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Abstract We observe that the errors on the Hubble con-
stant H0, a universal parameter in any FLRW cosmology,
can be larger in specific cosmological models than Gaus-
sian processes (GP) data reconstruction. We comment on
the prior mean function and trace the smaller GP errors to
stronger correlations, which we show precludes all well stud-
ied dynamical dark energy models. We also briefly illustrate
cosmographic expansions as another model independent cos-
mological reconstruction. Our analysis suggests that “cosmo-
logical model independence”, especially in the statement of
Hubble tension, has become a misnomer.

1 Introduction

Cosmology rests upon assumptions. When one works with
assumptions, timely contradictions are inevitable and these
seed progress. Over two decades ago, the concordance
flat ΛCDM model emerged from a set of contradictions.
Today, cosmological tensions [1] point to problems with the
assumption that the Universe is flat ΛCDM. Moreover, some
assumptions underlying supernovae are in a state of flux [2–
4], and even the assumption that the Universe is isotropic
and homogeneous is being called into question [5–10]. This
perpetual cycle of assumptions and contradictions is inte-
gral to cosmology. Recently, Gaussian Processes (GP) has
become a staple of data-driven cosmology [11–59]. In this
letter, using the Hubble constant H0, we chip away at the
widespread assumption that GP data reconstruction is cos-
mological model independent.

Cosmology strives to make robust statements across a host
of cosmological models and this drives the “model inde-
pendence” narrative. Working within parametric models, it
is well established that Taylor expansion, or cosmography
[60,61], offers one a glimpse of model independence, but
the Cauchy-Hadamard theorem [62] (see [63]) confines one
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to low redshifts, z � 1. Nevertheless, even within these
restrictions, the Hubble constant H0 can be determined in a
bona fidemodel independent manner [64,65]. In contrast, GP
reconstruction is a non-parametric technique that in principle
allows one to extend “model independence” to higher red-
shifts. In practice, one reconstructs data through an assump-
tion on the covariance matrix, or “kernel”, and its “hyperpa-
rameters”.

The commonly held belief that GP is model independent
may be misleading for largely two reasons. First, cosmo-
logical inferences of H0 from GP [66–71] at the percent
level can be discrepant with local H0 determinations [72]
(see also [73]).1 These local determinations are largely inde-
pendent of the background cosmological model and only
rely on the assumption of homogeneity and isotropy, which
is needed to identify the observed rate of expansion with
H0. If true, since the two determinations of H0 are indepen-
dent of the cosmological model, it is an immediate corol-
lary that Hubble tension has no cosmological resolution,
at least within the Friedmann–Lemaître–Robertson–Walker
(FLRW) framework.

Admittedly, this may be true, so there may be no con-
tradiction. Nevertheless, more seriously, Table 1 shows the
average errors for 300+ flat ΛCDM mock realisations with
forecasted DESI data [74], where GP based on commonly
used kernels in the Matérn covariance matrix class with pos-
itive parameter ν (e.g. see [75]) is compared against the ubiq-
uitous Chevallier–Polarski–Linder (CPL) model [76,77] for
dynamical dark energy (DDE). As we argue later, similar
results should hold for all parametric DDE models. The obvi-
ous question is how does a putative “model independent”
technique outperform a specific model on errors? Recall that
typically, where there’s smoke, there’s fire.

In essence, the overt problem with non-parametric tech-
niques, such as GP, is that the implications for parametric

1 These percent level cosmological model independent H0 determina-
tions largely leave one questioning the systematics.
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Table 1 Average values of H0 for different GP kernels vs. the CPL dark
energy model. These results are based on 300+ mock flat ΛCDM real-
isations of forecasted DESI data through a process explained in Sects.

3.2 and 4. The key point is that GP leads to smaller errors than a rep-
resentative model, here CPL, and this is unexpected for any putatively
“model independent” technique

Method ν = ∞ ν = 9/2 ν = 7/2 ν = 5/2 CPL

H0 68.59+2.21
−2.20 68.49+2.34

−2.34 68.42+2.45
−2.45 68.44+2.73

−2.73 69.54+3.30
−3.37

models are far from transparent. Obviously, in its simplest
setting with observational Hubble data (OHD), one assumes
a kernel, either extremises or marginalises over hyperparame-
ters in a likelihood and outputs a mean H(zi ) at redshifts zi , as
well as an associated covariance matrix. In contrast, when one
fits a parametric model, one recovers the best-fit parameters
and their covariance, typically from a Markov Chain Monte
Carlo (MCMC) chain. In principle, one can infer H(zi ) from
the MCMC chain and this facilitates a direct comparison.
Alternatively, one can strip away the errors in H(zi ) in both
cases and directly compare the correlation matrix.

