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Abstract

An extension to Ellsberg�s experiment demonstrates that attitudes to ambiguity and

compound objective lotteries are tightly associated. The sample is decomposed into

three main groups: subjective expected utility subjects - who reduce compound ob-

jective lotteries and are ambiguity neutral, and two groups that exhibit di¤erent

forms of association between preferences over compound lotteries and ambiguity -

corresponding to alternative theoretical models that account for ambiguity averse or

seeking behavior.

JEL Classi�cation: D81, C91.

Keywords: Uncertainty Aversion, Probabilistic Sophistication, Reduction of Com-

pound Lotteries, Non-Expected Utility, Maxmin Expected Utility, Anticipated Util-

ity, Rank Dependent Utility, Recursive Utility, Compound Independence, Bundling,

Rule Rationality.



1 Introduction

In 1961 Daniel Ellsberg [7] suggested several ingenious experiments which demon-

strated that Savage�s [30] normative approach, which allows to derive subjective

probabilities from preferences, faces severe descriptive di¢ culties. Since then, sev-

eral models that can accommodate Ellsberg type behavior have been proposed. The

goal of this work is to compare the performance of these theories in a controlled

experimental environment, which is an extension of the original Ellsberg experiment.

The main premise used in analyzing the sample is that the population may be

heterogeneous: di¤erent subjects have di¤erent patterns of choice, that correspond

to di¤erent theories. As a consequence, the analysis will not look for a unique theory

that can explain the average decision maker, but will try to infer from the sample

what are the common choice patterns in the population.

The theoretical focus of the experiment is to test the association between non-

neutral attitude to ambiguity and violations of reduction of compound (objective)

lotteries (ROCL). The former states that subjective uncertainty cannot be reduced

to risk, or, in the language of Machina and Schmeidler [23], the agent is not �prob-

abilistically sophisticated�(see Epstein [8]). Violation of ROCL implies that agents

who face compound lotteries, do not calculate probabilities of �nal outcomes accord-

ing to the laws of probability.

The results, as is evident from Table 11, reveal a tight association between ambi-

guity neutrality and reduction of compound lotteries - consistent with the subjective

expected utility model. Further analysis clari�es that the structure of the association

between non-neutral attitudes to ambiguity and violation of ROCL is not uniform in

the population of subjects, as two di¤erent (about even in frequency) choice patterns

emerge. One pattern corresponds to the theoretical predictions of the Recursive Non-

Expected Utility (RNEU) model of Segal [32,34], while the second may be generated

by behavioral rules consistent with an environment of bundled risks (as in Halevy

and Feltkamp [14]) and can be represented by the Recursive Expected Utility (REU)

model (Klibano¤ et al [21], Ergin and Gul [9], Ahn [1]) in which a decision maker

does not reduce compound objective lotteries.

1Table 1 combines the two samples reported in this study (see Table 5.) Ambiguity neutrality is
de�ned as V 1 = V 2; and ROCL as: V 1 = V 3 = V 4
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Table 1: The association between attitudes to ambiguity and compound objective
lotteries

No Yes

Count 113 1
Expected 95.5 18.5
Count 6 22
Expected 23.5 4.5

119 23 142

2.3E19

ROCL
Total

Ambuguity
Neutral

No 114

Yes 28

Total

Exact Sig. (2sided)
Fisher's Exact Test

2 Method

Two controlled experiments were conducted: an original experiment with moderate

stakes, and a robustness experiment in which all payo¤s were scaled by a factor of

ten. In each experiment, the subjects were asked to state their reservation prices for

four di¤erent lotteries through an incentive compatible elicitation mechanism.

2.1 Recruitment

104 subjects were recruited to the original experiment using ads posted on di¤erent

locations on the campus of the University of British Columbia. They signed up for

sequential time slots. 38 subjects participated in the robustness experiment. The

recruitment of subjects to the second round was based on proportional sampling

within each cohort of undergraduate students in the faculties of Arts and Science at

UBC (about 12,500 students): 100 students were sent e-mail invitations, about half

of them responded, out of which 38 students participated in the experiment (mainly

due to scheduling con�icts).

2.2 Administration

During each experiment only one subject was present in the room. Following her

arrival, each subject signed a consent form (Appendices A and B) which explained

the experiment. In the �rst experiment, a research assistant was always in the room

to answer any concerns, and to make sure the subject knew how to run the com-
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puter program that simulated the lotteries. The computer program was written by

CASSEL�s2 sta¤. The second experiment was supervised by the author and all the

lotteries were executed by physical randomization devices.

2.3 The Lotteries

Subjects were presented with four lotteries: the �rst two are the standard (two colors)

Ellsberg urns, used to test ambiguity attitude. The latter two (together with the �rst

one) test whether behavior satis�es the ROCL assumption for objective lotteries. A

graphical presentation of the lotteries is presented in Appendix C. Follows is the

description of the lotteries as presented to the subjects:

�There are 4 urns3, each containing 10 balls, which can be either red or black. The

composition of balls in the urns is as follows:

� Urn 1: Contains 5 red balls and 5 black balls.

� Urn 2: The number of red and black balls is unknown, it could be any number
between 0 red balls (and 10 black balls) to 10 red balls (and 0 black balls).

� Urn 3: The number of red and black balls is determined as follows: one ticket
is drawn from a bag containing 11 tickets with the numbers 0 to 10 written on

them. The number written on the drawn ticket will determine the number of

red balls in the third urn. For example, if the ticket drawn is 3, then there will

be 3 red balls and 7 black balls.

� Urn 4: The color composition of balls in this urn is determined in a similar
way to box 3. The di¤erence is that instead of 11 tickets in the bag, there are

2, with the numbers 0 and 10 written on them. Therefore, the urn may contain

either 0 red balls (and 10 black balls) or 10 red balls (and 0 black balls).�

Each participant was asked to place a bet on the color of the ball drawn from each

urn (Red or Black) (eliminating problems arising from potentially asymmetric infor-

mation, e.g. Morris [24]). If a bet on a speci�c urn is correct, the subject could win

2California Social Science Experimental Lab, which is a joint project of UCLA, California Insti-
tute of Technology, and the NSF.

3In the experiment, the word �box�was used, in order to minimize confusion among subjects
who were not familiar with the word �urn.�
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2 Canadian Dollars, and if a bet is incorrect, the subject losses nothing. The total

money which could have been earned is $8 (plus $2 paid for participation). Before

balls were drawn from each urn (and before the tickets are drawn from the bags

for urns 3 and 4), the subject had the options to �sell� each one of her bets. The

Becker-Degroot-Marschak ( [4], henceforth BDM) mechanism was used to elicit (an

approximation to) the certainty equivalent of each bet: the subject was asked to state

four minimal prices at which she was willing to sell each one of the bets (reservation

prices). The subject set the selling prices by moving a lever on a scale between $0

and $2. For each urn, a random number between $0 and $2 was generated by the

computer. The four random numbers were the �buying prices� for each one of the

bets. If the buying price for an urn was higher than the reservation price the subject

stated for that urn, she was paid the buying price (and her payo¤ did not depend

on the outcome of her bet). However, if the buying price for the urn was lower than

the minimal selling price reported for that urn, the actual payment depended on the

outcome of her bet.

The BDM [4] mechanism has been used extensively in the �preference reversal�

literature (e.g. Grether and Plott [11])4. Several researchers (Holt [16], Karni and

Safra [19], Segal [33]) have pointed out that when preferences do not satisfy the

axioms underlying expected utility theory (in particular, independence [16, 19] and

reduction of compound lotteries [33]), the BDM mechanism may not elicit valuations

accurately. Holt�s [16] reservation - which applies to a situation in which several

valuation are elicited, but the subject is paid the outcome of only one - has been fully

accommodated in the current study since all outcomes are actually paid. Karni and

Safra [19] showed that the �certainty equivalent� of a lottery elicited utilizing the

BDM mechanism, respects the preference ordering if and only if preferences satisfy

the independence axiom. Furthermore, they showed that there exists no incentive

compatible mechanism that elicits the certainty equivalent and does not depend on

the independence axiom. In the current experiment, the independence axiom does

not play any role in the evaluation of urns 1, 3 and 4: if the subject calculates

(reduces) probabilities, then she would view all of them as the same lottery. Segal [33]

4The main focus of this literature is the relative ranking of two lotteries: one with high probability
of winning a moderate prize (P bet) and one with a low probability of winning a high prize (a p
bet). Many agents choose the P bet over the p bet, but the valuation of the P bet is lower than the
valuation of the p bet. The valuations were elicited using a BDM mechanism.
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provided an example in which violation of ROCL results in a preference reversal5.

The latter limitation of the BDM mechanism is important in the current experiment

that focuses on the relation between ambiguity aversion and violations of ROCL.

Furthermore, the BDM is complicated - and if subjects fail to understand it - the

elicited values might re�ect their confusion and not their evaluation. To minimize the

confusion e¤ect, the subjects received before the experiment an extensive explanation

on the BDM mechanism and all experienced it in a trial round6 before the actual

experiment. Moreover, various aspects of the patterns of responses convince me that

these concerns do not render the data useless. That is, even if the BDM mechanism

elicits the valuation with some noise, the patterns in the data are extremely robust

and consistent with some of the theoretical predictions7.

The random numbers (which were generated by the computer program) and the

outcomes of the draws were not revealed until all four reservation prices were set. The

relevant data collected from each participant were the reservation prices she stated for

each box (reported in Appendix D), as well as some personal information (available

upon request).

2.4 Robustness Test

The original experiment as presented above may be subject to several imperfections:

the price of $2 may seem too small to give the subject su¢ cient incentives to think

seriously of the problems at hand; although the research assistant tried to con�rm the

participants understood the BDM mechanism - there was no objective measure of his

success; the subjects were asked to behave as �sellers� - a framing that might have

in�uenced their reservation prices; the recruitment of the subjects was based on sign-

up sheets - this convenience sampling technique might have introduced biases into

the experiments�results. To counter these reservations it might be argued that non

of the arguments is systematic, and if it introduces biases, there is no a priori reason

to believe they have a di¤erential e¤ect on the reservation prices set for the four urns.

5Furthermore - Keller, Segal and Wang [20] show that under this latter interpretation, the cer-
tainty equivalent and the value elicited using BDM may lie on di¤erent sides of the expected value
of the lottery. Therefore, risk attitude would be impossible to infer from the elicited value.

6The second (ambiguous) urn was a �new�urn, eliminating the possibility of learning from the
trial round. This information was conveyed to the participants.

7This additional �measurement error� is minimized for theories like Maxmin Expected Utility,
which satisfy both reduction of compound lotteries and the independence axiom when only objective
probabilities are involved.
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In particular, since the focus of the current study is on the relative reservation prices,

the conjecture is that similar results would hold in an altered experiment in which

these de�ciencies would be corrected. To test this conjecture, a robustness experiment

was conducted. The prizes were scaled from $2 to $20 per urn. The e¢ ciency of the

sampling has increased, thanks to the use of the proportional sampling within cohorts,

as described above. In addition, while in the �rst round subjects were informed the

range of possible payo¤s (�earn up to $10�), no de�nite amount was disclosed in

the robustness round before the experiment itself (most subjects did not expect the

payo¤s to be as high).

