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The proper balance between protein synthesis, maturation, and 

degradation is crucial for an organism to survive and prosper. Each of these 

processes is coupled to the cellular environment through a multitude of signaling 

events to maintain protein homeostasis (proteostasis). The costly process of 

protein synthesis is partially regulated through the mammalian target of 

rapamycin in complex 1 (mTORC1). mTORC1 acts as a metabolic hub for the cell 

monitoring energy levels, nutrients, and amino acid availability in order to 

increase anabolic processes including initiation and elongation during mRNA 

translation. Deregulation of mTORC1 signaling can be catastrophic for an 

organism leading to cancer, obesity, and age-related illness. This work focuses on 

the molecular events that promote these disease states when mTORC1 is 

hyperactivated, and further investigates a potential mechanism for the cell to 

cope with this dys-homeostasis. 

Here, I investigated the impact of hyperactive mTORC1 on the proteostasis 

network by inducing cytosolic and proteotoxic stress within cell cultures. 

Utilizing fibroblast knockouts, lentiviral knockdowns, plasmid transfections, and 

mTORC1 inhibitors, I was able to manipulate mTORC1 activity to elucidate its 

role in mRNA translation and overall proteostasis. I discovered that mTORC1 

signaling is necessary for global cap-dependent protein synthesis, but attenuated 

cap-independent and IRES mRNA translation. Moreover, I demonstrated that the 



 

heat shock protein 70 (Hsp70) utilized a cap-independent mechanism of 

translation through its 5’UTR. Hyperactive mTORC1 signaling prevented the 

stress-induced preferential translation of HSP70, which inhibited cell recovery 

leading to cell death. These results uncovered an intimate connection between 

mTORC1 signaling and the stress response, highlighting how an increase in 

protein synthesis can imbalance a translational switch necessary to maintain 

proteostasis. 

Correspondingly, a decrease in mTORC1 signaling and protein synthesis 

can be beneficial to an organism leading to an increase in stress resistance and 

lifespan. To elucidate this mechanism I further investigated the effects of 

mTORC1 activity on protein synthesis and discovered an increase in protein 

quantity altered the quality of newly synthesized polypeptides. I demonstrated 

that hyperactive mTORC1 signaling decreased translation fidelity through its 

downstream target S6K, with no apparent influence on the chaperone network or 

ubiquitin proteasome system. An increase in S6K signaling promoted faster 

elongation rates, potentially leading to the observed mistranslation. 

Furthermore, partially inhibiting mTORC1 activity with rapamycin treatment 

restored protein quality by slowing down mRNA translation. My results reveal a 

mechanistic connection between protein quality and mTORC1 activity, which 

strengthen the role of nutrient signaling in proper cell growth and healthy aging. 

Collectively, my ex vivo results used to manipulate mTORC1 activity 

uncover molecular events highlighting mTORC1 as a key component of the 

proteostasis network. mTORC1 signaling favors the development of age-related 

pathologies and investigating the effects of its activity provides an array of 

downstream potential drug targets.       
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S6K1    p70 ribosomal S6 Kinase 1 
Sirt1   NAD-dependent deacetylase sirtuin-1 
SKAR   S6K1 Aly/REF-like target 
TBC1D7  Tre-2, Bub2p, and Cdc16p 1 Domain family member 7 
TOP   Terminal oligo-pyrimidine tract 
tRNAs   transfer RNAs 
TSC   Tuberous Sclerosis Complex  
TSC1   TSC protein hamartin  
TSC2   TSC protein tuberin 
Ub   Ubiquitin, a small regulatory protein in eukaryotes 
UPS   Ubiquitin Proteasome System 
UTR   Untranslated Region 
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PREFACE 

 

The primary emphasis of this dissertation is regulation during protein 

synthesis, maturation, to degradation and the balance maintained between each 

stage. This work is composed of five main chapters, each focusing on a different 

aspect of protein regulation to maintain cellular homeostasis. Part one reviews 

aspects of protein homeostasis at the ribosome, with emphasis on the role of 

protein synthesis through mTORC1 signaling. Part two derives from my rotation 

project and examines the control of protein synthesis under cell stress, 

identifying attenuation through the insulin-signaling pathway. Part three was the 

main focus of my graduate work exploring the dynamic effects of mTORC1 

regulation of protein quantity and quality. Part four is a new project, which 

proposes a potential model of maintaining protein homeostasis by quickly 

disposing of erroneous unstable polypeptides through co-translational 

degradation. Part five summarizes the connection of these findings, while 

exploring a few of the unanswered questions which remain.  

Extended research in these areas, outside the focus of the main chapters, 

is examined to a lesser extent and discussed briefly within part five and select 

unpublished results follow in the appendices.  
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CHAPTER 1 

 

A sTORy of Protein Homeostasis: Slowing Down for Accuracy 

 

 

1.1 Abstract 

Co-translational regulation for protein quality control is emerging as a 

primary determinant in maintaining protein homeostasis (proteostasis). The 

mRNA sequence provides cues for translational regulation with unique motifs for 

initiation, codon placement for segment pausing, and orientation for polypeptide 

interactions, while the ribosome is a platform to decode these messages. During 

synthesis, additional factors assist in monitoring fidelity of the polypeptides and 

may interact to accurately fold each domain. This quality control of the newly 

synthesized polypeptides relies on a network of interactions from molecular 

chaperones to coupled ribosomes complexes for degradation. Furthermore, 

anabolic processes can only persist with sufficient materials and building blocks 

for each stage. This review discusses the link between nutrient signaling through 

mTORC1 with the newly discovered molecular mechanisms monitoring quality 

control at the ribosome. Without these connections, metabolic dys-homeostasis 

leads to cellular stress and age-related pathologies, making it critical to untangle 

the connections of the proteostasis network. 

This chapter was written by Conn CS as a literature review on mTOR and its link 
to protein homeostasis. The article will be revised and submitted for peer-review 
of co-translational quality control with Qian S-B. 
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1.2 Introduction 

The central dogma of biology traditionally organizes the process of gene 

expression from DNA, to RNA, to the end product of the native protein. Recent 

advances suggest the cellular abundance of proteins is predominately regulated 

at the translational level regardless of transcripts excessive quantity and protein 

degradation (Schwanhäusser et al., 2011). This allows protein synthesis to 

swiftly respond to environmental cues and cellular stresses at the level of mRNA 

translation. However, protein synthesis is the highest error-prone step in gene 

expression with approximately one in every ~104 codons mistranslated 

(Kirkwood et al., 1984). It has been proposed that overtime translational errors 

may create a feedback-loop into the translation machinery causing an 

exponential increase in errors or rather an “error catastrophe” (Orgel, 1963). To 

this end, it is not surprising that a decrease in protein synthesis may lead to an 

increase in stress resistance and lifespan (Pan et al., 2007; Conn and Qian, 2011).  

There are several stages during mRNA translation to promote accurate 

expression of a given gene including recognition for initiation, proof-reading 

during elongation, and proper protein folding. At the center of this regulation lies 

multiple cellular pathways interacting in a network to maintain protein 

homeostasis (proteostasis); the balance between synthesis, maintenance, and 

degradation of proteins. This network relays information on growth factors, 

nutrients, energy requirements, and external stress to process accurate mRNA 

translation. A key metabolic hub integrating these signals is the mammalian (also 

referred to as mechanistic) target of rapamycin (mTOR). Under stable, nutrient-

rich conditions mTOR in complex 1 (mTORC1) activates transcription factors for 
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ribosome biogenesis, eukaryotic initiation factors for mRNA recognition, and 

elongation factors necessary for accurate synthesis and speeds (Malik et al., 

2013). As these steps occur during protein synthesis, the polymers of amino acids 

need to fold accurately either during or post-translational elongation. Proper 

folding may require additional aid from the molecular chaperone network and if 

errors occur the erroneous polypeptides need to be cleared by the ubiquitin 

proteasome system (UPS). Deregulation of protein synthesis, maturation, or 

degradation has been implicated in an array of protein conformational diseases 

and the abundance of misfolded proteins tends to accumulate in age-related 

diseases (Hipkiss, 2006; Cohen and Dillin, 2008; Voisine et al., 2010). 

The causality between stable proteins and the formation of protein 

aggregates has therefore been intensely studied, yet the mechanisms of sensing 

and reacting remain unclear. Recent advances in the field show that the ribosome 

dynamics and interactions during mRNA translation play a vital role in 

proteostasis maintenance. Molecular mechanisms and interactions that promote 

accurate gene expression at the ribosome are reviewed here, highlighting the 

functional connection between nutrient signaling, the chaperone network, and 

the UPS in preventing proteostasic disease.   

 

1.3 mTORC1 signaling activates ribosome biogenesis & protein synthesis 

The function of mTOR signaling pathways are diverse in cell physiology. 

This cascade affects ribosome biogenesis, mRNA translation, pyrimidine 

synthesis, proliferation, mobility, and the activation of multiple transcription 

factors (Ben-Sahra et al., 2013; reviewed in: Hay and Sonenberg, 2004; Ma and 

Blenis, 2009; Yang et al., 2009; Oh and Jacinto, 2011; Malik et al., 2013). To cover 
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this spectrum of cellular processes, mTOR, a serine/threonine kinase from the 

phosphoinositide 3-kinase (PI3K)-related kinase family forms at least two multi-

domain complexes differing in rapamycin sensitivity, function, and molecular 

composition (Loewith et al., 2002; Foster and Toschi, 2009). Additional factors 

interact with the core subunits to increase regulation and localization, but only 

the main complexes are discussed below.  

mTORC1 is composed of the catalytic subunit mTOR, regulatory associated 

protein of TOR (Raptor), mammalian lethal with sec-13 protein 8 also referred to 

as G-protein β-subunit like protein (mLST8/GβL) and is further regulated with 
inhibitory partners proline-rich AKT substrate 40 kDa (PRAS40) and Dep-domain 

mTOR interacting protein (Deptor) (Chen and Kaiser, 2003; Hara et al., 2002; Kim 

et al., 2002; Sancak et al., 2007; Vander Haar et al., 2007; Peterson et al., 2009). 

Additionally, mTORC1 is rapamycin sensitive due to the binding of the drug 

rapamycin to FKBP12, which inhibits Raptor-bound mTOR, while having no 

direct effects on mTOR in complex 2 (mTORC2). mTORC2 is similarly composed 

of mTOR, mLST8/GβL, and inhibited by Deptor, but uniquely interacts with 

rapamycin-insensitive companion of TOR (Rictor), mammalian stress-activated 

protein kinase interacting protein 1 (mSIN1), and proteins observed with Rictor 

(Protor1 and 2) (Frias et al., 2006; Pearce et al., 2007; Sarbassov et al., 2004). The 

exact regulatory mechanisms impinging on mTORC2 are still under investigation, 

however mTORC2 is known to have a regulatory feedback relationship with 

mTORC1 (Guertin et al., 2006; Sarbassov et al., 2006). For these reasons we focus 

on the rapamycin-sensitive mTORC1, which plays a fundamental role in sensing 

the cellular environment to regulate global protein synthesis (Figure 1). 
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Figure 1-1. The mTORC1 signaling pathway. The essential mammalian target 
of rapamycin (mTOR) is a kinase forming two major complexes in the cell 
termed mTORC1 and mTORC2. The drug rapamycin, which binds FKBP12 to 
partially inhibit mTORC1 signaling, is widely studied for organismal benefits 
while mTORC2 is not directly affected. mTORC2 stimulates mTORC1 through 
AKT signaling creating a feedback between the two complexes, however these 
interactions are still under investigation. On the other hand, mTORC1 is well 
studied as a metabolic hub for the cell monitoring amino acids through 
interactions with Rags and the Ragulator complex, growth factors including 
insulin, energy levels through AMP-activate kinase (AMPK) and cellular stress 
by factors including regulated in development and DNA damage stress 
response 1 (REDD1). Many cell surface receptors regulate mTORC1 activity 
through activating or inhibiting the tuberous sclerosis complex (TSC), which 
acts as a GTP-ase for Rheb. Rheb in the GTP-bound state (sun-star) activates 
mTORC1 to increase anabolic processes including ribosome biogenesis and 
protein synthesis, while inhibiting the catabolic process of autophagy.  
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Regulation of mTORC1 by nutrient signaling and amino acids 

The activity of mTORC1 reflects the cellular decision for growth or 

survival. Several intra- and extracellular cues regulate mTORC1 through the 

tuberous sclerosis complex (TSC), a GTPase-activating complex composed of 

hamartin (TSC1), tuberin (TSC2), and a recently identified stabilizing component 

Tre2-Bub2-cdc16-(TBC)1 domain family member 7 (TBC1D7) (Dibble et al., 

2012). TSC works as a tumor suppressor through its inhibition of mTORC1’s 

activator Ras homolog enriched in brain (Rheb) (Inoki et al., 2005). Under 

optimal cellular conditions, TSC is disrupted allowing Rheb to accumulate to a 

GTP-bound active state that in turn activates mTORC1. Pathways that 

phosphorylate TSC2 to activate mTORC1 include PI3K insulin-signaling through 

AKT and epidermal growth factor signaling through ERK and RSK (Dan et al., 

2002; Ma et al., 2005). However, if energy levels are low or there is additional 

stress, TSC can be activated through AMPK, GSK3, REDD1, and also SIRT1 to 

inhibit mTORC1 (Brugarolas et al., 2004; Ghosh et al., 2010; Inoki et al., 2006; 

reviewed by: Rosner et al., 2008). This tight regulation allows cells to rapidly 

adjust mRNA translation based on cellular homeostasis.  

Amino acid abundance is specifically essential for mTORC1 signaling, as 

the building blocks of proteins, and when limited prevent efficient mTORC1 

activation (Hara et al., 1998; Long et al., 2005). The link between amino acids and 

mTORC1 was strengthened from the identification of Rag GTPases binding 

Raptor and redirecting mTORC1 to the lysosomal surface where Rheb is thought 

to reside (Sancak et al., 2008; Sancak et al., 2010). These interactions are stabilized by additional factors in a complex termed the ‘Ragulator’. Furthermore, 
lysosomal proteins at the lumen and amino acid transporters are also thought to 

play a role controlling mTORC1 activation (Heublein et al., 2010; Zoncu et al., 
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2011). Specific amino acids seem to have a larger effect over others (ex. Leucine) 

and a multitude of other factors are being uncovered for their interaction in this 

dynamic process (reviewed by: Jewell and Guan, 2013). Overall, with depletion in 

amino acids, nutrients, or energy levels, mTORC1 activity is inhibited (Figure 1). 

This necessity is in place due to the substantial amount of cellular materials and 

energy consumed during protein synthesis.  

mTORC1 signaling to promote cap-dependent synthesis & global elongation 

Upon activation, mTORC1 stimulates mRNA translation by 

phosphorylating two well-characterized downstream substrates: the eukaryotic 

initiation factor 4E (eIF4E)-binding proteins (4E-BP1, 2, and 3) and the ribosomal 

protein S6 kinases (S6K1 and 2) (reviewed by: Wang and Proud, 2006). 4EBP1 is 

a binding protein that inhibits the activity of eIF4E. Once phosphorylated 

(Thr37/46, Ser65, Thr70), 4EBP1 releases eIF4E allowing for it to recognize the 

5'-7-methyl-guanosine (5’m7G) cap-structure on mRNA (Yang et al., 2009). eIF4E 

then recruits scaffolding and helicase factors, eIF4G and eIF4A respectively, in 

order to complete the eIF4F complex. The completion of eIF4F on the mRNA 5’m7G cap-structure is both rate limiting in translation initiation and tightly 

regulated (reviewed by: Jackson et al., 2010). Once stabilized, eIF4F helps to 

recruit the small 40S ribosomal subunit to begin scanning for the translation start 

site. The other major downstream target of mTORC1, S6K1 is held inactive with 

the eIF3 translation initiation complex at the 5’ untranslated region (UTR) (Holz 

et al., 2005). Once activated, S6K1 promotes protein synthesis and cell growth 

presumably by phosphorylating multiple substrates involved in translational 

control including RPS6 (40S ribosomal protein subunit 6), eIF4B, elongation 

factor 2 kinase (eEF2K), S6K1 Aly-REF like target (SKAR), and Programmed Cell 
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Death protein 4 (PDCD4) (Richardson et al, 2004; Shahbazian et al., 2006; Wang 

et al., 2001; Yang et al., 2003). Through these interactions, downstream of 

mTORC1 signaling, these factors unite to recruit the 60S ribosomal subunit to 

proceed with protein synthesis. 

S6K1 phosphorylation of eIF4B allows for an increase in elongation as the 

initiation factor stimulates the helicase eIF4A to unwind secondary structures for 

proper decoding (Shahbazian et al., 2006). Protein synthesis proceeds through 

initiation to elongation as the ribosome moves one codon relative to the mRNA; 

this process requires elongation factors eEF1 and eEF2. eEF2 allows for 

translocation of the ribosome to promote the peptidyl-tRNA migration from the 

A-site to the P-site allowing newly synthesized polymers of amino acids to grow. 

The activation of eEF2 is regulated by eEF2K phosphorylation within its GTP-

binding domain (Wang et al., 2006). As stated above, S6K1 phosphorylates eEF2K 

inactivating the kinase and releasing eEF2 to promote elongation. The effects of 

mTORC1 activity in elongation and cap-independent synthesis are discussed 

further in the following sections. 

mTORC1 activation of ribosome biogenesis 

Ribosomes are composed of multiple ribosomal RNAs (rRNA) and, in 

mammals, seventy-nine distinct ribosomal proteins (RPs). Ribosome biogenesis 

requires RNA polymerase (pol) I to produce rRNAs, pol II for mRNAs encoding 

RPs, and pol III to produce 5S rRNA. mTORC1 monitors nutrient availability to 

promote ribosomal RNA synthesis and translation of RPs (reviewed by: Xiao and 

Grove, 2009). The transcription of ribosomal DNA is catalyzed by RNA pol I 

within the nucleolus, which requires at least three transcription factors for 

activity (TIF-1A, TIF-1B, and UBF). Upon phosphorylation at serine 44 (S44), TIF-
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1A interacts with TIF-1B to recruit pol I to rDNA promoters to form the 

transcriptional complex. By inactivating mTOR with rapamycin treatment or 

mutating S6K1, TIF-1A loses phosphorylation at S44 and the formation of the 

transcription initiation complex is lost (Tsang et al., 2003; Hannan et al., 2003). 

Rapamycin treatment and amino acid deprivation also cause TIF-1A to re-

localizes to the cytoplasm (Mayer et al., 2004; Li et al., 2006) and a loss of TIF-1B 

binding to rDNA promoter due to UBF dephosphorylation (Hannan et al., 2003).  

Studies have further identified mTORC1 regulation of pol III transcription 

and identified mTOR binding at both pol I and pol III promoters (Tsang et al., 

2010). Tsang et al used chromatin immunoprecipitation to identify mTOR as a 

chromatin-associated kinase binding the 45S rDNA promoter, 5S rRNA, and 

tRNAs under optimal growth conditions. This direct interaction allows for a rapid 

response to changes in cellular homeostasis at the transcriptional level to 

regulate global protein synthesis. It is intriguing to consider that mTORC1 may 

even play a conserved role in remodeling chromatin to prevent transcription, as 

observed in yeast (Tsang et al., 2003), but current roles for mTOR in 

transcription regulation are still under investigation. 

Ribosome biogenesis is further regulated at the translational level. RP 

transcripts contain a unique 5’ terminal oligo-pyrimidine (TOP) sequence 

regulated by mTORC1 activity. The 5’TOP allows for strict regulation followed by 

nutrients; under serum starvation, mRNAs are poorly translated and after 

stimulation with nutrient-rich conditions they associate in polysome fractions of 

sucrose gradients (Warner, 1999). Unlike the transcriptional regulation of 

ribosome biogenesis, which is affected by rapamycin treatment and S6K1, the translational regulation of the 5’TOP and TOP-like sequences rely on signaling 

through 4EBP to eIF4E (Hsieh et al., 2012; Thoreen et al., 2012).  
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Recent reports utilized polysome profiling with sequencing, Ribo-Seq 

(Ingolia et al., 2009), to monitor mTORC1 specific translation with or without 

mTOR inhibition by ATP-site inhibitors and found that TOP mRNAs were most 

affected. Furthermore, 4EBP deficient cells still show 5’TOP protein synthesis 

even when mTORC1 activity is completely inhibited by the drug Torin 1 (Thoreen 

et al., 2012) and abolishing P-S6rp by over-expressing a S6K1 negative mutant 

had no effect on 5’TOP mRNA translation (Tang et al., 2001). These recent 

advances in the field suggest eIF4E plays a key role in RP translation, but other 5’TOP binding factors may also be necessary (Damgaard and Lykke-Andersen, 

2011). It could be that S6K1 has a greater effect on the transcriptional aspects of 

ribosome biogenesis, while signaling through 4EBPs is necessary for RP mRNA 

translation. Either way, perturbations in mTORC1 activity can be detrimental not only to 5’TOP protein synthesis, but globally due to effects on the translational 

apparatus during ribosome biogenesis and throughout elongation. 

 

1.4 Ribosomes aid in nascent chain processing & quality control 

Upon assembly, the ribosome is an intricate macromolecular complex 

providing support as a platform for decoding each messenger RNA to give rise to 

a unique three dimensional polypeptide. The small subunit is positioned for 

deciphering the transcript, while the large subunit contains the active peptidyl-

transferase center for completing peptide bond formation. Variation in protein 

synthesis by codon usage, secondary structures, and additional binding partners 

allows for precise regulation at the ribosome (Kramer et al., 2009; Pechmann et 

al., 2013). The ribosome, as a ribonucleoprotein complex, also provides structure 

to initiate folding starting within the exit tunnel during elongation (Fedyukina 
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and Cavagnero, 2011). As the newly synthesized polypeptides are decoded, it is 

believed that they have already started on a pathway of intermediate steps to 

reach their native state (Levinthal, 1968). Though many components have been 

identified to interact or bind newly synthesized polypeptides, the direct co-

translational mechanisms have just started to be revealed. 

Nascent chains interact with ribosomal pausing for efficient folding 

Local discontinuous translation, ribosome pausing, temporally separates 

the translation of segments within the peptide chain and actively coordinates 

their co-translational regulation (Komar, 2009). The cellular environment 

coupled with the gradual emergence of the ribosome-bound nascent chains 

enforce conformational restraints on a proteins folding landscape that differ from 

historically isolated proteins stimulated to fold in vitro. In order to examine co-

translational folding, nascent chains are historically labeled to monitor their 

movements while bound to a stable ribosome. Recent advances using NMR 

spectroscopy have allowed for studying the conformation of a polypeptide chain 

by labeling a sequence isotopically in vivo and viewing different fractional lengths 

corresponding to the protein on an isotopically silent ribosome (Cabrita et al., 

2009). This approach generated a series of snapshots of the folding nascent 

chain, revealing the existence of partially folded ribosome-bound intermediates.  

To view global translational pausing of the ribosome in relation to co-

translational folding in vivo, Han et al developed a novel approach utilizing 

ribosome profiling and sequencing. Folding-associated co-translational 

sequencing, FactSeq, allowed them to monitor folding at single codon resolution. 

By comparing features of RPFs (ribosome protected fragment) distribution and 

density along mRNA sequences of interest, they provided direct evidence of 
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domain-wise measurements for the efficiency of folding (Han et al., 2012; Liu et 

al., 2012). However, folding is a complex task requiring further regulation of 

aberrant mRNAs, mistranslated polypeptides, and misfolded species. 

Ribosome associated chaperones aid in co-translational folding 

As newly synthesized polypeptides emerge from the ribosome exit tunnel 

they allow their exposed amino-terminus to interact within the cellular 

environment. Though most small cytosolic proteins are able to assemble into the 

correct confirmation, the majority of proteins require further assistance to 

acquire their distinctive structure either by a co- or post-translational 

mechanism. In eukaryotes, cytosolic chaperones facilitate both mechanisms by 

chaperones linked to protein synthesis (CLIPS) and also heat shock proteins 

induced during cell stress to maintain proteostasis.   

CLIPS directly associate with the translational apparatus during optimal 

conditions. The exit tunnel of the ribosome provides a platform for newly 

synthesized polypeptides to interact with rRNA and CLIP factors. These 

chaperones provide co-translational interactions to sort, fold, and modify the 

exposed amino acid residues (Kramer et al., 2009; Hartl and Hayer-Hartl, 2009). 

The ribosome-associated complex (RAC) is a heterodimeric chaperone complex 

of the CLIPS network that plays a functional role with co-translational protein 

folding without directly associating with the nascent chains. RAC is composed of 

a J-domain HSP40- and HSP70-based system. Eukaryotic RACs directly bind to 

ribosomes through the J-domain proteins and co-chaperones stimulate the 

ATPase activity of their CLIPS HSP70 homologs. Recent work identified that 

mRAC specifically interacts with HSP70 stimulating ATPase activities, but not 

with the 85% identical homolog HSC70 (Jaiswal et al., 2011). The ability to bind 



 

 13 

ATP allows a regulatory mechanism to monitor cellular energy status for direct 

chaperone coupling with the ribosome. When energy sources are depleted, the 

chaperones are no longer recruited to the translational machinery and likely 

assist in additional protein quality control mechanisms. In addition to RAC, an 

essential heterodimeric nascent polypeptide-associated complex (NAC) is also 

present at the exit tunnel directly contacting the nascent polypeptides during 

non-stress conditions (Rospert et al., 2002; Kirstein-Miles et al., 2013). However, 

when proteostasis is imbalanced, NAC also relocalizes to aggregates playing a 

typical chaperone role, which also leads to a loss of the translational capacity.  