In this note, we focus on H0, which, as remarked in [78],
is an integration constant in the Friedmann equations, so it
is universal to all FLRW cosmologies. Concretely, we show
that while the correlations in simpler models such as flat
ΛCDM and wCDM are typically stronger than the GP out-
put, in turn correlations from GP are generically stronger
than DDE models. As a result, GP represents a restriction
on the parameter space of DDE models. This explains the
smaller errors in Table 1 and highlights the problem with the
assumption that GP is model independent.

2 Taylor expansion

We warm up by highlighting commonly propagated mis-
conceptions regarding model independence of cosmography
[60], which may or may not echo previous studies in this
direction [79–90]. Let us begin with two relevant math theo-
rems (see for example [62,91]).

Taylor’s Theorem: Let n ≥ 1 be an integer and the let the
function f : R → R be n times differentiable at the point
z0 ∈ R. Then there exists a function fn : R → R such that

f (z) = f (z0) + f ′(z0)(z − z0) + f ′′(z0)

2! (z − z0)
2 + · · ·

+ f (n)

n! (z0)(z − z0)
n + fn(z)(z − z0)

n, (1)

and limz→z0 fn(z) = 0.

Cauchy–Hadamard Theorem: Consider the formal
power series in z ∈ C of the form f (z) = ∑∞

n=0 cn(z− z0)
n ,

where z0, cn ∈ C. Then the radius of convergence R of f at

the point z0 is given by

1

R
= lim sup

n→∞
(|cn|1/n). (2)

Observe that Taylor’s theorem simply guarantees that pro-
vided the Hubble parameter H(z) is differentiable, which
is usually the case, the remainder function fn(z) exists and
approaches zero as z approaches z0. While one could per-
form this expansion at any redshift, it is natural to consider
expansions around z = 0, and this is the basis for cosmo-
graphic (Taylor) expansions [60,61]. Note, working in the
vicinity of z = 0 is also sufficient for determining H0.

Taylor expansions can be regarded as truly model indepen-
dent reconstructions of H(z) to a given order in the vicinity
of z0, only if they can cover all models to that order and
precision. In practice, this is an impractical definition and
usually one simply demands that the Taylor expansion cov-
ers a suitably large class of models. This is essentially the
regime that Riess et al. [64] operate in to make local deter-
minations of H0 (see also [65]). The farther one goes from
z = z0, the fewer models that are accurately described by the
Taylor expansion.

As observed in [61], recalling the definition of the Hubble
parameter in terms of the scale factor, H ≡ ȧ/a, and the usual
expression for a in terms of redshift z, a = 1/(1 + z), it is
clear that the scale factor becomes singular at z = −1. We
can extend z into the complex plane, where in the Cauchy–
Hadamard language (2), this singularity corresponds to at
least one of the cn becoming large at z ≈ −1. This in turn
ensures R → 0 in its vicinity. For this reason, as stated in
[61], the radius of convergence of any FLRW cosmology is
at most |z| = 1. It should be clear that Taylor’s theorem does
not apply to expansions in (1 + z) about z = 0, e. g. [92,
93], only expansions about z = −1, and there the radius of
convergence is strictly zero. Together, these theorems make
expansions in (1 + z), or log10(1 + z) [94,95] completely
random in the sense that adding higher order terms does not
improve convergence (see [96–98]).

3 Gaussian processes

GP is a method to smooth a given (sparse) dataset. In essence,
given n observational real data points y = (y1, . . . yn) at
redshifts z = (z1, . . . zn) with a covariance matrix C , one
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wishes to reconstruct a function f∗ = ( f (z∗1), . . . f (z∗N ))

underlying the data at N new points z∗ = (z∗1, . . . , z∗N ),
where typically N ≥ n. Obviously, attempting to reconstruct
data far outside the range of the original data will lead to
questionable results.2

In implementing GP, one has to make an assumption on
how the reconstructed data points are correlated, and to do so,
one introduces a new covariance matrix K (z∗, z∗), typically
called a kernel. The kernel K is a function of some hyper-
parameters, which in cosmological applications are usually
taken to be two (σ f , � f ). The most commonly used kernel is
Gaussian,

K (z, z̃) = σ 2
f exp

(

− (z − z̃)2

2�2
f

)

. (3)