The subjects received two paid opportunities to experience the operation of the

BDM mechanism, before the trial round. They were given a two Canadian dollars

coin (toonie) and were asked to set their minimal reservation price for it. This task

was used to guide them how to ��nd� their minimal reservation price: they were

prompted to consider if they would accept 5 cents less than their stated reservation

price. If they accepted, the process was repeated until the minimal reservation price

was achieved. Since in this task there is an objectively correct answer, the subjects

learned what reservation prices are �too low�and which are �too high.�Next, the

subjects were given a pen (with a retail value of $2.50 at UBC�s bookstore, which

was not reveled to the subjects) and were asked to set their minimal reservation price

for it using the same mechanism. Only then, they were o¤ered a trial round with

the four urns. Throughout the experiment the subjects were reminded how to ��nd�

their minimal reservation price. Furthermore, in the instructions to the experiment

the terms �selling/buying price�and �true valuation�were not used.

In order to prevent any possibility the subjects suspect they are tricked, the im-

plementation of the experiment was altered somewhat. The lotteries were physical

and not computerized: there were four pouches containing beads that could be red or

black. The composition of pouches 3 and 4 was determined by choosing at random a

numbered token (one out of 11 or one out of 2, respectively), and the composition of

pouch 1 could have been veri�ed by the subject. The random numbers (between $0

and $20) were generated by a computer before the experiment. They were organized

in a matrix, and the subjects chose at the beginning of the experiment 10 di¤erent

coordinates8, that were revealed sequentially after she set reservation prices for the

8The �rst two coordinates were used to teach the BDM elicitation mechanism (range of 0 to 4),
while the latter 8 were used for the trial round and the paid experiment.
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di¤erent urns. In addition, an order treatment was implemented: the subjects were

randomly allocated to di¤erent order of urns: (1,2,3,4) - as in the original experiment,

(2,3,4,1), (3,4,1,2) and (4,1,2,3). The goal of the random ordering was to test whether

the reservation prices are in�uenced by alternative ordering schemes9.

2.5 Related Experimental Literature

Two previous experimental studies added an objective two-stage lottery to the classic

two color Ellsberg example. Yates and Zukowski [36] test the �range hypothesis�10 by

o¤ering urns similar to the �rst three in the current study. Each subject was allowed

to choose one urn out of the possible three pairs of urns: The value of the chosen

lottery was elicited using the BDM mechanism. Yates and Zukowski found evidence

that Urn 1 was weakly preferred to Urn 3, which was weakly preferred to Urn 211.

Chow and Sarin [6] test the distinction between known (risk), unknown and un-

knowable12 uncertainties using urns 1, 2 and 3 respectively. They �nd that unknow-

able uncertainty is intermediate to the known and the unknown forms of uncertainties.

They relate their �ndings to Fox and Tversky�s [10] �comparative ignorance hypoth-

esis,� in which the availability of an informed agent (experimenter) decreases the

attractiveness of a lottery.

3 Theoretical Predictions

This section will describe how di¤erent theories of choice under uncertainty predict

individual choices in the experiment. The theories I focused on during the research in-

clude Subjective Expected Utility, Maxmin Expected Utility, Recursive Non-Expected

Utility (RNEU), Recursive Expected Utility (REU) and the �bundling�rationale to

9Harrison et al [15] �nd a signi�cant order e¤ect (in addition to scale e¤ect) in Holt and Laury�s
[17] study of the e¤ect of higher scale of real incentives on risk aversion. In a follow-up study, Holt
and Laury [18] show that the magnitude of the scale e¤ect is robust to the elimination of the order
e¤ect.
10The range hypothesis claims that the range of the second order distribution is the critical element

in accounting for the attractiveness of an �ambiguous�lottery. Hence, urn 3 has the largest range,
and should be (weakly) inferior to the second (ambiguous) urn.
11Yates and Zukowski�s evidence should be treated with care, since they average over di¤erent

subjects who were o¤ered di¤erent choice sets.
12The subject does not know the probability and believes that others, too, do not know the

probability.
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ambiguity aversion.

3.1 Subjective Expected Utility (SEU)

Partition the state space - S, into 11 events - representing di¤erent number of red

(black) balls in urn 2 (0 to 10 red balls). Let si denote an event in which i red balls are

in the second urn, and JLi denote a bet on color J 2 fR;Bg from urn i 2 f1; : : : 4g.
Preferences that are represented by a subjective expected utility (Savage [30])

function are of the form:

USEU (Li) = max
J2fB;Rg

X
si2S

p(si)u (JLi (si)) (1)

where p (si) is the subjective probability of event si, and u (�) is the decision maker�s
utility index. Although strictly speaking Savage�s axioms are not stated in a dynamic

framework, many works have shown that reduction of compound objective lotteries

is a necessary part of (1) (e.g. Segal�s [34] Theorem 3). Therefore, such a decision

maker will state the same reservation price for urns 1, 3 and 4. It is possible that

the decision maker might believe that urn 2 has more red or more black balls. That

is, p (�) may not be symmetric around s5 (the event in which there are 5 red and 5
black balls in the second urn). If this is the case, she will choose to bet on the more

probable color (in which a higher subjective expected utility is attained), and will

set a higher reservation price for it. Denote by V i the reservation price for urn i,

i = 1; : : : ; 4 respectively, then:

V 1 = V 2 = V 4 � V 2 (2)

If the decision maker is an expected value maximizer then E (L1) = V 1 = V 3 = V 4:

3.2 Maxmin Expected Utility (MEU)

A decision maker whose preferences are described by MEU (Gilboa and Schmeidler

[12]) will have a set of prior beliefs (core of belief) and her utility of an act is the

minimal expected utility on this set. The utility of betting on urn i is therefore:

UMEU (Li) = max
J2fB;Rg

min
p2Core

X
si2S

p(si)u (JLi (si)) (3)
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Since MEU is a generalization of expected utility, it allows for a pattern of reservation

prices as in (2). If the core is not degenerate to a unique prior, it can accommodate

the typical choice pattern suggested by Ellsberg: RL2 � BL2 � BL1 � RL1. For

example, suppose that the core contains the two �pessimistic�non-symmetrical be-

liefs: that all balls are red and that all balls are black13. Then (if the prize is $x)

UMEU (L2) = u (0) < 0:5u (0) + 0:5u (x) = UMEU (L1). However, within the realm of

objective probabilities (urns 1, 3 and 4), MEU reduces to expected utility, and under

the common interpretation, the decision maker reduces compound objective lotteries

and is indi¤erent between bets on urns 1, 3, and 4. That is, if the core of belief

includes a symmetric prior then:

V 2 � V 1 = V 3 = V 4 (4)

where strict inequality follows if the core of belief is not degenerate.

Note that within the Choquet Expected Utility model (Schmeidler [31]) reduction of

compound objective lotteries holds14. The case of convex capacity (which corresponds

to ambiguity aversion) is a special case of the MEU model.

3.3 Recursive Non-Expected Utility (RNEU)

Segal [32, 34] relaxes the ROCL axiom and applies Rank Dependent Utility (RDU,

or Anticipated Utility [27]), to evaluate the �rst and the second stage lotteries15. To

better understand Segal�s theory, let x1 6 x2 6 : : : 6 xn: The RDU of the lottery

that gives xi with probability pi i = 1; : : : ; n is:

U (x1; p1;x2; p2; : : : ;xn; pn) = u (x1) +

nX
i=2

[u (xi)� u (xi�1)] f
 

nX
j=i

pj

!
(5)

13This is done for expositional purposes only. Nothing in the Gilboa-Schmeidler�s [12] axioms
underlying the MEU representation forces these extreme priors to be elements of the core.
14As with the SEU and MEU models, the axioms underlying the CEU representation are not,

strictly speaking, dynamic. However, the common interpretation of the CEU framework is that
when objective probabilities are involved - the representation reduces to expected utility.
15The RNEU model is not restricted to RDU: other models of decision making under risk, as

weighted utility, could be applied and similar predictions would be attained. The critical assumptions
are Segal�s [34] �time neutrality�and �compound independence.�It should be noted, however, that
although the term �Non-Expected Utility�is commonly used to indicate a generalization of Expected
Utility theory, the model suggested by Segal, imposes di¤erent (not weaker) restrictions on the data
than the Recursive Expected Utility model (see below). Therefore a reader may wish to think of
this model as �Recursive Rank Dependent Utility (RRDU).�
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where f : [0; 1] �! [0; 1] and f (0) = 0 and f (1) = 1: The RD utility of the simple

lottery that gives a prize of $x with probability p and $0 with probability 1� p (after
normalizing u (0) to 0) is therefore:

U (x; p; 0; 1� p) = u (x) f (p) (6)

and its certainty equivalent is:

CE (x; p; 0; 1� p) = u�1 (u (x) f (p)) (7)

In order to demonstrate Segal�s approach, assume that the decision maker�s model

of the ambiguous urn (L2) is that with probability � it contains 10 red balls, with

probability � it contains 0 red balls and with probability 1�2� it contains 5 red balls.
If the agent bets on red from urn 2, then she �rst evaluates the �rst stage lotteries:

($x; 1; $0; 0) ; ($x; 0; $0; 1) and ($x; 0:5; $0; 0:5) using (6). Then, she evaluates the

ambiguous lottery by substituting the certainty equivalents (calculated from (7)) as

the prizes in (5):

U (RL2) = u
�
u�1 (v (0))

�
+
�
u
�
u�1 (u (x) f (0:5))

�
� u

�
u�1 (u (0))

��
f (1� �)

+
�
u
�
u�1 (u (x))

�
� u

�
u�1 (u (x) f (0:5))

��
f (�)

= 0 + [u (x) f (0:5)� 0] f (1� �) + [u (x)� u (x) f (0:5)] f (�)

= u (x) [f (0:5) f (1� �) + (1� f (0:5)) f (�)] < u (x) f (0:5) = U (RL1)

where the last inequality follows from the convexity of f; which in this theory is a

necessary condition for risk aversion, and reasonable properties of the transformation

function f (�)16.
Segal�s [32] novel interpretation of the Ellsberg paradox identi�es ambiguity with

a compound lottery, which she might fail to reduce. The critical feature of this model

for the current experiment is that the certainty equivalent of a lottery is not monotone

in the dispersion of the second order probability. In particular, the decision maker

16Segal [32] (Theorem 4.2) proved that if, in addition to convexity, f has non-decreasing elasticity
and �f = 1 � f (1� p) has non-increasing elasticity the decision maker will prefer a degenerate
compound lottery (like L1) to a subjective compound lottery like L2 above.
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is indi¤erent between a bet on Urn 1 and Urn 4. As before, the decision maker may

believe that there are more red or more black balls in the second urn, and prefers

to bet on the (subjectively) more probable color. Hence, the prediction of Segal�s

theory is that the decision maker will be indi¤erent between urns 1 and 4 and prefer

them (under the conditions speci�ed in the previous footnote) to a bet on urn 3.

