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biosynthetic genes through network-based
multi-omics integration
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Human Milk Oligosaccharides (HMOs) are abundant carbohydrates fundamental to infant

health and development. Although these oligosaccharides were discovered more than half a

century ago, their biosynthesis in the mammary gland remains largely uncharacterized.

Here, we use a systems biology framework that integrates glycan and RNA expression data

to construct an HMO biosynthetic network and predict glycosyltransferases involved.

To accomplish this, we construct models describing the most likely pathways for the

synthesis of the oligosaccharides accounting for >95% of the HMO content in human milk.

Through our models, we propose candidate genes for elongation, branching, fucosylation, and

sialylation of HMOs. Our model aggregation approach recovers 2 of 2 previously known

gene-enzyme relations and 2 of 3 empirically confirmed gene-enzyme relations. The top

genes we propose for the remaining 5 linkage reactions are consistent with previously

published literature. These results provide the molecular basis of HMO biosynthesis

necessary to guide progress in HMO research and application with the goal of understanding

and improving infant health and development.
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Human milk is the “gold standard” of nutrition during early
life1–3. Beyond lactose, lipids, and proteins, human milk
contains 11–17% (dry weight) oligosaccharides (Human

Milk Oligosaccharides, HMOs)4,5. HMOs are milk bioactives
known to improve infant immediate and long-term health and
development6. HMOs are metabolic substrates for specific bene-
ficial bacteria (e.g., Lactobacillus spp. and Bifidobacter spp.), and
shape the infant’s gut microbiome2,7. HMOs also impact the
infant’s immune system, protect the infant from intestinal and
immunological disorders (e.g., necrotizing enterocolitis, HIV, etc.),
and may aid in proper brain development and cognition2,6,8,9. In
addition, recent discoveries show that some HMOs can be bene-
ficial to humans of all ages, e.g. the HMO 2’-fucosyllactose (2′FL)
protecting against alcohol-induced liver disease10.

The biological functions of HMOs are determined by their
structures6. HMOs are unconjugated glycans consisting of 3–20
total monosaccharides drawn from 3–5 unique monosaccharides:
galactose (Gal, A), glucose (Glc, G), N-acetylglucosamine (GlcNAc,
GN), fucose (Fuc, F), and the sialic acid N-acetyl-neuraminic acid
(NeuAc, NN) (Fig. 1A). All HMOs extend from a common lactose
(Galβ1-4Glc) core. The core lactose can be extended at the non-
reducing end, with a β-1,3-GlcNAc to form a trisaccharide. That
intermediate trisaccharide is quickly extended on its non-reducing
terminus with a β-1,3-linked galactose to form a type-I tetra-
saccharide (LNT) or a β-1,4-linked galactose to form a type-II
tetrasaccharide (LNnT). Additional branching of the trisaccharide
or tetrasaccharide typically occurs at the lactose core by addition of
a β-1,6-linked GlcNAc to the Gal residue. Lactose or the elongated
oligosaccharides can be further fucosylated in an α-1,2-linkage to
the terminal Gal residue, or α-1,3/4-fucosylated on internal Glc or
GlcNAc residues, and α-2,3-sialylated on the terminal Gal residue
or α-2,6-sialylated on external Gal or internal GlcNAc residues6,8

(Fig. 1B).
Despite decades of study, many details of HMO biosynthesis

remain unclear. While the many possible monosaccharide addition

events above are known, the order of the biosynthetic steps and
many of the enzymes involved are unclear (Table 1). For example,
the lactose core is extended by alternating actions of β-1,3-N-
acetylglucosaminyltransferases (b3GnT) and β-1,4-galactosaminyl-
transferases (b4GalT) while β-galactoside sialyltransferases (SGalT)
and α-1,2-fucosyltransferases (including the FUT2 ‘secretor’ locus)
are responsible for some sialylation and fucosylation of a terminal
galactose, respectively11. However, each enzymatic activity in HMO
extension and branching can potentially be catalyzed by multiple
isozymes in the respective gene family. Direct evidence of the
specific isozymes performing each reaction in vivo is limited.

Here we leverage the heterogeneity in HMO composition and
gene expression across human subjects to refine our knowledge of
the HMO biosynthetic network. Milk samples were collected
from 11 lactating women across two independent cohorts
between the 1st and 42nd day post-partum (see Methods). Gene
expression profiling of mammary epithelial cells was obtained
from mRNA present in the milk fat globule membrane interspace
(Supplementary Dataset 1 and Supplementary Figs. 1, 2). Abso-
lute (using commercial standards) and relative (normalized to
total HMO weight in a sample) concentrations of the 16 most
abundant HMOs were measured; these 16 HMOs typically
account for >95% of HMO mass in a milk sample12 (Supple-
mentary Dataset 1 and Supplementary Fig. 3). Starting from a
scaffold of all possible reactions13–18, we used constraint-based
modeling19,20 to reduce the network to a set of relevant reactions
and most plausible HMO structures when not known21 to form
the basis for a mechanistic model. This resulted in a ranked
ensemble of candidate biosynthetic pathway topologies. We then
ranked 44 million candidate biosynthesis networks to identify the
most likely network topologies and candidate enzymes for
each reaction by integrating sample-matched transcriptomic and
glycoprofiling data from the 11 subjects. For this we simulated all
reaction fluxes and tested the consistency between changes in flux
and gene expression to determine the most probable gene isoform
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Fig. 1 HMO blueprint and synthesis. A HMOs are built from a combination of the five monosaccharides D-glucose (Glc, blue circle), D-galactose (Gal,
yellow circle), N-acetyl-glucosamine (GlcNac, blue square), L-fucose (Fuc, red triangle), and sialic acid (N-acetyl-neuraminic acid (NeuAc), purple diamond).
Lactose (Gal-β-1,4-Glc) forms the reducing end and can be elongated with several Lacto-N-biose or N-acetyllactosamine repeat units (Gal-β-1,3/4-GlcNAc).
Lactose or the polylactosamine backbone can be fucosylated with α-1,2-, α-1,3-, or α-1,4- linkages or sialylated in α-2,3- or α-2,6- linkages2. B Small HMOs
can be fucosylated to make 2′FL while larger HMOs can be synthesized by the extension of the core lactose with N-acetylactosamine (type-I) or lacto-N-
biose (type-II) and subsequent decoration of the extended core with sialic acid to make more complex HMOs, such as DSLNT. C Three HMOs in this study:
DSLNT, isomer 1 of DFLNT, isomer 6 of FDSLNH; isomer structures represent predictions from this study (see Methods, Supplementary Fig. 5). Each
monosaccharide-linking glycosidic bond is labeled (L1, L2,…L10) according to the linkage reactions listed in Table 1.
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responsible for each linkage type. We followed with direct
observations through fluorescence activity assays to confirm our
predictions. Finally, we performed transcription factor analysis to
delineate regulators of the system. The resulting knowledge of the
biosynthetic network can guide efforts to unravel the genetic basis
of variations in HMO composition across subjects, populations,
and disorders using systems biology modeling techniques.

Results
HMO abundances do not correlate with known enzyme
expression. While α-1,2-fucosylation of glycans in humans can be
accomplished by both FUT1 and FUT2, only FUT2 is expressed in
mammary gland epithelial cells (Supplementary Dataset 2). FUT2,
the “secretor” gene, is essential to ABH antigens22–24 as well as
HMO2,25,26 expression. We confirmed that non-functional FUT2
in “non-secretor” subjects guarantees the near-absence of α-1,2-
fucosylated HMOs like 2′FL and LNFP1 (Fig. 2C). However,
examining only subjects with functional FUT2 (Secretors), we
found FUT2 expression levels and the concentration (nmol/ml) of
HMOs containing α-1,2-fucosylation do not correlate in sample-
matched microarray (Supplementary Figs. 1, 2) and HMO abun-
dance measurements by HPLC (Fig. 2, Supplementary Fig. 3, and
Supplementary Dataset 1). Generalized Estimating Equations
(GEE) showed no significant positive association (2′FL Wald
p= 0.056; LNFPI Wald p= 0.34). FUT1 could catalyze this
reaction but its expression was not detected in these samples. We
hypothesized that to successfully connect gene expression to HMO
synthesis, one must account for all biosynthetic steps and not
solely rely on direct correlations.