There has been recent evidence that the ribosome requires these 

chaperones not only to ensure proper folding, but for maintaining global protein 

synthesis. With an imbalance in proteostasis, caused by heat shock or induced 

protein misfolding, there is translational pausing at an early elongation stage. 

This stalling of the ribosomes appears to be regulated by HSP70 in cell culture 

studies (Liu et al., 2012; Shalgi et al., 2012). HSP70s are central organizers of the 

chaperone network, directing subsets of proteins to additional chaperonins 

including TRiC/CCT for coupled folding or HSP90 for conformational regulation 

(Wegele et al., 2004; Yam et al., 2008). Interestingly, hyperactive mTORC1 

signaling inhibits paused translation after stress and attenuates the stress-

induced translation of HSP70 required for cell recovery (Sun et al., 2011; Conn 

and Qian, 2011). The inhibition of cap-independent hsp70 translation prevents 

the cytosolic stress response and eventually causes cell death. Therefore, HSP70 

is key component of the molecular chaperone and proteostasis networks, 

essential for refolding polypeptides as well as playing a novel role in stalling 

protein synthesis during proteotoxic stress (Liu et al., 2012).  
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Ribosome associated factors monitor protein quality for co-translational degradation 

 Aberrant mRNAs and faulty ribosome decoding can also lead to defective 

polypeptide products unable to reach functional native structures regardless of 

chaperone assistance. It has been estimated and debated that as high as 30% of 

all newly synthesized polypeptides are targeted for degradation as defective 

ribosome products (DRiPs) by UPS (Schubert et al., 2000; Qian et al., 2005; 

Yewdell and Nicchitta, 2006). Of polypeptides targeted for degradation, 

approximately 50% are estimated to be degraded by a co-translation mechanism 

monitored using elegant reporter constructs for stability (Turner and 

Varshavsky, 2000). The extent of co-translational degradation has recently been 

re-evaluated by monitoring ubiquitin (Ub) on a proportion of nascent 

polypeptides in vivo with a drastic range in Ub levels on ribosome-bound 

polypeptides with levels as low as 1.1% in S. cerevisiae and up to 15% in 

mammalian cell culture (Duttler et al., 2013; Wang et al., 2013). 

 Ribosome sedimentation allowed both groups to sequester polypeptides 

at the ribosome that could then be monitored by either a polyUb-affinity capture 

after radioactive pulse or biotin-conjugating puromycin label to evaluate 

peptides targeted for degradation, both co- and post-translation. Wang et al 

determined both cytosolic and ER-bound polysomes target newly synthesized 

polypeptides with Ub. In addition, using an in vitro assay, they showed both 

stalled and active translation complexes can accumulate Ub, with 2/3 from 

actively translating ribosomes. Both groups evaluated how co-translation folding 

mechanism influence co-translational degradation. Indeed blocking HSP70 or 

ribosome bound NAC components induced ribosome stalling and enhanced Ub at 

nascent peptides by 50% in human cell lines. Duttler et al specifically looked at 

mRNA features to identify particular structures that may be targeted for 



 

 15 

degradation. They found that co-translational Ub preferentially targets longer 

peptides that are derived from highly expressed and rapidly translating mRNAs. 

These results highlight the cooperation of co-translational folding for quality 

control at the ribosome that can lead to ubiquitylation for misfolded and 

erroneous nascent peptides, but what chain of events lead to their degradation?      

 Co-translational degradation processes target defective mRNA and 

aborted translation. Utilizing non-stop mRNA reporter proteins in a screen 

allowed for the identification of multiple components required for the non-stop 

mRNA decay pathway (Wilson et al., 2007). One of these candidates, 

Listerin/LTN1, was further characterized to determine its role as a RING-domain-

type E3 ubiquitin ligase that associates with ribosomes for quality control of non-

stop mRNAs (Bengston and Joazeiro, 2010). Ltn1 was further identified as a 

component of a ribosome quality control complex (RQC) recently identified to 

stably interact with the 60S ribosomal subunit to trigger degradation of 

polypeptides during stalled synthesis (Brandman et al., 2012). Components of 

RQC and localization with the ribosomes were identified by immuno-

precipitation, mass spec, and electron microscopy. Single and double mutants of 

RQC components in S. cerevisiae further elucidated their unique roles, specifically 

identifying Tae2 for monitoring translation-stress and signaling to the heat shock 

factor 1 (HSF1). These recent reports place interconnections of the proteostasis 

network from synthesis, to maintenance, and degradation all beginning at the 

ribosome even for eliciting the cellular stress response (Figure 2).      
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Figure 1-2. Protein quality control at the ribosome. Upper: mTORC1 
signaling increase translation initiation and elongation for accurate protein 
synthesis. Disruptions is mTORC1 activity can impair accurate codon selection 
altering translation fidelity. Under stress conditions, mTORC1 activity is 
decreased allowing for selective translation potentially by unique mRNA 
selection and initiation mechanisms. Middle: Chaperones linked to protein 
synthesis included the ribosome-associated complex (RAC) and the nascent 
polypeptide-associated complex (NAC), either of which can utilize or interact 
with HSP70 to promote accurate protein folding. Under stress, these complexes 
dissociate from the ribosome to refold proteins and clean-up protein 
aggregates. The loss of chaperones associated with the ribosomes, creates an 
early elongation pause as the newly synthesized polypeptide emerges into the 
cellular environment without assistants. Lower: Aberrant mRNAs can induce 
ribosome stalling and slipping during elongation. These ribosomes are targeted 
by the ribosome quality control complex (RQC), where LTN1 acts as an E3 
ligase to ubiquinate the stalled polypeptide chain for degradation. Under 
stress, there is an increase is nascent chain ubiquitination, degrading the 
targeted polypeptides at the ribosome. The RQC complex component Tae2 also 
signals to the stress sensor HSF1 to induce the stress response and promote 
cell recovery.   
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1.5 Elongation speeds affect translation fidelity  

Transient pausing or dwelling of ribosomes can affect a variety of co-

translational processes, including protein targeting, folding, and potentially 

degradation as discussed above. Many have reviewed how codon usage controls 

ribosome speed, fine-tuning translation to increase efficiency and accuracy of 

protein synthesis (Gingold and Pilpel, 2011). Elongation rates in eukaryotes are 

thought to be globally constant under optimal conditions with ~3-8 amino acids 

translated per second (Mathews et al., 2000). However, the overall speed of 

translation relies on initiation, elongation, and termination with the general 

agreement that ‘less leads to more’. It has been shown that slowing translation 

speeds using mutant ribosomes in E. Coli enhanced eukaryotic protein folding 

efficiency, leading to higher yields of native recombinant proteins (Siller et al., 

2010). The consensus is that faster elongation will create greater conformational 

possibilities for the emerging polypeptides that may disrupt chaperone 

assistance, but how does the ribosome know when to slow down and what 

regulatory elements are in place for this controlled synthesis to prevent stalling?  

Codon usage alters ribosomal pausing for efficient folding 

Varying codon placement along the mRNA not only varies rates of 

polypeptide emergence from the ribosome, but influences the capacity to fold 

toward the native state (O’Brien et al., 2012; Ciryam et al., 2013). Spencer et al. 

derived a formula based on predicting relative codon translation speeds of E. Coli 

tRNA information using values from measured rates of individual codons. To 

measure newly synthesized elongation rates they used pulse-chase analyses in 

vivo and showed that sequence engineering, based on their predictions, 

modulates translation rates in a manner not only based on codon usage 
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frequency, but more so on tRNA availability and wobble content for proper 

folding of the encoded polypeptide (Spencer et al., 2012). If they modulated their 

designed sequence to accelerate translation, they correspondingly saw a 

decrease in folding yields suggesting elongation rates are critical for a protein to 

reach the accurate confirmation. Their equation generates predicted translation 

speed profiles for any mRNA, in any organism, with known tRNA gene content. 

These findings further support a model where each protein follows a particular 

pathway, to fold accurately as the correct codon pairs to influence the nascent 

chain emerging from the ribosome. 

Translation inhibition to increase protein function and maintenance 

 Inducing chaperones in cells or increasing the activity of the UPS for 

proper degradation can partially alleviate abnormal proteins that accumulate 

within cells, but the goal is to prevent them. Slowing down translation can 

increase accurate folding; furthermore, a partial inhibition of translation can 

improve folding of mutant proteins (Meriin et al., 2012). Using emetine in a dose-

dependent manner creates a mild translation inhibition of ~50% with a 

significant decrease in aggresome formation, the buildup of newly synthesized 

aberrant polypeptides. These effects promoted folding of specific polypeptides 

including disease-related mutants. CFTR-F508∆ disrupts protein folding and 

trafficking, ultimately leading to cystic fibrosis. A dose-dependent decrease in 

both translation initiation and elongation lead to the corresponding increase in 

CFTR-F508∆ folding and activity (Meriin et al., 2012).  

Inhibiting specific translation factors has similar benefits in organisms. 

Knocking-down eIF4G levels decreases global cap-dependent protein synthesis in 

a mechanism to modulate the rate of translation in response to environmental 
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cues in C. elegans (Rogers et al., 2011). Interestingly, longer mRNAs had a relative 

increase in translation efficiency even though translation was decreased. The 

proteome profiles also shifted to genes known to respond to stress and enhance 

longevity. Similar increases in stress resistance were observed by knocking down 

other translation factors including eIF4E, S6K, and PABPs (Pan et al., 2007). 

Stress resistance is closely linked with molecular chaperones and degradation by 

the UPS and cell autophagy. Each of these pathways is critical for protein quality 

control in the proteostasis network. Together, it seems that inhibition of 

translation reprograms cells for somatic maintenance versus cell growth and 

proliferation. 

mTORC1 signaling regulates translation elongation effecting protein quality  

mTORC1 activity directly increases global protein synthesis through 

ribosome biogenesis as well as eIF4E and S6K signaling. Having considered that 

translation initiation and elongation may influence the quality of products, we 

recently monitored protein synthesis through hyperactive mTORC1 signaling 

(Conn and Qian, 2013). An increase in mTORC1 directly increased global newly 

synthesized polypeptides, as expected, but when looking directly at reporters 

there was less stable proteins present. Inhibiting the UPS showed an 

accumulation of newly synthesized proteins within the insoluble fraction of 

lysates, suggesting an increase in protein aggregation or rather a decrease in 

protein quality. To monitor translation fidelity, we created a reporter system 

monitoring mistranslation and read-through errors. Hyperactive mTORC1 lead to 

an increase in both errors, specifically through S6K downstream signaling. A 

decrease in translation fidelity is often linked to alterations in elongation rates, 

which may influence co-translational folding, pausing, modifications, and/or 
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interactions with binding partners creating an increase in erroneous 

polypeptides. Using ribosome sedimentation and the translation inhibitor 

harringtonin, we took snap shots of the polysome run-off to monitor elongation 

rates. Interestingly, an increase in mTORC1 signaling lead to faster elongation 

that could be rescued by partial inhibition of mTORC1 with rapamycin treatment. 

Our results show the drastic effects translation, specifically elongation rates, can 

have on protein quality reinstating that consensus that ‘less can lead to more’.  
 

1.6 Pathway integration for proteostasis and disease prevention 

The insulin/insulin-like signaling pathway has been noted for linking 

protein conformational diseases to the aging process (Cohen and Dillin, 2008). 

Within this pathway lies mTORC1, which monitors the cellular environment to 

proceed with the energetically demanding process of protein synthesis (Ma and Blenis, 2009). Due to mTORC1’s essential role in each step of translating mRNA to 

functional protein, an assortment of defects in the mTORC1 signaling pathway 

can lead to abundant proliferation, tumor formation, and protein aggregate 

diseases (Averous and Proud, 2006; Dann et al., 2007; Reiling and Sabatini, 2006; 

Lu et al., 2010). Furthermore, a decrease in TORC1 signaling mirrors that of a 

decrease in protein synthesis; leading to stress resistance and an increase in 

lifespan in nearly all model organisms (Syntichaki et al., 2007; Cohen et al., 2009; 

Harrison et al., 2009; Selman et al., 2009; Stanfel et al., 2009; Zid et al., 2009). 

Despite the overwhelming experimental evidence, how a reduction in protein 

synthesis extends stress resistance and lifespan has remained elusive. 

It has been postulated that a decrease in translation is beneficial merely 

because it relieves stress on the folding and degradation machineries necessary 



 

 21 

to maintain proteostasis. This situation results in "spare" proteolytic and 

chaperone function contributing to the observed stress resistance in organisms 

(Hipkiss, 2008). However, with recent advances in the field, it is now apparent 

that a decrease in translation additionally allows for accurate binding and 

maintenance during co-translational events to promote co-translational quality 

control. This includes regulated pauses between codon sequences and the 

ribosome, folding by the molecular chaperone network and the stalling HSP70s 

absence can induce, targeting nascent peptides with modifications, and clearance 

of aberrant messages to promote proteostasis (Spencer et al., 2012; Liu et al., 

2012; Siller et al., 2010; Kirstein-Miles et al., 2013; Duttler et al., 2013; Brandman 

et al., 2012). Many individual studies also report that these proteostasis 

mechanisms decline with age, due to absent modifications or misreadings 

producing defective forms of the proteins necessary for maintenance (Koga et al., 

2011). The steps leading to these errors and eventually the overloading of the 

proteostasis network remain to be clarified (Morimoto and Cuervo, 2009), but 

with recent advances in the field we can likely state they may occur pre- or at 

least co-translation at the ribosome.  

The ribosome is now viewed as a hub for quality control attributing to 

pausing and co-translational regulation for an increase in accurate mRNA 

translation (Zhang et al., 2009; Siller et al., 2010; Tuller et al., 2010; Pechmann et 

al., 2013). In eukaryotes, the rate limiting step of protein synthesis is mainly 

determined by the translation initiation complex eIF4F which is partially 

regulated downstream of mTORC1 signaling. With an increase in TOR activity, 

there is activation of translation initiation and elongation of the newly 

synthesized peptides (Browne and Proud, 2004; Hay, 2004). This leads to an 

increase in the recruitment of ribosomes to mRNA and translocation by eEF2 
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through S6K signaling, which may skew pausing and co-translational folding 

required for translation fidelity (Conn and Qian, 2013). Without efficient 

processing, a cellular burden of erroneously synthesized polypeptides could 

eventually saturate the chaperone and proteolytic pathways as hypothesized. 

Furthermore, hyperactive mTORC1 attenuates cap-independent synthesis 

required for the inducible molecular chaperone, HSP70, which is essential for cell 

maintenance under stress (Sun et al., 2011; Liu et al., 2012). In time the 

proteostasis machineries also may become crippled with translational errors, promoting the projected ‘error catastrophe’ and an acceleration of 
conformational diseases during aging. To this end, are we left to decrease 

translation, target the essential pathways leading to the dys-homeostasis, target 

the exact factors at unique stages of translation, or somehow all of the above?  

Previously, our lab has shown that a moderate accumulation of misfolded 

proteins, and thus a slight reduction of chaperone availability, enhanced mTORC1 

signaling (Qian et al., 2010). In addition, we demonstrated that molecular 

chaperones also regulate mTORC1 assembly in coordination with nutrient 

availability. These results established that mTORC1 links protein translation with 

protein quality control (Qian et al., 2010; Conn and Qian, 2011). This also creates a ‘chicken and egg’ dilemma; does mTORC1 signaling create an accumulation of 

misfolded proteins with age or do misfolded proteins somehow enhance 

mTORC1, decreasing translation fidelity? We can imagine that during aging 

proteins will eventually misfold with a decrease in the chaperone network, but 

would this derail mTORC1 signaling as well? These insights further strengthen 

the connection between mTORC1 signaling and its role in maintaining 

proteostasis, but raise more concerns regarding the role(s) mTORC1 plays in the 
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balance. Advances in understanding and monitoring these mechanisms with one 

another will help to untangle protein synthesis within the proteostasis network. 

 

1.7 Conclusions & Outlook 

Combining historical methods including sucrose gradients, pulse analysis, 

and affinity purification with the wealth of bioinformatics data available has 

allowed for growth in understanding proteostasis. The ability to utilize genome-

wide analysis to predict and monitor translation at single-nucleotide resolution 

has opened the doors to studying various degrees of translational regulation. The 

historical two-step processed models of folding and denaturing are being 

replaced with kinetic formulas accessing ribosome dwell-time and wobble-codon 

selection. Specifically, Ribo-Seq has become vital allowing measurements for 

proteomics to determine the exact sequence of ribosome pausing and coupling 

this technology with domain specific antibodies or affinity purification for further 

identification of co-translational processing in vivo.  

The approaches touched upon here provide novel insights into individual 

and global protein synthesis regulation and have opened a new field of ribosome 

quality control. Monitoring co-translational regulation with these methods will 

likely shed light on physiological as well as pathological conditions once adapted 

and utilized widely. Additional in vivo research is necessary to understand which 

mRNA sequences or polypeptides require further assistance, what factors bind 

for assistance, and when this assistance occurs physiologically during 

development and disease-related states for future drug targeting. 
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CHAPTER 2 

 

PI3K-mTORC1 Attenuates Stress Response by Inhibiting Cap-independent 

Hsp70 Translation 

 

 

2.1 Abstract 

Protein synthesis is a key regulated cellular process that links nutrient 

availability and organismal growth. It has long been known that some cellular 

proteins continue to be synthesized under conditions where global translation is 

severely compromised. One prominent example is the selective translation of 

heat shock proteins (Hsps) under stress conditions. Although the transcriptional 

regulation of Hsp genes has been well established, neither the specific 

translation-promoting features nor the regulatory mechanism of the translation 

machinery have been clearly defined. Here we show that the stress-induced 

preferential translation of Hsp70 mRNA is negatively regulated by PI3K-mTORC1 

signaling. Despite the transcriptional up-regulation, the translation of Hsp70 

mRNA is deficient in cells lacking tuberous sclerosis complex 2. Conversely, 

Hsp70 synthesis is enhanced under the reduced PI3K-mTORC1 signaling. We 

found that the 5’ UTR of Hsp70 mRNA contributes to cap-independent translation 

This work was submitted August 2010 and first published on December 22, 2010, 
doi:10.1074/jbc.M110. 172882. The manuscript was published as Sun J*, Conn CS*, 
Han Y, Yeung V and Qian S-B. PI3K-mTORC1 attenuates stress response by 

inhibiting cap-independent Hsp70 translation. J. Biol. Chem. 2011 Feb 25; 286, 
6791–6800. Minor modifications have been made for reprint here. *Both authors 
contributed equally to this work. 
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without exhibiting typical features of internal ribosome entry site. Our findings 

imply a plausible mechanism for how persistent PI3K-mTORC1 signaling favors 

the development of age-related pathologies by attenuating stress resistance. 

 

2.2 Introduction 

The eukaryotic translation machinery is a tightly controlled system that 

regulates protein synthesis based on the availability of growth factors, nutrients, 

and glucose (Ma and Blenis, 2009; Holick and Sonenberg, 2005; Proud, 2007). A 

key pathway that integrates and responds to environmental cues involves the 

mammalian target of rapamycin (mTOR), a member of the PIKK family of protein 

kinase conserved from yeast to human (Wullschleger et al., 2006; Sarbassov et al., 

2005; Inoki and Guan; 2006). Recent studies revealed the existence of two mTOR 

complexes, named mTORC1 and mTORC2, which differ in molecular composition 

and cellular functions (Loewith et al., 2002; Kim et al., 2002; Sarbassov et al., 

2004). Insulin and insulin-like growth factors are major mTORC1 activators that 

operate through phosphoinositide 3-kinase (PI3K) and the protein kinase AKT 

(Hara et al., 2002). Conversely, mTORC1 activity is suppressed by a variety of 

stress conditions including limited nutrients, hypoxia, and DNA damage (Hay and 

Sonenberg, 2004). 

Activation of mTORC1 positively stimulates cap-dependent mRNA 

translation via its downstream substrates S6Ks and 4E-BPs (Loewith et al., 2002; 

Kim et al., 2002; Hara et al., 2002; Chou and Blenis, 1995). S6K1 phosphorylation 

promotes protein synthesis and cell growth presumably by phosphorylating 

multiple substrates (e.g. ribosomal protein S6, translational regulators eIF4B and 

PDCD4) (Ma and Blenis, 2009; Dann et al., 2007). Phosphorylation of 4E-BP1 
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results in its dissociation from eIF4E, promoting assembly of the eIF4F complex 

(Gingras et al, 1999). The recruitment of the eIF4F complex to the mRNA 5’ cap 
structure is both rate-limiting in translation initiation and is tightly regulated 

(Jackson et al, 2010). Translation consumes a substantial amount of cellular 

material and energy. It is thus not surprising that global translation is reduced in 

response to most, if not all, types of cellular stress (Holick and Sonenberg, 2005). 

However, some cellular proteins continue to be synthesized under conditions 

where global translation is severely compromised, such as during virus infection, 

stress, and mitosis (Qin and Sarnow, 2004; Clemens, 2001). 

Heat shock proteins (Hsps) are known to protect cells against a wide 

variety of stresses (McClellan et al., 2005; Parsell and Lindquist, 1993; Bukau et 

al., 2006). Therefore, the regulation of Hsp production is crucial for cell survival. 

In mammalian cells, heat shock transcription factor 1 (HSF1) is the major 

transcription regulator of Hsp gene expression (Wu, 1995; Morimoto, 1998; Hahn 

et al., 2004). HSF1 binding to the heat shock elements results in a rapid increase 

in the rate of transcription (up to ~200-fold) (Fuda et al., 2009). In addition to 

the up-regulation of Hsp70 gene transcription, the Hsp70 mRNA is also robustly 

translated under stress conditions despite the slowing of global protein synthesis 

(Panniers, 1994; Lindquist and Craig, 1988). However, neither the specific 

translation-promoting features of the Hsp70 mRNA nor the regulatory 

mechanism of the translation machinery have been clearly defined.  

Persistent mTORC1 activation is associated with diverse pathologies such 

as inflammation, cancer, and diabetes (Inoki et al., 2005). Conversely, inhibition 

of mTORC1 prolongs lifespan and increases quality of life by reducing the 

incidence of age-related pathologies (Vellai et al., 2003; Kapahi et al, 2004; 

Kaeberlein et al, 2005; Harrison et al., 2009). It has been suggested that the 
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general reduction of protein synthesis lowers the cellular load of erroneously 

synthesized polypeptides. This situation results in “spare” chaperone function, 
which may contribute to the observed increase in organism stress resistance and 

lifespan (Hipkiss, 2006). In contrast, constitutive active mTOR signaling might 

increase the burden of chaperone molecules by producing more misfolded 

proteins. Consistent with this notion, a recent study reported that hyperactive 

mTOR signaling triggered the unfolded protein response in the endoplasmic 

reticulum (Ozcan et al., 2008). However, it is unclear whether unrestrained 

mTORC1 activation also triggers cytosolic stress response. 

Here we report our findings that the stress-induced Hsp70 mRNA 

translation is deficient in cells with hyperactive mTORC1 activities. Interestingly, although the 5’ UTR of Hsp70 mRNA contributes to the cap-independent 

translation, it does not behave as the viral IRES. Our results not only reveal novel 

aspects of cap-independent translation, but also imply a plausible mechanism 

about how persistent PI3K-mTORC1 signaling favors the development of age-

related pathologies by attenuating stress resistance. 

 

2.3 Results  

TSC2 Null Cells Are Defective in Heat Shock-induced Hsp70 Expression 

TSC2 serves as a GAP for the small GTPase Rheb, which activates mTORC1 

(Inoki et al., 2002). Cells lacking a functional TSC-Rheb-GAP exhibit constitutive 

activation of mTORC1 signaling, which is not increased further by insulin. To test 

whether TSC deficiency activates cytosolic stress response, we used a luciferase 

reporter to evaluate the transcriptional activity of HSF1 in TSC2-/- MEFs after 

heat shock (Qian et al., 2006). After a 1 h incubation at 42 °C, TSC2-/- MEFs 
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exhibited significantly higher HSF1 activity than did TSC2+/+ MEFs (Fig. 1A). 

This was not due to the general increase of luciferase protein synthesis, because 

the control plasmid (CMV-Luc) showed no significant increase in luciferase 

expression in TSC2-/- MEFs (Fig. 1B). 

We next examined protein levels of molecular chaperones in both MEFs 

after heat shock using immunoblotting. As expected, TSC2+/+ MEFs exhibited a 

robust induction of Hsp70 and Hsp25 after heat shock (Fig. 1C). To our surprise, 

there was no Hsp70 induction in cells lacking the Tsc2 gene. A closer look at the 

overexposed immunoblotting revealed that Hsp70 was only detectable shortly 

after heat shock with little accumulation in TSC2-/- MEFs. This deficiency was not 

due to the lack of Hsp70 transcription, because the Hsp70 mRNA levels were 

comparable in both MEFs as measured by real time PCR (supplemental Fig. S1). 

Adding proteasome inhibitor MG132 did not rescue the Hsp70 expression in 

TSC2-/- MEFs (supplemental Fig. S2), excluding the possibility that there is an 

accelerated Hsp70 degradation in these cells. Further supporting this notion, 

ectopic expression of Hsp70 by plasmid showed no difference in both MEFs (Fig. 

1D). Notably, the Hsp70 gene was directly cloned from TSC2-/- MEF cells, 

excluding the possibility that there are mutations in the endogenous Hsp70 gene. 

