting model (incorporating all longitude bins) are shown with lines.

neglecting second-order terms in the expansion of the Mueller
matrix as it is unnecessary and introduces the possibility for
error if and when the technique is applied to telescopes with
non-negligible cross terms (e.g. LOFAR/SKA). We note that
the issues described above have received independent treatment
in the recent work of van Straten (2004), who also provides a
method for minimization of Eq. (A.8) that avoids explicit ex-
pansion of the Mueller matrix and its partial derivatives.

We performed the procedure described above using
a frequency-resolved polarimetric profile from the first
12 500 pulses of the observation of PSR B0329+54 described
in the text. That θ � ±90◦ is clearly visible in the frequency
dependence of the Stokes parameters (Fig. A.1), where the
Faraday modulation appears mainly in Q and V , instead of Q
and U as expected if θ = 0. In fact it was this feature, seen in
this and other WSRT observations in the 328 MHz band that
led us to the calibration scheme described here. The results of
the fit support the assertion that θ � 0, yielding θ = −75.24◦
and β = −0.0278, implying gx/gy = 0.973 (the model predic-
tions using these values and the other parameters are plotted
in Fig. A.1). These values were used to correct the recorded
Stokes vectors before further analysis described in the body of
this paper.