The other kernels that are commonplace in cosmological set-
tings are the Matérn covariance functions, e.g. see [75],

Kν(z, z̃) = σ 2
f

21−ν

Γ (ν)

(√
2ν(z − z̃)2

� f

)ν

K̃ν

(√
2ν(z − z̃)2

� f

)

,

(4)

where Γ is the gamma function and K̃ν is a modified Bessel
function. We refer the reader to [75] for a discussion on the
optimal covariance matrices for cosmology. Here ν is a pos-
itive parameter and in the ν → ∞ limit one recovers the
Gaussian kernel (3). It should be noted that the Matérn ker-
nels are only mean square n-differentiable provided ν > n.
This differentiability property is important when one is inter-
ested in the derivatives of H(z), but as we work here with
OHD, this is less of a concern. In addition to the Gaussian,
following [75], we will largely focus on ν = p + 1

2 , where
p = 0, 1, 2, 3, 4.

Since we are only interested in H(z), the mean f ∗ and
the covariance cov( f ∗) from the GP reconstruction can be
easily constructed through a few lines of linear algebra [14]:

f ∗ = μ(z∗) + K (z∗, z)[K (z, z) + C]−1 (y − μ(z)) ,

cov( f ∗) = K (z∗, z∗) − K (z∗, z)[K (z, z) + C]−1K (z, z∗),

(5)

where μ(z) is a prior mean function that one commonly sets
to zero, μ(z) = 0 [14] (see also [66–71]).

The only problem now is to identify the hyperparameters
and this is done through the following log normal likelihood:

lnL = −1

2
(y − μ(z))T [K (z, z) + C]−1(y − μ(z))

−1

2
ln |K (z, z) + C | − n

2
ln 2π. (6)

2 That being said, we will be taking a slight liberty with the range of the
original data in extrapolating from z ∼ 0.07 down to z ∼ 0 to extract
H0. This is in line with the analysis of [68].

In a strict Bayesian sense, one should marginalise over the
hyperparameters through an MCMC routine, e. g. [99]. How-
ever, this is computationally more expensive, so in practice
it is common to simply optimise (6), by setting to zero the
gradient of lnL,

∇(lnL) = 1

2
(y − μ)T (K + C)−1∇K (K + C)−1(y − μ(z))

−1

2
tr[(K + C)−1∇K ]. (7)

3.1 Mean function

Going through the GP literature in cosmology, one can iden-
tify two schools of thought, or viewpoints, on how to deal
with the mean function μ(z). Here, we follow Seikel et al.
[14], where the zero mean function, μ(z) = 0, is imposed.
This choice is closer to our interests, as it represents the
methodology that has led to curiously small errors on H0

[66–71]. When μ(z) = 0, irrespective of whether one opti-
mises (6) or marginalises over the hyperparameters, there is
very little difference to the results [68,75]. As is clear from
(6) or (7), since y2 � σ 2

y ∼ C , the hyperparameter σ f is
a large number. As a result, K � C , which is clear from
the values in Table 2. With this difference in scales, one can
approximate

(K + C)−1 ≈ K−1 − K−1CK−1 + · · · , (8)

and the mean and covariance matrix become to leading order:

f ∗ = D(z∗, z) y + · · · ,

cov( f ∗) = D(z∗, z) C D(z, z∗) + · · · ,
(9)

where D(z∗, z) := K (z∗, z)K (z, z)−1 is the “dressing
matrix” which essentially dresses the original data y and
covariance matrixC . It is a matrix of O(1) numbers. It should
be clear from the leading order expressions that GP imple-
mented with zero mean μ(z) is a mapping from data y into
the mean f ∗, and a mapping from the covariance matrix C
into the reconstructed covariance matrix cov( f ∗).

The other school, primarily Shafieloo et al. [13], maintains
that the prior on the mean is important. As is clear from (6)
or (7), a reasonably competitive guess for the mean should
lead to a small y − μ(z), which makes σ f a small number,
σ f ∼ K ∼ O(1). For this reason, one just recovers the
input mean if one optimises the likelihood (6) and one must
marginalise over the hyperparameters. This marks a key dis-
tinction between the two approaches. The other important
difference is that one expects marginalisation to lead to a
distribution of σ f peaked in the vicinity of σ f ≈ 0. There-
fore, one is working in the opposite regime to (9) where now
C � K . In this case, the mean and the covariance to leading
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Fig. 1 The real CC and BAO data serving as the basis for mock reali-
sations

and sub-leading order are,

f ∗ = μ(z∗) + K (z∗, z)C−1(y − μ(z)) + · · · ,

cov( f ∗) = K (z∗, z∗) − K (z∗, z)C−1K (z, z∗) + . . . .
(10)

It should be clear that these expressions are trivial at leading
order: one gets out what one puts in. So, the sub-leading terms
have to matter and this is where marginalisation helps. Nev-
ertheless, the better the guess on the mean, which is typically
inferred from specific models, the smaller the sub-leading
terms, and hence the less relevant the GP becomes. Clearly,
choosing a prior is a balancing act that represents additional
modeling in this “model independent” approach and for this
reason, we adopt the μ(z) = 0 viewpoint.