To further substantiate the role of TSC2 in stress-induced Hsp70 expression, we 

performed siRNA-mediated TSC2 knockdown in HeLa cells. Despite the high 

basal levels of Hsp70 in HeLa cells, TSC2 knockdown largely blunted the heat 

shock-induced Hsp70 expression (supplemental Fig. S3). Therefore, the lack of 

heat shock-induced Hsp70 expression in TSC2-/- MEFs is likely due to the 

deficiency of translational regulation. 
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Figure 2-1. TSC2 null cells are defective in heat shock-induced Hsp70 

expression. A, TSC2 wild type (WT) and knock-out (KO) cells were heat 
shocked at 42 °C for 1 h and recovered at 37 °C for the times as indicated. HSF1 
activity was measured by using a F-Luc reporter driven by the HspA1a 
promoter. The experiments were repeated 5 times. Error bar, S.E. *, p <0.01; **, p <0.001 (Student’s t test, two tails). B, general protein synthesis in cells as A 
was determined by using a control F-Luc reporter driven by the CMV 
promoter. The experiments were repeated 5 times. C, molecular chaperone 
levels in cells as A were determined by immunoblotting analysis using the 
antibodies as indicated. D, TSC2 WT and TSC2 KO cells were transfected with 
plasmids encoding Hsp70 with different doses (0, 0.1, 0.5, and 2.5 µg) in a 6-
well plate. 24 h after transfection, whole cell lysates were immunoblotted with 
antibodies as indicated. 
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Figure 2-S1. TSC2 null cells have normal Hsp70 mRNA levels after heat 

shock. A, TSC2 wild type (WT) and knockout (KO) cells were heat shocked at 
42°C for 1h followed by recovery at 37°C for various times as indicated. Total 
cellular RNA was extracted followed by reversed-transcription and real-time 
PCR for Hsp70. B, TSC2 wild type (WT) and knockout (KO) cells were heat 
shocked at 42°C for 1h followed by recovery at 37°C in the presence of 
actinomycin D (5 μg/ml) for various times as indicated. Total cellular RNA was 
extracted followed by reversed-transcription and real-time PCR for Hsp70. 

Figure 2-S2. Deficient Hsp70 expression in TSC2 null cells is not due to 

accelerated proteasome degradation. TSC2 wild type (WT) and knockout 
(KO) cells incubated in the absence or presence of 20 μM MG132 were 
subjected to heat shocked at 42°C for 1 h followed by recovery at 37°C for 4 h. 
Whole cell lysates were used for immunoblotting of Hsp70. 
 

Figure 2-S3. Effects of TSC2 knockdown on Hsp70 expression in HeLa cells. 

A, HeLa cells were transfected with siRNA as indicated. 48 h of siRNA 
transfection, samples were collected for immunoblotting for S6K1 
phosphorylation. B, siRNA-transfected cells were subject to 1 h heat shock at 
42°C followed by recovery at 37°C. Immunoblotting was performed using 
antibodies as indicated. 
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Deficient Hsp70 mRNA Translation in TSC2 Null Cells after Heat Shock 

To examine the translational status of Hsp70 mRNA before and after heat 

shock in both MEFs, we performed ribosome sedimentation analysis. Actively 

translated mRNAs are distributed to polysomes, whereas inactive mRNAs are 

associated with monosomes (Johannes and Sarnow, 1998). Under normal growth 

conditions, TSC2-/- MEFs exhibited much more polysome formation than the 

wild type, with a corresponding decrease of monosome peak (Fig. 2, A and B). 

This feature is consistent with the increased cap-dependent mRNA translation in 

cells lacking TSC2. To analyze the polysome localization of specific mRNAs, we 

performed qPCR for every ribosome fraction. As expected, β-actin mRNA was 

mainly localized in the heavier polysome fractions of both MEFs (Fig. 2, A and B, 

grey bar). Hsp70 mRNA was barely detectable in ribosome fractions because the 

basal levels were low in both cells under normal conditions (Fig. 2, A and B, black 

bar). 

To investigate the translational status of stress-induced Hsp70 mRNA, we 

applied heat shock to both TSC2+/+ and TSC2-/- MEFs. As expected, the 

polysome formation was largely suppressed in both cell types with higher 

sensitivity in TSC2-/- MEFs. In line with the efficient Hsp70 mRNA translation 

after heat shock (Panniers, 1994; Klemenz et al., 1985), there was an enrichment 

of Hsp70 message in polysome fractions of wild type MEFs. However, the 

ribosome fractions from TSC2-/- MEFs showed only basal levels of Hsp70 mRNA, 

despite the total amount of the message was comparable in both MEFs (Fig. 2, 

triangle). Thus, Hsp70 mRNA translation was largely deficient in TSC2 null cells, 

despite up-regulation of HSF1 transcriptional activity after heat shock. 
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Figure 2-2. Deficient Hsp70 mRNA translation in TSC2 null cells after heat 

shock. A, ribosome profiling of TSC2 WT cells before and after heat shock. Cell 
lysates were sedimented on a 15–45% sucrose gradient followed by 
fractionation. The positions of the 40S, 60S, 80S, and polysomal peaks were 
indicated. Total RNA was extracted from each fraction and subject to RT-PCR 
and qPCR analysis. Hsp70 RT-PCR results were shown in the middle without 
concentration normalization. The Hsp70 mRNA levels in whole cell lysates 
before sucrose gradient are indicated by the triangle. qPCR results of Hsp70 (black bar) and β-actin (grey bar) were normalized based on RNA 
concentration of each fraction. The highest level was arbitrarily set as 100 and 
the relative mRNA levels were presented in all polysome fractions. B, ribosome 
profiling of TSC2 KO cells before and after heat shock. RT-PCR and qPCR were 
performed as described under A. 
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PI3K-mTORC1 Negatively Regulates Hsp70 mRNA Translation 

Having found the unexpected deficiency of Hsp70 mRNA translation in 

cells lacking TSC2, we were interested in assessing whether altered mTORC1 

signaling in general affects the translation of Hsp70 mRNA. We first transfected 

cells with plasmids encoding Rheb, a direct activator of mTORC1 (Yang et al., 

2006; Avruch et al, 2006). Indeed, Rheb overexpression enhanced mTORC1 

signaling as evidenced by increased phosphorylation of S6K1 at Thr389 

(supplemental Fig. S4A). Consistent with TSC2 null MEFs, cells overexpressing 

Rheb showed a significant reduction in Hsp70 expression after heat shock as 

compared with cells overexpressing β-Gal (Fig. 3A). The Hsp70 transcript levels 

were indistinguishable in these cells, suggesting that hyperactive mTORC1 

signaling inhibits stress-induced Hsp70 mRNA translation. 

We next tested whether decreasing mTORC1 signaling would augment the 

heat shock-induced Hsp70 mRNA translation. mTORC1 activity was reduced in 

cells via siRNA-mediated knockdown of Raptor, a defining component of 

mTORC1 (Kim et al., 2002). Cells with Raptor knockdown exhibited 90% 

reduction of Raptor levels and consequently lower levels of S6K1 

phosphorylation as compared with cells transfected with control siRNA 

(supplemental Fig. S4B). As shown in Fig. 3B, cells with Raptor knockdown 

demonstrated a much higher Hsp70 induction after heat shock. In contrast to 

Raptor knockdown, we observed no difference in heat shock-induced Hsp70 

expression in cells with Rictor knockdown that specifically reduces the mTORC2 

signaling (supplemental Fig. S4C). 

Rapamycin is a potent mTORC1 inhibitor and can achieve complete 

attenuation of S6K1 phosphorylation within 5 min of rapamycin treatment (Tee 

and Blenis, 2005). We expected that the presence of rapamycin should increase 
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the heat shock-induced Hsp70 expression by suppressing mTORC1 signaling. 

However, the presence of rapamycin only caused a marginal increase of Hsp70 

expression with a slightly faster induction (Fig. 3C). Prolonged rapamycin 

treatment had little effects in promoting Hsp70 induction (supplemental Fig. S5). 

In contrast to rapamycin, inhibition of PI3K by LY294002 was able to augment 

Hsp70 expression after heat shock (Fig. 3D). The discrepancy between rapamycin 

and LY294002 suggests the existence of rapamycin-resistant mTORC1 function 

(Choo et al., 2008; Thoreen et al., 2009). Taken together, PI3K-mTORC1 signaling 

plays a negative role in the regulation of Hsp70 mRNA translation. 

 

Figure 2-S4. PI3K-mTORC1 negatively regulates Hsp70 mRNA translation. 

A, TSC2 WT cells were transfected with plasmids encoding β-Gal or Rheb. 48 h 
after transfection, whole cell lysates were immunoblotted using antibodies as 
indicated. B, TSC2 WT cells were transfected with siRNA targeting Raptor or 
GFP as control. 48 h after transfection, whole cell lysates were immunoblotted 
using antibodies as indicated. C, TSC2 WT cells were transfected with siRNA 
targeting Rictor or GFP as control. 48 h after transfection, whole cell lysates 
were immunoblotted using antibodies as indicated. 
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Figure 2-3. PI3K-mTORC1 negatively regulates Hsp70 mRNA translation. 

A, TSC2 WT cells were transfected with plasmids encoding β-Gal or Rheb. 48 h 
after transfection, cells were incubated at 42°C for the times as indicated. 
Whole cell lysates were immunoblotted using Hsp70 and β-actin antibodies. B, 
TSC2 WT cells were transfected with siRNA targeting Raptor or GFP as control. 
48 h after transfection, cells were incubated at 42°C for the times as indicated. 
Whole cell lysates were immunoblotted using Hsp70 and β-actin antibodies. C, 
TSC2 WT cells were incubated at 42 °C for the times as indicated in the 
presence of 20 nM rapamycin or DMSO as control. Whole cell lysates were 
immunoblotted using Hsp70 and β-actin antibodies. D, TSC2 WT cells were 
incubated at 42°C for the times as indicated in the presence of 50 µM 
LY294002 or DMSO as control. Whole cell lysates were immunoblotted using 
Hsp70 and β-actin antibodies. Relative Hsp70 levels were quantitated by 
densitometry. n=3, error bar, S.E.; **p< 0.01; *p<0.05. 
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Figure 2-S5. Rapamycin has limited effects on Hsp70 expression induced 

by heat shock. TSC2 wild type (WT) and knockout (KO) cells incubated in the 
absence or presence of 20 nM rapamycin for various times as indicated. Cells 
were subjected to heat shocked at 42°C for 1 h followed by recovery at 37°C for 
4 h. Whole cell lysates were used for immunoblotting of Hsp70. 

Figure 2-S6. LY294002 has little effect on the turnover of transfected 

mRNAs. Both TSC2 WT and KO cells were transfected with Luc mRNA capped 
with m7G. qPCR was performed after 3 h of transfection and relative units 
were presented for both MEFs in the absence or presence of LY294002. 
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Hsp70 5’ UTR Responds to the PI3K-mTORC1 Signaling 

In many cases, features in the 5’ UTR of mRNAs are important for 
translational control (McGarry and Lindquist, 1985). To test the role of 5’ UTR of 
Hsp70 mRNA in responding to PI3K-mTORC1 signaling, we used a real time 

luciferase reporter assay. In contrast to the conventional end point assays, the 

real time luciferase assay permits continuous measurement of luciferase activity 

at multiple time points for the same cells. Thus, it allows us to precisely monitor 

the translational status of the reporter mRNA (F-Luc) in live cells under different 

PI3K-mTORC1 signaling. In addition, mRNA transfection was selected over 

plasmid expression as it eliminates any transcriptional variances. To mimic the 

natural mRNAs in cells, in vitro transcribed F-Luc mRNA was capped with 

m7GpppG at the 5’ end followed by polyadenylation at the 3’ end. In the absence of 5’ UTR, TSC2-/- MEFs showed little increase of luciferase translation as 

compared with the wild type cells (Fig. 4A, left panel). Remarkably, inclusion of the 5’ UTR of Hsp70 mRNA resulted in ~50% reduction of F-Luc translation in 

cells lacking TSC2 (Fig. 4C, left panel). This reduction was not due to increased 

mRNA turnover in TSC2-/- MEFs, as qPCR analysis showed the similar turnover 

of transcripts within 3 h of transfection (supplemental Fig. S6). Further 

supporting the negative role of mTORC1 signaling in the translation of mRNAs 

bearing the Hsp70 5’ UTR, cells overexpressing Rheb exhibited a similar pattern 
of F-Luc mRNA translation as TSC2-/- MEFs (supplemental Fig. S7). 

We next examined the effects of reduced PI3K-mTORC1 signaling in the 

translation of F-Luc mRNA. Although the PI3K inhibitor LY294002 significantly 

inhibited the translation of F-Luc in the absence of the Hsp70 5’ UTR (Fig. 4B), the 
same treatment caused a 35% increase of the translation of F-Luc bearing the 

Hsp70 5’ UTR (Fig. 4D). In agreement with the concept that PI3K acts upstream of 



 

38 

TSC, LY294002 treatment had limited effects on mTORC1 signaling in cells 

lacking TSC2. For example, control mRNAs without Hsp70 5’ UTR showed little 
response to LY294002 treatment in TSC2 KO cells (supplemental Fig. S8). These results indicate that the 5’ UTR of Hsp70 mRNA is responsible for the mTORC1-

mediated translational regulation. 

 

Figure 2-4. Hsp70 5’-UTR responds to the PI3K-mTORC1 signaling. A, 
luciferase mRNA (Luc) was synthesized using in vitro transcription followed by 5’ end capping and 3’ end polyadenylation. mRNA transfection was performed 
on TSC2 WT and TSC2 KO cells. Real time luciferase activity was recorded 
immediately after mRNA transfection (left panel). Relative Luc expression (3 h) 
in TSC2 KO cells was normalized against the wild type (right panel). B, Luc 
mRNA transfection was performed on TSC2 WT cells treated with 50 µM 
LY294002 or DMSO as control. Real time luciferase activity was recorded 
immediately after mRNA transfection (left panel). Relative Luc expression (3 h) 
after LY294002 treatment was normalized against the DMSO control (right panel). C, Luc mRNA bearing the Hsp70 5’-UTR was synthesized using in vitro transcription followed by 5’ end capping and 3’ end polyadenylation. mRNA transfection was performed in cells as in A. D, Hsp70 5’-UTR Luc mRNA 
transfection was performed on TSC2 WT cells treated with 50 µM LY294002 
(LY) or DMSO as control. n=5, error bar, S.E. *, p< 0.01. 
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Figure 2-S8. Hsp70 5’-UTR responds 

to the PI3K-mTORC1 signaling in 

TSC2 KO cells. A, Luc mRNA 
transfection was performed on TSC2 
KO cells treated with 50 μM LY294002, 
20 nM rapamycin, or DMSO as control. 
Real-time luciferase activity was 
recorded immediately after mRNA 
transfection. B, Hsp70 5’ UTR- Luc 
mRNA transfection was performed on 
TSC2 WT cells treated with 50 μM 
LY294002, 20 nM rapamycin, or DMSO 
as control. Real-time luciferase activity 
was recorded immediately after mRNA 
transfection. 

Figure 2-S7. Hsp70 5’-UTR responds 

to the hyperactive mTORC1 signaling 

by Rheb overexpression. 
A, Luc mRNA transfection was 
performed on TSC2 WT cells 
transfected with plasmids encoding Rheb or β-Gal as control. Real-time 
luciferase activity was recorded 
immediately after mRNA transfection. B, Hsp70 5’ UTR- Luc mRNA 
transfection was performed on TSC2 
WT cells transfected with plasmids 
encoding Rheb or β-Gal as control. Real-
time luciferase activity was recorded 
immediately after mRNA transfection. 
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Hsp70 5’ UTR Differs from IRES in Mediating Cap-independent Translation 

mTORC1 acts a “master regulator” of the cap-dependent translation in 

cells (Ma and Blenis, 2009). A prevalent hypothesis posits that Hsp70 mRNA is 

translated by a cap-independent mechanism (Rubtsova et al., 2003). The cap-

independent translation is thought to be mediated by an RNA structure named 

IRES, which recruits the ribosome independent of both the cap and the entire 

eIF4F complex (Sarnow et al, 2005). The bicistronic test has been employed as the “gold standard” to demonstrate the presence of an IRES feature for a 5’ UTR. 
In the bicistronic assay, the expression construct is engineered to contain two 

cistrons with the putative IRES element inserted between them. The first cistron 

is translated by the cap-dependent scanning mechanism, whereas translation of 

the second cistron does not happen unless internal initiation at the IRES element 

occurs. We used a well characterized polio virus IRES (polIRES) as a positive 

control, in which the IRES element was inserted between Renilla luciferase (R-

Luc) and firefly luciferase (F-Luc) (Fig. 5A). Consistent with the notion that the 

IRES-mediated capindependent translation will be selectively up-regulated when 

the cap-dependent translation is inhibited (Spriggs et al., 2008; Pende et al., 

2004), we observed a significant increase in F-Luc mRNA translation when PI3K 

signaling was inhibited by LY294002 (Fig. 5A). 

We next replaced the polIRES with the whole 5’ UTR of the Hsp70 mRNA 

(Fig. 5B). In contrast to the polIRES element, Hsp70 5’ UTR was unable to drive F-

Luc expression by either plasmid or mRNA transfection. Furthermore, the 

presence of LY294002 showed little effect on translation of the F-Luc mRNA (Fig. 

5B). This result suggests that the 5’ UTR of Hsp70 mRNA does not act as the 

classic IRES element by internally recruiting ribosome machinery. This finding 

leaves open the question whether translation of the Hsp70 mRNA is cap-
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dependent or cap-independent. To address this question, we synthesized F-Luc 

mRNA capped with the non-functional analog ApppG. In contrast to normal 

capped mRNA (Fig. 4), translation efficiency of ApppG F-Luc mRNA, with or 

without Hsp70 5’ UTR, was extremely low (Fig. 5, D and E), suggesting a strong 

cap dependence in translation of F-Luc mRNA under normal growth conditions. 

Remarkably, inhibiting PI3K signaling by adding LY294002 significantly 

increased the translation of ApppG F-Luc mRNA bearing the Hsp70 5’ UTR, but 

not in the absence of the 5’ UTR (Fig. 5E). We conclude that the Hsp70 5’ UTR 

differs from IRES in mediating cap-independent mRNA translation. 

Hsp70 5’ UTR-mediated Cap-independent Translation Is Sensitive to 4E-BP1 

To elucidate how PI3K-mTOR signaling controls the balance between cap-

dependent and –independent translational mechanisms, we investigated the two 

well established mTORC1 downstream targets S6Ks and 4E-BPs. We first 

examined the translation of Hsp70 mRNA in S6K1/2 double knock-out MEFs (S6K 

DKO) (Pende et al., 2004), in which general protein synthesis is reduced. 

However, there was little difference in heat shock-induced Hsp70 expression in 

these cells (supplemental Fig. S9).  

4E-BP1 effectively inhibits cap-dependent translation by binding eIF-4E 

and inhibiting the formation of eIF-4F. Consequently it frees up the protein 

synthesis machinery for the selective translation of IRES-containing transcripts 

(Spriggs et al., 2008). We used a dominant-negative 4E-BP1 with alanine 

mutations at Thr37/Thr46, which is more potent in inhibiting cap-dependent 

translation (Li et al., 2002). In cells overexpressing 4E-BP1 (S37A/ S46A), we 

observed a slight decrease of cap-dependent translation of F-Luc mRNA (Fig. 6A). 

However, translation of F-Luc mRNA containing the Hsp70 5’ UTR was similar in 

these cells as compared with the ones expressing the GFP control (Fig. 6B).  
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Figure 2-5. Hsp70 5’-UTR differs from IRES in mediating cap-independent 

translation. A, bicistronic Luc mRNA driven by polIRES was synthesized using in vitro transcription followed by 5’ end capping and 3’ end polyadenylation. 
mRNA transfection was performed on TSC2 WT cells treated with 50 µM 
LY294002 or DMSO. Real time luciferase activity was recorded immediately after mRNA transfection. B, bicistronic Luc mRNA driven by Hsp70 5’-UTR was 
synthesized using in vitro transcription followed by 5’ end capping and 3’ end 
polyadenylation. mRNA transfection and real time luciferase measurements 
were the same as A. C, Luc expression after a 3-h transfection of mRNAs containing polIRES or Hsp70 5’-UTR in the presence or absence of LY294002. 
Error bar, S.E. D, in vitro synthesized Luc mRNA was capped at the 5’ end with 
a non-functional analog (ApppG) followed by 3’ end polyadenylation. mRNA 
transfection and real time luciferase measurements were the same as A. E, in 
vitro synthesized Luc mRNA bearing Hsp70 5’-UTR was capped at the 5’ end 
with a non-functional analog ApppG followed by 3’ end polyadenylation. mRNA 
transfection and real time luciferase measurements were the same as A. F, Luc 
expression after a 3-h transfection of ApppG-capped mRNAs in the presence or 
absence of LY294002. Error bar, S.E. 
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Figure 2-S9. S6Ks have limited effects on Hsp70 expression induced by 

heat shock. S6K1/2 wild type (WT) and double knockout (DKO) cells were 
heat shocked at 42°C for 1h followed by recovery at 37°C for various times as 
indicated. Whole cell lysates were used for immunoblotting of Hsp70. 
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Figure 2-6. Hsp70 5’-UTR-mediated cap-independent translation is 

sensitive to 4E-BP1. A, in vitro synthesized Luc mRNA was capped at the 5’ 
end with a non-functional analog ApppG followed by 3’ end polyadenylation. 
mRNA transfection was performed on TSC2 WT cells pre-transfected with 
plasmids encoding 4E-BP1 (S37A/S46A), 4E-BP1, or GFP. Real time luciferase 
activity was recorded immediately after mRNA transfection. B, in vitro synthesized Luc mRNA bearing the Hsp70 5’-UTR was capped at the 5’ end 
with non-functional analog ApppG followed by 3’ end polyadenylation. mRNA 
transfection and real time luciferase measurements were the same as A. C, Luc 
expression after a 3-h transfection of m7G-capped mRNAs in cells transfected 
with plasmids encoding 4E-BP1 (S37A/S46A), 4E-BP1, or GFP. Error bar, S.E. 
D, in vitro synthesized Luc mRNA was capped at the 5’ end with non functional analog ApppG followed by 3’ end polyadenylation. mRNA transfection and real 
time luciferase measurements were the same as A. E, in vitro synthesized Luc mRNA bearing the Hsp70 5’-UTR was capped at the 5’ end with non-functional analog ApppG followed by 3’ end polyadenylation. mRNA transfection and real 
time luciferase measurements were the same as A. F, Luc expression after a 3-h 
transfection of ApppG-capped mRNAs in cells transfected with plasmids 
encoding 4E-BP1 (S37A/S46A) (37/46AA), 4E-BP1, or GFP. Error bar, S.E. 
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It is likely that the increased cap-independent translation was masked by 

the decreased cap-dependent translation when the 5’ cap is intact. We then 

tested the 4EBP1 responsiveness when the normal m7G cap is replaced with the 

non-functional cap analog ApppG. As expected, no translation occurred in the 

absence of normal cap for Luc mRNA (Fig. 6D). However, the presence of the 

Hsp70 5’ UTR was able to drive an efficient translation of F-Luc mRNA in cells 

expressing the dominant-negative 4E-BP1 (S37A/ S46A) (Fig. 6E). Notably, 

overexpressing wild type 4E-BP1 was also able to boost the translation of F-Luc 

mRNA driven by the Hsp70 5’ UTR. Similar results were also observed in cells lacking TSC2 (supplemental Fig. S10). Thus, the 5’ UTR of Hsp70 mRNA can 

efficiently initiate a cap-independent translation mechanism in response to the 

reduced cap-dependent translation by dominant-negative 4E-BP1. 

Deficient Hsp70 Translation Contributes to the Attenuation of Stress Resistance in 

TSC2 Null Cells 

It is well established that Hsp70 molecules protect cells against a wide 

variety of stresses including heat shock (Balch et al., 2008; Feldman and 

Figure 2-S10. Hsp70 5’ UTR-mediated cap-independent translation is 

sensitive to 4E-BP1 in TSC2 KO cells. A, In vitro synthesized Luc mRNA was capped at 5’ end with a non-functional analog ApppG followed by 3’ end 
polyadenylation. mRNA transfection was performed on TSC2 KO cells pre-
transfected with plasmids encoding 4E-BP1(37/46AA), 4E-BP1, or GFP. Real-
time luciferase activity was recorded immediately after mRNA transfection. B, In vitro synthesized Luc mRNA bearing Hsp70 5’ UTR was capped at 5’ end with a nonfunctional analog ApppG followed by 3’ end polyadenylation. mRNA 
transfection and real-time luciferase measurements were the same as A. C, In vitro synthesized Luc mRNA was capped at 5’ end with a non-functional analog ApppG followed by 3’ end polyadenylation. mRNA transfection and real-time 
luciferase measurements were the same as A. D, In vitro synthesized Luc mRNA bearing Hsp70 5’ UTR was capped at 5’ end with a nonfunctional analog ApppG followed by 3’ end polyadenylation. mRNA transfection and real-time 
luciferase measurements were the same as A. 
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Frydman, 2000). TSC mutant cells are also defective in coping with various 

stresses. We reasoned that the deficient Hsp70 translation might contribute to 

the attenuation of stress resistance in TSC2 null cells. To test this possibility, we 

examined the vulnerability of TSC2-/- MEFs to heat shock. After incubation at 45 

°C for 1 h, more than 60% of TSC2-/- MEFs were dead as measured by trypan 

blue staining (Fig. 7A). By contrast, wild type MEFs only showed about 40% cell 

death (p = 0.018). Remarkably, adding back Hsp70, but not Hsp90, using 

recombinant adenovirus largely rescued the viability of TSC2-/- MEFs after heat 

shock stress. As Hsp70 protects cells from apoptosis during stress (Mosser et al., 

2000), we analyzed the molecular indicators of apoptosis of these cells. In TSC2-

/- MEFs, exposure to heat shock resulted in a marked increase in caspase-3 

cleavage compared with wild type (Fig. 7B). Once again, adding back Hsp70 

largely suppressed the caspase-3 cleavage. These results demonstrated that the 

deficient Hsp70 translation is responsible for the hypersensitivity of TSC2-/- 

MEFs to heat shock-induced cell death. 
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2.4 Discussion 

Until now it was unclear how PI3K-mTOR signaling regulated the 

intracellular stress response. A recent study reported that a hyperactive unfolded 

protein response occurred in the ER of MEFs lacking TSC (Ozcan et al., 2008). It 

has been suggested that hyperactive mTOR activity triggers the stress response 

because higher levels of protein synthesis increased the cellular load of 

erroneously synthesized polypeptides. To our surprise, we observed a defective 

cytosolic stress response in these cells. Despite the up-regulated HSF1 

transcriptional activity, there is a clear deficiency in heat shock-induced Hsp70 

expression in MEFs lacking TSC2. In addition, Hsp70 expression is also 

significantly reduced in cells overexpressing Rheb. Importantly, decreasing 

mTORC1 signaling by raptor knockdown or PI3K inhibition augments the heat 

shock-induced Hsp70 expression. Therefore our results demonstrate a critical 

role for PI3K-mTOR signaling in controlling the synthesis of one of the most 

prominent stress-inducible chaperones in cells. 