Indi¤erence between the three objective urns results if f is the identity function (in

which case RDU reduces to EU) and then reduction of compound lotteries holds.

Hence, in terms of elicited valuations the theory�s predictions are:

(V 1 = V 4) and (V 1 > V 2 ) V 1 > V 3) and (V 3 > V 1) V 2 > V 1) (8)

That is, the recursive non-expected utility model predicts a negative correlation be-

tween V 21(= V 2 � V 1) and V 43(= V 4 � V 3); since ambiguity aversion (V 1 > V 2)
implies that (V 4 > V 3), and (V 4 < V 3) implies ambiguity seeking (V 1 < V 2).

3.4 Recursive Expected Utility (REU)

Klibano¤, Marinacci and Mukerji [21] (henceforth KMM) study the preferences of

a decision maker who is an expected utility on �rst and second stage lotteries, but

her ambiguity attitude is determined by the relative concavities of the two utility

functions. To understand KMM�s model, consider the standard Ellsberg example

(Urns 1 and 2 only) with a prize of x. The state space is 
 = fRR;RB;BR;BBg
where, for example, state RB denotes a red ball drawn from the risky urn and a

black ball from the ambiguous urn. Let � represent a probability distribution over 
:

Since the probability of drawing a red ball from the risky urn is 0.5, � (fRR;RBg) =
� (fBR;BBg) = 0:5. For each �; the decision maker calculates its certainty equivalent
according to a vN-M utility index u: The decision maker has a subjective prior � over

the possible � and evaluates an act using subjective expected utility according to the

utility index v w.r.t. �; substituting the certainty equivalents (calculated from u) for

the objective lotteries for every �:

For example, suppose the support of �; the set of possible objective probabilities,

is composed of �1 =
�
1
2
; 0; 1

2
; 0
�
- no blacks in urn 2, and �2 =

�
0; 1

2
; 0; 1

2

�
- no reds in

urn 2. The decision maker evaluates a bet on red from the ambiguous urn using the

subjective prior � =
�
�1;

1
2
; �2;

1
2

�
: That is, the subjective probability that urn 2 has

11



only red balls (�1), is equal to the subjective probability that it has all blacks (�2)

- which is equal to 1
2
(similar to the objective urn 4). Given this belief, the decision

maker�s evaluation of a bet on either color from the ambiguous urn is:

U (JL2) =
1

2
v
�
u�1 (u (x))

�
+
1

2
v
�
u�1 (u (0))

�
(9)

Let � = v � u�1 then:

U (JL2) =
1

2
� (u (x)) +

1

2
� (u (0)) (10)

KMM [21] generalize this representation, and show that the utility of an act f is given

by the following functional U (�) :

U (f) =
X
�2�

�

 X
s2S

u (f(s)) Pr (sj�)
!
Pr (�) (11)

where � is the set of all possible �rst stage objective lotteries. KMM de�ne �Smooth

Ambiguity Aversion� and show it is equivalent to � being concave. Therefore, it

is equivalent to aversion to mean preserving spreads of the expected utility values

induced by the second order subjective probability (�) and the act f . However, when

� is given objectively by e�; there is no behavioral reason to expect the decision maker
to have di¤erential risk attitudes in evaluating lotteries and second order acts, which

induce identical objective probability distribution over outcomes. In this case, v

would be an a¢ ne transformation of u; and reduction of compound lotteries (ROCL)

will apply. As a result, a decision maker whose preferences are described by KMM

will be indi¤erent between urns 1, 3 and 4:

V 1 = V 3 = V 4 (12)

However, being strictly formal, lotteries and second order acts (even when the second

order distribution is objective) are di¤erent mathematical concepts. Hence, it is

possible that v (�) would be more concave than u (�) even when � is objective. If this
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is the case, the decision maker will evaluate urns 1, 3 and 4 in the following way:

U (JL1) = � (0:5u (x) + 0:5u (0))

U (JL3) =
1

11

10X
r=0

�

�
r

10
u (x) +

�
10� r
10

�
u (0)

�
(13)

U (JL4) = 0:5� (u (x)) + 0:5� (u (0))

and the reservation prices will satisfy17:

(V 1 � V 3 � V 4) V 2 � V 4) and (V 1 � V 2) V 1 � V 3 � V 4) (14)

and (V 1 � V 3 � V 4) V 1 � V 2)

That is, if the subjective prior belief over the composition of the second urn is sym-

metric and non-degenerate around 0.5, we would expect a positive correlation between

V 43(= V 4� V 3) and V 21(= V 2� V 1), since then V 4 � V 3 if and only if V 1 � V 2.
It is important to note that such an interpretation requires a behavioral argument

why the decision maker should be more averse to second order acts than to lotteries.

The bundling model (Halevy and Feltkamp [14]), presented in the following section,

suggests one possible source for such divergence.

Ergin and Gul [9] suggest that ambiguity aversion is related to �issue preference�18.

That is, an agent may prefer an act that depends on one issue (risk) over an act

that depends on another issue (ambiguity). Ergin and Gul provide an axiomatic

foundation for �second order probabilistically sophisticated�preferences - being able

to assign subjective probabilities to the two issues, but allowing strict preference

of a bet that depends on one issue over another. They show that if the agent�s

preferences satisfy the Sure Thing Principle or a comonotonic Sure Thing Principle

then ambiguity aversion (in the sense of Schmeidler [31]) is equivalent to �second

order risk aversion,�which is aversion to mean preserving spreads in the subjective

17Note that if the subjective prior belief over the composition of the ambiguous (second) urn is
not symmetric around 0.5 (5 red balls and 5 black balls), the decision maker may prefer to bet on
the ambiguous urn over all the risky urns (1, 3 and 4).
If the subjective prior belief over the composition of the second (ambiguous) urn is symmetric
around 5 red and 5 black balls, then the decision maker�s ranking according to the REU model will
be: V 1 � V 2 � V 4. If it is degenerate on 5 red and 5 black balls then V 1 = V 2; while if the
subjective prior is extreme (as the objective fourth urn) then V 1 = V 4.
18Similar preference have been named before �source preference�(e.g. Tversky and Wakker [35]).
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belief. The representation derived is identical (in the case of expected utility) to

KMM�s. Formally, Ergin and Gul [9] could allow for issue preference even if the

two issues are generated objectively, much in the same vein that Savage�s approach

could formally allow disparities between subjective and objective probabilities when

the state is generated objectively. Therefore, although Ergin and Gul�s [9] model is

formally consistent with (14), justifying this pattern might be problematic: if both

issues are objective, it is not clear why a decision maker would/should prefer one over

the other. Again, the bundling model (Halevy and Feltkamp [14]) described in the

next section o¤ers one possible explanation for such pattern of preferences.

Kreps and Porteus�[22] model of decision making over temporal (objective) lot-

teries, does not concern ambiguity, but has exactly the same two-stage recursive

structure, with expected utility at each stage, as in (11). Smooth ambiguity aver-

sion (as in [21]) or second-order risk aversion (as in [9]) correspond to preference for

late resolution in Kreps and Porteus� framework19. Segal [34] provides perspective

on the relation between the RNEU and REU models: while Kreps-Porteus�REU

model is derived by relaxing the time neutrality and ROCL axioms (maintaining

mixture independence and compound independence), the RNEU is derived by relax-

ing the mixture independence and ROCL axioms (maintaining time neutrality and

compound independence).

3.5 Bundling and �Rule Rationality�

A complementary �behavioral� perspective on ambiguity aversion is suggested by

Halevy and Feltkamp [14]: if more than a single ball (bundle) may be drawn from

each urn and the prize is determined as the sum (or average) of the correct bets, a

decision maker who is averse to mean preserving spreads [28], will prefer a bet on the

risky (�rst) urn to a bet on the ambiguous (second) urn20. Halevy and Feltkamp [14]

19Three other recent works generalize this recursive structure. Nau [25] allows for state dependent
preferences; Chew and Sagi [5] study the possibility of maintaining probabilistic sophistication on
separate domains while distinguishing between di¤erent sources of uncertainty, hence not being
globally probabilistically sophisticated. Closely related to the current work is Ahn [1] - who does
not impose an exogenous state space, and does not distinguish between subjective and objective
uncertainty. As a result - he presents an axiomatic foundation for a representation similar to (11)
where the interpretation of di¤erentiating between sources of objective uncertainty emerges naturally.
20An alternative interpretation is of a decision maker who has to choose between two possible

series of random outcomes: risky and ambiguous, and is constrained to decide ex-ante on a unique
color to bet on in each series (that is, always has to bet on the same color).
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claim that the behavior observed in the actual experiment (in which only one ball is

drawn from each urn) may be a result of rule rationality: the criterion which prefers

risk to ambiguity is appropriate in the environment of bundled risks, and since it is

hard wired into the decision making process - it is applied to the standard experiment

(in which the decision maker is actually indi¤erent between the urns).

To demonstrate the bundling rationale to ambiguity aversion, assume two draws

with replacement from each urn. The payo¤ distributions from betting on either red

or black in urns 1, 3 and 4 are given by:

L1(2) L3(2) L4(2)

$2x 0:25 0:35 0:5

$x 0:5 0:3 0

$0 0:25 0:35 0:5

(15)

where Li(2) represents the random variable generated by 2 draws with replacement

from urn i. These distributions are the result of averaging binomial distributions,

using the second order probabilities. To be more speci�c, let k denote the number

of red balls in urn i. Then the probability of drawing two red balls when betting

on red is
�
k
10

�2
: Averaging over k = 0; 1; : : : ; 10 using the respective second order

probabilities for the di¤erent urns results in:

Pr
�
L1(2) = 2x

	
= 1 �

�
5

10

�2
= 0:25

Pr
�
L3(2) = 2x

	
=

10X
k=0

1

11

�
k

10

�2
= 0:35 (16)

Pr
�
L4(2) = 2x

	
=
1

2
� 12 + 1

2
� 02 = 0:5

The decision maker may have any second order belief over the composition of the

second (ambiguous) urn. As long as it is symmetric and not a degenerate distribution

around �ve red balls, she will exhibit ambiguity aversion, that is - prefer to bet on

the �rst urn rather the second urn. Furthermore, if the decision maker is averse to

mean preserving spreads then, for any second order belief over the composition of the

second urn, she will weakly prefer a bet on the second urn to a bet on the fourth urn.

As a result, the predictions of the bundling theory coincide with an interpretation

of the REU model (14) in which reduction of compound objective probabilities is
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violated. It is important to emphasize that the bundling rationale to ambiguity

aversion does not depend on a distinction between objective and subjective second

order probabilities (similarly to Segal [32]), and could explain why a decision maker

exhibits smooth ambiguity aversion [21] or issue (source) preference/second order risk

aversion [9] with second order objective probabilities.