3.2 Data

We use OHD, which serves as the basis for mock realisa-
tions. More precisely, we make use of cosmic chronometer
(CC) [100–107] and homogenised BAO [108–119] data. It
should be stressed that the CC data largely comprises statisti-
cal errors only, and the systematic errors on H(z) are a work
in progress [120]. A further caveat is that, as pointed out in
[121], some of the cosmic chronometer data may be less reli-
able. That being said, this OHD will only serve as the basis
for mock realisations of the flat ΛCDM cosmological model
with the canonical parameters (H0,Ωm0) = (70, 0.3). Fur-
thermore, we are not interested in the absolute value of H0,
but the errors and only their relative values. We present the
OHD in Fig. 1. From the real data, we extract the redshifts
zi and the errors in the Hubble parameter σH(zi ). To perform
the mocks, at each zi we choose a new H(zi ) value from a
normal distribution about the flat ΛCDM value with standard
deviation σH(zi ).

Table 2 Average values of H0 and hyperparameters (σ f , � f ) for differ-
ent kernels and 500 mock realisations of the data. There is a descending
trend in the errors on H0 as we increase the GP kernel parameter ν, so
the final result is kernel dependent

Kν H0 (km/s/Mpc) σ f � f

ν = 1/2 73.92+13.23
−13.22 176.52+180.72

−172.24 43.45+4.65
−5.52

ν = 3/2 68.61+5.11
−5.11 284.23+36.08

−38.17 8.77+1.65
−1.83

ν = 5/2 68.81+3.91
−3.90 252.51+39.03

−40.47 5.19+0.91
−0.92

ν = 7/2 69.35+3.64
−3.64 241.94+39.06

−38.64 4.30+0.76
−0.80

ν = 9/2 69.25+3.57
−3.57 237.34+38.00

−40.06 3.91+0.66
−0.75

Gaussian (ν = ∞) 69.56+3.42
−3.42 230.20+41.48

−42.08 3.03+0.60
−0.57

4 Analysis

In this section we focus on H0 extracted from the GP recon-
struction. This is arguably the simplest cosmological parame-
ter that one can reconstruct from the data since it just involves
an extrapolation beyond the last data point (z = 0.07 in our
study) to z = 0. Before beginning, it is instructive to remove
the BAO data and run the GP analysis for the CC data with
a Gaussian kernel, just to validate our GP code. We find
H0 = 67.55+4.75

−4.68 km/s/Mpc, which reproduces the result of
Yu et al. [67], H0 = 67.42 ± 4.75 km/s/Mpc, so there is no
indication that our GP code is doing anything unusual. In
particular, the errors are the same size. It should be stressed
again that GP is simple linear algebra (5).

Here, we begin exploring the GP whereby the likelihood
(6) is minimised. This represents a simplification, but it has
been confirmed in [68,75] that this make little difference.
In Table 2 we show how the inferred Hubble constant H0

depends on the kernel for the full redshift range of the data
0 � z � 2.5. It should be stressed that we are using OHD,
namely CC and BAO data, but since we average over a large
number of mocks, we are reporting general trends. We find
that errors on H0 decrease with increasing ν, and our analysis
shows that the smallest H0 error is achieved for the Gaussian
kernel. Our findings are in line with Table 1 of [66], where
we have included the ν = 1/2 and ν = 3/2 entries just to fill
out the picture. Note that results are kernel dependent. This
trend is expected. The reason being that as ν increases one is
increasing the differentiability of the kernel. This means that
the class of reconstructed functions, here H(z), should be
smoother, since their derivatives have to be continuous to a
greater order. Ultimately, smoother functions enjoy stronger
correlations and smaller errors.