High-performing candidate biosynthetic models are supported
by gene expression and predicted model flux across subjects.
To determine which candidate genes (Supplementary Fig. 4)
support HMO biosynthesis, we built and examined models for
HMO biosynthesis in human mammary gland epithelial cells (See
Supplementary Methods 4.1–4.3 and 5.4 for complete details).
From the basic reaction set (Fig. 3A), we generated the complete
reaction network (Fig. 3B) containing all possible reactions and
HMOs with up to nine monosaccharides (Supplementary Fig. 5).
The Complete Network was trimmed to obtain a Reduced Net-
work (Fig. 3D and Supplementary Dataset 3) by removing reac-
tions unnecessary for producing the observed oligosaccharides.
Candidate models (Fig. 3E and Supplementary Fig. 6) were built,

capable of uniquely recapitulating the glycoprofiling data from
milk using two independent cohorts – cohort 1 with 8 samples
from 6 mothers between 6 h and 42 days postpartum27,28 and
cohort 2 with 2 samples per mother on the 1st and second day
after birth29. Mixed Integer Linear Programming (MILP) was
used to identify subnetworks with the minimal number of reac-
tions from the Reduced Network. We identified 44,984,988 can-
didate models that can synthesize the measured oligosaccharides.
Each candidate model contains 43–54 reactions (19.5–24.4% of
the reactions in the Reduced Network (Supplementary Table 1)).
These models covered all the feasible combinations of HMO
synthesis by the 10 known glycosyltransferase families (Fig. 1D)
that could describe the synthesis of the HMOs in this study.

To identify the most likely biosynthetic pathways for HMOs,
we computed a model score for each candidate model using the
glycoprofiling and transcriptomic data from the two independent
cohorts (Supplementary Figs. 7, 8), after excluding low-expression
gene candidates. Genes were excluded when expression was
undetected in over 75% of microarray samples and the
independent RNA-Seq30 measured low expression relative to
the GTEx31: TPM < 2 and 75th percentile Lemay <GTEx Median
TPM. Specificity and expression filtration reduced the candidate
genes from 54 to 24 (see Supplementary Results, Supplementary
Dataset 2, Supplementary Fig. 4); three linkages (L2, L5, and L9)
were resolved by filtration alone indicating that FUT2, ST6GAL1,
and FUT3 respectively perform these reactions.

Following low-expression filtering, we compared flux-expression
correlation. Leveraging sample-matched transcriptomics and
glycomics datasets, we computed model scores indicating the
capacity of each candidate gene to support corresponding reaction
flux. The model score was computed by first identifying for each
reaction, the candidate gene that shows the best Spearman
correlation between gene expression and normalized flux; flux
was normalized as a fraction of the input flux to limit the influence
of upstream reactions (Supplementary Figs. 7, 8 and Supplemen-
tary Methods 4.4). The highest gene-linkage scores, for each
reaction, for each model were averaged to obtain a model score
(Fig. 3G, see Methods section). The model scores indicate
consistency between gene expression and model-predicted flux.
The high-performing models (z(model score)>1.646) were selected
for further examination (Fig. 3H, see Methods section). Though
quantile-quantile plots indicated the model score distributions were
pseudo-Gaussian, variation in skew resulted in slightly different
numbers of high-performing models for the two different subject

Table 1 Glycosylation reactions examined.

Linkage Reaction EC Identifier Acceptor
{Constraint}

Product Candidates

L1:b3GnT b-1,3 N-acetylglucosamine 2.4.1.149 (A (GNb3A B3GNT2-6,8-9
L2:a2FucT a-1,2 fucosyltransferase (2.4.1.69,344) (A (Fa2A FUT1-2
L3:a3FucT a-1,3 fucosyltransferase (2.4.1.152) G/GN

{~Ab3GN}
Fa3G/GN FUT3-7,9-11

L4:ST3GalT (b-Gal) a-2,3 sialytransferase (2.4.99.4) (A (NNa3A ST3GAL1-6
L5:ST6GalT (b-Gal) a-2,6 sialytransferase 2.4.99.1 (A (NNa6A ST6GAL1-2
L6:b3GalT b-1,3 galactotransferase 2.4.1.86 (GN (Ab3GN B3GALT1-2,4-5
L7:b4GalT b-1,4 galactotransferase 2.4.1.90 (GN (Ab4GN B4GALT1-6
L8:b6GnT b-1,6 N-acetylglucosamine (2.4.1.150) GNb3Ab4G GNb3(GNb6)Ab4G GCNT1-4,7
L9:a4FucT a-1,4 fucosyltransferase 2.4.1.65 Ab3GNb3A

{~GNb4Ab3GNb3A}
Ab3(Fa4)GNb3A FUT3,5

L10:ST6GnT (b-1,3-GlcNac) a-2,6 sialytransferase (2.4.99.3,7) Ab3GNb3A Ab3(NNa6)GNb3A ST6GALNAC1-6

We studied several candidate glycosyltransferases expressed in cohort 1 and 2 (described in the next section) to identify candidates for 10 elementary reactions (see Methods section, Supplementary
Dataset 2). Acceptor, product and constraint are represented in LiCoRR11: monosaccharides include Gal (A), Fuc (F), Glc (G), GlcNAc (GN), Neu5Ac (NN). Additionally, “)” and “(“ indicate initiation and
termination of a branch respectively, “[X/Y]” indicates either monosaccharide, and “∼” indicates a negation. An asterisk “*” indicates an imperfect match between the EC number and reaction. We note
that gene “candidates” for each reaction (last column) were not used to inform the biosynthetic model construction. Candidate genes are those compared to completed biosynthetic models to evaluate
consistency between candidate gene expression and simulated flux through the corresponding reaction.
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cohorts. Specifically, we found 2,658,052 high-performing models
from cohort 1 and 2,322,262 high-performing models using cohort
2 (Fig. 3 and Supplementary Table 2). We found 241,589 high-
performing models common to cohort 1 and cohort 2. The model
scores of commonly high-performing models are significantly
correlated (Spearman Rs= 0.2, p < 2.2e-16) and a hypergeometric
enrichment of cohort 1 and cohort 2 selected models shows the
overlap is significant relative to the background of 44 million
models (hypergeometric enrichment p < 2.2e-16). We analyzed

these 241,589 commonly high-performing models and determined
which candidate genes were common in high-performing models
(Supplementary Fig. 8).