4 Results

The 104 subjects who participated in the �rst round of the experiment were paid a

total of 613 Canadian Dollars, which is about 5.9 Dollars on average. The 38 subjects

in the robustness experiment were paid a total of $1,948 (about $51 on average).

The analysis will concentrate on the reservation prices (V 1; V 2; V 3; V 4) set by the

subjects21. Descriptive statistics are reported in Table 222. The table reveals the

Table 2: Descriptive Statistics

First Round
V1 V2 V3 V4 AVE(V1,… ,V4) STD(V1,...,V4) Max(V1,… ,V4) Min(V1,… ,V4) V21 V43 V41 V31

Mean 1.061 0.878 0.929 0.948 0.954 0.194 1.170 0.749 0.183 0.018 0.113 0.132
SE 0.033 0.032 0.030 0.037 0.025 0.017 0.031 0.032 0.032 0.041 0.033 0.030
Median 1 0.99 0.99 1 0.989 0.158 1.045 0.8 0.1 0 0 0.025
Mode 1 1 1 1 1 0 1 1 0 0 0 0
SD 0.336 0.324 0.304 0.377 0.257 0.176 0.316 0.325 0.330 0.417 0.337 0.309
Kurtosis 1.397 0.933 1.646 1.215 0.946 0.888 0.968 0.250 3.662 2.501 7.261 1.931
Skewness 0.036 0.081 0.314 0.287 0.200 1.129 0.826 0.393 0.282 0.019 0.921 0.122
Minimum 0.1 0 0.13 0.06 0.2 0 0.4 0 1.26 1.39 1 1
Maximum 2 1.83 2 2 1.725 0.739 2 1.5 1.2 1.4 1.6 1.02
Count 104 104 104 104 104 104 104 104 104 104 104 104

Robustness Round
Mean 8.37 6.66 7.25 7.74 7.51 2.00 9.89 5.62 1.70 0.50 0.63 1.12
SE 0.49 0.49 0.51 0.57 0.41 0.20 0.47 0.44 0.50 0.58 0.56 0.56
Median 10.00 6.00 6.00 9.00 7.50 1.95 10.00 5.00 2 0 0 1
Mode 10.00 5.00 5.00 10.00 7.50 0.00 10.00 5.00 5*a 0 0 0
SD 3.02 3.00 3.13 3.54 2.51 1.24 2.89 2.69 3.08 3.56 3.42 3.47
Kurtosis 0.18 0.80 0.49 0.12 0.86 0.61 0.65 1.03 1.36 0.68 1.81 0.21
Skewness 0.32 0.20 0.88 0.09 0.06 0.12 0.16 0.12 0.81 0.26 0.15 0.08
Minimum 2 1 2 2 2.75 0 4 1 7 8 10 10
Maximum 15 13 15 17 12 4.72 17 10 8 9 8 7
Count 38 38 38 38 38 38 38 38 38 38 38 38
a Multiple modes exist. The smallest value is shown

anticipated pattern in the aggregate on both rounds: the average reservation price

set by the subjects for Urn 1 is higher than those set for the other urns, and the average

21Although data on age, gender, exposure to mathematics and economics courses and years of
study were collected, none (except one which will be discussed below) of these variables seem to be
related to the reservation prices in general and measures of ambiguity aversion, in particular.
22V i is the reservation price set for the ith urn. AVE, STD, MAX and MIN are the average,

standard deviation, maximum and minimum respectively, in the four urns. V ij = V i� V j:
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price set for the ambiguous urn (Urn 2) is the lowest. Moreover, in both samples the

distribution of reservation prices for the �rst risky urn (V 1) �rst order stochastically

dominates the distribution of reservation prices for the ambiguous urn (V 2)23,24. To

statistically test whether the valuations of the urns are di¤erent, a Friedman test25

is performed to test the null hypothesis that the four valuations came from the same

distribution. In the �rst experiment, the Friedman test is �2(3; N = 104) = 29:55;

with p < 0:001, hence the hypothesis that the assignment of the valuations is random

is rejected. A similar test that is performed on the valuations of urns 2, 3 and 4

(the ambiguous and the non-degenerate compound lotteries) could not reject the null

hypothesis that the valuations of the three urns came from the same distribution

(�2(2; N = 104) = 0:33; p = 0:84726). In the robustness test, the non-parametric

Friedman test rejects the null hypothesis that the four reservation prices came from

the same distribution (�2 (3; N = 38) = 13:7; p < 0:0033). When comparing urns 2,

3 and 4 in the second round, the Friedman test is inconclusive (�2(2; N = 38) = 7:43;

p < 0:0245)27. To sum up both rounds: the reservation prices set for Urn 1 are

signi�cantly higher than the rest of the urns, and even FOSD the reservation prices

for Urn 2.

The only important di¤erence between the �rst round and the robustness round

is the fact that the average reservation price for Urn 1 is lower than the expected

value of the lottery - implying risk aversion. I believe it re�ects not only increase

in risk aversion as the stakes have increased [17], but the more careful design of the

experiment: the sampling was more e¢ cient (attracting less individuals who just

wanted to earn the ten dollars or enjoyed the gambling aspect of the experiment);

23In both samples - V 1 does not FOSD V 3 or V 4; and the latter two do not FOSD V 2:
24If one studies the average reservation prices, a possible interpretation could be that the ranking

is based on perceived simplicity of the lotteries (according to the order: 1, 4, 3, 2). However, as
one studies response patterns (for examples, in Table 6 below) it is clear that this perception is not
universal, and the patterns correspond closely to some of the theories tested. Moreover, it could be
that �simplicity�is a complementary measure to the concepts of compound lotteries and ambiguity.
25A nonparametric test that compares several paired groups. The Friedman test �rst ranks the

valuation for each subject from low to high (separately). It then sums the ranks for each urn. If
the sums are very di¤erent, the test will tend to reject the null hypothesis that the valuations of
di¤erent urns came from the same distribution.
26A parametric test, such as the repeated measures ANOVA, that allows for heterogeneity between

subjects, could not reject the null hypothesis that the mean valuation of urns 2, 3 and 4 are equal,
at 10% signi�cance level.
27However, the parametric repeated measures ANOVA cannot reject this latter hypothesis at a

signi�cance level of 10%.
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there was no framing in terms of �selling price�(that might cause a subject to state

a higher reservation price28); the subjects were repeatedly prompted to �nd their

minimal reservation price; and the operation of the BDM elicitation mechanism was

better demonstrated. It seems that the e¤ect was uniform across the urns (the average

reservation price for all of the urns increased in about eight fold), hence the e¤ect on

the relative attractiveness of the urns was minimal. To sum up, I believe that even if

V 1 > E (L1) (a frequent observation in the �rst round), it does not necessarily imply
the subject is risk seeking 29. Moreover, the factors that may have in�ated V 1 in the

�rst round had similar e¤ect on the other urns, hence the results that follow - which

focus on the di¤erences in the elicited values - continue to hold.

The random order treatment in the robustness round tests whether the higher

reservation price for Urn 1 in the original sample is a consequence of it being a simple

one stage objective lottery, or a consequence of Urn 1 being the �rst task the subject

confronted in the original experiment, and in the following tasks the subject exhibited

higher risk aversion, and hence lower reservation prices. The subjects were randomly

treated with alternative orders of urns: (1,2,3,4), (2,3,4,1), (3,4,1,2) and (4,1,2,3)30.

The only signi�cant order e¤ect found in the sample is that the urn which was the

�rst task received a signi�cantly lower reservation price than under alternative orders

in which this urn was not the �rst (Friedman test�s value of �2 (3; N = 38) = 8:8;

p = 0:032.) This order e¤ect seems to operate in an opposite direction to Harrison

et al [15] who found that in late tasks people are more risk averse (lower reservation

price.) Table 3 reports the average reservation price for each urn, as a function of its

order. For example, ((V1,3rd);(V2,4th);(V3,1st);(V4,2nd)) correspond to the average

reservation prices of the 10 subjects who were treated with the order (3,4,1,2). The

conclusion from the order treatment is that the signi�cantly higher reservation price

for Urn 1 in the original experiment (in which setting the reservation price for Urn

1 was always the �rst task) could not be attributed to an order e¤ect (indeed it

persisted in the robustness test).

28The endowment e¤ect may be responsible in part for the high reservation prices in the �rst
round, although a recent study by Plott and Zeiler [26] found it to be insigni�cant, when su¢ cient
controls were introduced (which may be the case in the second round).
29Furthermore, Keller et al [20] showed that even theoretically, when subject�s preferences do not

satisfy ROCL, the true certainty equivalent and the elicited value may lie on opposite sides of the
expected value.
30Because of sample size limitations only four treatments were considered. These allowed each

urn to be in every ordered place.
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Table 3: Variation in the reservation prices as a function of order of urns.
1st 2nd 3rd 4th

V1 7.28 8.90 7.35 10.00
V2 6.44 6.67 7.65 5.88
V3 5.55 6.77 8.56 8.20
V4 6.70 8.10 8.25 8.00
Average 6.49 7.61 7.95 8.02

The focus of the analysis in this work is to identify (possibly heterogeneous) pat-

terns of choice in the subjects�population. Table 4 shows the relatively high positive

correlation between the reservation prices set for the four urns in both rounds. This

Table 4: Rereservation prices�correlation matrices

First round Robustness round
V1 V2 V3 V4 V1 V2 V3 V4

V1 1 V1 1
V2 0.5011 1 V2 0.4787 1
V3 0.54026 0.449509 1 V3 0.3637 0.711 1
V4 0.557401 0.369145 0.266104 1 V4 0.4645 0.5548 0.4353 1

positive correlation could be related to Ariely et al [3] �coherent arbitrariness�: a

subject may �nd it di¢ cult to evaluate each urn separately, but easier to compare

two or more lotteries. Fox and Tversky [10] compared valuations of risky (Urn 1) and

ambiguous (Urn 2) lotteries, and found that when the subjects were not comparing

the lotteries, the valuations where not signi�cantly di¤erent. However, as argued

above - this may be exactly the re�ection of the �arbitrariness�. Ellsberg type be-

havior exists especially when the decision maker compares an ambiguous lottery to a

risky one. The environment in the current study is comparative, and is enriched by

the existence of objective compound lotteries.

The di¤erence between the prices set by the subjects for Urn 2 (ambiguous) and

Urn 1 (one stage risky) - the (negative of) ambiguity premium - is used as a measure

of ambiguity aversion. Therefore, if this variable is negative (positive) it implies

ambiguity aversion (seeking). Similarly, the di¤erence in the reservation prices set

for urns 1, 3 and 4 (separately) measure the subject�s attitude to (objective) second

order risk. Since all of: (V 2 � V 1); (V 3� V 1) and (V 4� V 1) are de�ned relative
to V 1, they will always be positively correlated. This observation does not apply to
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(V 4� V 3), and therefore this will be the main variable on which the test of theories
that do not abide by ROCL will be based31.

4.1 Ambiguity Neutrality and Reduction

One of the main characteristics of the population of subjects is the strong associa-

tion between ambiguity neutrality (V 1 = V 2) and reduction of compound objective

lotteries (V 1 = V 3 = V 4). This behavior is evident in both rounds, as described in

Table 532.