Observe that the central H0 values are all biased lower than
the mock value H0 = 70 km/s/Mpc. Independently, we have
performed some fits with Taylor expansions and one observes
the same phenomenon, which suggests that this biasing is
down to the data. As is evident from Fig. 1, the error bars
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Table 3 Average values of H0 for different models based on ∼ 300
mock realisations of the data in Fig. 1. This is to be compared with the
GP results, in particular the ν = ∞ case, quoted in Table 2. As expected,
ΛCDM has smaller error, while wCDM has comparable error, but CPL
leads to a larger error

Model ΛCDM wCDM CPL

H0 (km/s/Mpc) 69.91+1.17
−1.20 69.79+3.05

−2.86 65.64+5.11
−4.95

increase at low redshifts, but the slope of H(z) is fixed by
the BAO data, making it less likely that the visibly poorer
quality CC data can affect the central value.

It is instructive to fit the same data to concrete models in
order to compare the errors in H0. The result is reported in
Table 3. Evidently, the errors on H0 for both ΛCDM and
wCDM are within the GP errors, but for CPL we find that
the error on H0 is larger. In order to ascertain if this is a fluke,
we replace our OHD with the DESI H(z) determination fore-
casts in the extended redshift range 0.05 ≤ z ≤ 3.55 [74],
where we assume the optimistic outcome that the five-year
survey covers 14,000 deg2. Repeating the mocking exercise
outlined in Sect. 3.2, we can see from Table 1 that even with
the forecasted data, GP outperforms the CPL model by lead-
ing to smaller errors on H0.3 We conclude that this is not an
artifact of the dataset and that GP produces smaller errors on
H0 than CPL.

4.1 Correlations

Recall that the output from GP is a mean and a covari-
ance matrix and that any covariance matrix Ci j is simply
a dressing of the correlation matrix Di j through the errors
σi , Ci j = σiσ j Di j (no summation). It is an easy task to
take the output covariance matrix from GP and identify the
underlying correlation matrix. Concretely, we have

cov( f ∗)(zi , z j ) = σH(zi )σH(z j )D(zi , z j ). (11)

Next, one can fix zi = 0 and the first row of the correlation
matrix gives us an indication of the correlations between
H(z = 0) and H(zi ). These are shown in Fig. 2, where it
is clear that the ν = 1

2 kernel has the weakest correlations
with redshift, whereas the Gaussian kernel (ν = ∞) exhibits
the strongest. It can also be observed that beyond ν = 3

2 , the
differences in the correlations are not so pronounced. This
explains not only the trend in the H0 errors in Table 2, but
also why the difference in the H0 errors beyond ν = 3

2 is not
so great. It is an undeniable fact that stronger correlations
lead to smaller errors.

One can then extend this analysis to parametric mod-
els, so that a direct comparison can be made. In fit-

3 See [48] for how related forecasts will constrain GP constraints on
deceleration parameter.

Fig. 2 Correlations between H(z = 0) and H(zi ) across a host of
Matérn class kernels. The increase in the strength of correlations is
directly reflected in the decreasing errors in Table 2 as ν is increased

ting parametric models, one typically ends up with an
MCMC chain for the parameters, which within the two-
parameter family of dynamical dark energy (DDE) mod-
els we study, amounts to a maximum of four parameters
(H0,Ωm0, w0, wa). Concretely, we make use of a redshift
model [122,123], the CPL model [76,77], as well as models
due to Efstathiou [124], Jassal–Bagla–Padmanabhan (JBP)
[125] and Barboza–Alcaniz (BA) [126]. See Table 4 for
explicit expressions for the corresponding equations of state
w(z) and dark energy densities X (z) := ρde(z)/ρde,0 =
exp

(
3
∫ z

0
1+w(z′)

1+z′ dz′
)

. As observed recently in [127], focus-

ing on any particular DDE parametrisation risks biasing the
search for DDE, so here we analyse a broad class of models
(see also [128]). We will see that our conclusions are robust
to the parametrisation.

From the MCMC chain, one can infer H(zi ) at the same
redshifts as the GP. From there one can make a direct compar-
ison by plotting H(z) and the confidence intervals. However,
since the mean values can be displaced, it may be difficult
to quantify the difference through plots. Nevertheless, one
can boil any distinction down to numbers. Viewing H(zi ) as
parameters in their own right, one can infer the correspond-
ing covariance matrix and strip away the errors to leave the
correlation matrix. In Fig. 3 we plot the correlations across
the parametric models.