To determine the most important reactions (Figs. 4 and 9, 10)
in the Reduced Network, we asked which reactions were most
significantly and frequently represented among the top 241,589
high-performing models. We then filtered to retain only the top
5% of most important paths from lactose to each observed HMO
(see Methods section). The most important reactions form the
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summary network (Fig. 4). Here, HMO biosynthesis naturally
segregates into type-I backbone structures, with β-1,3-galactose
addition to the GlcNAc-extended core lactose, and type-II
structures, with β-1,4-galactose addition to the GlcNAc-
extended core lactose. As expected, LNFPI, LNFPII, LSTb, and
DSLNT segregate to the type-I pathway while LNFPIII and LSTc
are found in the type-II pathway (see Methods section for HMO
definitions). The summary network suggests resolutions to large
structurally ambiguous HMOs (FLNH5, DFLNT2, DFLNH7, and
DSLNH2) by highlighting their popularity in high-performing
models. The summary network also shows three reactions of high
comparable strength projecting from GlcNAc-β-1,3-lactose to
LNT, LNnT, and a bi-GlcNAc-ylated lactose (HMO8, Fig. 4, and
Supplementary Dataset 3) suggesting LNT may be bypassed
through an early β-1,3-GlcNAc branching event; a previously
postulated alternative path32. We checked for consistency with
previous work33 and found that (1) the single fucose on the
reducing-end Glc residue is always α-1,3 linked, (2) for
monofucosylated structures, the non-reducing terminal β-1,3-
galactose is α-1,2-fucosylated, (3) all galactose on the β-1,6-
GlcNAc is always β-1,4 linked while all galactose on the β-1,3-
GlcNAc are either β-1,3/4 linked. With the exception FDSLNH1,
(4) no fucose is found at the reducing end of a branch,
and (5) all α-1,2-fucose appear on a β-1,3-galactose and

not β-1,4-galactose in monofucosylated structures with more
than four monosaccharides; suggesting that FDSLNH1 is an
unlikely isomer. The summary network also suggests that most
HMOs have type-I LacNAc backbones.

Glycosyltransferases are resolved by ranking reaction con-
sistency across several metrics. We further analyzed the high-
performing models to identify the glycosyltransferases responsible
for each step in HMO biosynthesis (Table 1). As described
(Supplementary Results 6.1), not all members of a gene family
were examined in this analysis. Some genes were excluded due to
their well-characterized irrelevance (e.g., FUT8) and others, like
FUT1, were excluded due to low expression in lactating breast
epithelium (see Supplementary Dataset 2, Supplementary Meth-
ods and Results for the detailed inclusion criteria). To determine
the genes preferred for each reaction, we used three metrics to
quantify the association between candidate gene expression and
predicted flux. These were (1) proportion (PROP - the relative
proportion of models best explained by a candidate gene, Sup-
plementary Figs. 11–15), (2) gene linkage score (GLS - the
average Spearman correlation between gene expression and flux),
and (3) model score contribution (MSC - an estimate of the gene-
influence indicated by the Pearson correlation between model
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Fig. 3 HMO biosynthesis models constructed with flux analysis and ranked by expression concordance perform consistently across cohorts. Overview
of computational methods for model assembly (A–F) and assessment (G–I). A To build the candidate models of HMO biosynthesis, reaction rules were
defined to specify all possible monosaccharide additions. B The Complete Network includes all oligosaccharides and irreversible reactions resulting from
the iterative addition of monosaccharides to a root lactose. C Using Flux Variability Analysis (see Supplementary Methods 5.4), the Complete Network was
trimmed, removing reactions that cannot reach experimentally-measured HMOs, to produce a Reduced Network D (Supplementary Fig. 10); red triangles
are observed HMOs blue lines are “sink reactions” joining alternative isomers (Supplementary Fig. 5). E From the Reduced Network, Mixed Integer Linear
Programming (MILP) was used to extract candidate models, each representing a subnetwork capable of uniquely synthesizing the observed
oligosaccharide profile using a minimal number of reactions; black lines are reactions retained in a candidate model. F Flux Balance Analysis estimated flux
through each reaction necessary to simulate the measured relative oligosaccharide abundance (Supplementary methods 5.4). G Model scores were
computed as the average maximum correlation between linkage-specific candidate genes and normalized flux through that linkage (Supplementary Fig. 7
and Supplementary Methods 4.4). HModel scores were parameterized on cohort 1 (left) and cohort 2 (right) data (see Methods section). High-performing
models, 95th percentile of scores, are highlighted in red. I Of the >40 million models considered (blue), 2.66 and 2.32 million models were high-performing
when parameterized on data from cohort 1 or cohort 2, respectively. Nearly 250,000 models consistently explained the relationship between predicted flux
and expression data from both cohort 1 and cohort 2. These commonly selected models were analyzed for common structural features.
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score and gene linkage score) (Fig. 5A and Supplementary
Fig. 12). For each candidate gene, we generated a reaction support
score (Fig. 5B, see Methods section); the pooled significance of the
maxima of PROP, GLS, and MSC across both cohorts.

Three reactions, L2 (FUT2), L5 (ST3GAL1), and L9 (FUT3),
were matched to genes by default as they were the only gene
candidates remaining following gene expression filtering (Sup-
plementary Dataset 2, Supplementary Results). At least one gene
showed significant support (q < 0.1) for each remaining reaction.
GCNT3 shows highly significant support (q < 0.001) and nearly
100% of models selected this isoform over GCNT2C or GCNT1
(Supplementary Fig. 11). B4GALT4 is the most significantly
supporting gene for the L7: b4GalT reaction (Fig. 5B). In both
cohort 1 and 2, B4GALT4 outperforms all other isoforms in all
three metrics. B4GALT4 expression best explains flux in 62 and
80% (PROP) of high-performing models using cohort 1 and 2
data respectively (Supplementary Fig. 11). B4GALT4 also has the
highest MSC and GLS (z > 5.6) of any isoforms. Interestingly,
while B4GALT1 is highly expressed and fundamental to lactose
synthesis in the presence of α-lactalbumin and lactation in
general34,35, it showed negligible support for the L7 reaction
(Fig. 5B). Considering the reaction support score, all linkages
show at least one gene for each reaction that significantly explains
behavior across cohorts (Fig. 5B).

Kinetic assays corroborate gene-reaction associations. Towards
validating and expanding our gene-reaction predictions, glyco-
syltransferase enzyme activity assays were performed using the

NTP-Glo™ Glycosyltransferase assay (Promega). We used linkage
L1:b3GnT and L10:ST6GnT to validate our selections and
examined every plausible isoform of the ST3GAL for its ability to
perform the linkage L4:ST3GalT reaction. Five acceptors were
used: (1) lactose to examine activity on the initial HMO acceptor,
(2) LNT and (3) LNnT to establish which enzymes would act on
larger type-I and type-II tetrasaccharides, (4) Gal β1,3-GalNAc to
determine specificity for non-HMO O-type glycans, and (5) a
GlcNAc-β1,3-Gal-β1,4-GlcNAc-β1,3-Gal-β1,4-Glc pentasacchar-
ide structure to test the formation of a non-reducing terminal
type-I (Gal-b1,3-) cap on a longer acceptor. We explored the
activities of various gene products to perform specific glycosyl-
transferase reactions crucial to HMO biosynthesis (Fig. 6 and
Supplementary Table 3).

In the cross-cohort aggregate analysis (Fig. 5B), B3GNT2 is
selected as a reasonable candidate to catalyze flux through the
L1:b3GnT reaction. The B3GNT2 support score is nearly 100
times more significant than B3GNT8, the next most associated
gene. Consistent with the predictions that b3GnT should convert
lactose into the precursor to LNT and LNnT, the UDP-Glo™ assay
showed B3GNT2 had high activity toward lactose as an acceptor.
We further found that B3GNT2 could add a β-1,3-GlcNAc to
LNnT as is necessary for poly-lacNAc HMOs. The cross-cohort
aggregate analysis (Fig. 5B) selected ST6GALNAC2 to perform
L10, the α-2,6 addition of sialic acid to the internal β-1,3-GlcNAc;
necessary for the biosynthesis of LSTb from LNT and possibly
DSLNT from LSTa. However, the CMP-GLO™ assay highlighted a
negligible activity of ST6GALNAC2 toward LNT even at very
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high enzyme input indicating that this enzyme does not convert
LNT to LSTb. We did not test if it can convert LSTa to DSLNT.
In contrast, ST6GALNAC5 was effectively able to use LNT as an
acceptor, although we did not confirm the formation of the LSTb
structure. ST6GALNAC5 could not be considered in the support
score calculation because it was only measured in cohort 2;
expression was greater than zero in 1 of 12 samples.