Table 5: The association between ambiguity neutrality and ROCL

First round

No Yes No Yes

Count 80 1 Count 33 0
Expected 66.98 14.02 Expected 28.66 4.34
Count 6 17 Count 0 5

Expected 19.02 3.98 Expected 4.34 0.66

86 18 104 33 5 38

1.24E13 1.99E06

V1=V3=V4
Total

V1=V3=V4

Yes 23 Yes 5

Total Total

Robustness round

Total

V1=V2
No 81

V1=V2
No 33

Exact Sig. (2sided) Exact Sig. (2sided)
Fisher's Exact Test Fisher's Exact Test

In the original sample: 18 subjects set V 1 = V 3 = V 4; and more than 94% of

them (17 subjects) asked for no ambiguity premium (set V 2 = V 1): This is more than

four times the expected frequency under a null hypothesis of independence. Out of

the 86 subjects that did not abide by ROCL, only 6 were ambiguity neutral (less than

one third of the expected frequency under the null hypothesis of independence). In

the scaled sample: 5 subjects set V 1 = V 3 = V 4 and all 5 of them set V 2 = V 1 (more

than seven times the expected frequency under independence). Out of 33 subjects

who did not abide by ROCL, none was ambiguity neutral (compared to expected

frequency of 4.34 under independence). In the �rst round, there was a group of 13

subjects who set prices of $1 for all four urns, and in the second round this group

consisted of four subjects. These subjects are responsible for a substantial part of the

association. We can only speculate what are these subjects�preferences: it could be

that $1 ($10 in the second round) is a focal point. Alternatively, it could be that these

subjects are expected value maximizers. Some indication is given by the fact that

31Note that the use of these measures imply some cardinality, but since I would like to quantify
ambiguity aversion, this cardinality is necessary.
32Table 1 in the Introduction aggregates the information in the two tables reported here.
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taking at least one advanced (second year or higher) mathematics course increases

the probability of choosing (1,1,1,1) from 10% to 21% in the �rst round. Similarly,

the conditional probability in the second round of being an expected value maximizer

increases from 6% to 40% when controlling for taking advanced mathematics course.

The conclusion derived from Table 5 is that there is a very tight association

between ambiguity neutrality fV 2 = V 1g and reduction of compound lotteries, that
is: fV 1 = V 3 = V 4g33. Therefore, a descriptive theory that accounts for ambiguity
aversion, should account - at the same time - for violation of reduction of compound

objective lotteries.

4.2 Attitude towards mean preserving spreads in probabili-

ties and ambiguity

As discussed in Section 3, alternative theories that can account for non-neutral atti-

tude towards ambiguity by relaxing ROCL in objective probabilities (recursive non-

expected utility and bundling/possible interpretation of recursive expected utility),

have di¤erent predictions on the relative attractiveness of urns 1, 3 and 4. Further-

more, their predictions on the sign of the correlation between ambiguity premium (as

measured by V 21 = V 2 � V 1) and the premium to dispersion in the second order

distribution (as measured by V 43 = V 4� V 3) di¤er.
If one looks at the �average�subject who does not satisfy reduction of compound

lotteries34 it seems that this latter correlation is very weak35. However, the data

clearly exhibit di¤erent patterns of reservation prices for urns 1, 3 and 4 - that con-

form to the two alternative models. Therefore, the absence of signi�cant correlation

between ambiguity premium (V 21) and the premium to dispersion in the second or-

der objective probability (V 43) may be a result of averaging the two sets of subjects

33In the �rst sample: in addition to the 13 subjects who are expected value maximizers, two
subjects� reservation prices are equal and higher than 1, and two subjects� reservation prices are
equal and smaller than 1.
In the scaled sample: in addition to the 4 expected value subjects, one subject set all reservation
prices to $5.
34That is, the subset of 83 subjects in the original experiment and 33 subjecs in the robustness

experiment who do not conform to SEU or MEU (3 subjects who set reservation prices within 2
cents away from the expected value predictions are included in the set of 21 subjects who satisfy the
ROCL in the original sample.)
35In the �rst sample: the Pearson correlation is -0.1 (p = 0:35), and Spearman�s � is -0.07 and

insigni�cantly di¤erent from zero. Similar �average�behavior is exhibited in the scaled sample: the
Pearson correlation is -0.2 (p = 0:24) and the Spearman � is -0.23 (p = 0:18).
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(that conform to bundling/REU and RNEU), which exhibit approximately opposite

correlations between the two variables. To test whether the data is consistent with

this explanation, it is necessary �rst to classify the subjects. Second, to test whether

the classi�cation is internally consistent36. Third, to test whether ambiguity aver-

sion, as measured by the ambiguity premium, could be accounted for using these

theories. The objectivity of this methodology relies crucially on the fact that the �rst

two stages do not use any information containing V 2; but rely solely on subjects�

preferences over mean preserving spreads of the objective second order distribution

(that is: urns 1, 3 and 4 only). The third step is a test of whether the classi�cation

produces the correlations between V 21 and V 43 predicted by the theories.

Ranking of urns 1, 3 and 4 may exhibit 13 possible ordinal ranking schemes. The

classi�cation is based on the following criteria:

� If V 1 = V 3 = V 4 the subject reduces compound objective lotteries, and there-
fore consistent with Subjective Expected Utility [30] or Maxmin Expected Util-

ity [12] / Choque Expected Utility [31].

� If V 1 � V 3 � V 4 or V 1 � V 3 � V 4 (where at least one of the inequalities is
strict) the preferences are consistent with the the bundling rationale [14] or the

Recursive Expected Utility model [1,9,21].

� If V 1 = V 4 6= V 3 then the subject is consistent with the Recursive Non-

Expected Utility model of Segal [32].

This classi�cation leaves four ordinal ranking37 (which include 36 and 11 subjects in

the original and scaled samples, respectively) that are not consistent with the above

theories. Acknowledging possible noise/error/randomness in assigning reservation

prices allows to classify these subjects. It captures human error in assigning reserva-

tion prices using the graphical interface of the experiment, may result from the use

of the BDM mechanism, from di¢ culties understanding the mechanism, and other

sources. A possible avenue to model this randomness may be by providing a random

utility model as in Gul and Pesendorfer [13]38. They provide an axiomatic foundation

36Especially in the case of Segal [32]: does E (V 4jV 1) = V 1 hold?
37That is: V 3 < V 4 < V 1, V 1 < V 4 < V 3; V 3 < V 1 < V 4 and V 4 < V 1 < V 3
38The decision maker�s behavior of choosing from �nite menus is described by a random choice

rule, which assigns to each possible menu a probability distribution over feasible choices. A random
utility function is a probability measure on some set of utility functions. The random choice rule
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that allows a representation of choices by a random expected utility function. Here,

however, the space of one stage lotteries is replaced by compound lotteries, and the

axioms (especially linearity, which is comparable to the standard independence ax-

iom) have to be modi�ed. This is an important and challenging task, which is beyond

the scope of the current paper. An intermediate solution can be adopted from the

logistic choice literature (see Anderson et al [2].) For an urn Li with possible prize

of $x; let the element of choice be the reservation price - a number in the interval

[0; x] : For every t 2 [0; x] let Uk (Li; t) be the utility of the decision maker whose
preference correspond to theory k (one of those discussed in Section 3) of choosing

reservation price t for urn i = 1; : : : ; 4. Unlike [13], this approach assumes a possible

error in comparing utility of di¤erent reservation prices, that in�uences the probabil-

ity of choosing the number (reservation price) with the highest utility. The density of

choosing a reservation price t for urn i if the decision maker�s preferences are described

by theory k is:

fk (Li; t) =
exp (Uk (Li; t) =�)R x

0
exp (Uk (Li; s) =�) ds

(17)

where � is an error parameter that determines the importance of an error term (which

in this case is logistic). A small � implies that the choices of reservation prices are

close to the one predicted by the respective theory, k. For example, low � for a

decision maker described by the RNEU model of Segal [32] implies that V 1 would be

relative close to V 4; while if the decision maker�s preferences originate in the bundling

rationale (or described by the REU model) the di¤erence between the two would

be relatively large. The goal in classifying the remaining subjects is to choose, for

every subject, the theory that is consistent with the lowest �. To better understand

how allowing for noise allows to classify the subjects, consider an observation of

V 3 < V 1 < V 4 : it may belong to a decision maker described by Segal [32] who,

without error, had a ranking of V 3 < V 1 = V 4, or to an agent described by the

bundling rationale (whose preferences may be represented by the REU) whose �before

noise�ranking is V 1 < V 3 < V 4. To separate between the alternative explanations,

attention is focused on the relative reservation prices of urns 1 and 4 for low values

of �: under Segal�s theory a decision maker is indi¤erent between urns 1 and 4,

hence we would expect a small cardinal di¤erence between the valuations of the two

maximizes the random utility function if for every possible menu, the random choice rule coincides
with the probability that the random utility function attains its maximum on the corresponding
alternatives.
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urns. Under the bundling rationale and REU, the cardinal di¤erence between the

evaluations of urns 1 and 4 should be relatively larger. How �small� or �large� is

the cardinal di¤erentiation will be measured by the absolute di¤erence between V 1

and V 4, normalized by the standard deviation of the reservation prices determined

in urns 1, 3 and 4.

Following the above principle subjects with the patterns of V 3 < V 4 < V 1;

V 1 < V 4 < V 3; and V 3 < V 1 < V 4 - that exhibited uniformly (in the original

sample) low values of jV 41j =STDV 1;V 3;V 4 - were classi�ed as recursive non-expected

utility (Segal [32]). The group of subjects with the pattern of V 4 < V 1 < V 3

exhibited higher variability with respect to this measure and therefore three of them

were classi�ed as RNEU while the rest were classi�ed as bundling [14]/REU [21,9,1]

subjects39. It is important to note that the classi�cation method used, did not employ

any information on the reservation prices for the ambiguous (second) urn.