Although much is known about chaperone gene transcription in response 

to heat stress, relatively little is known about post-transcriptional events. The 

transcriptional regulation of Hsp70 gene expression has been well established as 

Figure 2-7. Hsp70 5’-UTR-mediated cap-independent translation is 

sensitive to 4E-BP1. Deficient Hsp70 translation contributes to the 
attenuation of stress resistance in TSC2 null cells. A, TSC2 WT, TSC2 KO, and 
adenovirus (AdV)-infected TSC2 KO cells were incubated at 45 °C for various 
times as indicated. Cell viability was measured by trypan blue counting. n=4, error bar, S.E. *, p<0.05 (Student’s t test, two tails). B, AdV-infected TSC2 WT 
and TSC2 KO cells were incubated at 45 °C for various times followed by 
immunoblotting using antibodies as indicated. C, a schematic model for PI3K-
mTORC1-controlled translational balance between cap-dependent and cap-
independent mechanisms. 
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a prototype of the evolutionary conserved stress response mechanism (Shi et al., 

1998; Mayer et al., 2001). However, many recent studies using comparative 

genomic and proteomic profiling of cells have documented a lack of correlation 

between the mRNA and protein levels of numerous genes (Sonenberg and 

Hinnebusch, 2007). This indicates that post-transcriptional control is more 

important in the regulation of gene expression than is often assumed. Here we 

report a clear discrepancy between Hsp70 transcription and translation in cells 

with hyperactive mTORC1 signaling. Our results, for the first time, uncovered an 

intimate connection between nutrient signaling and the stress response. 

The untranslated regions of Hsp70 mRNA have been reported to contain 

elements important to the post-transcriptional regulation of this key component of the stress response. For instance, the 3’ UTR of both the Drosophila and the 

human Hsp70 mRNA have been shown to control mRNA stability during heat 

shock as well as during recovery (Petersen and Lindquist, 1989; Moseley et al., 

1993). The 5’ UTR of the Drosophila Hsp70 mRNA allows efficient translation at 

high temperature when other non-heat shock mRNAs are poorly translated 

(Klemenz et al., 1985; McGarry and Lindquist, 1985). Interestingly, the 5’ UTR of 
the Drosophila Hsp70 mRNA is strikingly enriched in adenylic residues (>50%), which suggests a relative absence of secondary structure in this 5’ UTR that is imperative for efficient translation. By contrast, the 5’ UTR of mammalian Hsp70 

mRNA is generally GC rich (>70%), suggesting a relatively high degree of 

secondary structure. A relaxed cap dependence of translation of this mRNA 

strongly suggests a translational feature of IRES (Rubtsova et al., 2003). However, no IRES activity has so far been validated in the Hsp70 mRNA 5’ UTR (Andreev et 

al., 2009). Here we show that the 5’ UTR of mouse Hsp70 mRNA has little effects 

in driving translation when placed in a bicistronic expression construct. Notably, 
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all eukaryotic mRNAs are both monocistronic and capped with m7GpppN. 

Therefore, the bicistronic assay cannot faithfully mimic physiological situations 

of cap-independent translation. 

Cap-independent translation was first established for picornavirus viral 

mRNAs, which do not possess a cap (Pelletier and Sonenberg, 1988). Examples of 

cap-independent translation have also been documented for some capped 

cellular mRNAs (Johannes and Sarnow, 1998). Accumulating evidences indicate 

that a down-regulation of cap-dependent translation is associated with up-

regulation of cellular IRES-dependent mRNA translation in vivo (Spriggs et al., 

2008). How does the 5’UTR of Hsp70 mRNA drive the cap-independent translation without acting as an IRES? It is possible that the presence of a 5’ 
proximal mRNA structure (such as in the artificial bicistronic constructs) 

prevents the direct recruitment of the ribosome by Hsp70 5’ UTR. Another 
interesting question is how Hsp70 mRNA adopts the cap-independent translation 

when all the eukaryotic mRNAs are synthesized in a capped form. Most recently, 

it has been reported that the expression of several decapping enzymes was 

enhanced during heat stress (Neef and Thiele, 2009). This phenomenon could 

lead to the selective translation of Hsp70 mRNA due to unique features of the Hsp70 5’ UTR in mediating cap-independent translation. 

Our findings may have critical implications for the pathologies associated 

with PI3K-mTORC1 dysregulation. The stress-induced switch between cap-

dependent and –independent translation of Hsp70 represents an important 

cellular adaptation, which is largely disrupted when mTORC1 signaling is 

dysregulated (Fig. 7C). Significantly, the deficiency of Hsp70 translation in cells 

with hyperactive mTOR signaling contributes to their stress vulnerability. 

Unrestrained mTORC1 activity in mammals is associated with the occurrence of 
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disease states including inflammation, cancer, and diabetes (Inoki et al., 2005). By 

contrast, decreased mTOR signaling by a genetic approach has been shown to 

extend the lifespan in a variety of organisms (Vellai et al., 2003; Kapahi et al, 

2004; Kaeberlein et al, 2005; Harrison et al., 2009). Interestingly, a robust stress 

response is required for lifespan extension in these organisms (Hsu et al., 2003; 

Morley et al., 2004; Powers et al., 2006). We demonstrate that reducing PI3K-

mTOR signaling increases stress resistance by promoting cap-independent 

Hsp70 translation, thereby increasing the availability of proteolytic and 

chaperone functions that may contribute to the observed increase in organism 

stress resistance and lifespan. With the demonstration of the mechanistic 

connection between nutrient signaling and stress resistance, our findings will 

shed light on therapeutic interventions of aging and age-associated pathologies. 

 

2.5 Materials & Methods 

Cells and Reagents—TSC2+/+ and TSC2-/- MEFs were kindly provided by Dr. David J. Kwiatkowski (Harvard Medical School) and maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS). The polio 
IRES luciferase construct was a generous gift from Peter Bitterman (University of 

Minnesota). The plasmid expressing Rheb was kindly provided by Dr. Kun-Liang 

Guan (University of California at San Diego). Rapamycin and LY294002 were 

purchased from Sigma. Anti-Hsp70 (SPA-810), anti-Hsp90 (SPA-830), anti-Hsp25 

(SPA-801), and anti-Hsp40 (SPA-400) antibodies were purchased from 

Stressgen; antibodies for phosphorylated and total S6K1, 4E-BP1, Raptor, and 

Rictor from Cell Signaling. siRNA targeting Raptor and Rictor were purchased 

from Santa Cruz. 



 

51 

Plasmids—The 5’ UTR of mouse Hsp70 were amplified by RT-PCR using 

total RNA extracted from TSC2-/- MEFs. The Hsp70 5’ UTR was cloned into 
HindIII and BamHI sites of pcDNA3.1 (Invitrogen). The firefly luciferase gene was 

directly removed from pCDNA3-rLuc-polIRES-fLuc into the pcDNA3.1/Hsp70 5’ 
UTR using BamHI and XbaI restriction sites. For IRES constructs containing the 

Hsp70 5’ UTR, the polIRES cassette in the bicistronic vector pcDNA3/rLuc-

polIRES-fLuc was replaced by the full-length of Hsp70 5’ UTR cloned from TSC2-

/- MEFs (231 bp, NM_010479). 

Transfections—Plasmid and siRNA transfections were performed using Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions. 
Immunoblotting—Cells were lysed on ice in TBS buffer (50 mM Tris-HCl 

(pH 7.5), 150 mM NaCl, 1 mM EDTA) containing protease inhibitor mixture tablet 

(Roche Applied Science) and 1% Triton X-100. After incubating on ice for 30 min, 

the supernatants were heated for 5 min in SDS-PAGE sample buffer (50 mM Tris-

HCl (pH 6.8), 100 mM dithiothreitol, 2% SDS, 0.1% bromphenol blue, 10% 

glycerol). Proteins were resolved on SDS-PAGE and transferred to Immobilon-P 

membranes (Millipore). Membranes were blocked for 1 h in TBS containing 5% 

blotting milk, followed by incubation with primary antibodies. After incubation 

with horseradish peroxidase- coupled secondary antibodies, immunoblots were 

developed using enhanced chemiluminescence (Amersham Biosciences). 

Ribosome Profiling—Sucrose solutions were prepared in polysome 

gradient buffer (10 mM HEPES, pH 7.4, 100 mM KCl, 5 mM MgCl2, 100 µg/ml of 

cycloheximide, 5 mM DTT, 20 units/ml of SUPERase_In). Sucrose density 

gradients (15– 45% w/v) were prepared in SW41 ultracentrifuge tubes (Fisher) 

using a BioComp Gradient Master (BioComp Instruments) according to the manufacturer’s instructions. Cells were lysed in ice-cold polysome lysis buffer 



 

52 

(10 mM HEPES, pH 7.4, 100 mM KCl, 5 mM MgCl2, 100 µg/ml of cycloheximide, 5 

mM DTT, 20 units/ml of SUPERase_In, 2% Triton), about 650 µl of supernatant 

was loaded onto gradients, followed by centrifugation for 100 min at 38,000 x g 

at 4 °C in an SW41 rotor. Gradients were fractionated at 0.375 ml/min using a 

fractionation system (Isco), which continually monitored OD254 values. 

Fractions corresponding to 60 s intervals were collected. 

RT-PCR and qPCR—Total RNA was extracted from whole cell lysates or 

fraction samples using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. Reverse transcription was performed using 

Superscript III kit (Invitrogen). PCR was performed under the following 

conditions: 30 s, 94 °C; 30 s, 55 °C; 30 s, 72 °C, 22 cycles. The primer pair for the 

Hsp70 gene was 5’-GCAAGGCCAACAAGATCACCAT-3’ and 5’-
GGCGCTCTTCATGTTGAAGGC-3’. The primer pair for β-actin gene was 5’-
TTGCTGACAGGATGCAGAAG-3’ and 5’-ACTCCTGCTTGCTGATCCACAT-3’. For real-

time PCR analysis, a SYBR Green PCR kit (Invitrogen) was used on a LightCycler 

480 II Q-PCR machine (Roche Applied Science). Raw data were analyzed using 

the Light- Cycler 480 Software (version 1.5.0, Roche Applied Science). 

mRNA In Vitro Transcription—mRNAs with normal m7G cap or analog 

ApppG were synthesized using the mMessage mMachine T7 Ultra kit (Ambion), 

followed by purification using the MEGAclear kit (Ambion), according to the manufacturer’s instructions. 

Luciferase Reporter Assay—For the non-real time luciferase assay, 

transfected MEFs were lysed and luciferase activity was measured using a 

luciferase reporter assay system (Promega) on a SynergyTM HT Multi-detection 

Microplate Reader (BioTek Instruments). For real time luciferase assay, cells 

were plated on 35-mm dishes and transfected with plasmid or mRNA containing 
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the luciferase gene. Immediately after transfection, luciferase substrate D-

luciferin (1 mM) was added into the culture medium. Luciferase activity was 

recorded at 37 °C with 5% CO2 using Kronos Dio Luminometer (Atto). 

Cell Viability Assays—TSC2+/+ and TSC2-/- MEFs were grown to 90% 

confluence, followed by incubation at 45 °C for various times. Cells were then 

returned to 37 °C for a 20 h recovery. The cells were then counted via trypan blue 

staining. For the rescue experiment, MEFs were infected with recombinant 

adenoviruses expressing Hsp70, Hsp90, or GFP control using 20 multiplicity of 

infection 24 h after infection, cells were heat shocked and viability was measured 

via cell counting. 
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CHAPTER 3 

 

Nutrient Signaling in Protein Homeostasis: An Increase in Quantity at the 

Expense of Quality 

 

 

3.1 Abstract 

The discovery that rapamycin extends the life span of diverse organisms 

has triggered many studies aimed at identifying the underlying molecular 

mechanisms. Mammalian target of rapamycin complex 1 (mTORC1) regulates cell 

growth and may regulate organismal aging by controlling mRNA translation. 

However, how inhibiting mTORC1 and decreasing protein synthesis can extend 

life span remains an unresolved issue. We showed that constitutively active 

mTORC1 signaling increased general protein synthesis but unexpectedly reduced 

the quality of newly synthesized polypeptides. We demonstrated that 

constitutively active mTORC1 decreased translation fidelity by increasing the 

speed of ribosomal elongation. Conversely, rapamycin treatment restored the 

quality of newly synthesized polypeptides mainly by slowing the rate of 

ribosomal elongation. We also found distinct roles for mTORC1 downstream 

targets in maintaining protein homeostasis. Loss of S6 kinases, but not 4E-BP 

family proteins, which are both involved in regulation of translation, attenuated 

This work was submitted August 2012 and the manuscript was published as Conn 
CS and Qian S-B. Nutrient Signaling in Protein Homeostasis: An Increase in 

Quantity at the Expense of Quality. Sci. Signal. 2013 April 16; 6(271), ra24. 
Minor modifications have been made for reprint here. 
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the effects of rapamycin on the quality of newly translated proteins. Our results 

reveal a mechanistic connection between mTORC1 and protein quality, 

highlighting the central role of nutrient signaling in growth and aging. 

 

3.2 Introduction 

The mammalian target of rapamycin (mTOR) is a highly conserved 

serine/threonine kinase that is named for its inhibition by the drug rapamycin 

(Wullschleger et al., 2006; Laplante and Sabatini, 2012). mTOR assembles into 

two functionally and structurally distinct complexes in the cytoplasm: mTORC1 

(mTOR complex 1) and mTORC2. As a major hub that integrates multiple 

signaling pathways, mTORC1 is a master regulator of protein synthesis that 

couples nutrient signaling to cell growth and proliferation (Ma and Blenis, 2009; 

Sonenberg and Hinnebusch, 2009). In mammalian cells, mTORC1 is positioned 

downstream of the tumor suppressors tuberous sclerosis complex 1 (TSC1) and 

TSC2. The TSC1/2 complex inhibits mTORC1 by acting as a guanosine 

triphosphatase (GTPase)–activating enzyme (GAP) for Ras homolog enriched in 

brain (Rheb), which binds to and activates mTORC1 (Inoki and Guan, 2006; 

Huang and Manning, 2008). Cells lacking functional TSC exhibit constitutive 

activation of mTORC1 signaling, resulting in increased protein synthesis and cell 

size (Kwiatkowski and Manning, 2005). The phenotypes associated with TSC 

deficiency can be rescued by rapamycin treatment (Goto et al., 2011). In further 

support of the critical role of mTORC1 in cell growth and proliferation, 

dysregulation of mTORC1 has been implicated in many disease states including 

cancer, metabolic disorders, and aging (Zoncu et al., 2011). 
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The role of mTORC1 in aging has received increasing attention owing to its 

mechanistic connection with other pathways in longevity studies. In many model 

organisms, longevity is regulated by the conserved insulin and insulin-like 

growth factor 1 (IGF-1) signaling pathway (Kenyon, 2005). Reducing the activity 

of phosphoinositide 3-kinase (PI3K), an upstream signaling of mTORC1, 

promotes longevity (Cohen et al., 2009). In addition, caloric restriction increases 

life span in various organisms and is proposed to function by inhibiting mTORC1 

(Fontana, 2009). Direct inhibition of mTORC1 signaling also increases life span 

(Kapahi et al., 2004, 2010; Kaeberlein et al., 2005), and administration of 

rapamycin to adult mice substantially extends life span (Harrison et al., 2009). A 

consequence of mTORC1 suppression is the general attenuation of protein 

synthesis. Indeed, partially inhibiting the translation machinery also increases 

life span in various organisms (Pan et al., 2007; Hansen et al., 2007; Syntichaki et 

al., 2007). Thus, reduced mRNA translation might be a common mechanism to 

extend life span in multiple species under different conditions. 

How can reducing protein synthesis extend life span? Protein homeostasis 

refers to a delicate equilibrium between synthesizing proteins, maintaining 

protein conformations, and removing damaged proteins from cells (Balch et al., 

2008) and has been postulated to play a critical role in growth and aging 

(Morimoto, 2008). This balance is maintained by molecular chaperones, the 

ubiquitin-proteasome system, and the autophagy pathway (Bukau et al., 2006). A 

robust stress response is often associated with life span extension, which 

supports a critical role for protein homeostasis in growth and aging. We 

previously reported that constitutively active mTORC1 attenuates the expression 

of genes encoding chaperones at the translational level during stress conditions 
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(Sun et al., 2011). However, how mTORC1-controlled mRNA translation 

influences the quality of translational products is not fully understood. 

mTORC1 stimulates protein synthesis by phosphorylating several 

translational regulators. Two well-characterized downstream targets are the 

eukaryotic initiation factor 4E binding proteins (4E-BPs) and the p70 ribosomal 

S6 kinases (S6Ks) (Ma and Blenis, 2009; Jackson et al., 2010). The 

nonphosphorylated 4EBPs bind and sequester eIF4E, a key rate-limiting factor 

for cap-dependent mRNA translation initiation. mTORC1 phosphorylates 4E-BPs, 

thereby derepressing eIF4E and promoting formation of the translation initiation 

complex. mTORC1-mediated phosphorylation of S6K promotes protein synthesis 

through multiple substrates, including the translation initiation factor eIF4B and 

the elongation regulator eEF2K (Dann et al., 2007; Proud, 2011). Ribosome 

profiling analysis indicates that 4E-BPs are the master effectors of mTORC1 in 

controlling translation of mRNAs containing 5′ terminal oligopyrimidine tract 
(TOP) and TOP-like sequences (Hsieh et al., 2012; Thoreen et al., 2012). This 

finding raises the question regarding the role of S6Ks in mTORC1-mediated 

translational regulation. Notably, the phosphorylation of S6Ks is rapamycin-

sensitive, whereas mTORC1-mediated phosphorylation of 4E-BPs is largely 

rapamycin-resistant (Choo et al., 2008). This finding suggests that the antiaging 

effects of rapamycin might be mediated by the target of S6Ks rather than 4E-BPs. 

Supporting this notion, deletion of S6K1 in mice leads to increased life span and 

resistance to age-related pathologies (Selman et al., 2009). However, the 

differential effects of mTORC1 downstream targets on mRNA translation remain 

poorly understood. 

Here, we sought to dissect the role of mTORC1 in various aspects of 

protein homeostasis. We found that persistent activation of mTORC1 signaling 
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led to less functional proteins. The defective ribosome products were mainly due 

to reduced translation fidelity as a result of increased elongation speed. 

Rapamycin treatment largely restored protein homeostasis in these cells. The 

differential effects of mTORC1 downstream targets on translation fidelity further 

support the critical role of elongation in the quality of translational products. Our 

results provide mechanistic insights into the molecular connection between 

nutrient signaling and protein homeostasis and may offer new opportunities for 

treating age-related diseases. 

 

3.3 Results 

Constitutively active mTORC1 signaling reduces the stability of synthesized 

polypeptides 

To monitor the quality of translational products, we used firefly luciferase 

(Fluc) as a reporter, whose activity can be measured by a luminescence-based 

assay with exquisite sensitivity. Fluc folds rapidly upon translation on eukaryotic 

ribosomes and does not require posttranslational modification for its activity 

(Frydman et al., 1999). Its sensitivity to various stress conditions makes it an 

ideal molecule to evaluate intracellular protein homeostasis (Gupta et al., 2011). 

To monitor the biosynthesis of synthesized Fluc in cells with altered mTORC1 

signaling, we used a real-time luminometer that allows continuous measurement 

of Fluc activity in live cells (Sun et al., 2011). Shortly after transfection with 

plasmids encoding Fluc, luciferase activity progressively accumulated in a mouse 

embryonic fibroblast (MEF) cell line (Fig. 1A). Unexpectedly, MEFs lacking TSC2 

showed less Fluc activity with about 50% reduction by 15 hours after 

transfection. This was not due to a difference in transfection and transcription 



 

59 

efficiency because Fluc mRNA abundance was comparable between these two 

sets of MEFs (fig. S1). To further exclude the possibility of altered transcription, 

we synthesized Fluc mRNA and performed mRNA transfection. Consistent with 

the plasmid transfection, TSC2 null cells showed lower Fluc activity than wild-

type cells (Fig. 1B). Thus, constitutively active mTORC1 signaling reduces the 

functionality of synthesized Fluc. 

Because mTORC1 is believed to promote protein synthesis, it was 

surprising to find reduced Fluc activity in TSC2 knockout cells. Immunoblotting 

of whole-cell lysates revealed that the steady-state amounts of Fluc were 

significantly lower in TSC2 knockout cells than in wild-type MEFs (Fig. 1C), which 

is consistent with the reduced Fluc activity measured in live cells. We then 

treated the transfected cells with the proteasome inhibitor MG132 to examine 

whether the reduced Fluc quantity was due to increased degradation. 

Proteasome inhibition by MG132 had minimal effects on translation initiation 

factors such as eIF2a (fig. S2). In comparison to wild-type cells, TSC2 knockout 

cells showed increased Fluc abundance after MG132 treatment with the majority 

recovered in the insoluble fraction (Fig. 1C). This result suggests that a 

substantial proportion of synthesized Fluc is short-lived in cells with increased 

mTORC1 signaling. 

To examine the feature of other proteins under constitutively active 

mTORC1 signaling, we expressed green fluorescent protein (GFP), which is 

relatively stable in cells. Similar to Fluc, GFP also showed decreased steady-state 

amounts in TSC2 knockout cells with an increased accumulation after MG132 

treatment (fig. S3). Proteasome inhibition leads to an accumulation of 

endogenous substrates in the form of polyubiquitin conjugates (Qian et al., 2002). 

We measured the abundance of polyubiquitinated species after MG132 treatment 
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Figure 3-1. Constitutively active mTORC1 reduces the stability of 

synthesized polypeptides. (A) Wild-type (WT) and TSC2 knockout (KO) cells 
were transfected with Fluc plasmids, and the Fluc activity was monitored 
continuously (means ± SEM; n = 6 independent experiments). (B) Similar to (A) 
except that the cells were transfected with Fluc mRNA (means ± SEM; n = 3 
independent experiments). (C) WT and TSC2 KO cells transfected with Fluc 
plasmids were treated with MG132. Whole-cell lysates were separated into 
soluble and insoluble fractions followed by immunoblotting using antibodies 
as indicated. Bottom panel shows quantification of Fluc amounts (means ± 
SEM; n = 3 independent experiments; *P < 0.05, **P < 0.01, ratio paired t test). 
(D) MG132-treated WT and TSC2 KO cells were immunoblotted with the 
indicated antibodies. Right panel shows quantification (means ± SEM; n = 3 
independent experiments; *P = 0.014, ratio paired t test). 
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Figure 3-S1. Quantification of Fluc mRNA abundance in wild-type and 

TSC2 knockout cells. (A) Total RNA was extracted from TSC2 wild-type and 
knockout MEFs transfected with Fluc plasmids followed by RT-PCR with Fluc 
and 18S primers (left panel). Quantification of Fluc mRNA abundance is 
normalized to 18S rRNA (right panel) (mean ± SEM; n=3 independent 
experiments for PCR). (B) RNA was extracted as in (A) and quantitative RT-
PCR used to measure abundance of Fluc mRNA normalized to β-actin (mean ± 
SEM; n=3 independent experiments for qPCR). 
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Figure 3-S2. Phosphorylation status of eIF2α in wild-type and TSC2 

knockout cells. TSC2 wild-type and knockout cells were treated with 10 nM Rapamycin and/or 5 μM MG132 for 15 hours. Whole cell lysates were 
immunoblotted using antibodies as indicated (top panel). Phosphorylation of eIF2α was normalized to total eIF2α (mean ± SEM; n=3 independent 
experiments). 

Figure 3-S3. Features of GFP in wild-type and TSC2 knockout cells. TSC2 
wild-type and knockout cells transfected with myc-GFP plasmids were treated 
with 5 μM MG132 for 15 hours. Whole cell lysates were immunoblotted as 
indicated (left panel). The abundance of GFP was normalized to that of β-actin 
(mean ± SEM; n=3 independent experiments for blot; *P = 0.022, **P = 0.0077, 
Paired t-test). 
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in cells with unrestrained mTORC1 signaling. Compared to wild-type cells, TSC2 

knockout cells demonstrated a substantial increase of polyubiquitin signals with 

MG132 treatment (Fig. 1D). Together, these results suggest that mTORC1 

signaling disrupts the stability of synthesized polypeptides. 