Finally, we tested the affinities of plausible ST3GAL isoforms to
sialylate LNT, LNnT or β-1,3-GlcNAc (Supplementary Table 3).
The multi-cohort analysis (Fig. 5B) implicates ST3GAL1 as the best
candidate for this reaction. The CMP-Glo™ assay indicated that
ST3GAL1 has limited activity toward LNT but high activity toward
Gal β-1,3-GlcNAc suggesting ST3GAL1, in vitro, is more involved
in non-HMO O-type glycan biosynthesis. ST3GAL2 showed a
similar but less substantial pattern. ST3GAL3 showed the strongest
activity for sialylation both LNT and LNnT suggesting it could
synthesize LSTa from LNT. ST3GAL6 shares a similar but lesser
activity for LNT and LNnT.

We analyzed the original expression profiles to determine which
genes were sufficiently expressed to actuate this activity. STGAL1, 3
and 5 were strongly expressed in nearly 100% of samples across
both cohorts; ST3GAL2 and 4 show zero expression in 75% of

samples in at least one cohort (Supplementary Fig. 1). ST3GAL3
was highly expressed and effective at catalyzing the L4 reaction for
LNT and LNnT while ST3GAL1 was highly expressed and weakly
catalyzed sialylation of LNT making ST3GAL3 the most likely
candidate for L4 reaction on LNT and LNnT.

Selected glycosyltransferases share transcriptional regulators
across independent predictions. To explore the transcriptional
regulation during lactation, we used two orthogonal approaches
for transcription factor (TF) discovery. We used Ingenuity
Pathway Analysis (IPA) to predict upstream regulatory factors
based on differential expression (DE) associated with each HMO.
IPA analyzed all genes differentially expressed with HMO
abundance, not only HMO glycogenes; these DE patterns formed
HMO-specific gene expression signatures. Additionally, we used
MEME for de novo motif discovery in the promoter regions of
HMO glycogenes and TOMTOM to map those discovered motifs
to known TFs. We validated these predictions by examining
transcriptional regulators selected by both MEME and IPA
(Supplementary Figs. 16–S22, see Methods section).

IPA discovered 57 TFs significantly (|z|≥3; p < 0.001) associated
with the 16 HMO-specific gene expression signatures. We
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performed DE on HMO substructure abundances and substructure
abundance ratios17; IPA found 66 and 49 TFs significantly (|z|≥3;
p < 0.001)) associated with HMO substructure and substructure
ratio specific gene expression signatures. Using MEME, we
identified three putative TF regulatory sites (TF motifs I, II, and
III) for 6 selected glycosyltransferases responsible for the HMO
biosynthesis (Table 2 and Supplementary Fig. 18). TOMTOM
calculated that these putative binding sites were significantly
associated with six known TFs (IKZF1, SP1, EGR1, ETS1, ETV4,
and ERG) that were also predicted by IPA as regulators of gene
signatures associated with HMO concentration (Fig. 7 and
Supplementary Fig. 19) or HMO glycan substructures abundance
(Supplementary Fig. 20). SP1, EGR1, ETS1, ETV4, and ERG are all
predicted to positively influence expression associated with the
biosynthetically related HMOs: 3′SL, 3FL, LSTb, and DSLNT; 3′SL
and 3FL share a common substrate (lactose) while LSTb is a likely
precursor to DSLNT. The motif-level analysis showed opposing
regulation between IKZF1: upregulating gene expression signatures
associated with the 3′SL and LSTb substructure abundance17 (X34
and X62 respectively, see Supplementary Figs. 20, 21) and down-
regulating gene expression associated with GlcNAC-lactose, LNT
and LNFPI substructure abundance (X18, X40, and X65 respec-
tively, see Supplementary Figs. 20, 21), while EGR1, ERG, and ETS1
have the opposite predicted impact (Supplementary Fig. 20). The
motif-level predictions are consistent with the HMO-level
predictions of upregulation on 3′SL and LSTb while adding an
additional point of contrast. While EGR1, ERG, and ETS1 are
predicted to increase production of sialylated HMOs, they may
have the opposite impact on LNFPI. Thus, we detect signatures of
multiple transcription factors that could coordinate the regulation
of the genes we identified to contribute to HMO biosynthesis (see
Supplementary Discussion).

Discussion
By integrating sample-matched quantitative oligosaccharide mea-
surements and gene expression data using computational models of
HMO biosynthesis, we resolved genes responsible for 10 elementary
reactions in human mammary gland epithelial cells. The

biosynthetic model is essentially a probabilistic model where each
node represents a specific glycan structure, each edge a known
possible enzymatic reaction converting one glycan to another, and
edge weight the possibility of such a conversion. This method is
highly efficient and intuitive for the iterative HMO biosynthetic
network construction due to the modular nature of monosaccharide
addition to existing glycan structures during HMO molecular
extensions13,36. Compared to well-known (i.e., FUT2 & ST6GAL1)
events and empirically validated (confirmed by kinetic assays and
expressed in milk), we observed 4 true-positive, 7 true-negative, 1
false-positive and 1 false-negative gene-enzyme prediction using our
approach (sensitivity= 0.875, specificity= 0.8, positive-predictive
value= 0.875, precision= 0.875, recall= 0.875). Our approach
correctly resolved both well-known reactions. Kinetic assays showed
our approach selected milk-expressed substrate accepting gene-
enzyme pairs for reactions L1 and L4 but not L10. Kinetic assays
also found a false-negative prediction for reaction L4 and a false-
positive prediction for reaction L10.

In comparison with traditional kinetic models of glycan synthesis,
the low-parameter framework can utilize either LC or MS data and
also allowed inference of enzymatic activities36 using model para-
meters, which could be readily validated with the transcriptomics
data of involved glycosyltransferases. For mapping out the pathways,
we also took a different approach compared to existing retrosynthesis
approaches37–44. While there are strengths with the retrosynthesis
approaches, our model allowed us to account for promiscuity of
glycosyltranferases in the synthesis of the oligosaccharides. It also
allowed us to readily analyze transcriptomics data in the pathways
and further quantitatively differentiate between candidate isozyme
enzymatic activities. The modeling-based strategy was essential since
simple correlations failed to capture the simplest HMO-gene asso-
ciations, given the complex interactions of glycosyltransferases in the
HMO biosynthetic pathway. Because the pathway characterization is
still incomplete, we built >44 million candidate models that uniquely
recapitulate glycoprofiling data in two independent cohorts. Candi-
date model flux, i.e., activity of each reaction, was predicted for each
model and compared to sample-matched gene expression data. We
used the consistency between gene expression and predicted flux
across cohorts in high-performing models to select genes for each
fundamental reaction. Analysis of these models suggested glycosyl-
transferase genes, thus providing a clearer picture of the enzymes and
regulators of HMO biosynthesis in mammary epithelial cells. The
clarification of the pathways and enzymes involved in HMO bio-
synthesis will be an invaluable resource to help (1) discover the
maternal genetic basis of health-impacting1,2,5,6,45–54 HMO compo-
sition heterogeneity7,12,25,55 and (2) drive chemoenzymatic
synthesis56–60 and metabolic engineering for manufacturing HMOs
for food ingredients, supplements and potential therapeutics61–66 (see
Supplementary Discussion).