The partition is reported in Table 6. It results in 21 (5 in the scaled sample)

Table 6: Classi�cation summary

$2 Sample $20 Sample
Theory # of obs V1 V2 V3 V4 corr(V21,V43) # of obs V1 V2 V3 V4 corr(V21,V43)

Rule/REU 42 1.04 0.78 0.96 0.79 0.447 16 7.66 5.34 6.36 6.47 0.592
Consistent1 31 1.01 0.84 0.90 0.73 0.644 12 7.88 5.33 5.83 5.50 0.571
Optimist2 1 1.10 1.20 1.00 1.00 0
MREU3 7 1.19 0.62 1.23 0.89 1 13 9.5 14 10
Inconsistent4 3 0.89 0.39 0.92 1.14 3 5 4 5.92 9.17

RNEU 41 1.11 0.91 0.85 1.07 0.620 17 8.85 7.22 7.57 8.57 0.771
Consistent1 32 1.17 0.86 0.85 1.12 0.735 15 9.37 7.12 7.58 8.98 0.886
Optimist 7 (for 62) 0.89 1.17 0.75 0.87 1 2 10 5 3
Inconsistent5 2 0.92 0.77 1.27 0.92 1 8 6 10 8

SEU 20 1.03 1.03 1.03 1.03 5 9 9 9 9
Expected Value 13 1 1 1 1 4 10 10 10 10
EV with noise6 3 0.99 1.00 0.99 0.99 0
Risk Averse7 2 0.90 0.90 0.90 0.90 1 5 5 5 5
Risk Seeking8 2 1.40 1.40 1.40 1.40 0

MEU 9 1 0.90 0.80 0.90 0.90 0
Total 104 1.06 0.88 0.93 0.95 0.104 38 8.37 6.66 7.25 7.74 0.211

1includes subjects averse or seeking MPS in the second order objective distribution
2averse to MPS in the second order distribution but V2>V1
3Maxmin REU: V2<V4<V1 4REUinconsistent: V2<V1<V3<V4 5RNEUinconsistent: V2<V1=V4<V3
6within 12 cents of the EV predictions 7Vi<EV for i=1,… ,4 8Vi>EV for i=1,… ,4 9V2<V1=V3=V4

subjects who reduce compound lotteries, 20 (all 5) of them are consistent with the

39Similar partition was performed in the scaled sample: 8 subjected were classi�ed as RNEU
(U3 < U4 < U1, U1 < U4 < U3 and 2 observations with U4 < U1 < U3) and 3 subjects were
classi�ed as bundling/REU (a single observation with U3 < U1 < U4 and two observations with
U4 < U1 < U3).
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subjective expected utility model40, 1 (no) subject that corresponds to the maxmin ex-

pected utility predictions, 41 (17) subjects that correspond the recursive non-expected

utility model of Segal [32], and 42 (16) subjects that correspond to the bundling ratio-

nale of Halevy and Feltkamp [14] and to the interpretation of the recursive expected

utility model (Klibano¤ et al [21], Ergin and Gul [9], Ahn [1]) in which the decision

maker does not reduce compound objective lotteries.

4.2.1 Cardinal Analysis

The current section tests whether the classi�cation method presented in Table 6 is

internally consistent, and does it account for ambiguity attitudes in a way that is

consistent with the theories.

Recursive Non-Expected Utility (Segal [32]) The average reservation prices

for urns 1 and 4 in this sub-sample of subjects are very close ($1.11 and $1.07 re-

spectively in the original sample, and $8.85 and $8.57 in the scaled sample). Non-

parametric (Friedman) and parametric (repeated measures ANOVA) tests cannot

reject the null hypothesis that the two series came from the same underlying distrib-

ution 41. However, the theory imposes a stricter restriction on the series: di¤erences

between V 1 and V 4 should be due only to non-systematic noise/error. In other words,

the expected value of V 4 conditional on V 1 should be V 1: The model estimated is:

V 4 = �+ �V 1 + " (18)

and the null composite hypothesis tested is therefore: � = 0 and � = 1: The value

of the F (2; 39) statistic is 1.02 (p = 0:37), hence the hypothesis cannot be rejected,

and this group is internally consistent with the theoretical predictions of the RNEU

model of Segal [32]. The group of the RNEU subjects in the robustness sample

exhibits similar consistency (F (2; 15) = 0:83; p = 0:45).

Once internal consistency of the RNEU group is established, the focus shifts to

40As noted above, this includes: 13 subjects who behaved as expected value maximizers, 3 subjects
within 2 cents of the theoretical prediction of the expected value model, two subjects who set the four
reservation prices higher than $1 ($1.3 and $1.5) and two subjects who set the four reservation prices
lower than $1 ($0.8 and $0.99). In the sclaed sample 4 subjects were expected value maximizers and
one subject set all reservation prices to $5.
41P-values of the Friedman test is 0.34 in the �rst sample (0.16 in the second sample) and of the

repeated measures ANOVA is 0.27 in the �rst sample (0.31 in the robustness sample.)
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the predictive behavior of the theory on ambiguity aversion. Out of 41 subjects in the

�rst sample who were classi�ed to this group based on their reservation prices for the

three objective urns (see Table 6), two subjects are inconsistent with the theoretical

predictions of the model concerning ambiguity aversion, since their reservation prices

satisfy: V 2 < V 1 = V 4 < V 342. Seven more subjects in the original sample hold

�optimistic�beliefs over the composition of the second urn, when six of them exhibited

V 3 < min fV 1; V 4g � max fV 1; V 4g � V 243. Although those subjects are consistent
with the RNEU model - since the theory does not impose restrictions on the decision

maker�s beliefs over the ambiguous urn (the prior may not be symmetric around 5 red

and 5 black balls) - they were removed from the quantitative analysis. Some support

to a view that this pattern of reservation price is due to �mistake�or �carelessness�

may be found in the fact that when the payo¤s were scaled up by a factor of 10, this

pattern of optimistic choice almost disappeared. The prediction of the RNEU model

- that the ambiguity premium (�V 21) and the premium for mean preserving spread

in the second order distribution (�V 43) are negatively correlated - is tested on the
remaining 32 subjects. The correlation between these two sequences is �0:735 and is
signi�cantly di¤erent from zero (p = 1:62�10�6), conforming the theory�s explanation
of ambiguity aversion within this subset of subjects. In the robustness test this

correlation is �0:886 and signi�cantly di¤erent from zero (p < 0:00025). Appendix

E.1 further quanti�es the relation between ambiguity premium and the premium

to mean preserving spread in the second order probability within this population,

via a simple regression of V 21 on V 31 or V 43. The results are consistent with

the theoretical predictions of the RNEU model (in both the original and the scaled

sample): there is a strong association between subjects�attitude to urn 3 (relative to

urns 1 or 4) and their ambiguity premium (urn 2 relative to urns 1 or 4).

Bundling (Rule Rationality)/Recursive Expected Utility The bundling ra-

tionale [14] and the interpretation of the recursive expected utility model [1, 9, 21]

(which is consistent with violation of reduction in objective compound lotteries) im-

pose several restrictions (14) on the ordinal ranking of the ambiguous urn. Out of

the 42 subjects in the $2 sample that belong to this group (based on their prefer-

42That is, they like mean preserving spreads in the objective second order distribution, but are
ambiguity averse. In the robustness sample, only one subject exhibited this inconsistency.
43One more subject (who set V 3 > max fV 1; V 4g) set a reservation price for the ambiguous urn

that was seven times higher than Urn 1.
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ences over two-stage objective lotteries), 10 subjects do not satisfy these restrictions

(see Table 6). Three subjects exhibit the following pattern of reservation prices -

V 2 < V 1 � V 3 � V 4 (where one of the two right inequalities is strict): that is, al-
though they seem to set monotonically higher reservation prices for urns with higher

dispersion in the second order objective distribution, they dislike ambiguity. Seven

other subjects set: V 2 < V 4 < V 1, violating the restriction that under the bundling

rationale/REU, if a subject is averse to mean preserving spread in the second order

distribution, the valuation of the ambiguous urn is bounded from below by the valua-

tion of Urn 4. These subjects�valuation of the ambiguous urn, has the �pessimistic�

�avour of the maxmin expected utility model, or, alternatively their preferences are

based on other criteria as �simplicity�. One additional subject in the $2 sample had

an �optimistic� valuation of Urn 2: V 2 > max fV 1; V 4g : As noted for the RNEU
model, this pattern does not contradict (14), since the decision maker may hold belief

over the composition of the ambiguous urn that are not symmetric around 5 red and

5 black balls. This leaves 31 subjects (out of the 42 subjects), with valuation of the

ambiguous that are consistent with the theoretical predictions of the bundling/REU

model. In the robustness sample 4 out of 16 subjects are not consistent with the the-

oretical predictions of the bundling/REU model (see Table 6.) Among the remaining

31 and 12 subjects (in the $2 and $20 samples, respectively), the correlation between

V 43 (the premium to mean preserving spread in the second order distribution) and

V 21 (the ambiguity premium) is positive and signi�cantly di¤erent from zero. The

Pearson correlations are 0.644 and 0.571 respectively, and are statistically di¤erent

from zero (p < 0:0001 and p = 0:053, respectively)44. Appendix E.2 further quanti-

�es the relation between reduction of compound objective probabilities and ambiguity

aversion, using linear regression of V 21 on V 31 and V 43 (or their sum - V 41). The

ambiguity premium is a positive function of the premium to mean preserving spread

in the second order probability: from Urn 1 to Urn 3, and from Urn 3 to Urn 4. It

is important to note that even when controlling for the former (V 31), the latter�s

(V 43) e¤ect on the ambiguity premium (V 21) is positive and signi�cant (p < 0:0001

in both samples). The regression results for this group indicate that, similarly to the

subjects who belong to Segal�s group, those subjects identify the ambiguous urn with

an urn that has non-degenerate second order distribution. They assign subjective

44The rank-based Spearman�s � are 0.62 for the original sample and 0.514 for the scaled sample
(p = 0:0002 and p = 0:08, respectively.)
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second order belief over the composition of the second urn, that could be anything

between the �rst urn (degenerate second order belief) and the fourth urn (extreme

second order belief). Their ambiguity preferences is therefore associated with their

preferences over compound lotteries like urns 3 and 4.

5 Conclusions

The experimental design used in this study allows to relate ambiguity attitudes of

individuals to their attitudes towards compound objective lotteries. This design al-

lows a clear empirical test of theories that model ambiguity, while assuming reduc-

tion of compound objective lotteries (Schmeidler [31]; Gilboa and Schmeidler [12]).

Furthermore, theories that model ambiguity aversion as a phenomenon that is as-

sociated with a violation of reduction of compound lotteries (Segal [32, 34], Halevy

and Feltkamp [14], Ergin and Gul [9], Klibano¤ et al [21], Ahn [1]) are evaluated

empirically based on their predicted pattern of preference among objective lotteries

with varying amount of dispersion in the second order probability.

The results reveal a tight association between ambiguity neutrality and reduction

of compound objective lotteries, consistent with the subjective expected utility model:

subjects who reduced compound lotteries were almost always ambiguity neutral, and

most subjects who were ambiguity neutral reduced compound lotteries appropriately

(15-20% of the subjects). The reminder of the subjects exhibit violation of ROCL

and ambiguity aversion, but there is no unique theory that can accommodate the

di¤erent choice patterns in the population. The population is heterogeneous, and

two choice patterns, which account for approximately 70% of all subjects, emerge.

In particular, about half (35%) exhibit ambiguity aversion (seeking) together with

aversion (love) to mean preserving spreads in the second order distribution. These

preferences can be traced back to a �rational rule�, which originates in an environment

of choice among bundles of lotteries [14], and are consistent with an interpretation

of the recursive expected utility models [1, 9, 21] that allows a decision maker not to

reduce (or di¤erentiate) di¤erent sources of objective risk. The other half (35%) of

the subjects exhibit pattern of preferences consistent with Segal�s [32, 34] theory of

recursive non-expected utility, where the decision maker evaluates two-stage lotteries

(including ambiguous lotteries) using, recursively, rank dependent utility.