In line with expectations, the flat ΛCDM model exhibits
the strongest correlations, next wCDM, while any of the DDE
models, including the CPL model, are less strongly corre-
lated. This is more or less the content of Table 3, though,
over a large number of mocks; here we only use the real data
in Fig. 1. Ultimately, since the data is the same, these correla-
tions are simply an artifact of the number of parameters in the
model. However, for DDE models, the correlations are also
in line with observations made in [127], which is yet another
consistency check. There it was noted that the errors on wa ,
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Table 4 DDE parametrisations/models

Model w(z) X (z)

“Redshift” [122,123] w0 + waz (1 + z)3(1+w0−wa )e3wa z

CPL [76,77] w0 + wa
z

1+z (1 + z)3(1+w0+wa )e− 3wa z
1+z

Efstathiou [124] w0 + wa ln(1 + z) (1 + z)3(1+w0)e
3
2 wa [ln(1+z)]2

JBP [125] w0 + wa
z

(1+z)2 (1 + z)3(1+w0)e
3wa

2
z2

(1+z)2

BA [126] w0 + wa
z(1+z)
1+z2 (1 + z)3(1+w0)(1 + z2)3wa/2

Fig. 3 Correlations between H(z = 0) and H(zi ) across a host of DDE
models. As expected, a model induces certain correlations between val-
ues of observables at different redshifts and as depicted in FIG. 2, so do
GP kernels. The Gaussian kernel is added for comparison

which propagate to all parameter errors, including H0, are
larger for the JBP and CPL models, while the Efstathiou, BA
and redshift models lead to smaller errors. Once again, this
is evident from Fig. 3. As explained the figures are only for
a single realisation of the data, while Tables 1 and 3 repre-
sent repeated mock realisations, so the conclusion that the
errors on H0 differ should be beyond doubt. So while Figs. 2
and 3 are based on real data including BAO, which assumes
a fiducial flat ΛCDM cosmology, the fact that mocks return
results consistent with smaller (larger) errors, or alternatively
stronger (weaker) correlations, should convince readers that
Figs. 2 and 3 are representative.

Finally, the reader will note that we have mocked up on
flat ΛCDM. However, we have checked that if one mocks
up on one of the DDE models, for example the CPL model,
and dials (w0, wa) so that the CPL model fits the data better
than flat ΛCDM, GP still leads to smaller errors than the best
fitting DDE model. We expect our findings here are generic
in nature.

5 Conclusions

“Model independence” has casually slipped into the cosmol-
ogy lexicon. Here, our interest in the claims were piqued

by notably small errors in H0 that are even comparable in
size to flat ΛCDM errors [66–71].4 We started with some
observations on Taylor expansion and the regime where the
corresponding cosmographic expansion may be regarded as
model independent in a bona fide sense. As explained, these
observations are rooted in 18th and 19th century math theo-
rems, but this is routinely overlooked with dire consequences.
Importantly, beyond the radius of convergence |z| = 1,
higher order terms in any expansion no longer converge.

We also explained the difference between the two schools
in the GP method [13,14]. Clearly, an assumption on the
mean function, as advocated in [13], can lead to very differ-
ent expressions at leading order. In particular, a competitive
guess on the mean, not only represents extra modeling, but
risks triviliasing the GP. Moreover, one can add a “nugget”
or noise contribution to K + C [11,13], but this again is
extra modeling. While these observations may not settle the
debate, we believe they constitute progress.

We analysed the correlations relevant for the inferred H0

values with μ(z) = 0 [14]. Consistent with observations on
the errors, we found that GP leads to stronger correlations and
thus smaller errors than well known parametric DDE models.
If this is confirmed by the community, one must conclude that
GP analysis is tantamount to fitting the wCDM model to the
same data. While this may seem counter-intuitive, it is worth
noting that GP has a myriad of applications, but in cosmol-
ogy, H(z) is to first approximation a simple monotonically
increasing function of redshift. Therefore, it is possible that
the optimal kernels for cosmology have yet to be identified.
It is also possible that a hybrid approach that involves infer-
ence from both data and a prior on the kernel is required, e.
g. [130,131].

Finally, let us emphasise again that we have only analysed
H0. Our motivation was that competing discrepant “model
independent” H0 determinations immediately lead to the
conclusion that Hubble tension has no resolution in an FLRW
cosmology. It is imperative to extend our results to other
cosmological parameters, e. g. [47,49–59,132], to ascertain
the level of implicit or hidden model dependence in the GP
approach. It is worth recalling again our comments on Tay-
lor expansions, namely that a Taylor expansion beyond the
strict vicinity of z ∼ 0 corresponds to a class of models. In
essence, GP should be the same. The responsibility is on the
GP community to properly define the class of models in a
transparent manner.
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