Of the three fucosylation reactions, two were effectively deter-
mined using expression data alone while the third required addi-
tional insight from the flux-expression comparison or support score.
Consistent with studies in blood22–24 and milk25,55,67 types, we
selected FUT2 as the gene supporting the α-1,2-fucosylation
(L2:a2FucT) linkage reaction. FUT1 was ruled out due to non-
expression (Supplementary Results, Supplementary Dataset 2). In
the second fucosylation reaction, FUT3, FUT4 and FUT11 all show
significant support for α-1,3-fucosylation (L3:a3FucT) linkage for-
mation. FUT11 is more commonly considered an N-glycan-specific
transferase68 and therefore a less likely candidate. Both FUT3
and FUT4 prefer to fucosylate the inner GlcNAc of a type-I
polylactosamine69. FUT3 prefers neutral type-I polylactosamine
while FUT4 also fucosylates the sialylated form70,71; the charge
preferences are inverted for type-II polylactosamine acceptors72.
Prudden et al.59 used FUT9 to perform this reaction, consistent with
its ability to transfer α-1,3-fucose to the distal GlcNAc of a neutral
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Fig. 6 Results of the CMP-Glo™ Glycosyltransferase Assay to test GT
candidates on relevant HMO acceptors. Average luminescence below
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complete details see Supplementary Table 4. Shapes correspond to
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polylactosamine68–70. The four HMO structures with α-1,3-fucose in
the summary network (Fig. 4) include 3FL (neutral inner fucosyla-
tion), LNFPIII (neutral distal fucosylation), DFLNT2 (neutral inner
fucosylation), and FDSLNH2 (sialylated and neutral distal fucosy-
lation). FUT9 showed negligible expression in RNA-Seq (3rd

Quartile TPM= 0.37, Supplementary Dataset 2), yet it is highly
expressed (TPM> 10) brain and stomach31. Therefore, it is more
likely that the distal fucosylation is conducted by another enzyme
in vivo while the inner fucosylation is likely performed by either
FUT3 or FUT4. FUT3 was also implicated for the α-1,4-fucosylation
(L9:a4FucT) by default due to the FUT5 non-expression; FUT5,

selected by Pruden et al. for L9:a4FucT, was expressed in milk sample
RNA-Seq (Supplementary Results, Supplementary Dataset 2).
Therefore, FUT5 can neither be evaluated nor dismissed as a can-
didate gene. FUT3 adds an α-1,4-fucose to the GlcNAc of a neutral
type-I chain to form the Lewis-A or Lewis-B group and adds an α-
1,3-fucose to the GlcNAc of a type-II chain70,71. Usage of FUT3
would provide a parsimonious explanation for the fucosylation of
both type-I and type-II HMOs like LNFPII (Fuc-α-1,4-LNT (type-I))
and LNFPIII (Fuc-α-1,3-LNnT (type-II)).

One of two sialyltrasferases was clearly resolved with expres-
sion data alone, the other required additional examination.

Table 2 TF motif (MEME) and IPA upstream regulator integrated results.

Linkage Reaction support score selected
candidate

MEME
TF Motif
(Mixture model likelihood124

p-value)a

JASPAR TF (Motif
enrichment126 p-value)b

IPA predicted TFc

L1:b3GnT B3GNT2 TF Motif–II SP1 (4.96e-05) Y
(1.39e-12) EGR1 (2.17e-05) Y

L2:a2FucT FUT2 TF Motif–III
(3.63e-16)

IKZF1 (7.62e-04) Y

L3:a3FucT FUT11 TF Motif–II SP1 (4.96e-05) Y
(1.00e-7) EGR1 (2.17e-05) Y

L4:ST3GalT ST3GAL1 TF Motif–I
(2.76e-11)

ETV4 (1.24e-03) Y

ETS1 (3.01e-04) Y
ERG (3.50e-04) Y

L7:b4GalT B4GALT4 TF Motif–II SP1 (4.96e-05) Y
(7.67e-11) EGR1 (2.17e-05) Y

L10: ST6GnT ST6GALNAC2 TF Motif–II SP1 (4.96e-05) Y
(1.08e-7) EGR1 (2.17e-05) Y

aThe p-value (see Supplementary Fig. 18) is the significance of the selected GT to the MEME identified TF motif.
bThe p-value (see Supplementary Table 5) is the significance of known TF associated with the MEME identified TF motif.
cThe IPA upstream regulator analyses were conducted on the three different sets of DEGs: 16 HMOs, 19 glycan motifs, and 4 differential motifs (see Methods section). Based on the Z-score predicted by
IPA using the gene expression data, we selected the significant TFs with IPA predicted activation score |Z value|>= 3 in this study. Note, ‘Y’ denotes the known TF is presented in the indicated dataset
(HMO (Fig. 7 and Supplementary Fig. 19), Motif (Supplementary Fig. 20), or differential motif (Supplementary Fig. 22)) of the IPA predicted TF and ‘N’ means the TF does not present in the dataset of
IPA predicted TF.
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ST6GAL1 was chosen by default to support the α-2,6-sialylation
(L5:ST6GalT) reaction due to the non-expression of ST6GAL2
(Supplementary Dataset 2). ST6GAL1 sialylates galactose in
HMOs59. For the second sialylation reaction, our flux-expression
comparison selected ST6GALNAC2 and ST6GALNAC6 as the
significant supporters of α-2,6-sialylation (L10:ST6GnT).
Through a kinetic assay, we found that ST6GALNAC2 (pre-
viously shown to accept core-1 O-glycans73,74) fails to sialylate
LNT. Though our kinetic assay shows that ST6GALNAC5
(known to sialylate GM1b75) can sialylate LNT, it was not
expressed in this context (Supplementary Results, Supplementary
Dataset 2). ST6GALNAC3 expression was not observed in
microarrays but could not be ruled out due to RNA-Seq
expression (Supplementary Dataset 2, Supplementary Results);
it sialylates the GalNAc of NeuAc-α-2,3-Gal-β-1,3-GalNAc-α-1-
O-Ser/Thr and NeuAc-α-2,3-Gal-β-1,3-GalNAc-β-1,4-Gal-β-1,4-
Glc-β-1-Cer when the inner galactose is not sialylated (e.g. GD1a
or GT1b)76–79 but has not been shown to transfer to a GlcNAc.
The last ganglioside-accepting family gene, ST6GALNAC6, has
broader activity accepting several gangliosides (GM1b, GD1a, and
GT1b)76 and sialylating the GlcNAc of LNT-ceramide80. Con-
sidering the broader activity, clear expression, and computational
selection, ST6GALNAC6 is the most likely candidate, though
ST6GALNAC3 should not be ruled out. In the third reaction,
ST3GAL1 shows significant support for α-2,3-sialylation
(L4:ST3GalT) reactions while ST3GAL3 shows negligible con-
sistency in the flux-expression comparison. Yet, in vitro,
ST3GAL3 was most effective at sialylating both LNT and LNnT
in kinetic assays while ST3GAL1 weakly sialylated LNT.
ST3GAL4, which prefers type-II acceptors81–83, was used pre-
viously to perform this reaction in vitro59, but it was not
expressed on the microarrays nor RNA-Seq. ST3GAL3 can accept
type-I, type-II, and type-III acceptors including LNT and prefer
type-I acceptors81,82,84 while ST3GAL1 accepts type-I, type-III,
and core-1 acceptors but not type-II81,82,85. The kinetic assays
and previous literature show ST3GAL3 is more capable than
ST3GAL1 at catalyzing this reaction, while ST3GAL1 expression
was found to be the only plausible candidate based on estimated
flux through this reaction. If ST3GAL1 were responsible for this
reaction, its inability to sialylate type-II HMO could partially
explain the lack of sialylation and larger structures in the type-II
HMO branch. Both ST3GAL1 and ST3GAL3 remain plausible
candidate genes, and further in vivo studies are needed.