Rheb overexpression reduces the stability of synthesized polypeptides 

To independently confirm that uncontrolled mTORC1 signaling 

contributes to the reduced stability of translational products, we transfected 

human embryonic kidney (HEK) 293 cells with plasmids encoding Rheb, a direct 

activator of mTORC1. Rheb overexpression enhanced mTORC1 signaling in a 

dose-dependent manner as evidenced by increased RpS6 phosphorylation (Fig. 

2). Consistent with TSC2 null cells, Rheb overexpression also resulted in a 

decrease of Fluc steady-state amounts in transfected HEK293 cells. MG132 

treatment largely rescued the loss of Fluc, indicating a higher turnover of 

synthesized Fluc under Rheb overexpression. These cells also showed a higher 

accumulation of polyubiquitinated species in the presence of MG132 (Fig. 2, 

bottom panel). Thus, an increase in mTORC1 activity by Rheb overexpression 

also reduces the stability of synthesized polypeptides. 

Suppressing mTORC1 restores the stability of synthesized polypeptides 

Having found that an increase in mTORC1 signaling reduced the stability 

of translational products, we next asked whether suppressing mTORC1 signaling 

by rapamycin could restore the stability of synthesized polypeptides. Although 

treating wild-type cells with rapamycin slightly reduced Fluc expression, the 

presence of rapamycin increased the steady-state Fluc amounts in TSC2 knockout 

cells (Fig. 3A). This was not due to an increased translation rate in the presence 

of rapamycin because the abundance of synthesized Fluc under proteasome 
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inhibition remained consistent after rapamycin treatment (Fig. 3A). The presence 

of rapamycin also substantially decreased the amount of polyubiquitinated 

species accumulated after proteasome inhibition by MG132 (Fig. 3B). Therefore, 

suppressing mTORC1 signaling decreases protein synthesis but increases the 

stability of synthesized polypeptides. 

 

 

Figure 3-2. Rheb overexpression reduces the stability of synthesized 

polypeptides. MG132-treated HEK293 cells cotransfected with plasmids 
encoding Fluc and Rheb, supplemented with GFP, were immunoblotted with 
the indicated antibodies (left panel). Fluc and polyubiquitinated species were 
quantified after normalizing to b-actin abundance (right panels). Phosph-
orylated RpS6 was normalized to total RpS6 protein abundance (means ± 
SEM; n = 3 independent experiments). 
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Figure 3-3. Suppressing mTORC1 restores the stability of synthesized 

polypeptides. (A) WT and TSC2 KO cells transfected with Fluc were treated 
with rapamycin in the absence or presence of MG132 followed by 
immunoblotting with indicated antibodies. Middle panels show quantification 
of Fluc protein normalized to β-actin before and after rapamycin treatment. 
Lower panel is the quantification of phosphorylated RpS6 normalized to total 
RpS6 protein abundance (means ± SEM; n = 3 independent experiments; *P < 
0.05, ratio paired t test). (B) Cells in (A) were immunoblotted using antibody 
against polyubiquitinated species. Lower panel shows quantitation of ubiquitin 
before and after rapamycin treatment normalized to b-actin (means ± SEM; n = 
4 independent experiments; *P < 0.05, mixed model with random blots and 
fixed treatment using normalized values; P values are adjusted with a 
Bonferroni correction). 



66 

mTORC1 does not primarily affect chaperone and proteasome activities 

The reduced stability of translational products under constitutively active 

mTORC1 signaling suggests a lower quality of newly synthesized polypeptides, or 

saturation of the protein quality control system in cells. Molecular chaperones 

and the ubiquitin-proteasome system are two major mechanisms that maintain 

intracellular protein homeostasis (Morimoto, 2008; Hartl and Hayer-Hartl, 2011; 

Sherman and Goldberg, 2001). We previously demonstrated that mTORC1 

inhibited the cap-independent Hsp70 translation induced by heat shock stress 

(Sun et al., 2011). However, it remains unknown whether the chaperone network 

is adversely affected by persistent mTORC1 signaling under a nonstressed 

condition. To directly measure the chaperone activity in wild-type and TSC2 

knockout cells, we used whole-cell lysates to refold heat-denatured Fluc. This in 

vitro refolding assay revealed that the chaperone activities in both cells were 

comparable (Fig. 4A). Furthermore, Rheb overexpression in HEK293 cells also 

had no appreciable effects on cellular chaperone activities (fig. S4A). 

The ubiquitin-proteasome system is the main pathway for elimination of 

damaged proteins in eukaryotes, and its increased activity might contribute to 

lower steady-state protein abundance in cells with constitutively active mTORC1 

signaling. To compare the proteasome activity between wild-type and TSC2 

knockout cells, we used a cell-based proteasome assay in which the 

chymotrypsin-like activity of the proteasome can be directly measured using a 

luminogenic substrate (Proteasome-Glo). We observed similar chymotrypsin-like 

activity in both cell types (Fig. 4B). Consistently, Rheb overexpression in HEK293 

cells also did not affect the proteasome activity (fig. S4B). Thus, mTORC1 does not 

primarily affect the intracellular proteasome system. 
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Figure 3-4. mTORC1 primarily affects translation fidelity. (A) Heat-
denatured Fluc proteins were incubated with whole-cell lysates derived from 
TSC2 WT and KO cells at room temperature. Fluc refolding was monitored by 
measuring Fluc activities at the time points indicated. Relative Fluc activity is 
presented (means±SEM; n=3 independent experiments). (B) The intracellular 
chymotrypsin activities in TSC2 WT and KO cells were measured by 
luminescent reagent (Proteasome-Glo) (means±SEM; n=3 independent 
experiments). (C) Schematic diagram of Fluc mutants Fluc(Stop) and 
Fluc(R218S) (left panel). TSC2 WT and KO cells were transfected with plasmids 
encoding Fluc mutants followed by measurement of Fluc activity. Relative Fluc 
activities were normalized to WT Fluc (means±SEM; n=4 independent 
experiments; **P < 0.01, paired t test). (D) WT (left panel) and TSC2 KO cells 
(right panel) transfected with plasmids encoding Fluc mutants as in (C) were 
treated with rapamycin (Rapa) followed by measurement of Fluc activity. 
Relative Fluc activities were normalized to WT Fluc with dimethyl sulfoxide 
(DMSO) (means±SEM; n=4 independent experiments; *P < 0.05, paired t test). 
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Figure 3-S4. Chaperone and proteasome activity in cells expressing Rheb. 
(A) Heat-denatured Fluc proteins were incubated with whole cell lysates 
derived from HEK293 cells expressing myc-GFP or myc-Rheb at room 
temperature. Fluc refolding was monitored by measuring Fluc activity at the 
time points indicated. Relative Fluc activities are presented (mean ± SEM; n=3 
independent experiments). (B)HEK293 cells expressing myc-GFP or myc-Rheb 
were plated at the indicated concentrations and the intracellular chymotrypsin 
activity was measured by the luminescent reagent Proteasome-Glo (mean ± 
SEM; n=3 independent experiments). 

Figure 3-S5. Quantification of mRNA abundance of Fluc mutants in wild-

type and TSC2 knockout cells. (A) RNA was extracted from TSC2 wild-type 
and knockout cells expressing wild-type or mutant Fluc plasmids followed by 
RT-PCR with Fluc and 18S primers. (B) RNA was extracted as in (A) and 
quantitative RT-PCR used to measure abundance of Fluc mRNA normalized to β-actin (mean ± SEM; n=3 independent experiments for qPCR). 
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mTORC1 decreases translation fidelity 

With no apparent influence on either chaperone or proteasome function in 

cells, how does constitutively active mTORC1 signaling decrease the stability of 

synthesized proteins? Nascent chains are synthesized during elongation, and 

folding generally begins during translation on the ribosome (Fedorov and 

Baldwin, 1997; Komar, 2009). Thus, the efficiency of cotranslational folding is 

influenced by translation fidelity during elongation (Buchan and Stansfield, 

2007). We reasoned that dysregulated mTORC1 signaling might decrease 

translation fidelity and increase the generation of defective ribosomal products. 

To test this hypothesis, we generated two Fluc reporters to assess translational 

fidelity. One reporter, Fluc(Stop), has leucine at position 210 replaced with a stop 

codon, which leads to the synthesis of a truncated and enzymatically inactive 

protein product. This reporter has previously been used to assess readthrough 

errors occurring during translation (Rakwalska and Rospert, 2004). To evaluate 

the potential of misincorporation during translation, we mutated the arginine at 

the active-site position 218 into serine, which renders the resultant Fluc(R218S) 

mutant devoid of enzymatic activity. As expected, both Fluc(Stop) and 

Fluc(R218S) mutants showed less than 1% of the enzymatic activity of the wild-

type Fluc; however, TSC2 knockout cells showed a significant increase in Fluc 

activity for both Fluc(Stop) and Fluc(R218S)when compared to wild-type cells 

(2- and 1.5-fol increase, respectively) (Fig. 4C). Again, this relative increase was 

not due to a difference in transfection efficiency between these two cells, because 

quantitative polymerase chain reaction (qPCR) revealed comparable amounts of 

Fluc mRNA (fig. S5). Consistent with the findings in TSC2 knockout cells, 

overexpressing Rheb in HEK293 cells also led to a higher rate of readthrough and 

misincorporation errors during translation of Fluc mutants (fig. S6). 
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Because rapamycin treatment increases the stability of synthesized 

proteins, we examined whether repressing mTORC1 signaling would restore 

translation fidelity. Indeed, rapamycin treatment decreased the functionality of 

Fluc mutants in both wild-type and TSC2 knockout cells (Fig. 4D). The effect of 

rapamycin on promoting translation fidelity in TSC2 knockout cells is an 

underestimate because wild-type Fluc in these cells showed increased activity in 

the presence of rapamycin (Fig. 4D). This is consistent with the finding that 

rapamycin rescues the stability of Fluc under persistent mTORC1 signaling (Fig. 

3A). Therefore, repressing mTORC1 signaling increases the stability of newly 

synthesized polypeptides by promoting accurate mRNA translation. 

mTORC1 downstream targets exhibit distinct roles in translation fidelity 

Two well-established mTORC1 downstream targets are 4E-BPs and S6Ks. 

Although 4EBP family proteins are the master effectors of mTORC1 in controlling 

translation of TOP and TOP-like mRNAs (Hsieh et al., 2012; Thoreen et al., 2012), 

Figure 3-S6 Translation fidelity in cells expressing Rheb. HEK293 cells 
expressing myc-GFP or myc-Rheb were transfected with plasmids encoding 
Fluc mutants for 24 hours. Relative Fluc activity was normalized using 
wildtype Fluc (mean ± SEM; n=5 independent experiments; **p < 0.01, Ratio 
paired t-test). 
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the phosphorylation of 4E-BPs is resistant to rapamycin treatment. Because 

rapamycin effectively abolishes phosphorylation of S6Ks, we suspected that 

rapamycin might act through S6Ks to restore translation fidelity. Indeed, 

enzymatic activities of transfected Fluc(Stop) and Fluc(R218S) mutants were 

significantly reduced in S6K1 and S6K2 double-knockout MEFs when compared 

to wild-type cells (Fig. 5A). This result indicates increased translation fidelity in 

the absence of S6Ks. In contrast, MEFs lacking both 4E-BP1 and 4E-BP2 showed 

comparable activity for both Fluc mutants (Fig. 5B). Considering that 4E-BPs 

mainly act on translation initiation, the critical role of S6Ks in translation fidelity 

supports the notion that ribosomal elongation may be responsible for the quality 

of translational products. 

To substantiate the finding that rapamycin acts through S6Ks in restoring 

translational fidelity, we examined how rapamycin influences the translation of 

Fluc mutants in MEFs lacking either S6Ks or 4E-BPs. Rapamycin treatment 

significantly reduced the activity of transfected Fluc mutants in wild-type cells 

but showed no effects in S6K double-knockout cells (Fig. 5C). In contrast, the 

presence of rapamycin equally restored the translation fidelity in both 4E-BP 

wild-type and double-knockout MEFs as evidenced by the suppressed activity of 

Fluc mutants, in particular Fluc(Stop) (Fig. 5D). These results confirm the distinct 

roles of mTORC1 downstream targets in controlling the quality of translational 

products. 
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Figure 3-5. Distinct roles of mTORC1 downstream targets in translation 

fidelity. (A) WT and S6K double-KO (DKO) cells were transfected with 
plasmids encoding Fluc mutants. Relative Fluc activities were normalized to 
WT Fluc (means ± SEM; n = 4 independent experiments; **P < 0.001, paired t 
test). (B) WT and 4E-BP DKO cells were transfected with plasmids encoding 
Fluc mutants. Relative Fluc activities were normalized to WT Fluc (means ± 
SEM; n = 4 independent experiments). (C) WT and S6K DKO cells transfected as 
in (A) were treated with rapamycin. Relative Fluc activities were normalized to 
WT Fluc (means ± SEM; n = 3 independent experiments; *P < 0.05, **P < 0.001, 
paired t test). (D) WT and 4E-BP DKO cells transfected as in (B) were treated 
with rapamycin. Relative Fluc activities were normalized to WT Fluc (means ± 
SEM; n = 4 independent experiments for WT and n = 3 independent 
experiments for DKO; *P < 0.05, **P < 0.001, paired t test). 
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mTORC1 increases ribosome speed during translation elongation 

Translation fidelity is influenced by multiple factors. For instance, 

defective ribosome biogenesis reduces the accuracy of amino acid incorporation 

(Belin et al., 2009). However, both TSC2 wild-type and knockout cells showed a 

similar ratio of 28S to 18S ribosomal RNAs (rRNAs) (fig. S7). The accuracy of 

codon-anticodon recognition is also susceptible to ribosome dynamics during 

elongation. In addition to translation initiation, mTORC1 promotes elongation 

through S6K-mediated eEF2K phosphorylation (26). We hypothesize that 

constitutively active mTORC1 signaling might potentially compromise the fidelity 

of the decoding process by increasing the speed of elongation. To evaluate the 

ribosome dynamics in both TSC2 wild-type and knockout cells, we performed 

ribosome sedimentation analysis. Consistent with an increase in cap-dependent 

mRNA translation, TSC2 null cells exhibited higher polysome formation than 

wild-type cells, and the monosome peak was correspondingly reduced (Fig. 6A). 

Although this feature is consistent with more efficient translation initiation in 

cells with increased mTORC1 signaling, the snapshot of polysome profiles does 

not offer insight into ribosome dynamics during elongation. 

The translation inhibitor harringtonine stalls initiating ribosomes at the 

start codon while allowing elongating ribosomes to run off the transcript (Ingolia 

et al., 2011). The time required for polysome depletion correlates with the global 

translation elongation speed. By treating cells with harringtonine for various 

times, we evaluated the average elongation speed (fig. S8). Compared to wild-

type cells, TSC2 knockout cells showed an earlier polysome runoff, indicating 

faster ribosome movement during elongation (Fig. 6B). 

Because rapamycin treatment essentially restored translation fidelity in 

TSC2 knockout cells, we examined the effect of rapamycin on ribosome dynamics. 
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As a specific mTORC1 inhibitor, rapamycin suppresses translation initiation. 

Supporting this notion, the monosome peak was increased after rapamycin 

treatment (Fig. 6A). Intriguingly, we observed a slight increase rather than a 

decrease of polysome formation in TSC2 knockout cells in the presence of 

rapamycin. Under this condition, the retained polysome is a strong indication of 

ribosome slowing down during elongation. Indeed, application of harringtonine 

showed delayed depletion of polysomes in the presence of rapamycin (Fig. 6C). 

These results support the interpretation that mTORC1 decreases translation 

fidelity by increasing ribosome speed. 

Because rapamycin treatment essentially restored translation fidelity in 

TSC2 knockout cells, we examined the effect of rapamycin on ribosome dynamics. 

As a specific mTORC1 inhibitor, rapamycin suppresses translation initiation. 

Supporting this notion, the monosome peak was increased after rapamycin 

treatment (Fig. 6A). Intriguingly, we observed a slight increase rather than a 

decrease of polysome formation in TSC2 knockout cells in the presence of 

rapamycin. Under this condition, the retained polysome is a strong indication of 

ribosome slowing down during elongation. Indeed, application of harringtonine 

showed delayed depletion of polysomes in the presence of rapamycin (Fig. 6C). 

These results support the interpretation that mTORC1 decreases translation 

fidelity by increasing ribosome speed. 
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Figure 3-6. mTORC1 alters ribosome dynamics during translation 

elongation. (A) Polysome profiles of WT and TSC2 KO cells in the presence of 
rapamycin were determined using sucrose gradient sedimentation. The P/M 
(polysome/monosome) ratio was calculated by measuring the areas under the 
polysome and 80S peak and further quantified in the left panel (means ± SEM; 
n = 3 independent experiments; *P < 0.05, ratio paired t test). (B) Polysome 
profiling of WT and TSC2 KO cells was conducted after treatment with 
harringtonine for indicated times. The P/M ratio was determined and 
normalized to no harringtonine treatment per cell type (means ± SEM; n = 4 
independent experiments; **P < 0.01, paired t test). (C) WT and TSC2 KO cells 
were pretreated with rapamycin followed by harringtonine treatment for 
indicated times before polysome profiling. The P/M ratio was determined and 
normalized to no harringtonine treatment (means ± SEM; n = 3 independent 
experiments; *P < 0.05, **P < 0.01, unpaired t test). 
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Figure 3-S8 Measurement of ribosome dynamics during translation 

elongation. (A) Schematic of ribosome run-off in the presence of 
harringtonine. (B) An example of polysome profiles of MEF cells in the 
presence of harringtonine (1mg/ml) at the indicated times. Monosome (80S) 
and polysomes are highlighted and the P/M ratio change is quantified in Fig. 
6B. 

Figure 3-S7 Ratio of 28S to 18S rRNAs in wild-type and TSC2 knockout 

cells. RNA was extracted from wild-type and TSC2 knockout cells with or 
without 20 nM rapamycin treatment for the indicated times. RNA was run on a 
1% agarose gel by electrophoresis (left panel). Relative ratios of 18S rRNA was 
compared to 28S rRNA (right panel) (mean ± SEM; n=3 independent 
experiments). 



77 

mTORC1 controls cellular susceptibility to proteotoxic stress 

mTORC1 signaling adversely affected the quality of newly synthesized 

proteins; therefore, we reasoned that cells with persistent mTORC1 signaling 

might be sensitive to proteotoxic stress. To test this possibility, we treated cells 

with MG132 to induce proteotoxic stress and compared the cell viability between 

wild-type and TSC2 knockout cells. MG132 treatment significantly reduced cell 

growth and caused about 10% cell death in wild-type cells (Fig. 7A). In contrast, 

more than 20% of cell death occurred in TSC2 knockout cells after the same 

treatment. Because proteotoxic stress triggers apoptosis, we analyzed molecular 

markers of apoptosis in these cells and detected increased caspase-3 cleavage in 

TSC2 knockout cells (Fig. 7B). 

Adding rapamycin together with MG132 restored the cell viability of TSC2 

null cells (Fig. 7, A B). Accordingly, there was a decrease in the proportion of cells 

undergoing apoptosis (Fig. 7B). These protective effects of rapamycin in response 

to proteotoxic stress might be attribute to the involvement of multiple pathways 

including macroautophagy (Zhou et al., 2009). Nevertheless, our results extend 

the benefits of rapamycin by showing that it alleviates proteotoxic stress by 

increasing the quality of newly synthesized proteins. 
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Figure 3-7. mTORC1 regulates cellular susceptibility to proteotoxic stress. 

(A) WT and TSC2 KO cells were treated with MG132 in the absence or presence 
of rapamycin. Cell viability and morphology were assessed by phase-contrast 
microscope images (left panel). Images were assessed for cell viability and 
quantified (right panel) (means ± SEM; n = 4 independent experiments; *P < 
0.05, ratio paired t test). (B) Cell samples from (A) were lysed and 
immunoblotted using the indicated antibodies. The amount of cleaved caspase-
3 relative to the total caspase-3 was quantified (right panel) (means ± SEM; n = 
3 independent experiments; **P < 0.01, ratio paired t test). 
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3.4 Discussion 

Studies conducted in rodents over the past seventy years have shown that 

life span is extended by caloric restriction (McCay et al., 1989). Similar to caloric 

restriction, mTORC1 inhibition also extends life span in various model organisms 

(Kapahi, et al, 2004; Kaeberlein et al., 2005; Powers et al., 2006), and 

administration of rapamycin to adult mice is sufficient to extend life span 

considerably (Harrison et al., 2009). However, how mTORC1 inhibition increases 

longevity in mammals remains an unresolved issue. Protein synthesis–dependent 

and protein synthesis–independent mechanisms have been proposed, and 

several models have been suggested to explain the potential benefits of reducing 

protein synthesis. First, a decrease of overall translational products could lower 

the cellular burden of erroneously synthesized polypeptides. This situation results in “spare” proteolytic and chaperone function in cells, which may 

contribute to the observed increase in organism stress resistance and life span 

(Hipkiss, 2007). Second, global suppression of protein synthesis may allow 

selective translation of a subset of mRNAs that exert a protective function (Zid et 

al., 2009). Here, we report that a global decrease in mRNA translation improves 

the fidelity of protein synthesis. Our observations not only extend the functional 

connection between mTORC1 and protein homeostasis (Fig. 8) but also suggest a 

molecular basis for how constitutively activemTORC1 signaling favors the 

development of age-related pathologies by disrupting protein homeostasis. 

mTORC1 regulates mRNA translation at multiple stages. The regulatory 

mechanisms impinging on the initiation stage have received considerable 

attention, but accumulating evidence points to the elongation phase as another 

target of translational control (Proud, 2009). We monitored ribosome dynamics 
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in cells with altered mTORC1 signaling using the translation inhibitor 

harringtonine. Consistent with the positive role of mTORC1 in regulating eEF2 

activity (Proud, 2011), TSC2 knockout cells exhibit faster ribosome runoff than 

the wild-type cells. Despite the wide belief that rapamycin suppresses general 

protein synthesis by acting primarily on translation initiation, we found that 

rapamycin does not disassemble the polysome, at least in the early stage. Thus, it 

is conceivable that rapamycin exerts additional impacts on elongation. 

Supporting this notion, rapamycin treatment reduces the elongation rate of 

ribosomes in both wild-type and TSC2 knockout cells. 

Figure 3-8. Model for functional connection between mTORC1 and protein 

homeostasis. mTORC1 regulates protein synthesis at multiple stages through 
different downstream targets. Whereas 4E-BPs control the initiation step, 
S6Ks mainly promote the elongation stage. The altered ribosome dynamics 
when mTORC1 signaling is deregulated results in protein dyshomeostasis and 
disruption of the protein quality control (PQC) network. Rapamycin restores 
protein homeostasis by enhancing translation fidelity through the S6Ks. 
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One unanticipated finding in this study is the distinct roles of mTORC1 

downstream targets in translation fidelity. It appears that S6Ks, but not 4E-BPs, 

influence the quality of translational products, presumably through the 

regulation of elongation. This is in agreement with the finding that mice lacking 

S6K1 showed increased life span and resistance to age-related pathologies 

(Selman et al., 2009). In contrast, deleting 4EBPs mainly affected cell 

proliferation, but not cell growth (Dowling et al., 2010). In addition, only the 

phosphorylation of S6Ks, but not 4E-BPs, is sensitive to rapamycin treatment 

(Choo et al., 2008). The differential effects of rapamycin on mTORC1 downstream 

targets support the notion that the antiaging benefits of rapamycin occur through 

the elongation stage by S6Ks (Fig. 8). 

How does an increased elongation rate affect translation fidelity? mRNA 

translation is an error-prone step in gene expression with about 1 in every 103 to 

104 codons mistranslated (Gingold and Pilpel, 2011). Amino acid incorporation is 

a competitive process between the cognate and the near-cognate transfer RNAs 

(tRNAs) for a given codon. The increased elongation rate could potentially 

compromise the translational fidelity by promoting misincorporation of amino 

acids. Reduced elongation speed, on the other hand, allows for a relatively longer 

dwell time of the ribosome in its search for correct tRNA pairing. It is thus 

conceivable that an increased translation speed, such as that under constitutively 

active mTOR signaling, generates more aberrant translational products. In 

addition, variations of elongation speed may coordinate cotranslational folding of 

emerging polypeptides (Komar, 2009). The local discontinuous translation 

(ribosome pausing) temporally separates the translation of segments of the 

peptide chain and actively coordinates their cotranslational folding (Zhang et al., 

2009). Supporting this notion, a study in Escherichia coli has demonstrated that 
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slowing translation speed enhances protein folding efficiency (Siller et al., 2010). 

The faster translation speed may eliminate the ribosome pausing necessary for 

cotranslational events. Supporting this notion, we observed an inverse 

correlation between elongation speed and the quality of nascent polypeptides in 

mammalian cells. 

Ribosome biogenesis is largely controlled by mTORC1 at the level of 

translation because ribosomal subunits are encoded by TOP mRNAs (Thoreen et 

al., 2012; Hamilton et al., 2006). The reduced translation fidelity under 

constitutively active mTORC1 signaling could create errors in synthesized 

ribosomal proteins, which may cause an error catastrophe due to dysfunctional 

translation machinery. This catastrophe would create additional errors of newly 

synthesized polypeptides. We cannot exclude the possibility that this may 

account for the reduced quality of synthesized proteins. It remains to be 

investigated whether cells with unrestrained mTORC1 signaling contain defective 

ribosome subunits. 