The �ndings point to the fact that currently there is no unique theoretical model
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that universally captures ambiguity preferences. In this sense the current work con-

�rms Epstein�s [8] approach of de�ning ambiguity aversion as a behavior which is not

probabilistically sophisticated, without committing to a speci�c functional model.

However, the results suggest that not reducing compound (objective) lotteries is the

underlying factor of the Ellsberg paradox.
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A Consent Form - First Round

Principal Investigator:

Professor Yoram Halevy

Department of Economics,UBC

Phone: 604-822-2202

E-mail: yhalevy@interchange.ubc.ca

Purpose:

Ambiguity is characterized by a situation in which decision is made when consequences

of actions are uncertain, and it is hard to describe them in a simple probabilistic

form. The purpose of this study is to compare di¤erent explanations of individual�s

behaviour in these situations.

Study Procedures:

You will be o¤ered to bet in four di¤erent situations, and allowed to set a minimal

selling price for each bet. The selling price you set should re�ect your true valuation

for each bet, at which you will agree to exchange the bet for a certain payment. The

selling mechanism used guarantees you cannot pro�t by misreporting your valuations.

All randomizations are performed using a computerized random number generator.

The experiment takes up to 15 minutes. Your compensation will be random (see

below).

Con�dentiality:

Any information resulting from this research study will be kept strictly con�dential.

Participants will not be identi�ed by name in any reports of the completed study.

Access to data records that are kept on a computer hard disk, and will require a

password.
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Remuneration/Compensation:

In order to defray the costs of your participation, you will receive the right to par-

ticipate in four lotteries. For each lottery you win, you will be paid $2. You can

potentially win 4 lotteries. Please note that the �nal payment you receive, will de-

pend on the selling prices you state, the buying prices o¤ered and the outcomes of

the lotteries.

Contact:

If you have any questions or desire further information with respect to this study, you

may contact Yoram Halevy at 604-822-2202.

If you have any concerns about your treatment or rights as a research subject you

may contact the Director of Research Services at the University of British Columbia

at 604-822-8598.

Consent:

I understand that my participation in this study is entirely voluntary and that I may

refuse to participate or withdraw from the study at any time without jeopardy to my

class standing etc.

I have received a copy of this consent form for my own records.

I consent to participate in this study.

Subject Signature Date
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Please tell us about yourself
This information is required for us to identify you for payment purposes, and will be kept

con�dential.

Name:

E-mail Address:

Student ID: Age: Gender: M F

Number of years of university completed: 0 1 2 3 4+

Major

Number of 200+ courses in : Economics Mathematics

Consider the following scenario. There are 4 boxes, each containing 10 balls, which

can be either red or black. The composition of balls in the boxes is as follows:

Box 1: Contains 5 red balls and 5 black balls.

Box 2: The number of red and black balls is unknown, it could be any number
between 0 red balls (and 10 black balls) to 10 red balls (and 0 black balls).

Box 3: The number of red and black balls is determined as follows. One ticket is
drawn from a bag containing 11 tickets with the numbers 0 to 10 written on them.

The number written on the drawn ticket will determine the number of red balls in

the third box. For example, if the ticket drawn is 3, then there will be 3 red balls

and 7 black balls.

Box 4: The composition of balls in this box is determined in a similar way to box 3.
The di¤erence is that instead of 11 tickets in the bag, there are 2, with the numbers

0 and 10 written on them. Therefore, the box may contain either 0 red balls (and 10

black balls) or 10 red balls (and 0 black balls).

You are asked to place a bet on the colour of the ball drawn from each box (note

that for boxes 3 and 4, you do not know what ticket is drawn from the bag when you

place your bet). If your bet on a speci�c box is correct, you could win $2. If your

bet is incorrect, nothing will happen. For example, if your bets on boxes 1 and 3 are

correct, but your bets on boxes 2 and 4 are incorrect, you will win a total of $4.

Before balls are drawn from each box (and before the tickets are drawn from the bags

for boxes 3 and 4), you may sell each one of your bets. You are asked to state 4

minimal prices at which you are willing to sell each one of the bets. For each box,
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a random number between $0 and $2 will be generated. The 4 random numbers will

be the buying prices for each one of the bets.

If the buying price for a box is higher than the minimal selling price you stated for

that box, you will be paid the buying price (and will not have to wait for the outcome

of your bet). However, if the buying price for the box is lower than the minimal

selling price you stated for that box, your payment will depend on the outcome of

your bet.

Note that it is in your best interest not to overstate your selling prices
since this lowers the chances you will be able to sell your bet, and does
not increase the buying price.
Likewise, it is in your best interest not to understate your selling price,
since this may force you to sell a bet at a price that is lower than your
valuation of the bet.
For example, suppose you want to sell a $1 coin you have. Clearly - its value is exactly

$1. If you state a selling price higher than $1 (say $1.50) you might not be able to

sell it even if the buying price is as high as $1.49 - a pro�table transaction. Likewise,

if you state a selling price lower than $1 (say $0.75), you might be forced to sell your

coin at a loss (if the buying price is between 75 and 99 cents). The only way you are

sure not to lose, is if you state a selling price of exactly your valuation ($1 in this

case).

It is important that your stated selling prices will re�ect how attractive
each bet is: the more attractive it is for you to participate in a bet, the
higher the selling price you should state.
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B Consent Form - Robustness Round

Comment: This is the consent form for the order treatment: (1,2,3,4).

Principal Investigator:

Professor Yoram Halevy

Department of Economics,UBC

Phone: 604-822-2202

E-mail: yhalevy@interchange.ubc.ca

Purpose:

Ambiguity is characterized by a situation in which decision is made when consequences

of actions are uncertain, and it is hard to describe them in a simple probabilistic

form. The purpose of this study is to compare di¤erent explanations of individual�s

behaviour in these situations.

Study Procedures:

You will be o¤ered to bet in four di¤erent situations, and allowed to set a minimal

reservation price for each bet. The reservation price you set should re�ect your true

valuation for each bet: this is the minimal amount of sure payment you will agree
to exchange for the bet. The elicitation mechanism used guarantees you cannot gain

by setting a reservation price which is higher or lower than the minimal reservation

price above. All randomizations are performed using a computerized random number

generator. The experiment takes up to 15 minutes. Your compensation will be

random (see below).

Con�dentiality:

Any information resulting from this research study will be kept strictly con�dential.

Participants will not be identi�ed by name in any reports of the completed study.

Access to data records that are kept on a computer hard disk will require a password.

37



Remuneration/Compensation:

In order to defray the costs of your participation, you will receive the right to partic-

ipate in four lotteries with a potential prize of $20 in each, and o¤ered to substitute

a sure payment for each lottery. Please note that the �nal payment you receive, will

depend on the minimal reservation prices you set, random numbers and the outcomes

of the lotteries.

Contact:

If you have any questions or desire further information with respect to this study, you

may contact Yoram Halevy at 604-822-2202.

If you have any concerns about your treatment or rights as a research subject you

may contact the Research Subject Information Line in the UBC O¢ ce of Research

Services at 604-822-8598.

Consent:

I understand that my participation in this study is entirely voluntary and that I may

refuse to participate or withdraw from the study at any time without jeopardy to my

class standing etc.

I have received a copy of this consent form for my own records.

I consent to participate in this study.

Subject Name Subject Signature Date
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Explanation:

Consider the following scenario. There are 4 boxes, each containing 10 chips, which

can be either red or black. The composition of chips in the boxes is as follows:

Box 1: Contains 5 red chips and 5 black chips.

Box 2: The number of red and black chips is unknown, it could be any number
between 0 red chips (and 10 black chips) to 10 red chips (and 0 black chips).

Box 3: The number of red and black chips is determined as follows: one ticket is
chosen from a bag containing 11 tickets with the numbers 0 to 10 written on them.

The number written on the drawn ticket will determine the number of red chips in

the third box. For example, if the ticket drawn is 3, then there will be 3 red chips

and 7 black chips.

Box 4: The composition of chips in this box is determined in a similar way to box 3,
but instead of 11 tickets in the bag, there are 2, with the numbers 0 and 10 written

on them. Therefore, the box may contain either 0 red chips (and 10 black chips) or

10 red chips (and 0 black chips).

You are asked to place a bet on the colour of the ball drawn from each box. Note that

for boxes 3 and 4, you do not know the colour composition of the box (what ticket is

drawn from the bag) when you place your bet. If your bet on a speci�c box is correct,

you could win $20. If your bet is incorrect, nothing will happen. For example, if your

bets on boxes 1 and 3 are correct, but your bets on boxes 2 and 4 are incorrect, you

will win a total of $40.

Before chips are drawn from each box (and before the tickets are drawn from the bags

for boxes 3 and 4), you are asked to set 4 minimal amounts of money you are willing
to substitute for each bet. These will be called your �reservation prices.�

For each box, a random number between $0 and $20 will be generated.

If the random number for a box is higher than the reservation price you set for that

box, you will be paid the random number (and your payment will not depend on the

outcome of your bet). However, if the random number for a box is lower than the

reservation price you stated for that box, your payment will depend on the outcome

of your bet.
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It is in your best interest not to overstate your reservation price since
this lowers the chances you will substitute a high random number for the
lottery.
Likewise, it is in your best interest not to understate your reservation price,
since the random number might be lower than your actual reservation
price, forcing you to substitute the low random number for the bet.
For example, suppose you want to set your reservation price for a $5 bill you have.

Clearly - its value is exactly $5. If you state a reservation price higher than $5 (say

$8) you will not be able to substitute a high random number (between $5.01 and

$7.99) for the bill, resulting in losing a pro�table transaction. Likewise, if you state

a reservation price lower than $5 (say $4), and the random number is between $4.01

and $4.99, you might be forced to substitute the $5 for a lesser amount. The only

way you are sure not to lose (potential gains or portion of the $5), is if you set a

reservation price that exactly equals your valuation ($5 in this case).

Before you will be asked to set your minimum reservation prices for the 4 lotteries,

you will be given a 2 dollars coin and a pen. You are asked to set your minimum

reservation prices for these items. The random number for each of them will be

between $0 and $4.

Then, you will be given an (unpaid) trial round with the 4 boxes, and then a paid

round with the 4 boxes.
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Please tell us about yourself
This information is required for us to identify you for payment purposes, and will be kept

con�dential.