Both galactosylation reactions required further examination of
flux-expression relationships. We found B3GALT4 to significantly
support the type-I β-1,3-galactose addition (L6:b3GalT). B3GALT4
can transfer a galactose to GalNAc in the synthesis of GM1 from
GM286. Unlike B3GALT5, there is no evidence that B3GALT4 can
transfer galactose to a GlcNAc87. B3GALT5, has been shown to
transfer a β-1,3-galactose to GlcNAc to form LNT in vitro88.
B3GALT5 expression measured for cohort 1 microarray was much
lower than expression in cohort 2 and the independent RNA-Seq30

suggesting that the probes in the first microarray may have failed
(Supplementary Dataset 2 and Supplementary Results). While both
B3GALT4 and B3GALT5 seem plausible, given the historical fail-
ures of B3GALT4 to perform this reaction and our likely failure to
measure and evaluate B3GALT5, B3GALT5 may be the stronger
candidate for this reaction. In the second galactosylation reaction,
the flux-expression comparison found B4GAL4 and B3GALT3
most significantly supports the type-II definitive β-1,4-galactose
addition (L7:b4GalT). These gene-products can synthesize LNnT-
ceramide89. Additionally, in the presence of α-lactalbumin (highly
expressed during lactation), B4GALT4 shows an increased affinity
for GlcNAc acceptors suggesting during lactation it is more likely to
perform the L7 reaction89,90. B4GALT1 and B4GALT2 synthesize
lactose in the presence of α-lactalbumin during lactation34,35, but

B4GALT1 expression was not correlated with L7 flux and
B4GALT2 was not expressed (Supplementary Dataset 2). Associa-
tions between B4GALT1 expression L7 flux may be masked due to
its consistent high. Therefore, flux-expression correlation should
not be used to exclude B4GALT1 as a candidate for the L7 reaction.
Doing so, B4GALT4, B4GALT3 and possibly B3GALT1 remain the
most plausible candidates.

Finally, both GlcNAc additions required flux-expression
examinations. B3GNT2 showed significant support in the flux-
expression comparison. In our kinetic assays, B3GNT2 demon-
strated high activity towards lactose as an acceptor. Previously,
B3GNT2 has performed the β-1,3-GlcNAc addition (L1:b3GnT)
on multiple glycan types including several HMOs: lactose, LNnT,
polylactosamine-LNnT91. The agreement of literature, kinetic
assays, and flux-expression analysis indicate B3GNT2 is an
appropriate choice for this reaction. In the second GlcNAc
reaction, GCNT3 and GCNT1 most significantly support the
branching β-1,6-GlcNAc addition (L8:b6GnT). While GCNT2B
can effectively transfer the branching GlcNAc to the inner
galactose of LNnT59,92, it was not expressed in the cohort
microarrays nor independent RNA-Seq. GCNT1 transfers a
branching GlcNAc to the GalNAc of a core-1 O-glycan93,94 while
GCNT3 acts on core-1 and the galactose of the LNT-like core-
3 structure94,95. GCNT3 is also specifically expressed in mucus-
producing tissues94,95 like lactating mammary gland epithelium.
Interestingly, GCNT3 acts on galactose of the GlcNAc-β-1,3-Gal-
β-1,4-Glc trisaccharide (predistally) while GCNT2 acts on the
central galactose of the LNnT or LNT tetrasaccahride
(centrally)92. Therefore, reliance on GCNT3 for the branching
reaction would explain the noncanonical branched tetra-
saccharide (HMO8, Fig. 4) suggesting a third major branch from
GlcNAc- β-1,6-lactose, distinct from LNT and LNnT. Predistal
addition of the branched GlcNAc may also explain the lack of
branched type-II structures since B4GALT4 cannot act on
branched core-4 structures96. HMO biosynthesis with GCNT3
and B4GALT4 could explain the type-I bias seen in the summary
network (Fig. 4).

We note that our approach relies on several simplifying
assumptions. Well-chosen assumptions can increase generalizability
of a model while mitigating overspecification97. While previous
models have demonstrated the importance of defining subcellular
compartmentalization of individual steps of glycosylation13 and
sugar nucleotide availability98, we found our models could recapi-
tulate the HPLC data without such specifications. However, we
anticipate that further study of sugar nucleotide concentrations and
glycosyltransferase expression at the single-cell level99 will result in
additional insights into the regulation of HMO biosynthesis. While
for such studies, further data will be needed, this study here lays the
groundwork by resolving gene-protein-reaction relations under-
lying HMO biosynthesis.

Our results show consistency with experimental validation here
and the published literature. Further direct empirical studies will
be invaluable to confirm each gene-reaction association and the
complete biosynthesis network. Such studies would include fur-
ther clinical cohort studies and the development of mammary
organoid models capable of producing HMOs. Such experimental
systems can clarify the impact of mammary-tissue specific genes,
cofactors, and HMO chaperones like α-lactalbumin89,90 on gly-
cosyltransferase activity. Therefore, further development of
authentic in vitro cell and organoid models will be invaluable to
finalizing our model of HMO biosynthesis.

By using systems biology approaches, different omics data can
be integrated, as shown here to predict gene-reaction relations
even in highly uncertain and underdetermined networks. Of the
ten fundamental reactions we aimed to resolve and reduce
(Table 1), we succeeded in narrowing the candidate substantially
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for each one. The newly reduced space of HMO biosynthetic
pathways and knowledge of the enzymes and their regulation will
enable mechanistic insights into the relationship of maternal
genotype and infant development. Finally, once essential HMOs
are identified, the knowledge presented here on the HMO bio-
synthetic network can provide insights for large-scale synthesis of
HMOs as ingredients, supplements, or potential therapeutics to
further help improve the health of infants, mothers, and people of
all ages.

Methods
Milk sample collection. Samples were collected following Institutional Review
Board approval (Baylor College of Medicine, Houston, TX). Lactating women
18–35 years of age with uncomplicated singleton pregnancy, vaginal delivery at
term (>37 weeks), Body Mass Index <26 kg/m2 without diabetes, impaired glucose
tolerance, anemia, or renal or hepatic dysfunction were given informed consent
before sample collection. Description of the protocols used to collect milk samples
and the diversity of subjects present in both datasets. Cohort 1 consists of 8 samples
for each of the 6 subjects (48 samples total) including milk from 4 secretor mothers
and 2 non-secretor mothers spanning from 6 h to 42 days postpartum. Cohort 2
consists of 2 samples over each of the 5 (10 samples total) including samples from
4 secretor mothers and 1 non-secretor mother spanning 1 to 2 days postpartum.
Data from cohort 127,28 and cohort 229 have been previously published and
comprehensively described.

Illumina mRNA microarrays and glycoprofiling. All expression and glycopro-
filing measurements were sample-matched. Therefore, comparisons across data-
types occurred within each individual sample described in the previous section. Not
all samples in these studies have both microarray and glycoprofile measurements,
only the samples described in the previous section have matched glycomics and
transcriptomics data.

mRNA was isolated from TRIzol-treated milk fat in each sample. Expression in
cohort 1 was measured using HumanHT-12 v4 Expression Beadchip microarrays
(Illumina, Inc.) with ~44k probes. Gene expression data for cohort 1 were retrieved
from the Gene Expression Omnibus at accession: GSE36936 [ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE36936]. Cohort 2 gene expression data were measured
using a Human Ref-8 BeadChip array (Illumina, Inc) with ~22k probes. Expression
data for cohort 1 can be accessed at accession: GSE12669 [ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE12669]. Both microarrays were background corrected. The
cohort 1 microarray was normalized using cubic spline normalization and the
cohort 2 microarray was normalized using the robust spline normalization.