The observations described in this study have several implications. First, 

the critical role of mTORC1 in ribosome dynamics and translation quality extends 

the molecular linkage between mTORC1 and protein homeostasis. Second, the 

finding that an increase in protein synthesis is accompanied by a decrease in 

protein quality provides a plausible mechanism for how persistent mTORC1 

signaling favors the development of age-related pathologies. With the most 

common feature of aging being an accumulation of misfolded proteins derived 

from erroneous biosynthesis and postsynthetic modification, protein 

homeostasis is an important mediator of rapamycin in longevity. 
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3.5 Materials & Methods 

Cell lines and reagents- TSC2 wild-type and knockout MEFs were provided 

by D. J. Kwiatkowski (Harvard Medical School). 4E-BP wild-type and double-

knockout MEFs were provided by N. Sonenberg (McGill University), and S6K 

wild-type and double-knockout MEFs by G. Thomas (University of Cincinnati). All cell lines were maintained in Dulbecco’s modified Eagle’s medium with 10% fetal 
bovine serum grown at 37°C with 5% CO2. Cycloheximide, rapamycin, and 

MG132 were purchased from Sigma, and harringtonine from LKT Laboratories. 

Dual-Luciferase Assay System, Luciferase Assay System, and Proteasome-Glo kit 

were purchased from Promega. D-Luciferin was purchased from Registech. 

Antibodies against phosphorylated and total S6 and caspase-3 were purchased 

from Cell Signaling Technology; β-actin from Sigma-Aldrich; myc from Santa 

Cruz; and polyubiquitin from Assay Designs. Anti-Fluc was purchased from 

Novus Biologicals.  

Plasmids and transfection- The Fluc gene was directly removed from pGL3 

vector (Promega) with Hind III and Xba I sites and then cloned into pcDNA3.1 

(Invitrogen). Fluc mutants for fidelity assays were created from pGL3 vector with 

PCR Mutagenesis Kit (Agilent Technologies) with the following primers: 

Fluc(Stop), 5′-GGTCTGCCTAAAGGTGTCGCTTAGCCTCATAGAACTGCC-3′; 
Fluc(R218S), 5′-GCCTCATAGAACTGCCTGCGTGTCTTTCTCGCATGCCAGAGATCC-3′. Plasmids encoding Rheb-myc were provided by K.-L. Guan (University of 

California, San Diego). Transfection was performed with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. 

mRNA in vitro transcription- mRNA with a m7G-cap was synthesized with 

the mMessage mMachine T7 Ultra Kit (Ambion), followed by purification with the 
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MEGAclear Kit (Ambion), according to the manufacturer’s instructions. mRNA 
transfections were performed with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. 

Luciferase assay- For real-time measurement of Fluc activity, cells were 

plated on 35-mm dishes and transfected with plasmid or mRNA containing the 

Fluc gene. Immediately after transfection, 1 mM luciferase substrate D-luciferin 

was added into the culture medium, and the Fluc activity was recorded at 37°C 

with 5% CO2 using Kronos Dio Luminometer (ATTO). For luciferase assay with 

cell lysates, Fluc activity was measured with a luciferase reporter assay 

(Promega) on a Synergy HT Multi-detection Microplate Reader (BioTek 

Instruments). For the fidelity assay, Fluc activity from Fluc mutants was 

normalized to Fluc activity derived from pGL3. 

In vitro refolding assay- QuantiLum Recombinant Fluc (Promega) was 

diluted in lysis buffer at a concentration of 50 mg/ml and then split into two 

individual Eppendorf tubes. One tube was placed at 42°C for 15 min to denature 

Fluc, whereas the other was kept at room temperature. The denatured or 

nondenatured Fluc protein was then added to cell lysates for a final 

concentration of 16.5 mg/ml. Refolding was conducted at room temperature, and 

the Fluc activity was monitored every 15 min with the Promega Luciferase Assay 

System. Fluc activity in lysis buffer alone was measured in parallel to exclude 

spontaneous refolding of denatured Fluc. The nondenatured Fluc activity was 

used to normalize the denatured Fluc activity after cell lysate–mediated 

refolding. 

Immunoblotting- Cells were lysed on ice in tris-buffered saline (TBS) 

buffer [50 mM tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA] containing protease 

inhibitor cocktail tablet (Roche) and 2% Triton X-100. After incubating on ice for 
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30 min with interval vortexing, the lysates were centrifuged for 5 min at 12,500 

rpm, and an aliquot was removed for quantification by Bradford assay (Bio-Rad). 

Samples were adjusted to 1 mg/ml and heated for 5 min in SDS–polyacrylamide 

gel electrophoresis (SDS-PAGE) sample buffer [50 mM tris-HCl (pH 6.8), 100 mM 

dithiothreitol (DTT), 2% SDS, 0.1% bromophenol blue, 10% glycerol]. For 

fractionation analysis, the Triton X-100–soluble and Triton X-100–insoluble 

fractions were dissolved individually in SDS-PAGE sample buffer. Proteins were 

resolved on SDS-PAGE and transferred to Immobilon-Pmembranes (Millipore). 

Membranes were blocked for 30 min in TBS containing 5% blotting milk, 

followed by incubation with primary antibodies overnight. After several washes 

with TBS containing 0.1% Tween 20, the membrane was incubated with 

horseradish peroxidase–coupled secondary antibodies. Immunoblots were 

developed with enhanced chemiluminescence (ECL Plus, GE Healthcare). 

Individual Western experiments were quantified with ImageJ software and 

normalized to either β-actin or total protein of phosphorylated target as a loading 

control. 

Reverse transcription PCR and qPCR- Total RNA was extracted from whole-

cell lysates with TRIzol reagent (Invitrogen) according to the manufacturer’s 
instructions. RNA quality was validated by NanoVue Spectrophotometer (GE 

Healthcare) and run on an agarose gel for integrity examination. Reverse 

transcription was performed with SuperScript III kit (Invitrogen) followed by 

PCR. The primers for the Fluc gene are 5′-ATTTATCGGAGTTGCAGTTGCGCC-3′ 
(forward) and 5′-CCAGCAGCGCACTTTGAATCTTGT-3′ (reverse), and the primers for 18S are 5′-CTTGGATGTGGTAGCCGTTT-3′ (forward) and 5′-
TATGGTTCCTTTGGCGCTC-3′ (reverse). For qPCR, reverse transcription was 

performed with High Capacity cDNA Reverse Transcription Kit (Applied 
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Biosystems). qPCR was then conducted with Power SYBR Green PCR Master Mix (Applied Biosystems) according to the manufacturer’s protocols. PCR was 

performed on a LightCycler 480 Real-Time PCR System (Roche Applied Science) 

with three technical replicates per sample per run. The primers for the Fluc gene are 5′-ATCCGGAAGCGACCAACGCC-3′ (forward) and 5′-
GTCGGGAAGACCTGCCACGC -3′ (reverse), and the primers for β-actin are 5′-
TTGCTGACAGGATGCAGAAG-3′ (forward) and 5′-ACTCCTGCTTGCTGATCCACAT-3′ (reverse). 

Polysome profiling- A sucrose solution was prepared in polysome buffer 

[10 mM Hepes (pH 7.4), 100 mM KCl, 5 mM MgCl2, cycloheximide (100 mg/ml), 5 

mM DTT]. A 15 to 45% sucrose density gradient was prepared in SW41 

ultracentrifuge tubes (Fisher) with a Gradient Master (BioComp Instruments). 

Cells were treated with cycloheximide (100 mg/ml) for 3 min at 37°C in culture 

media followed by lysis in ice-cold polysome buffer containing 2% Triton X-100. 

Lysate was centrifuged for 10 min at 12,500 rpm, and 500 ml of supernatant was 

loaded onto sucrose gradient and centrifuged for 100 min at 38,000g at 4°C in a 

SW40 rotor. Gradients were fractioned at 0.75 ml/min with an automated 

fractionation system (ISCO), which continually monitors absorbance values at 

254 nm. For rescue experiments, rapamycin was used at 20 nM for 3 hours 

before the addition of cycloheximide. For the ribosome runoff assay, cells were 

pretreated with harringtonine (1 mg/ml) with or without 20 nM rapamycin for 

up to 5 min before the addition of cycloheximide. 

Proteotoxic stress and viability assay- TSC2 wild-type and knockout MEFs 

were treated with 10 mM MG132 overnight with or without 10 nM rapamycin. 

Multiple fields were selected for examination by a Nikon Eclipse Ti-S inverted 
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microscope. Cells were then collected and counted with trypan blue staining. 

Four counts were made per sample and averaged for viability assay. 

Statistics- For each analysis, raw values were used when possible or raw 

values were normalized to an internal control from at least three biologically 

independent experiments. The data are expressed as means ± SEM. For each 

comparison, the relevant comparisons were chosen on the basis of the assay. A 

Bonferroni correction was used to adjust the P values for multiple comparisons 

within Fig. 3B. Statistical significance is denoted by *P <0.05 and **P < 0.01. 

Microsoft Excel, GraphPad Prism 6, and JMP software were used for statistical 

analyses. 
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CHAPTER 4 

 

Detecting Co-translational Degradation in Vivo 

 

 

4.1 Abstract 

Co-translational degradation of nascent polypeptides has been 

contemplated and debated for nearly thirty years. It has recently been reported 

that 12-15% of nascent polypeptides are ubiquinated in human cell culture and 

at least 1.1% in S. cerevisiae. To connect these recent findings with previous work 

studying ubiquinated residues, we used Ribo-Seq to monitor ribosome density 

along engineered nascent protein bearing an amino-terminal degradation signal 

(degron). In agreement with previous reports, we observed partial co-

translational degradation of our degron sequence using Ribo-seq. Furthermore, 

the ribosomes remained intact along the mRNA transcript, suggesting that 

dissociation is not directly coupled with co-translational degradation.  

 

4.2 Introduction 

Protein synthesis is recognized as one of the highest error-prone steps in 

gene expression with approximately one in every ~104 codons mistranslated 

(Kirkwood et al., 1984). To balance the threat of aberrant protein products, cells 

have adapted intricate mechanisms of quality control. Synthesis, maturation, and 

This chapter is based on a new project written by Conn CS, to be placed together 
with previous work from Han Y, and analyzed in part by Liu B. With additional 
experiments, the manuscript will be completed by Conn CS and Qian S-B in 2013. 
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degradation of polypeptides are kept in check through a network of pathways to 

maintain this protein homeostasis. These quality control mechanisms begin at 

the birth of the polypeptide, as the amino-terminal end emerges from the 

ribosome exit tunnel. Once a controversial hypothesis, co-translational regulation 

has now become accepted with advances showing co-translational folding and 

potential degradation (Pechmann, et al., 2013; covered in Chapter 1).  

Previous studies indicated that as high as 30% of newly synthesized 

polypeptides can be targeted for degradation (Schubert et al, 2000). This created 

a debate and even a schism in the field regarding why a cell would waste valuable 

products which require substantial consumption and are energetically 

demanding to yield (Yewdell and Nicchitta, 2006). Recent advances have 

narrowed down this percentage, stating that 12-15% of nascent polypeptides can 

be ubiquinated (Ub) in human cell culture and 1.1% in S. cerevisiae (Wang et al., 

2013; Duttler et al., 2013). Furthermore, a disruption in protein homeostasis 

increasing mistranslation, increasing misfolding, or deleting quality control 

components enhanced the co-translational Ub in both organisms. The 

mechanisms of co-translational Ub at the ribosome leave much to uncover, 

including specificity for recognition and ribosome dynamics during degradation. 

To expand on these recent advances, we engineered multi-domain 

substrates bearing an amino-terminal degradation signal (degron) to evaluate 

specificity of co-translational degradation using polysome profiling and 

sequencing (Ribo-Seq) (Bachmair and Varshavsky, 1989). Our data confirms a 

loss of ribosome reads within the coding sequence (CDS) of a degron that can be 

rescued by inhibition of the proteasome. Furthermore, the degradation of a 

targeted substrate does not alter the ribosome association along the mRNA 

transcript. These results support co-translational degradation in mammalian 
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cells and provide a strategy to monitor individual genes of interest for quality 

control at the ribosome.   

 

4.3 Results 

The degron technique was designed and perfected over the last thirty 

years to engineer substrates mimicking regulated polypeptides, which are short-

lived in vivo. The sequence requires an Ub moiety for co-translational targeting of 

the substrate as well as essential lysine residues downstream for poly-Ub chain 

attachment (Lys-15, Lys-17, or multiple Lys sites) (Bachmair and Varshavsky, 

1989). The C-terminal of Ub is cleaved co-translationally between the last two 

glycine residues then exposing the next amino acid as the new N-terminus. 

Varying amino acids in the N-terminus can create a range of stability noted as the 

N-end rule. For example, an exposed methionine residue may be stable over 

twenty hours in vivo, while an arginine residue, at the same position, might turn 

over in minutes (Bachmair et al., 1986). To evaluate the ribosome dynamics along 

a degron sequence, we generated monoclonal HEK293 cell lines stably expressing 

either the multi-domain transcript Ub-MFlag-Luc (M-Luc), Ub-RFlag-Luc (R-Luc), 

or UbvvRFlag-Luc (vvR-Luc) each with the first lysine residue of firefly luciferase 

(Luc) positioned as the optimal Lys-17 residue (Figure 4-1A, B). After Ub emerges 

from the exit tunnel, folding into the correct conformation, it will be recognized 

and cleaved at the C-terminus in the M-Luc construct, creating a relatively stable 

protein. In R-Luc, after cleavage, the product containing arginine in the N-

terminus should be relatively unstable. However, within vvR-Luc the glycine 

residues recognized for cleavage were mutated to valine creating a constitutively 

targeted degron substrate remaining uncleaved (Figure 4-1B).   
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Figure 4-1. Nascent polypeptides bearing an N-terminal degradation 

signal are quickly turned over in vivo. (A) Schematic of amino-terminal 
degradation constructs (degrons) containing a targeted Ub domain followed by 
the N-end residue for stability, M, or instability, R. Flag allows for construct 
recognition, while firefly luciferase (FLuc) serves as a protein allowing for 
multi-Ub chains on Lys-17 (K17) for optimal targeting. (B) Similar to A, though 
Ub is mutated to prevent cleavage creating a constitutively targeted degron 
construct. (C) Nascent polypeptides from degron constructs were recognized 
by pulse-labeling and IP from stably expressed HEK293 cells. MG132 at 20uM 
was added during pulse to prevent degradation of newly synthesized peptides. 
Lower: Quantification of band intensity to determine percent loss relative to 
Ub-M+MG. 

Figure 4-S1. Nascent polypeptides bearing an N-terminal degradation 

signal are quickly turned over in MEF cells. Nascent polypeptides from 
degron constructs recognized by pulse-labeling and IP from stably expressed 
WT MEF cells. MG132 at 20uM was added during pulse to prevent degradation 
of newly synthesized peptides. Left panel: Quantification of band intensity to 
determine percent loss relative to Ub-M+MG. 
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To verify the co-translational targeting of our degron sequences, we 

carried out radiolabeling followed by a Flag immunoprecipitation (IP) of our 

constructs. Cells were treated with or without MG132 to inhibit the proteasome 

for addressing stability of the nascent polypeptides (Figure 4-1C) and potential 

co-translational degradation. M-Luc showed an abundance of nascent proteins at 

the expected size after Ub cleavage, furthermore, MG132 had minimal effects on 

these stable polypeptides. R-Luc showed a loss of stability when compared to 

cells treated with MG132, suggesting the protein has a relatively high turnover 

during the radioactive pulse. The constitutive degron sequence, vvR-Luc, showed 

a higher molecular weight compared to the other constructs due to the fused 

mutated Ubvv moiety and had over 50% protein loss (Figure 4-1C). Similar 

results were also obtained in stable WT MEF cell lines expressing the same 

degron constructs (Figure 4-S1). The extent of stability loss in each of these 

constructs suggest that M-Luc indeed is long-lived, though a targeted substrate 

like UbvvR-Luc remains ubiquinated allowing for longer recognition for 

degradation co- and post-translation.  

Distinguishing the separation of co- vs post-translational regulation 

requires sequencing of the protein of interest as it is bound by an actively 

translating ribosome. Ribosome sedimentation alone cannot address this issue 

due to the accumulation of ribosomal-protein complexes aggregating in granules 

throughout the cell or empty monosome complexes. For clear separation of co- vs 

post-translational degradation, we used polysome profiling followed by 

sequencing, Ribo-seq (Figure 4-2). Monitoring the positions of the ribosome 

along a given transcript allows for a dynamic reference during protein synthesis 

using ribosome protected mRNA fragments (RPFs). After collecting polysome 

fractions from the whole cell lysates, using sucrose sedimentation, we converted 
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the polysomes to single ribosomes by RNase I digestion. Ribosomes bearing the 

degron sequence were enriched by IP using anti-Flag mAb-coated beads. Flag tag-

associated RPFs as well as total RPF reads from the sample pooled fractions were 

used to construct a cDNA library for Illumina high-throughput sequencing 

(Figure 4-2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2. Schematic for Ribo-Seq approach to enrich degron sequence. 
Polysomes from HEK293/Ub(X)Flag-Luc cells, where (X) represents M or vvR 
residues, are converted into monosomes by RNase I digestion. To enrich for the 
degron sequence an IP with anti-Flag is done in the absence or presence of 
protein degradation (±MG132). RPFs are extracted for cDNA library 
construction. Deep sequencing results of RPFs are analyzed by transcriptome 
mapping.     
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Consistent with non-uniform mRNA translation rates, there were multiple 

sites along the Flag-Luc transcripts which showed enhanced RPF reads (Figure 4-

3). These peaks may be due to ribosome pausing sites throughout the transcript, 

as an accurate codon is selected for or as the polypeptide emerges into the 

cellular environment finding the correct confirmation. The Flag tag presented at 

the N-terminus also allowed for Flag mAb-association throughout the elongation 

stages. Alignment of normalized RPF reads on the MFlag-Luc transcript, before 

and after Flag IP, revealed a similar pattern of ribosome density. As expected, 

when comparing the percent of ribosome density within a 100-nucleotide 

window, the RPFs from total reads and IP reads remained in similar ratios 

throughout the MFlag-Luc and vvRFlag-Luc transcript with only a drop in the 

first 100 nucleotide region due to Flag mAb capture (Figure 4-3, lower panels).  

Alignment of normalized reads on the vvRFlag-Luc transcript from Total 

and Flag-IP showed a distinct pattern with only slight peak similarities (Figure 3, 

left panel). Due to the fused Ub moiety in this transcript, it is assumed that the 

degron sequence is constantly targeted for degradation. If the polypeptide 

emerges and is bound by additional factors for degradation, this may alter the 

binding of Flag mAb to the transcript. For example, at nucleotide position 883 

there is a high peak that is also at the same location in the total samples, but with 

a greater pronunciation in the IP reads. When the ribosome reaches this position 

there may be a conformational rearrangement of the polypeptide allowing for 

optimal binding with the Flag mAb. This is likely the case due to the pronounced 

peak in the MFlag-Luc IP as well. Additional variation throughout the transcript, 

as elongation proceeds, may be due to a loss of reads within the vvRFlag-Luc 

transcript potentially from co-translational degradation.  
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Figure 4-3. Monitoring co-translational dynamics of degron Flag-Luc 

constructs in mammalian cells. Comparison of RPF distribution along Flag-
Luc transcript before and after anti-Flag IP. The total and IP reads are aligned 
based on sequence position of Ub(X)Flag-Luc, where X represents M or R (right 
and left panel, respectively). The green arrows represent the X location and 
FLuc start site. The red square represents FLuc stop codon and the nucleotide 
position at 883 is highlighted by the gray arrows. Lower: The RPFs sequence 
distribution was relatively compared between total and IP reads at six, 100-
nucleotide based, windows including the first and last 100 nucleotides in the 
(X)Flag-Luc transcript as well as four other intra-transcript sequences.        
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To determine if vvRFlag-Luc is co-translationally degraded, we treated the 

cells with MG132 at 20uM for one hour before ribosome sedimentation and 

profiling. This treatment did not create a significant disruption on global 

translation as viewed by polysome profiles (data not shown). In addition, 

alignment of normalized RPF reads on the Flag-Luc transcript, before and after 

Flag IP, revealed a similar pattern of ribosome density that was disrupted in the 

absence of MG132 (Figure 4-4 compared to Figure 4-3, right panels). 

 

 

 

 

 

 

 

 

 

If co-translational degradation can occur on a targeted sequence it would 

lead to a loss of reads throughout the transcript. If the emerging polypeptide is 

recognized for degradation as it emerges there would also be a lower density of 

RPFs in the 3’end that could potentially be rescued by the inhibition of the 

Figure 4-4. Monitoring co-translational dynamics of degron Flag-Luc 

constructs with MG132 treatment. Comparison of RPF distribution along 
Flag-Luc transcript before and after anti-Flag IP from cells treated with 20 µM 
MG132. The total and IP reads are aligned based on sequence position of 
Ub(X)Flag-Luc, where X represents M or R (right and left panel, respectively). 
The green arrows represent the X location and FLuc start site. The red square 
represents FLuc stop codon and the nucleotide position at 883 is highlighted 
by the gray arrows.  
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proteasome. Looking at a 75-nucleotide sliding window, we compared the RFP-

density enriched in the Flag-IP with or without MG132 along the Flag-Luc 

transcript (Figure 4-5). Indeed there was an accumulation of reads in the 3’end of 
vvRFlag-Luc, though the stable MFlag-Luc showed a constant density with or 

without MG132. This suggest that vvRFlag-Luc reads can be rescued by inhibiting 

the proteasome or rather that they are targeted for degradation during synthesis.  

Sequence specificity is also required for accurate quality control. An 

unstable targeted substrate should be recognized for co-translational 

degradation, while a stable sequence should remain intact. Flag IP enrichment 

differences between vvRFlag-Luc and MFlag-Luc were then compared in the 

absence or presence of MG132 (Figure 4-S2). If both transcripts are rescued by 

MG132 we should see no specificity between the two transcripts, however, an 

increase would suggest that UbvvR is specifically being targeted; the latter was 

seen. Furthermore, comparing the presence to the absence of MG132 for each 

construct and then looking at this rescue effect for sequence specificity gave 

noticeable results confirming co-translational degradation occurring on the 

degron construct vvRFlag-Luc (Figure 4-6).      
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Figure 4-5. Flag-IP enrichment rescued by MG132. Pattern analysis of RPF 
distribution along Flag-Luc transcript before and after MG132 treatment 
within a 75-nucleotide sliding window. The reads are aligned based on 
sequence position of Ub(X)Flag-Luc, where X represents M or R (upper and 
lower panel, respectively). The green arrows represent the X location and the 
red represents FLuc stop codon.  
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Figure 4-S2. Flag-IP enrichment for substrate specificity between vvR- and 

M- Flag-Luc. Pattern analysis of RPF distribution along Flag-Luc transcript 
between vvR- and M- Flag-Luc reads with or without MG132 treatment in a 
120-nucleotide sliding window. The reads are aligned based on sequence 
position of Ub(X)Flag-Luc, where X represents M or R residues. The green 
arrows represent the X location and the red represents FLuc stop codon.  

Figure 4-6. Co-translational degradation shows substrate specificity. 
Pattern analysis of RPF distribution along Flag-Luc transcript before and after 
MG132 treatment compared between vvR- and M-Flag-Luc substrates within a 
120-nucleotide sliding window. The reads are aligned based on sequence 
position of Ub(X)Flag-Luc, where X represents M or R. 
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4.4 Discussion 

Co-translational regulation for quality control is becoming an accepted 

dogma in the protein homeostasis field. Recent advanced in the past year have 

confirmed co-translational folding and confirmed co-translational ubiquination 

assumed to target newly synthesized peptides for degradation (Spencer et al., 

2012; Liu et al., 2012; Kirstein-Miles et al., 2013; Duttler et al., 2013; Brandman et 

al., 2012). However, co-translational degradation in vivo has only directly been 

measured once, over a decade ago (Turner and Varshavsky, 2000). Their work 

established that ubiquitin targeted substrates, known to be degraded in the cell, 

have more than 50% co-translationally targeted. Their previous work also 

characterized substrates targeted for degradation, showing that an Ub target is 

required, an Ub-targeting specific proteolytic pathway is required, and the 

substrate targeted must be a minimum length to allow recognition for co-

translation targeting (Bachmair and Varshavsky, 1989). Following their criteria, 

we engineered a degron sequence to accurately observe ribosome dynamics to 

detect degradation during mRNA translation.   

   We believe this is the first study to directly examine co-translational 

degradation on actively translating ribosomes. Using an exogenous degron 

reporter allowed us to map unique reads to observe a relative loss within the 

coding sequence, which could be rescued by inhibiting proteasome degradation. 

We note that the direct measurements of co-translational degradation within our 

engineered sequences and endogenous short-lived proteins remain to be 

established, however, our detection with Ribo-Seq shows specificity for a 

targeted degradation substrate. Looking at various reporters for ribosome-

stalling (poly-basic rich regions), induced mis-folding (using mutant proteins or 



 

101 

inducing with AZC-proline-analog), and studying reporters for mistranslation and 

non-stop mediated decay will lead to a better understanding of co-translational 

degradation mechanisms. Eventually this technique can also be adapted to study 

endogenous short-lived proteins to examine their regulation at the ribosome. 

Overall, we confirm with Ribo-seq that co-translational degradation represents 

an additional mechanism for quality control necessary for protein homeostasis.   

 

4.5 Materials & Methods 

Cells and Reagents—HEK293 and WT MEF cells stably expressing 

UbMFlag-Luc, UbRFlag-Luc, and UbvvRFlag-Luc were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS) 

additionally maintained by selection with Geneticin (Gibco). Anti-Flag M2 affinity 

gel and IgG-Agarose were purchased from Sigma (A2220 and A0919). TRIzol LS 

reagent was purchased from Invitrogen. 