Name:

E-mail Address:

Student ID: Age: Gender: M F

Number of years of university completed: 0 1 2 3 4+

Major

Number of 100 level courses in : Economics Mathematics

Number of 200+ level courses in : Economics Mathematics

Please answer the following questions:

� What is your minimum reservation price for the $2 coin?
(between 0 and 4)

Random number

� What is your minimum reservation price for the pen?
(between 0 and 4)

Random number

Trial Round:

1. What is your bet for box 1? (circle one) red black

What is your minimal reservation price for the bet on box ?
(between 0 and 20)

Random number

Outcome if Random Number<Reservation Price:

2. What is your bet for box 2? (circle one) red black

What is your minimal reservation price for the bet on box ?
(between 0 and 20)

Random number

Outcome if Random Number<Reservation Price:

3. What is your bet for box 3? (circle one) red black

What is your minimal reservation price for the bet on box ?
(between 0 and 20)

Random number

Outcome if Random Number<Reservation Price:
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4. What is your bet for box 4? (circle one) red black

What is your minimal reservation price for the bet on box ?
(between 0 and 20)

Random number

Outcome if Random Number<Reservation Price:

Paid Round:

1. What is your bet for box 1? (circle one) red black

What is your minimal reservation price for the bet on box ?
(between 0 and 20)

Random number

Outcome if Random Number<Reservation Price:

2. What is your bet for box 2? (circle one) red black

What is your minimal reservation price for the bet on box ?
(between 0 and 20)

Random number

Outcome if Random Number<Reservation Price:

3. What is your bet for box 3? (circle one) red black

What is your minimal reservation price for the bet on box ?
(between 0 and 20)

Random number

Outcome if Random Number<Reservation Price:

4. What is your bet for box 4? (circle one) red black

What is your minimal reservation price for the bet on box ?
(between 0 and 20)

Random number

Outcome if Random Number<Reservation Price:
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C The Lotteries

5

Box 1 Box 2

10

don't  know how many

and how many

0 1 2 3 4 5
6 7 8 9 10

Box 3

Box 4

0
10

5
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D Data
$2 Round $20 Round

Index V1 V2 V3 V4 Index V1 V2 V3 V4 Index V1 V2 V3 V4
1 0.90 0.80 0.90 0.90 53 1.00 0.73 0.80 0.67 1 8 6 10 8
2 1.20 0.90 0.80 0.80 54 1.00 0.50 0.80 2.00 2 10 10 10 10
3 1.00 1.00 0.98 1.00 55 1.01 0.42 0.69 0.90 3 10 5 6 9
4 1.26 0.58 1.00 1.00 56 2.00 1.50 1.20 1.00 4 2 10 5 3
5 1.00 1.00 1.00 1.00 57 0.66 0.84 0.37 0.66 5 5.5 6.5 8 10
6 1.00 0.60 0.80 0.40 58 1.20 1.20 1.20 0.90 6 13 9.5 14 10
7 1.00 1.00 1.00 0.79 59 1.37 0.80 1.43 1.19 7 2 1 4 10
8 1.00 0.80 0.80 1.00 60 1.00 0.81 0.79 0.20 8 10 10 10 10
9 0.75 0.75 0.75 0.90 61 1.22 1.20 1.10 1.08 9 5 2 10 2

10 1.80 1.80 1.50 1.80 62 0.99 0.90 1.41 0.76 10 10 5 5 5
11 1.00 1.00 1.00 1.00 64* 0.70 0.86 0.51 0.70 11 10 10 10 10
12 1.23 0.86 0.71 1.39 65 1.00 1.00 1.00 1.00 12 10 4 6 5
13 1.25 1.00 0.80 1.00 66 1.00 1.00 1.00 1.00 13 13 10 9.15 12.75
14 1.20 0.99 0.88 0.79 67 0.99 0.88 1.24 0.52 14 10 4 5 10
15 1.25 1.00 0.85 1.00 68 1.60 0.94 0.96 1.60 15 10 6 5 2
16 0.99 1.00 0.90 1.00 69 1.50 1.00 0.99 1.30 16 10 8 8 10
17 1.00 0.74 0.88 0.71 70 0.90 0.73 0.77 0.77 17 7 6 7.75 9.5
18 1.29 1.16 1.00 1.00 71 1.00 0.51 0.13 1.00 18 10 5 5 10
19 1.00 0.90 0.89 0.78 72 1.00 1.00 1.00 1.00 19 6 5 6 8
20 1.00 0.40 1.20 0.06 73 1.00 1.00 1.00 1.00 20 6 7 8 9
21 0.99 0.80 0.90 1.00 74 1.30 0.80 0.70 0.30 21 5 5 5 5
22 1.00 1.00 1.00 1.00 75 0.99 0.99 0.99 0.99 22 10 5 5 10
23 1.10 1.20 1.00 1.00 76 0.99 1.00 1.00 1.00 23 10 5 6 10
24 1.00 0.54 0.39 0.80 77 1.50 1.50 1.50 1.50 24 10 13 8 17
25 1.34 1.00 0.90 1.00 78 1.20 0.99 1.02 1.40 25 3 3.75 4 2
26 1.24 1.20 1.22 1.30 79 1.40 0.14 0.40 1.30 26 6.5 5 3.5 6
27 1.10 1.01 0.90 1.19 80 1.00 1.00 1.00 1.00 27 5 2 2 2
28 1.00 1.00 1.00 1.00 81 0.82 0.76 0.66 0.66 28 12 8 8 12
29 1.12 0.73 0.68 0.92 82 1.30 1.10 1.00 1.06 29 5 3 4 4
30 0.80 0.80 0.80 0.80 83 1.02 0.99 1.06 0.97 30 15 8 5 5
31 0.20 1.40 0.40 0.11 84 1.50 1.20 1.00 1.20 31 10 7 6 8
32 0.92 0.61 1.16 0.68 85 2.00 1.00 1.00 2.00 32 8 12 15 10
33 1.00 0.34 1.00 0.20 86 1.00 0.41 1.00 0.26 33 10 11 15 7
34 0.37 0.52 0.67 0.81 87 0.79 0.22 0.98 0.39 34 8 10 10 8
35 0.90 1.00 1.10 0.90 88 1.00 0.88 0.76 1.06 35 5 3 4 2
36 0.26 0.56 0.36 0.61 89 1.61 0.39 1.78 1.00 36 10 10 10 10
37 1.00 1.00 1.00 1.00 90 1.00 0.78 0.51 0.68 37 10 8 8 10
38 0.69 0.48 0.24 0.76 91 1.00 0.00 1.02 1.48 38 8 4.5 5 3
39 1.00 0.44 0.60 1.00 92 1.30 1.30 1.30 1.30
40 1.44 1.39 1.39 1.00 93 1.00 1.00 1.00 1.00
41 1.22 0.82 0.82 0.82 94 0.60 0.80 0.60 0.80
42 0.80 0.68 0.78 0.68 95 0.50 0.50 0.40 0.40
43 0.81 0.94 1.00 0.80 96 1.50 1.00 1.50 1.22
44 0.98 1.00 0.99 0.98 97 0.98 0.58 0.98 1.03
45 1.50 1.40 1.60 1.50 98 1.00 1.00 1.00 1.00
46 1.36 1.20 1.00 0.90 99 0.70 0.60 0.75 0.90
47 1.42 1.00 0.97 0.81 100 1.50 1.00 1.00 1.50
48 0.98 1.18 2.00 0.61 101 1.49 0.99 1.02 1.48
49 0.87 1.19 0.61 0.84 102 0.40 0.60 0.60 2.00
50 1.00 1.00 1.00 1.00 103 1.00 1.12 0.97 1.01
51 0.33 0.13 0.93 0.33 104 1.87 1.83 1.20 1.66
52 0.10 0.20 0.40 0.10 105 0.98 1.00 1.11 1.00

*#63's reservation prices were deleted due to computer crash
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E Regression results

E.1 Recursive Non Expected Utility (Segal [32])

Two alternative variables can be used: V 31 and V 4345: both options are presented

in Table 746. The estimated alternative (given that E(V 4jV 1) = V 1) models are:

V 21 = �31 + �31V 31 + " (19)

V 21 = �43 + �43V 43 + "
0 (20)

Table 7: The ambiguity premium as a function of alternative estimates of aversion
to MPS for the RNEU (Segal) group

V31 V43 V31 V43
Statistics
Multiple R 0.788 0.735 0.948 0.886
R Square 0.621 0.541 0.899 0.785
Adjusted R Square 0.608 0.526 0.882 0.768
Standard Error 0.197 0.216 1.032 1.444
Observations 32 32 15 15

Coef SE t Stat Pvalue Lower 95% Upper 95%
Intercept 0.110 0.045 2.451 0.020 0.202 0.018
V31 0.620 0.089 7.004 8.78E08 0.439 0.801
Intercept 0.925 0.311 2.970 0.011 1.597 0.252
V31 0.740 0.076 9.705 2.54E07 0.576 0.905
Intercept 0.170 0.045 3.806 0.001 0.262 0.079
V43 0.502 0.085 5.946 1.62E06 0.675 0.330
Intercept 1.295 0.398 3.258 0.006 2.155 0.436
V43 0.679 0.099 6.885 1.11E05 0.892 0.466

$20
sample

$2 sample $20 sample

$2
sample

$2
sample

$20
sample

E.2 Bundling (Rule Rationality)/Recursive Expected Utility

Two alternative and equivalent formulations are possible. One possibility is that

the variables on the right hand side are V 31 and V 43, which measure the subjects�
45Using both will result in multicollinearity.
46A test whether V 1 has a signi�cant e¤ect beyond V 31 or V 43 reveals that it is insigni�cant at

5%. That is, the ambiguity premium could be explained by agents�attitudes to mean preserving
spread in the second order distribution.
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aversion to mean preserving spreads in the second order distribution moving from urn

1 to 3 and from the latter to urn 4, respectively. An alternative way is to place the

sum of the two - V 41, on the right hand side of the regression equation47,48. The two

alternative models estimated are therefore:

V 21 = � + 41V 41 + " (21)

V 21 = �0 + 31V 31 + 43V 43 + "
0 (22)

Table 8 summarizes the results of estimating these models.

Table 8: The ambiguity premium as a function of alternative estimates of aversion
to MPS for the bundling/REU group

V31,V43 V41 V31,V43 V41
Statistics
Multiple R 0.806 0.803 0.951 0.951
R Square 0.650 0.644 0.905 0.904
Adjusted R Square 0.625 0.632 0.883 0.894
Standard Error 0.151 0.150 1.018 0.970
Observations 31 31 12 12

Coef SE t Stat Pvalue Lower 95% Upper 95%
Intercept 0.057 0.032 1.821 0.079 0.122 0.007
V31 0.454 0.105 4.341 0.0002 0.240 0.668
V43 0.372 0.063 5.888 2.48E06 0.243 0.501
Intercept 1.178 0.338 3.484 0.007 1.942 0.413
V31 0.579 0.078 7.388 0.00004 0.401 0.756
V43 0.549 0.080 6.833 7.61E05 0.367 0.730
Intercept 0.060 0.031 1.950 0.061 0.124 0.003
V41 0.393 0.054 7.249 5.55E08 0.282 0.504
Intercept 1.202 0.312 3.847 0.003 1.898 0.506
V41 0.564 0.058 9.683 2.13E06 0.434 0.694

$2
sample

$20
sample

$2 sample $20 sample

$2
sample

$20
sample

47Since they are linearly dependent, one cannot use the three of them.
48The e¤ect of V 1 on ambiguity premium (beyond its e¤ect on V 31 and V 41) is insigni�cant at

10%.
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