As previously described100, HMO absolute concentrations, nmol/mL, based on
HMO standard response curves and internal standard concentrations. Specifically,
HMO concentration data were collected using high-performance liquid
chromatography (HPLC) with 2-aminobenzamide (CID: 6942) derivatization. To
measure absolute concentration, samples were spiked with a non-HMO
carbohydrate, a raffinose (CID:439242) as an internal standard. 16 HMOs were
measured using retention time and commercial standards including
2-fucosyllactose (2′FL), 3-fucosyllactose (3FL), 3-sialyllactose (3′SL), lacto-N-
tetraose (LNT), lacto-N-neotetraose (LNnT), lacto-N-fucopentaose (LNFP1,
LNFP2 and LNFP3), sialyl-LNT (LSTb and LSTc), difucosyl-LNT (DFLNT),
disialyllacto-N-tetraose (DSLNT), fucosyl-lacto-N-hexaose (FLNH), difucosyl-
lacto-N-hexaose (DFLNH), fucosyl-disialyl-lacto-N-hexaose (FDSLNH) and
disialyl-lacto-N-hexaose (DSLNH). Technicians were blinded to sample metadata.
HMO compositions and the absolute abundance measurements for cohort 1 were
fully described100. HPLC quantification of HMO data used Chromeleon v7.2. The
relative abundance of each glycan in each milk sample is normalized by the total
absolute abundance of the 16 most abundant (typically >95% of HMO mass per
sample100) HMO signals (chromatogram signals) for a given sample when used for
model construction/fitting, as described by Bao et al.17. Measurements for cohort 2
were previously unpublished but used the same methodology as cohort 1. Relative
HMO abundance was calculated as the ratio of each HMO weight to the total
HMO weight for a sample. Raw HMO concentrations and normalized glycogene
expression is provided in Supplementary Dataset 1.

Software. Modeling of HMO biosynthesis was performed in Matlab 2016b using
the CobraToolbox v3101. All analysis of biosynthetic models, interpretation and
statistics were performed in R v3.6. In R, we used bigmemory v4.5.36, bigalgebra
v1.0.1 and biganalytics v1.1.21 to handle the millions of models and associated
statistics102. We used metap for pooling p-values103.

Curation of undetermined HMO structures from literature. Of the many pos-
sible HMOs, more than 150 have been identified (Ninonuevo 2006; Wu, 2010; Wu,
2011) and several of the most abundant observed HMOs remain to have ambig-
uous structures. The natural heterogeneity (branching, isomerization and polar-
ization) of HMO mixture present in milk makes their structural identification and
quantitative detection a prohibitive challenge to many current studies6,8,104. This is

due in part to the lack of standard for performing a comprehensive study and
spectral characterization of each HMO. In this study, we analyzed 16 of the most
abundant HMOs, 11 of which have fully determined molecular structure, while the
remaining five have multiple alternate candidate structures8. We were very careful
throughout the paper to distinguish evidence-supported isomeric HMO structures
and to present the possible structures based on known reaction rules (Supple-
mentary Figs. 5, 14, and 21).

Generation and scoring of glycosylation networks models. Here we attempt to
determine the genes responsible for making HMOs through the construction and
interrogation of models of their biosynthesis. Similar to the other biosynthetically
constrained glycomic models like the milk metaglycome21, Cartoonist94, and sev-
eral N-glycome simulations13,105–107, we began with a set of elementary reactions.
Enumerating all feasible permutations of the elementary reaction (Fig. 3A and
Supplementary Methods 4.1), we delineated every possible reaction series from
lactose to each of the 16 measured HMOs. Of the measured HMOs, 11 have fully
determined molecular structures, while the remaining five have multiple candidate
structures (Fig. 1C and Supplementary Fig. 5)6,8,33,104,108,109. The set of all possible
reactions leading to characterized and ambiguous structures formed the Complete
Network (Fig. 3B and Supplementary Methods 4.1). Though non-lysosomal
glycosidase110–112 reactions are not explicitly specified, they are implicitly encoded
in the flux. To reduce the Complete Network to a more manageable size, we
identified and removed all reactions that do not lead to observed oligosaccharides
using Flux Variability Analysis (FVA; Supplementary Methods 5.4;113–115). This
trimming (Fig. 3C and Supplementary Methods 4.2) defines the Reduced Network
(Fig. 3D and Supplementary Methods 4.2). The Reduced Network describes many
candidate models that can uniquely simulate the HMO abundance collected
through High-Performance Liquid Chromatography (HPLC). A Mixed Integer
Linear Programing (MILP, Supplementary Methods 5.5; refs. 116,117) approach was
employed to extract candidate models from the Reduced Network capable of
uniquely recapitulating the HPLC data with a minimal reaction set (Fig. 3E;
Supplementary Methods 4.3; Supplementary Dataset 1 - Raw HPLC & Microarray).
The reactions of each candidate model were parameterized to determine the
necessary flow of material (flux) through each reaction to reproduce the measured
oligosaccharide profiles (Fig. 3F and Supplementary Methods 4.3, 5.5). The models
were ranked by the consistency between the predicted flux and the expression of
genes believed to be associated with each reaction (Fig. 3G and Supplementary
Methods 4.4). This consistency is evaluated by the Spearman correlation of changes
in flux and gene expression across subjects (Fig. 3H and Supplementary
Methods 4.4.1).

Candidate model ranking, model selection, and selection validation. Model
scores, indicating the consistency between flux and gene expression (Supplemen-
tary Methods 4.4.1), were used to rank candidate models (Supplementary Meth-
ods 4.4.2). The distribution of model scores computed from each dataset were
approximately normal, as evidenced by their linear Q-Q plots. This permitted the
construction of a background normal distribution of model scores (Supplementary
Fig. 6). We then selected high-performing models, those with z-score normalized
model scores greater than 1.646 (i.e., greater than the top 5% of scores from a
normal distribution) for further study. The model score threshold was varied from
4–8% to establish robustness in the results; subsequent analyses were negligibly
sensitive to this threshold. Model selection was performed on scores computed
independently for cohort 1 and cohort 2. Commonly high-performing models were
those that performed well in both cohort 1 and cohort 2. Hypergeometric
enrichment was used to confirm that the top cohort 1 and cohort 2 models sig-
nificantly overlapped (see Supplementary Methods 4.4.2).

Summary network extraction from the Reduced Network. The summary net-
work relates a heuristic selection of the most important reactions in the HMO
biosynthesis network as measured by proportion of inclusion in the commonly
high-performing models and enrichment in the commonly high-performing
models relative to the background. Paths drawn from observed HMOs to the root
lactose were scored for their aggregate importance. The top 5% of paths leading to
each observed HMO were retained to form the summary network (see Supple-
mentary Methods 4.4.3).

Ambiguous gene selection. We aimed to match 10 elementary glycosyltransferase
reactions to the supporting genes (Table 1). Candidate genes were filtered from the
relevant gene families to exclude gene products well known to perform unrelated
reactions (Table 1). Candidate genes were first evaluated for expression in breast
epithelium samples including microarrays in this study, independent RNA-Seq
(GSE45669)30 and comparison to global expression distributions in GTEx31; genes
unmeasured by microarray in at least 75% of microarray samples (3rd Quartile,
Q3) within each cohort were excluded unless they were non-negligibly expressed in
the independent RNA-Seq (TPMLemay > 2 or TPMLemay > Median(TPMGTEx) (see
Supplementary Results, Supplementary Dataset 2, Supplementary Fig. 4).