Plasmids—Ubiquitin(X)Flag sequences were amplified by PCR, where X 

represents M or R and two reverse primers were utilized to have Ub or mutant 

Ub(vvR). The sequence was cloned to pcDNA3.1 with HindIII and EcoRV 

digestion sites. The firefly luciferase gene was amplified from PGL3 into the 

pcDNA3.1/Ub(X)-Flag plasmids using EcoRV and XbaI restriction sites. All 

constructs were validated by sequencing and meticulously checked. 

Transfections—Plasmid transfections were initially performed using 

Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions. 
Radioactive labeling—Cells were quickly centrifuged, media was 

aspirated, and cells were re-suspended in labeling media with or without 20uM 

MG132 (methionine free media supplemented with 10% FBS containing 10 
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µCi/mL [35S] mix (Perkin Elmer)). After 1 hr pulse at 37°C, the samples were 

added to a pre-chilled Stop buffer (DMEM containing 1 mg/mL cold L-

methionine, 1 mg/mL cold L-cystine and 100 µg/mL cycloheximide), centrifuged 

at 4°C 12,500 rpm for 5 min, and washed two times in ice-cold dPBS 

supplemented with 1 mg/mL of L-methionine and L-cystine with 100 µg/mL 

cycloheximide. Samples were re-centrifuged, all wash removed, and pellets 

stored -20°C till needed.  

Radioactive Flag-IP—Pellets from radioactive labeling were lysed in 150 

µL ice-cold TBS lysis buffer (50 mM tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 

100 µg/ml cycloheximide, 2% Triton X-100, and proteasome inhibitor cocktail 

(Roche)) iced, vortexed, and centrifigued at 4°C 12,500 rpm for 5 min. For IP, 100 

uL of sample were mixed with 30 µL of TBS equilibrated anti-Flag M2 affinity gel 

suspension and incubated at 4 °C for 2 hr rotating, followed by washing three 

times with TBS buffer, and elution in sample buffer (50 mM tris-HCl (pH 6.8), 100 

mM dithiothreitol (DTT), 2% SDS, 0.1% bromophenol blue, 10% glycerol).  

Ribosome Profiling—Sucrose solutions were prepared in polysome buffer 

(10 mM HEPES, pH 7.4, 100 mM KCl, 5 mM MgCl2, 100 µg/ml of cycloheximide, 5 

mM DTT, 20 units/ml of SUPERase_In). Sucrose density gradients (15– 45% w/v) 

were prepared in SW41 ultracentrifuge tubes (Fisher) using a BioComp Gradient Master (BioComp Instruments) according to the manufacturer’s instructions. 
Stable cell lines were pretreated with or without MG132 at 20µM for 1 hr, treated 

with cycloheximide (100 µg/ml) for 3 min at 37 °C, then lysed in ice-cold 

polysome lysis buffer (polysome buffer, 2% Triton, ETA-Free protease inhibitor 

cocktail (Roche), cycloheximide 100 µg/ml, ± MG132 20µM). Lysates were 

centrifuged 10 min at 12,000 rpm at 4 °C, ~600 µl of supernatant was loaded 

onto sucrose gradients, followed by centrifugation for 100 min at 38,000 x g at 4 
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°C in an SW41 rotor. Separate sample gradients were fractionated at 0.75 ml/min 

using a fractionation system (Isco), which continually monitored OD254 values. 

Fractions corresponding to 60 s intervals were collected. 

Ribosome Purification—Polysome fractions per each sample were pooled 

together and pre-cleared  by incubating the ribosome pooled samples with 30 µL 

protein IgG agarose pre-coated with 4% BSA for 1 h rotating at 4 °C. From pooled 

fractions, 300 µL was removed for ‘total’, and then each sample converted into 

monosomes using E. coli RNase I (Ambion) (750 U per 100 A260 units) rotating 

at 4 °C for 1 h. For IP using anti-Flag M2 affinity gel, 30 µL of gel suspension was 

used per sample first incubated at 4 °C for 1 h with 4% BSA for blocking the 

beads. The blocked anti-Flag affinity gel was then incubated with the pre-cleared 

ribosome samples at 4 °C for 1 h during the RNase I digestion, followed by 

washing with polysome lysis buffer three times. Total RNA extraction was 

performed by using TRIzol LS reagent according to manufacturer’s protocol. 
cDNA Library Construction of Ribosome-Protected mRNA Fragment—As 

explained previously (Han et al, 2012), purified RNA samples were 

dephosphorylated in a 15 µL reaction containing 1× T4 polynucleotide kinase 

buffer, 10 U SUPERase_In, and 20 U T4 polynucleotide kinase (NEB). 

Dephosphorylation was carried out for 1 h at 37 °C, and the enzyme was then 

heat-inactivated for 20 min at 65 °C. Dephosphorylated samples were mixed with 

a 2× Novex TBE-Urea sample buffer (Invitrogen) and loaded on a Novex 

denaturing 15% polyacrylamide TBE-urea gel (Invitrogen). The gel was stained 

with SYBR Gold (Invitrogen) to visualize RNA fragments. Gel bands containing 

RNA species corresponding to 25-35 nt were excised and physically disrupted by 

using centrifugation through the holes of a .5 ml tube within a 1.5 ml tube. RNA 

fragments were dissolved by soaking overnight in gel elution buffer at 4 °C (300 
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mM NaOAc, pH 5.5, 1 mM EDTA, 0.1 U/mL SUPERase_In). The gel debris was 

removed using a Spin-X column (Corning) and RNA was purified by using ethanol 

precipitation. 

Purified RNA fragments were resuspended in 10 mM Tris (pH 8) and 

denatured briefly at 65 °C for 30 s. Poly-(A) tailing reaction was performed in a 8 

µL with 1 × poly-(A) polymerase buffer, 1 mM ATP, 0.75 U/µL SUPERase_In, and 

3 U E. coli poly-(A) polymerase (NEB). Tailing was carried out for 45 min at 37 °C. 

For reverse transcription, the following oligos containing barcodes were 

synthesized: MCA02, 5′-
pCAGATCGTCGGACTGTAGAACTCTCAAGCAGAAGACGGCATACGATTTTTTTTTTTT

TTTTTTTTVN-3′; LGT03, 5′-
pGTGATCGTCGGACTGTAGAACTCTCAAGCAGAAGACGGCATACGATT 

TTTTTTTTTTTTTTTTTTVN-3′; YAG04, 5′-
pAGGATCGTCGGACTGTAGAACTCTCAAGCAGAAGACGGCATACGATT 

TTTTTTTTTTTTTTTTTTVN-3′; HTC05, 5′-
pTCGATCGTCGGACTGTAGAACTCTCAAGCAGAAGACGGCATACGATT 

TTTTTTTTTTTTTTTTTTVN-3′. 
Briefly, the tailed RNA product was mixed with 0.5 mM dNTP and 2.5 mM 

synthesized primer and incubated at 65 °C for 5 min, followed by incubation on 

ice for 5 min. The reaction mix was then added with 20 mM Tris (pH 8.4), 50 mM 

KCl, 5 mM MgCl, 10 mM DTT, 40 U RNaseOUT, and 200 U SuperScript III (Invitrogen). RT reaction was performed according to the manufacturer’s 
instructions. RNA was eliminated from cDNA by adding 1.8 µL 1 M NaOH and 

incubating at 98 °C for 20 min. The reaction was then neutralized with 1.8 µL 1 M 

HCl. Reverse transcription products were separated on a 10% polyacrylamide 

TBE-urea gel as described earlier. The extended first-strand product band was 
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expected to be approximately 100 nt, and the corresponding region was excised. 

The cDNA was recovered as described above followed by using DNA gel elution 

buffer overnight (300 mM NaCl, 1 mM EDTA). 

First-strand cDNA was circularized in 20 µL of reaction containing 1× 

CircLigase buffer, 2.5 mM MnCl2, 1 M Betaine, and 100 U CircLigase II 

(Epicentre). Circularization was performed at 60 °C for 1 h, and the reaction was 

heat-inactivated at 80 °C for 10 min. Circular single-strand DNA was relinearized 

with 20 mM Tris-acetate, 50 mM potassium acetate, 10 mM magnesium acetate, 1 

mM DTT, and 7.5 U APE 1 (NEB). The reaction was carried out at 37 °C for 1 h. 

The linearized single-strand DNA was separated on a Novex 10% polyacrylamide 

TBE-urea gel (Invitrogen). The expected 100-nt product bands were excised and 

recovered as described above in DNA gel elution buffer overnight. cDNA was 

extracted and precipitated as described above and resolved in 10 µl of H2O. 

Approximately half the cDNA sample was used as a template for PCR 

amplification using Phusion polyE ( ) with PCR procedure: 98°C 30sec; 98 °C 10 

sec, 60 °C 20 sec, 72 °C 10 sec for 11 cycles; 72 °C 10 min. PCR products were 

separated on a non-denaturing 8% polyacrylamide TBE gel for 1 hr and the 

expected ~120 bp DNA amplicon excised and recovered overnight once more. 

Data Analysis—As previously described (Han et al, 2012), the deep 

sequencing data of ribosome footprints was processed and analyzed by using a 

collection of custom Perl scripts. The barcoded multiplex sequencing output files 

were separated into individual sample datasets according to the first 2-nt barcodes. Second, the 3′ polyA tails allowing one mismatch were identified and 
removed. After that, the high-quality reads of length ranging from 25-35 nt were 

retained. The sequences of the longest transcript isoform for each human gene 

were downloaded from the Ensembl database to construct a human 
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transcriptome reference. In addition, the plasmid sequence of UbMFlag-Luc and 

UbvvRFlag-Luc were used as the reference. The 5′ end positions of aligned reads 
were mapped into the coding frame and the number of reads was counted at each codon ranging from −20 codon 5′ UTR to the stop codon for the downstream 
analysis.  

To compare the RPF distribution on transcript before and after the affinity 

purification, the reads in the first 30-codon window were considered as the 

background because the polypeptides are still buried within the ribosome exit 

tunnel and cannot be accessed. The RPF density vs. background within a sliding 

window in the pull-down sample was calculated across the transcripts compared 

with the total sample. Based on the number of reads after the folding start point, 

the total and pull-down data were normalized to the same scale. The single codon 

peak ratio was calculated by dividing the normalized reads of pull-down sample 

to those of total sample at the same codon. The trend line of the single codon 

peak ratio was determined by locally estimated scatterplot smoothing (LOESS) 

by using SigmaPlot 11.0 (Systat).  
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CHAPTER 5 

 

Concluding Remarks & Future Endeavors 

 

The balance of protein synthesis, maturation, and degradation has 

historically been viewed as distinct mechanisms playing a larger part to maintain 

proteostasis. Researchers that had proclaimed otherwise were questioned for 

their judgment and ingenuity in experimental design, creating a schism in the 

field. However, the understanding of the proteostasis network has developed 

immensely in the past few decades due to the perseverance of a few. Combining 

historical methodology with bioinformatics and proteomics has answered age-

old questions regarding protein regulation. Today, the proteostasis field has 

acknowledged the interlocking networks providing quality control from the start 

of mRNA translation through to the polypeptide turn-over, be it co- or post-

translational regulation.  

Protein synthesis itself is a complex branch of the proteostasis network, 

combining the translational apparatus, building blocks and energy for 

production, and selectivity to determine where and when an mRNA will be 

decoded. The mammalian (or mechanistic) Target of Rapamycin Complex 1 

(mTORC1) is the metabolic hub essential for these signaling events. mTORC1 

links the cellular environment to ribosome biogenesis, select mRNA recognition, 

and translation initiation. On one hand, mTORC1 signaling has become infamous 

for its role in multiple proteostasis diseases including cancer, neurological 

disorders, and diabetes. On the other hand, a decrease in mTORC1 activity is 

honored for organismal benefits including stress resistance and lifespan 
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extension. These alterations have raised many questions including: how could an 

increase in mTORC1 signaling or rather protein synthesis become detrimental to 

an organism and how could a decrease in these essential mechanisms become 

beneficial? By understanding the molecular signaling altered through mTORC1 

activity we not only uncover targets to prevent or treat diseases states, but we 

elucidate the impact protein synthesis has on the proteostasis network from 

mRNA translation through to protein turn-over. 

The work presented here encompasses two main stories focused on understanding the paradox of ‘less is more’, one regarding unique translation 

under stress and the other the detrimental effects of an increase in protein 

synthesis. In chapter 2, I used heat shock to study mTORC1 signaling in a 

cytosolic stress background. Initially, I naively believed that an increase in mRNA 

translation might allow for quicker recovery, producing more molecular 

chaperones necessary during cell stress. However, we discovered that an 

increase in cap-dependent synthesis attenuated the stress-induced translation of 

HSP70 eventually leading to cell death. Using real-time luciferase assays, we 

studied the unique translation through Hsp70’s 5’UTR while manipulating 
mTORC1 activity. Decreasing the PI3K-mTORC1 signaling pathway lead to an 

increase in HSP70 recovery during stress. Furthermore, we determined that 

HSP70 could be translated in a cap-independent mechanism unique of the typical 

IRES and enhanced by decreasing mTORC1 signaling through the downstream 

target 4E-BP. This suggested a competition between cap-dependent and cap-

independent synthesis under stress, while creating a connection between 

mTORC1 signaling and the chaperone network previously unrecognized.  

 In Appendix I, I tried to find direct factors regulated downstream of the 

PI3K-mTORC1 signaling pathway that could influence the switch in protein 
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synthesis from cap-dependent to cap-independent recognition. I used an mRNA-

pulldown of cap- or cap-independent in vitro transcribed Hsp70 mRNA with or 

without the inhibition of the PI3K-mTORC1 signaling pathway by LY treatment. 

Unique factors that bound to the mRNA under conditions that would inhibit, 

activate, or may enhance cap-independent translation based on our previous 

results in Chapter 2 were selected for and analyzed by mass spectrometry 

analysis. I pursued the study of one individual helicase protein, DHX30, which 

bound cap-independent Hsp70 mRNA with LY treatment, yet was absent in the 

control condition where Hsp70 would be repressed. As a helicase protein, we imagined DHX30 bound the 5’UTR of cap-independent transcripts, similar to the 

helicase eIFA, working to unwind the secondary structures to increase initiation 

scanning by the 40S ribosomal subunit. Though the results were optimistic, the 

exact mechanism of DHX30 was not further elucidated nor were the other 

candidate factors.  

Independently, I tried to address cap-independent translation by 

monitoring ribosomal proteins (RPs) that may or may not play an essential role 

in a translational switch. The ribosomal complex is created of ~79 RPs, most of 

which are sequestered to stress granules and aggregates during cell stress. To identify a ‘cap-independent’ ribosome or RPs with potential extra-ribosomal 

functions, we individually knocked down each ribosomal protein with a lentiviral 

system discussed further in Appendix II. Our data confirmed that at least 36 RPs 

are essential, however, there were many that were knocked down with very little 

physiological effect on the cells. Using a bi-cistronic luciferase reporter stably 

expressed in HEK293 cells we monitored cap- and cap-independent translation, 

but very few knock-downs showed a conclusive reproducible result within our 

experimental set-up. This may be due to insufficient knockdown or knockdown 
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levels. One of the proteins, RPL8, consistently showed a unique structural cell 

morphology during knock-down and was also essential for cell viability. 

However, knocking down RPL8 increased both cap and cap-independent 

translation suggesting a regulatory role in monitoring protein synthesis. This 

protein is further being studied as an independent thesis by my undergraduate 

students to reproduce our initial findings and uncover a mechanism of action 

behind the observed phenotypes.   

Currently, another member of our lab has successfully identified a stress-

induced mitochondria ribosomal protein, mRPL18, that is necessary for HSP70 

synthesis and interacts within the cytosolic ribosome in what we are terming a ‘stress’ ribosome. I used radio-active labeling to monitor global cell recovery 

when mRPL18 was knocked down and I observed clear attenuation of newly 

synthesized HSP70 and potentially global recovery. It is hard to determine if the 

effect is strictly HSP70 related or global due the necessity of HSP70 in cell 

recovery. It will be interesting to identify other unique factors involved in this 

selective mRNA translation or stress-induced ribosome complex. Hopefully, by 

incorporating ribosome sedimentation assays followed by immunoprecipation of 

mRPL18 within the ribosome, we can identify other factors required for stress-

induced translation. I look forward to seeing if any of my previous candidate 

factors in Appendix I are further validated. Ribo-Seq coupled with 

immunoprecipitaion, will also provide a more detailed list of mRNA transcripts 

synthesized through the stress-ribosome showing the relevance of regulation 

starting from mRNA selection.      

In my second story, presented in Chapter 3 and Appendix III, I further try 

and understand the perplexing relationship between mTORC1 activity and the thought that ‘less is more’. Hyperactive mTORC1 signaling universally leads to an 
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increase in newly synthesized proteins, however, when utilizing reporter 

proteins I consistently saw less activity with no effect on the mRNA transcript. By 

inhibiting the proteasome activity I could capture the accumulation of the 

reporters in the insoluble fractions and there was an increase in global proteins 

targeted for ubiquitin, suggesting a loss of protein quality. Interestingly, by 

partially inhibiting mTORC1 with rapamycin or knocking-down mTORC1 

components, I decreased the amount of protein made, but could rescue the stable 

reporters.  My work further determined the loss of protein quality was through a 

decrease in translation fidelity through S6K signaling. Using polysome profiling, I 

developed a novel way to monitor translation elongation using the drug 

harringtonin to create screen-shots of polysome run-offs. Hyperactive mTORC1 

signaling lead to faster elongation rates, creating a disruption in protein quality 

control at the ribosome, eventually leading to mistranslation and proteotoxic 

stress. Rapamycin was able to rescue cell death under proteotoxic stress, slow-

down elongation rates, and decrease the fidelity errors. This work created the 

first molecular explanation for how mTORC1 creates dys-homeostasis during 

protein synthesis not only by disrupting initiation, but specifically elongation 

  It would be interesting to monitor which residues or transcript domains 

are specifically disrupted during hyperactive mTORC1 signaling. For example the 5’TOP mRNA sequence, utilized by RPs, are shown to be highly regulated by 
mTORC1 activity. If an increase in mTORC1 signaling disrupts protein fidelity, is 

it due to translational errors in the ribosomal machinery specifically or is it a 

global effect? Looking further downstream of mTORC1 by directly monitoring 

S6K signaling will also provide a more direct target to rescue these effects. In 

Appendix III I show that rapamycin can specifically increase or decrease the 
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phosphorylation of elongation factor eEF2, a downstream target of S6K, 

potentially slowing down elongation by sequestering eEF2 will also be beneficial.  

One remaining puzzle from studying the effects of hyperactive mTORC1 

on protein quality, was the unexplained loss of the protein or quickly degraded 

proteins. We reasoned that an increase in protein synthesis may be balanced by 

the proteasome system or may saturate the molecular chaperones, however I 

saw no direct effects on the activity of either through multiple independent 

experiments. Additionally, I could never capture the loss of aberrant proteins 

even using sensitive assays; including pulse-chase. I was able to capture an 

increase in poly-ubiquination at the ribosomes under an increase in mTORC1 activity, but I couldn’t decipher if the nascent polypeptides were modified or the 

ribosomes directly. We reasoned that the decrease in translation fidelity lead to 

an increase in co-translational quality control. 

In Chapter 4, I set out to explore the debated concept of co-translational 

degradation. Novel applications including Ribo-Seq give the ability to utilize 

genome-wide analysis to monitor protein synthesis at single-nucleotide 

resolution. We utilized this technique, coupled with a domain specific antibody, 

to determine the exact sequence of ribosome pausing for further identification of 

co-translational processing in vivo. Following the clever design of our 

predecessors, I engineered an amino-targeted degradation construct allowing us 

to monitor stable polypeptides in the presence or absence of degradation. We 

were able to observe co-translational degradation within actively translating 

ribosomes by comparing specificity of a targeted degron sequence to a stable 

expressed construct. Utilizing, these methods we can begin to elucidate signaling 

events promoting or disrupting co-translational quality control.  
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Here I presented evidence that hyperactive mTORC1 can lead to a global 

increase in translation, yet the attenuation of stress-regulated translation 

necessary for cell recovery. Mechanistically, I demonstrated that hyperactive 

mTORC1 increases translational errors that could be rescued through rapamycin 

treatment. The increase in protein quantity, through mTORC1 signaling, is at the 

expense of the protein quality likely favoring disease-related states associated 

with hyperactive mTORC1. Collectively, my ex vivo results used to manipulate 

mTORC1 activity uncover multiple molecular events highlighting mTORC1 as a 

key component of the proteostasis network. It seems mTORC1 activity needs to 

be finely tuned during protein synthesis to produce high quality products and, 

furthermore, to maintain balance in protein homeostasis especially under stress 

conditions. Additional in vivo research is necessary to understand how mTORC1 

effects specific mRNA sequences, what factors are targeted downstream to play 

additional assistance in quality control, and when this assistance occurs 

physiologically during development and disease-related states. The research 

touched upon here provides novel insights into individual and global protein 

synthesis regulation through mTORC1 signaling, and will shed light on 

understanding the molecular events in pathological conditions in future studies. 
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APPENDIX I 

 

PI3K-mTORC1 Regulated Factors for Cap-independent Hsp70 Translation 

 

 

Summary 

The regulation of Eukaryotic gene expression allows for protein synthesis 

to be signaled at unique times required for development and cell survival. The 

PI3K-mTORC1 pathway plays a pivotal role in this translational regulation as a 

sensor of the cellular environment; monitoring nutrients, energy and stress 

conditions. However, it has long been known that under cellular stress some 

proteins continue to be synthesized though global translation is compromised.  It 

is speculated that mRNAs transcribed during stress recruit distinct RNA-binding 

factors to confer a preferred translation status, or lack elements promoting 

repression of protein synthesis (Anderson and Kedersha, 2009). One prominent 

example is the selective translation of induced heat shock proteins (HSPs).  

Our previous results show that stress-induced translation of Hsp70 is 

negatively regulated by PI3K-mTORC1 signaling and can be synthesized by a cap-

independent mechanism (Chapter 2; Sun et al, 2011). Therefore, if the PI3K-

mTORC1 pathway becomes hyperactive the cellular stress response is impaired, 

This work was conducted by Conn CS in 2010 to identify factors that may be 
involved in cap-independent synthesis and further be regulated by PI3K-mTORC1 
signaling. This work was also the basis of her A-exam proposal titled PI3K-mTOR 

Signaling Regulates a Translation-Switch to Promote Cell Survival. 
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which is known to associate with disease states including inflammation, cancer, 

and aging (Inoki et al., 2005). We hypothesized that the PI3K-mTORC1 pathway 

regulates a translational switch to ensure cell survival. To identify factors 

required for stress induced translation, I completed an mRNA-affinity pull-down 

under specific parameters followed by mass spectrometry (MS). I began 

examining the direct interaction of various candidate factors with Hsp70 mRNA 

to determine their role in stress induced, cap-independent translation.  

The following preliminary results suggest one of the candidate factors, 

DHX30 (an ATP-dependent DExD/H family RNA helicase), is beneficial for cap-

independent translation specifically when PI3K-mTORC1 signaling is inhibited. I 

was able to validate that DHX30 binds to Hsp70 full mRNA and binding is 

enhanced when PI3K-mTORC1 is inhibited. Additionally, over expressing a 

helicase dead mutant of DHX30(AAVH) may compete with endogenous DHX30 to 

bind Hsp70 mRNA hampering HSP70 recovery. However, overexpressing WT 

DHX30 enhanced HSP70 recovery. Using ribosome profiling fractions, I also was 

able to see DHX30 in fractions corresponding with the 40S, 60S and monosome 

peaks suggesting a potential role in mRNA recognition or initiation. Additional 

experiments are required to validate this interaction, as well as other candidate 

cap-independent translation factors, and the mechanisms involved. 
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DMSO       LY     DMSO       LY
   

Potential binding factors 

HSP70 is translated: 
MBB1A_Myb binding 
DDX9_ ATP-dependent helicase 
SAFB1_Scaffold factor 
DHX30_ATP-dependent helicase 
SAFB2_Scaffold factor 
ZFR_Zinc finger RNA binding  
 

RBM39_RNA binding protein 
DDX5_ ATP-dependent helicase 
LARP7_La related protein 
 

HSP70 is translated: 
ELAV1_ binds 3’UTR to stabilize 
RLA0_ 60S acidic RP 
ROA1_nuclear ribonucleoprotein 
BXDC1_ribosome production  
RPS5_40S RP subunit 5 
RPS7_40S RP subunit 7 

HSP70 translation is repressed: 
TIAR_Nucleolysin mRNA binding 
HNRPD_nuclear ribonucleoprotein 
YBOX1_translation regulator 
 

130 kDa 
 

100 kDa 
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Figure AI-1. Identification of Hsp70 mRNA candidate binding factors. A 
mRNA biotin pulldown assay was performed with TSC2 WT lysates treated 
with or without LY. Elution was run on acrylamide gel followed by silver 
staining for unique band identification. Bands of interest are highlighted and 
were cut and sent to MS for identification. The top hits and potential roles are 
listed to the right of the stained gel. 

Table AI-1. Candidate Hsp70 mRNA binding factors. A list of candidate 
Hsp70 mRNA binding factors with or without LY treatment was compiled from 
MS identification. mRNA type, treatment, and predicted size are labelled to 
signify the band cut (Figure A1-1). Factors of the wrong size, likely due to 
contamination, or with low protein score were removed for simplicity. 
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TABLE A1-1. CANDIDATE HSP70 MRNA BINDING FACTORS. 