We used the model score definition, which quantifies how well the genes
explain a model - i.e., if the expressions of the genes are best correlated to the
normalized flux of the reaction (Supplementary Fig. 7 and Supplementary
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Methods 4.4) they are proposed to support. We examined each gene contribution
to the overall model score in three ways to determine a consensus support score for
each gene-reaction association (see Supplementary Methods 4.5.2).

The first metric we examined was the proportion (PROP) of commonly high-
performing models best explained by an isoform relative to the proportion of
background models that select that same isoform. The second metric was the
average gene-linkage score (GLS) in high-performing models - i.e., the Spearman
correlation between the normalized flux (Supplementary Fig. 7 and Supplementary
Methods 4.4) and gene expression of corresponding candidate genes. The gene-
linkage score is a continuous measure of the consistency between each gene with
the flux it was proposed to support. Because it considers every gene, not just the
most flux-consistent gene, it is helpful for judging performance when the most
flux-consistent gene is more ambiguous. The third metric was the model-score
contribution (MSC). MSC quantifies the Pearson correlation between the gene-
linkage score, the gene expression consistency with the normalized flux, and the
overall model score (i.e., the average correlation of all most-flux-consistent genes).
The model score indicates the frequency with which a gene is the most flux-
consistent gene normalized by its contribution relative to the other most flux-
consistent genes in that model.

An aggregate reaction support score was constructed to describe performance
within each individual score (PROP, GLS, and MSC) and consistency across
cohorts. To measure significance, the gene-linkage score matrix (i.e., Spearman
correlation between each candidate gene and the corresponding normalized flux for
each model) was shuffled (n= 27) and all analyses rerun on each shuffle to
generate a permuted background distribution for PROP, GLS, and MSC; shuffling
of the GLS matrix was done using a perfect minimal hash to remap all entries back
to the GLS matrix in a random order118. Performance within each independent
cohort was described as the sum of z-scores for each of three measures; z-score was
calculated relative to the mean and standard deviations of these scores in the
permutation results. Consistency across cohorts was determined by pooling
p-values using the Fisher’s log-sum method103,119. The score presented in Fig. 5B is
the -log10(FDR(cohort-pooled-p).

In vitro glycosyltransferase activity assays. Recombinant forms of the respec-
tive glycosyltransferases were expressed and purified as previously described120.
Enzyme activity was determined using the UDP-GloTM or UMP/CMP-GloTM

Glycosyltransferase Assay (Promega) that determined UDP/CMP concentration
formed as a by-product of the glycosyltransferase reaction. Assays were performed
according to the manufacturer’s instructions using reactions (10 µL) that consisted
of a universal buffer containing 100 mM each of MES, MOPS, and TRIS, pH 7.0,
donor (1 mM UDP-GlcNAc (Promega) for B3GNT2; 1 mM UDP-Gal (Promega)
for B3GALT2; 0.2 mM CMP-SA (Nacalai USA Inc.) for ST3GAL1-6, ST6GAL-
NAC2, and ST6GALNAC5), 1 mM acceptor (lactose (Sigma) and lacto-N-neote-
traose (LNnT) (Carbosynth) for B3GNT2; lacto-N-tetraose (LNT, Bode lab) and
pentasaccharide (GlcNAc-b1,3-Gal-b1,4-GlcNAc-b1,3-Gal- b1,4-Glc, Boons lab,
University of Georgia) for B3GALT2; LNnT, LNT, and Gal-β1,3-GalNAc (Car-
bosynth) for ST3GAL1-6; LNT for ST6GALNAC2 and ST6GALNAC5. The
B3GNT2 and B3GALT2 assays also contained 1 mg/ml BSA and 5mM MnCl2.
Assays were carried out for 1 h (B3GNT2, B3GALT2, ST6GALNAC2, and
ST6GALNAC5) or 30 min (ST3GAL1-6) at 37 °C. Reactions (5 μL) were stopped
by mixing with an equal volume of Detection Reagent (5 μL) in white polystyrene,
low-volume, 384-well assay plates (Corning) and incubated for 60 min at room
temperature. After incubation, luminescence measurements were performed using
a GloMax Multi Detection System plate reader (Promega). The average lumines-
cence was subtracted from the average luminescence of the respective blank to
correct for background. Background and reaction measurements were performed
in triplicate.

Differential expression analysis. The DE analysis was conducted on three different
datasets: (1) 16 different HMOs (2′FL, 3′SL, 3FL, FLNH, LNT, LNnT, LSTb, LNFP-
III, LNFP-II, LNFP-I, DFLNT, LSTc, DSLNT, FDSLNH, DSLNH, DFLNH), (2) 19
glycan motifs (X18, X32, X34, X35, X37, X40, X62, X63, X64, X65, X66, X94, X106,
X113, X120, X127, X141, X142, X143, see Supplementary Figs. 21, 22), and (3) 4
differential motifs for the difference (“conversion rate”) between related motifs (X65-
X40, X106-X62, X63-X37, X62-X40, see Supplementary Fig. 21, 22). Substructure
abundance for glycan motifs and conversion ratios were computed using Gly-
Compare v117. The gene expression data were downloaded from the Gene Expression
Omnibus121 (GSE36936). Specifically, for each HMO, motif or differential motif, we
used concentration (e.g., HMO–3FL) as the predictor for gene expression in the DE
analysis (e.g., “gene expression ~ [3FL]”). The DE analysis was performed by fitting
linear models using the empirical Bayes method as implemented in the limma v3.40.6
in R v3.6.1 package122 and p-values were adjusted for multiple testing using
Benjamini-Hochberg (BH) method123. In this way, we determined gene-expression
signatures indicative of each HMO and motif abundance.

Ingenuity pathway analysis upstream regulator analysis. DE signatures indi-
cative of differential abundance in 16 HMOs, 19 motifs, and 4 differential motifs
were analyzed to predict upstream regulators using Ingenuity Pathway Analysis
(IPA, QIAGEN Inc.). Gene expression signatures indicative of HMO and motif

abundance were defined as genes differentially expressed with abundance in the
previous limma analysis (FDR q < 0.05 and |Fold Change|>1.5).

de novo TF binding site motifs discovery and known TF binding site identi-
fication. We downloaded promoter sequences (file: upstream1000.fa.gz; version:
GRCH38) from UCSC Genome Browser public database (https://genome.ucsc.edu/)
for the O-glycosyltransferase genes used in this study (Supplementary Dataset 2).
These promoter sequences included 1000 bases upstream of annotated transcription
starts of RefSeq genes with annotated 5′ UTRs. To conduct de novo TF binding site
motifs discovery, we first applied the motif discovery program MEME124 to identify
candidate TF binding site motifs on the downloaded promoter sequences with
default parameters. The 10 TF binding site motifs found by MEME were analyzed
further for matches to known TF binding sites for mammalian transcription factors
in the motif databases, JASPAR Vertebrates125, via motif comparison tool,
TOMTOM126. The resulting discovered TF binding site motifs and their sig-
nificantly associated known TF binding sites (Supplementary Tables 4, 5) for
mammalian transcription factors were used further to compare with the IPA-
predicted upstream regulators.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw data (glycan abundance and processed expression data) have been deposited in
GitHub [https://github.com/bkellman/HMO_GeneReaction_pred]. All intermediary data
(including models, flux, correlation, gene linkage scores, gene/structure proportions, and
model scores) have been deposited in Zenodo (https://doi.org/10.5281/zenodo.4060217).
Data generated for this study and processed data are provided in the Supplementary
Information/Source Data file. All data are available under a CC-BY-4.0 license. Source
data are provided with this paper.

Code availability
All code used to conduct this work is available: github.com/LewisLabUCSD/
HMO_GeneReaction_pred Reference Code is available under a CC-BY-4.0 license.
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