APG- 5’UTR LY TREATED CELLS (BAND ~ 130-200 KDA) 

–VISUALIZED IN ALL, HIGHEST IN LY 

HIT

# 

PROT_ACC PROT_DESCRIPTION SIZE KD SCORE MASS COVER 

2 MBB1A_ 

MOUSE 

Myb-binding protein 1A  152 3500 152854 34.7 

7 DHX9_ 

MOUSE 

ATP-dependent RNA 

helicase A  

150 1217 150692 22.5 

10 DHX9_ 

BOVIN 

ATP-dependent RNA 

helicase A  

143 691 143223 16 

11 MBB1A_ 

RAT 

Myb-binding protein 1A 153 512 153046 10.6 

16 VIGLN_ 

MOUSE 

Vigilin - binds HDL 142 435 142225 14.3 

31 YTDC2_ 

HUMAN 

Probable ATP-dependent 

RNA helicase YTHDC2  

162 149 161573 4.1 

37 RRP12_ 

MOUSE 

RRP12-like protein  144 111 144295 0.8 

46 PLCZ1_ 

MOUSE 

1-PI-4,5-bisphosphate 

phosphodiesterase  

75 58 75137 1.2 

48 SF3B1_ 

HUMAN 

Splicing factor 3B subunit  146 54 146479 2.7 

52 FCSD2_ 

HUMAN 

FCH and double SH3 

domains protein  

85 39 84737 1.5 

54 SMRC1_ 

HUMAN 

SWI/SNF complex subunit 

SMARCC1  

123 38 123303 0.8 

APG- 5’UTR LY TREATED CELLS (BAND ~ 100-200 KDA)  

–VISUALIZED IN M7G-LY, APG-DMSO, AND APG-LY 

HIT

# 

PROT_ACC PROT_DESCRIPTION SIZE KD SCORE MASS COVER 

9 ZCH18_ 

MOUSE 
Zinc finger CCCH domain 106 941 105859 22.7 

10 CISY_ 

PIG 

Citrate synthase, 

mitochondrial  

105 715 51882 38.8 

11 SAFB1_ 

RAT 

Scaffold attachment 

factor B1  

105 643 104960 11.4 

14 DHX30_ 

RAT 

Putative ATP-dependent 

RNA helicase  

135 589 134997 11.4 

15 PYC_ 

MOUSE 

Pyruvate carboxylase, 

mitochondrial  

130 568 130344 13.7 

17 DHE3_ 

HUMAN 

Glutamate dehydrogenase 

1, mitochondrial 

115-180 527 61701 24.9 

18 DHE4_ Glutamate dehydrogenase 115-180 471 61689 12.2 
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PONPY 2, mitochondrial  

19 SAFB2_ 

MOUSE 

Scaffold attachment 

factor B2  

112 439 112398 9.5 

20 ZFR_ 

MOUSE 

Zinc finger RNA-binding 

protein  

118 373 117926 10.2 

23 MDHM_ 

BOVIN 

Malate dehydrogenase, 

mitochondrial  

110 214 36102 15.1 

26 SMCA5_ 

MOUSE 

SWI/SNF-related matrix-

associated regulator  

122 180 122291 7.5 

28 SR140_ 

HUMAN 

U2-associated protein 120 165 118675 11 

30 CPSF1_ 

MOUSE 

Cleavage and 

polyadenylation factor  

160 145 162027 1.9 

38 SP16H_ 

MOUSE 

FACT complex subunit  120 96 120320 7.4 

39 HNRPU_ 

HUMAN 

Heterogeneous nuclear 

ribonucleoprotein  

91 91 91269 1.8 

40 CEBPZ_ 

MOUSE 

CCAAT/enhancer-binding 

protein  

121 89 120928 2.1 

42 RC3H1_ 

MOUSE 

Roquin RING ligase, 

implicated in mRNA 

translation  

126 84 126269 4.5 

43 HYOU1_ 

MOUSE 

Hypoxia up-regulated 

protein  

111 83 111340 3.6 

45 LARP1_ 

MOUSE 

La-related, appears to 

bind mRNA 

123 80 121476 4.8 

47 MBB1A_ 

MOUSE 

Myb-binding protein 1A  153 68 152854 0.8 

48 DHX9_ 

MOUSE 

ATP-dependent RNA 

helicase  

151 64 150692 2.2 

50 SF3B2_ 

HUMAN 

Splicing factor 3B subunit  98 53 97710 1.4 

53 SYLC_ 

MOUSE 

Leucyl-tRNA synthetase, 

cytoplasmic  

134 46 135360 2 

M7G- 5’UTR LY TREATED CELLS (BAND ~ 50-100 KDA)  

–VISUALIZED IN ALL, STRONGEST IN M7G-LY 

HIT

# 

PROT_ACC PROT_DESCRIPTION SIZE KD SCORE MASS COVER 

2 RFA1_ 

MOUSE 
Replication protein A 70 

kDa  
70 3085 69621 44.5 

6 RBM39_ 

PONAB 

RNA-binding protein 39  59 1835 58905 45.4 

7 HNRPM_ 

MOUSE 

Heterogeneous nuclear 

ribonucleoprotein  

78 1386 77940 22.5 

8 NOP56_ Nucleolar protein 56  65 860 64880 28.8 
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MOUSE 

11 DDX5_ 

MOUSE 

Probable ATP-dependent 

RNA helicase  

70 590 69790 29 

16 LARP7_ 

MOUSE 

La-related protein 7  65 287 65218 13.7 

17 SPAS2_ 

MOUSE 

Spermatogenesis-

associated serine-rich  

60 286 59319 13.8 

21 FXR1_ 

CRIGR 

Fragile X mental 

retardation syndrome-

related  

70 235 70005 12.2 

24 DDX3X_ 

MOUSE 

ATP-dependent RNA 

helicase  

74 216 73455 9.1 

25 ELAV1_ 

HUMAN 

ELAV-like protein 1  36 210 36240 7.4 

27 IF2B2_ 

MOUSE 

Insulin-like growth factor 

2 mRNA-binding  

66 170 65657 7.9 

29 TKT_MOUSE Transketolase  68 165 68272 10.8 

36 IF2B1_ 

MOUSE 

Insulin-like growth factor 

2 mRNA-bindingp  

63 122 63753 10.7 

38 POTE1_ 

MOUSE 

Protection of telomeres 

protein  

72 90 71902 2.2 

39 HNRPQ_ 

HUMAN 

Heterogeneous nuclear 

ribonucleoprotein  

69 90 69788 1.9 

46 CPSF6_ 

BOVIN 

Cleavage & 

polyadenylation 

specificity factor  

60 45 59447 2.5 

48 DDX55_ 

MOUSE 

ATP-dependent RNA 

helicase  

69 41 68934 2 

50 RIOK2_ 

MOUSE 

Serine/threonine-protein 

kinase 

63 40 62907 4.4 

M7G- 5’UTR DMSO TREATED CELLS (BAND ~35- 50 KDA)  

–VISUALIZED IN ALL, STRONGEST IN M7G-DMSO (INHIBITOR?) 

HIT

# 

PROT_ACC PROT_DESCRIPTION SIZE KD SCORE MASS COVER 

2 TIAR_ 

HUMAN 

Nucleolysin TIAR binds 

mRNA rich in adenine  

42 5350 41906 53.9 

10 HNRPD_ 

HUMAN 

Heterogeneous nuclear 

ribonucleoprotein 

39 985 38581 31.5 

12 TIA1_ 

MOUSE 

Nucleolysin TIA-1 

cytotoxic granule-

associated  

43 724 43115 27.7 

14 YBOX1_ 

BOVIN 

regulation of translation 

between mRNA and eIFs 

36 526 35903 34.6 

22 RBMS2_ 

MOUSE 

RNA-binding motif, single-

stranded-interacting  

41 319 40926 16.2 
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24 ILF2_ 

HUMAN 

Interleukin enhancer-

binding factor 

43 288 43263 23.1 

25 PRS10_ 

HUMAN 

26S protease regulatory 

subunit,  cleave peptides  

45 278 44430 12.1 

27 LC7L2_ 

HUMAN 

Putative RNA-binding 

protein Luc7-like  

47 232 46942 10.2 

28 DC12_ 

MOUSE 

UPF0361 protein DC12 

homolog 

41 230 40770 25.5 

31 SHLB1_ 

BOVIN 

Endophilin-B1, recruit 

other proteins to 

membranes  

41 171 41037 8.8 

34 RL3_MOUSE 60S rp L3  46 154 46380 9.2 

35 RL3_BOVIN 60S ribosomal protein L3  46 148 46280 6.9 

36 PAWR_ 

MOUSE 

PRKC apoptosis WT1 

regulator 

36 141 36058 4.8 

37 PPID_ 

MOUSE 

40 kDa peptidyl-prolyl cis-

trans isomerase 

41 132 41116 10 

40 THIM_ 

MOUSE 

3-ketoacyl-CoA thiolase 42 113 42288 8.6 

45 THIL_ 

MOUSE 

Acetyl-CoA 

acetyltransferase, mito. 

45 85 45129 2.8 

46 RPAC1_ 

MOUSE 

DNA-directed RNA 

polymerases I and III 

subunit  

39 82 39279 7.5 

47 RINI_ 

HUMAN 

Ribonuclease inhibitor  51 81 51766 3.3 

48 ACADL_ 

MOUSE 

Long-chain specific acyl-

CoA dehydrogenase 

48 75 48277 2.8 

50 PSMD6_ 

BOVIN 

26S proteasome non-

ATPase regulatory subunit  

46 73 45789 4.6 

51 RT27_ 

MOUSE 

28S ribosomal protein 

S27, mitochondrial  

48 73 48220 8 

52 CSN3_ 

BOVIN 

COP9 signalosome 

complex subunit  

48 72 48338 2.6 

56 RM38_ 

BOVIN 

39S ribosomal protein 

L38, mitochondrial  

45 65 44936 5 

57 ROA3_ 

HUMAN 

Heterogeneous nuclear 

ribonucleoprotein A3 

40 65 39799 6.9 

60 DJB11_ 

BOVIN 

DnaJ homolog subfamily B 

member 11 

41 60 40764 3.1 

62 LUC7L_ 

HUMAN 

Putative RNA-binding 

protein Luc7-like 

44 56 44100 5.7 

64 AHSA1_ 

HUMAN 

Activator of 90 kDa heat 

shock protein ATPase  

49 52 38421 3 

68 RBMS1_ 

BOVIN 

RNA-binding motif, single-

stranded-interacting  

44 38 44312 4.7 
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71 RAD_MOUSE GTP-binding protein RAD 34 37 33544 3.9 

M7G- 5’UTR LY TREATED CELLS (BAND ~ 20-40 KDA)  

–VISUALIZED IN ALL, STRONGEST IN M7G-LY 

HIT

# 

PROT_ACC PROT_DESCRIPTION SIZE KD SCORE MASS COVER 

2 ELAV1_ 

MOUSE 

binds mRNA, Involved in 

3'UTR stabilization 

36 5134 36217 49.1 

3 ELAV1_ 

HUMAN 

ELAV-like protein 1  36 5081 36240 47.2 

4 RLA0_ 

MOUSE 

60S acidic RP, neutral 

phosphoprotein  

34 1690 34366 60.6 

6 RALY_MOUSE RNA-binding protein Raly  33 1464 33309 41.7 

10 ROA1_BOVIN Heterogeneous nuclear 

ribonucleoprotein  

34 807 34289 39.7 

15 BXDC1_ 

MOUSE 

ribosome production 

factor 2 

35.5 501 35512 25.2 

19 RL5_HUMAN 60S ribosomal protein,  

binds 5S RNA  

35 403 34569 37.7 

25 RS3_BOVIN 40S ribosomal protein S3 27 349 26842 28.4 

26 EF1D_ 

MOUSE 

Elongation factor 1-delta  31 342 31388 30.2 

30 RSSA_BOVIN 40S ribosomal protein SA 33 286 32977 12.9 

33 RL6_MOUSE 60S ribosomal protein L6  33.3 245 33546 23.6 

44 SMN_BOVIN Survival motor neuron  32 136 31592 4.5 

45 PP1G_BOVIN Serine/threonine-protein 

phosphatase PP1 

38 135 37701 12.7 

50 SCAM3_ 

BOVIN 

Secretory carrier-

associated membrane 

protein  

38.7 107 38652 4.6 

52 IF2A_BOVIN eIF2 factor 2 subunit 1  36 103 36371 7 

60 PSDE_ 

HUMAN 

26S proteasome non-

ATPase regulatory subunit  

34 78 34726 4.2 

61 LRC59_ 

HUMAN 

Leucine-rich repeat-

containing protein 59  

35 73 35308 7.2 

67 CSN5_ 

HUMAN 

COP9 signalosome 

complex subunit  

38 58 37783 3 

75 SSRA_BOVIN Translocon-associated 

protein subunit alpha  

32 44 32034 3.8 

76 ZN346_ 

MOUSE 

Zinc finger protein 346 33 43 33361 4.4 

78 SYSM_ 

HUMAN 

Seryl-tRNA synthetase, 

mitochondrial  

58 41 58702 1.4 

80 NUP37_ 

MOUSE 

Nucleoporin Nup37  37 40 37101 2.1 



 

122 

84 SGTA_ 

MOUSE 

Small glutamine-rich 

tetratricopeptide repeat 

34.5 36 34529 2.9 

85 PP2AA_ 

BOVIN 

Serine/threonine-protein 

phosphatase 2A  

36 35 36142 2.6 

M7G- 5’UTR LY TREATED CELLS (BAND ~ 20-30 KDA)  

–VISUALIZED IN ALL, IN STRONGEST IN LY SAMPLES 

HIT

# 

PROT_ACC PROT_DESCRIPTION SIZE KD SCORE MASS COVER 

7 RS5_BOVIN 40S ribosomal protein S5  23 881 23033 37.7 

8 RL24_BOVIN 60S ribosomal protein L24  18 691 17882 31.8 

9 RS7_BOVIN 40S ribosomal protein S7 22 660 22113 59.8 

11 RL21_CAPHI 60S ribosomal protein L21 19 545 18652 36.2 

12 RL11_BOVIN 60S ribosomal protein L11  20 504 20468 41 

15 SFRS3_BOVIN Splicing factor, 

arginine/serine-rich  

20 444 19546 39.6 

16 RSSA_BOVIN 40S ribosomal protein SA  33 439 32977 12.9 

17 RL18A_ 

MOUSE 

60S ribosomal protein 

L18a 

21 347 21004 31.8 

20 RS9_BOVIN 40S ribosomal protein S9  22.5 326 22635 36.6 

21 RL18_MOUSE 60S ribosomal protein L18  21.5 290 21688 22.9 

28 ELAV1_ 

HUMAN 

ELAV-like protein 1 36 215 36240 7.4 

31 RL9_MOUSE 60S ribosomal protein L9  22 177 21982 22.9 

35 RLP24_ 

MOUSE 

Probable ribosome 

biogenesis protein RLP24 

20 158 19883 16.6 

36 RL12_BOVIN 60S ribosomal protein L12  18 142 17979 18.8 

40 PSB6_MOUSE Proteasome subunit beta 

type-6  

25.5 137 25591 13 

45 PEBP1_ 

MOUSE 

Phosphatidylethanolamin

e-binding protein 1  

21 122 20988 11.2 

47 RT25_ 

MOUSE 

28S ribosomal protein 

S25, mitochondrial  

20 119 20135 9.9 

48 RAB1B_ 

BOVIN 

Ras-related protein Rab-

1B  

22 118 22359 20.9 

49 CP080_ 

BOVIN 

UPF0468 protein 

C16orf80 homolog 

23 114 22905 11.9 

51 ATP5H_ 

MOUSE 

ATP synthase subunit d, 

mitochondrial  

18.8 110 18795 16.1 

55 RAB7A_ 

CANFA 

Ras-related protein Rab-

7a  

24 97 23790 16.9 

62 RAB2A_ 

CANFA 

Ras-related protein Rab-

2A  

24 84 23702 6.6 

65 TCTP_MOUSE Translationally-controlled 

tumor protein 

19.5 70 19564 22.1 
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69 EIF3K_BOVIN Eukaryotic translation 

initiation factor 3 subunit  

25 66 25343 5 

70 RL17_BOVIN 60S ribosomal protein L17  21.6 64 21611 5.4 

72 TI23B_ 

HUMAN 

Mito. import inner 

membrane translocase  

28 61 28315 3.9 

73 CBX3_ 

HUMAN 

Chromobox protein 

homolog  

21 61 20969 7.7 

78 ATPO_ 

CALMO 

ATP synthase subunit O, 

mitochondrial  

23.4 57 23438 6.6 

79 SAR1A_ 

BOVIN 

GTP-binding protein 

SAR1a  

22.5 57 22509 15.7 

81 RL8_BOVIN 60S ribosomal protein L8  28 53 28235 4.3 

82 PSB2_BOVIN Proteasome subunit beta 

type-2  

23 50 22996 10.4 

86 RS11_BOVIN 40S ribosomal protein S11  18.5 46 18590 6.3 

89 RAB18_ 

BOVIN 

Ras-related protein Rab-

18  

23 40 23262 5.3 

93 RM21_ 

MOUSE 

39S ribosomal protein 

L21, mitochondrial  

23 37 23466 5.7 

 

A 

 

 

 

 

 

 
 

 

B 



124 

A 

 

 

 

 
 

 

 

B 

Figure AI-2. DHX30 binds cap and cap-independent Hsp70 mRNA, 

enhanced under PI3K-mTORC1 inhibition. TSC2 WT MEFs were transfected 
with GFP-HA or DHX30 plasmids for 24 hr followed by DMSO or LY treatment. 
Cell lysates were then run over a resin with m7G-Full Hsp70 or ApppG-full 
Hsp70 pre-bound at 4°C for pulldown assay. The supernatant (A) and the 
eluted mRNA Biotin (dT) binding factors (B) were run by gel electrophoresis 
and immunoblotted with the indicated antibodies 

Figure AI-3. DHX30 overexpression enhances HSP70 translation in 

recovery, but DHX30(AAVH) attenuates expression. (A) TSC2 WT MEFs 
were transfected with empty vector or DHX30 plasmids, one (AAVH) has a 
catalytically dead helicase, the other WT. After 24 hr, the cells were subjected 
to 42°C HS 1hr followed by recovery at 37°C for times indicated. Cell lysates 
were run by gel electrophoresis and immunoblotted with the indicated 
antibodies. (B) Hela cells were treated as in (A), but HS at 43°C. Note, 
endogenous DHX30 is also apparent in human cell lysates. 
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Figure AI-4. DHX30 interacts at the ribosome potentially for recognition 

or initiation of mRNA. (A) A ribosome profile of HEK293 cells under basal 
condition. Fractions of interest are numbered. (B) Fractions from (A) were 
immunoblotted with the indicated antibodies, DHX30 to look for 
correspondence at the ribosome and HSP70 as a positive control. Variant 
DHX30 bands are marked. (C) Fractions of interest were re-ran to identify 
DHX30 within the 40S-monosome bound fractions; note the free pool lacks 
DHX30 showing specificity (lane 1). 
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Figure AI-4. Hsp70 5’-UTR responds to the helicase domain of DHX30. (A) 
Luciferase mRNA (Luc) was synthesized using in vitro transcription followed by 5’ end capping and 3’ end polyadenylation. mRNA transfection was performed 
on TSC2 WT pre-transfected with either DHX30(AAVH) or DHX30 for 24hr. 
Real time luciferase activity was recorded immediately after mRNA 
transfection. (B) Luc mRNA containing the 5’UTR of Hsp70 mRNA was 
transfection and treated as in (A). 
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APPENDIX II 

Screening for Specialized Ribosomes and Potential Extra-ribosomal functions 

 

 

Summary mRNA transcripts or rather the “blueprints” of the cell are decoded by the 

ribosome complex, a massive ribonucleoprotein. The ribosome is composed of 

four rRNAs –5S, 5.8S, 18S, 28S, ~80 ribosomal proteins (RPs), and additional 

interacting proteins, which play a role in assembly and stabilization of the 

complete complex. In mammals, there are 47 large subunit ribosomal proteins (RPL) 

which associate with the 60S complex and 33 small subunit ribosomal proteins (RPS) 

which associate with the 40S complex. The 40S subunit is the main regulatory site of 

protein synthesis functioning to decode the codons of the mRNA, while the 60S 

ribosomal subunit mediates the peptidyl transferase reaction for elongation. 

Ribosomal proteins are tightly regulated group of proteins which sense the 

status of the cell and act in a coordinated manner (Meyuhas and Perry, 1980). 

Ribosomal proteins are regulated by many upstream factors as well; one of which is 

the mammalian target of rapamycin complex 1 (mTORC1), a kinase that promotes cell 

growth in response to the cellular environment. The fact that ribosomal proteins are 

fairly well conserved among species with similar size, sequence, and functions 

This work was conducted by Conn CS in 2011-2012 with Haerin Paik and Xiaoxing 
(Alva) Shen to identify essential ribosomal proteins that may be involved in cap-
independent or stress induced translation. Phenotypes were also recorded for 
potential extra-ribosomal functions.  
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suggests that this regulatory network of genes plays a crucial role in regulation of cell 

processes and ribosome biogenesis itself  

If protein synthesis and ribosome biogenesis are the only functions of RPs then 

they should be found in equimolar amounts with rRNAs in the cytoplasm, the 

synthesis site of RPs, and in the nucleolus where RPs are imported from cytoplasm for 

ribosomal biogenesis. However, the excess and varied levels of RPs suggest that they 

have extra-ribosomal functions in the cell (Lindstrom, 2009). These function include a 

wide spectra of events related to cellular homeostasis and viability including cellular 

apoptosis, mRNA processing, DNA repair, and regulation in transcription. Individual 

ribosomal proteins also may play distinct roles in translation and the hypothesis of 

unique ribosomal complexes is also under investigation.  

In order to validate and explore the importance of each ribosomal protein on 

overall cell viability, and to identify new RPs for unique roles in the cell, a ribosomal 

protein lentiviral shRNA library was constructed to knockdown each ribosomal 

protein genes. We began our screening by measuring cell viability via a Cell Death 

Assay (CCK8) and using a bi-cistronic dual-luciferase assay to measure the ratio of 

cap-dependent to cap-independent translation. RT-PCR was completed to validate 

knockdown where no phenotype was observed. 

 

Table AII-1. Cell death assay depicts essential ribosomal proteins 

knocked down by lentivirus. A list of RPs monitored on four independent 
days during knockdown, with biological replicates averaged for the noted 
value, measure using CCK-8 assay. Cell death was normalized relative to the 
control scramble sequence knockdown. 
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Figure AII-1. Bi-cistronic dual-luciferase assay monitors cap-dependent 

and independent translation. Relative luciferase expression between 
knockdown RPs and scramble control in a stable dual-luciferase bicistronic 
HEK293 cell line. Upper: small subunit RPs, lower: large subunit RPs. n=2 



 

131 
 

 

 

 

 
 
 

Figure AII-2. Morphology of specific knockdown HEK293 cells. (A) 
Negative control after puromycin selection of lentivirus day 3 (B) Scramble 
KD after selection day 5 (C) RPL6 KD after selection day 5 (D) RPL8 KD after 
selection day 5. 

Figure AII-3. Validating RP knockdown with RT-PCR. Upper: RT-PCR for 
primers labeled by RPs side by side with PCR from Scramble KD cDNA (left). 
Lower: GAPDH primers for cDNA check and normalization. Analyzed by 
imageJ to have a 45-95% efficient KD. 

A                    B 
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APPENDIX III 

 

Hyperactive mTORC1 increase Global Protein Synthesis with No Influence on 

Half-life, yet an Increase in Co-translational Ubiquination 

 

Summary 

mTORC1 signaling promotes protein synthesis, but at the expense of 

protein quality (Chapter 3). To elucidate the mechanism, I monitored various 

aspects of the proteostasis network in regards to hyperactive mTORC1 signaling. 

This work was excluded from the main manuscript for simplicity, but added here 

to answer any lingering concerns. 

 

This work was conducted by Conn CS in 2011-2012 to further characterize 
hyperactive mTORC1 signaling and the effects on protein synthesis and turnover.  

Figure AIII-1. Hyperactive mTORC1 increases global newly synthesized 

nascent polypeptides. Left: TSC2 MEFs were radioactive pulsed for 15 min, 
followed by lysis, and scintillation counting. Right: HEK293 cells 
overexpressing GFP or Rheb for 24 hr were radioactive pulsed for 15 min, 
followed by lysis, and scintillation counting. 
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Figure AIII-2. Hyperactive mTORC1 does not affect Luc protein half-life or 

global protein turnover. Upper left: TSC2 MEFs expressing Luc were given a 
cycloheximide chase for the indicated times. Upper Right: quantification of Luc 
half-life ~5 hr (n=3).  Lower: Radioactive pulse-chase in TSC2 MEFs (n=3).  

Figure AIII-3. Molecular chaperone expression is unaffected by mTORC1 

activity under basal conditions. TSC2 MEFs treated with or without 
rapamycin at 20nM for the indicated times, were immunoblotted as indicated.  
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Figure AIII-4. Overexpressing HSP70 failed to recover stable Luc in TSC2 

KO cells. TSC2 MEFs expressing Luc were treated with or without MG132 at 
20 µM with the indicated adenovirus expression. Cell lysates were 
immunoblotted with the indicated antibodies.  

Figure AIII-5. Hyperactive mTORC1 has a decrease in eEF2 

phosphorylation, which releases inhibition for translocation. TSC2 MEFs 
treated with or without MG132 at 20 µM and rapamycin 20 nM were 
immunoblotted with the indicated antibodies.  

Figure AIII-6. Hyperactive mTORC1 increases elongation speed measured 

by transit time. The measurement of ribosomal half-transit time in TSC2 
MEFs. Open triangle: total CPM; black circle: released CPM 
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