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Microreview

Elucidation of XA21-mediated innate immunitycmi_1489 1017..1025

Chang-Jin Park, Sang-Wook Han, Xuewei Chen and
Pamela C. Ronald*
Department of Plant Pathology, University of California
Davis, Davis, CA 95616, USA.

Summary

In the early 1970s, the Xa21 gene from the wild rice
species Oryza longistaminata drew attention of
rice breeders because of its broad-spectrum resis-
tance to diverse strains of a serious bacterial
disease of rice in Asia and Africa, called ‘bacterial
blight disease’, caused by the Gram-negative bac-
terium, Xanthomonas oryzae pv. oryzae (Xoo). In
1995, we isolated the gene controlling this resis-
tance and in 2009 demonstrated that XA21 recog-
nizes a highly conserved peptide, called ‘Ax21’
(activator of XA21-mediated immunity). Tyrosine
sulfation of Ax21 is required for recognition by rice
XA21. A decade of genetic, molecular and bio-
chemical studies have uncovered key components
of the XA21-mediated signalling cascade. Ax21
recognition by XA21 at the cell surface induces
phosphorylation-mediated events, which are pre-
dicted to alter subcellular localization and/or DNA-
binding activity of a WRKY family of transcription
factors. Because XA21 is representative of the
large number of predicted pattern recognition
receptors (PRRs) in rice (n = 328), Arabidopsis
(n = 35) and other plant species, further character-
ization of XA21-mediated signalling pathways
will contribute to elucidation of these important
defence responses.

Introduction

Recognition of conserved microbial signatures
[also called ‘pathogen-associated molecular patterns’
(PAMPs)] by host sensors [(also called ‘pattern recogni-
tion receptors’ (PRRs)] activates innate immune
response. Plant and animal PRRs share conserved
domains, such as leucine-rich repeats (LRRs) for PAMP

recognition (Anderson et al., 1985; Song et al., 1995; Pol-
torak et al., 1998; Wang et al., 1998; Gomez-Gomez and
Boller, 2000; Boller and Felix, 2009) and non-RD kinase
domains that are either integral to the receptor (plants) or
associated with it (animals) (Dardick and Ronald, 2006).
In plants, three PRR/PAMP interactions have been well
characterized. These are rice XA21 (Song et al., 1995),
Arabidopsis flagellin sensitive 2 (FLS2) (Gomez-Gomez
and Boller, 2000) and the Arabidopsis elongation factor
(EF)-Tu receptor (EFR) (Zipfel et al., 2006). XA21, FLS2
and EFR recognize a sulfated peptide (axYS22) derived
from the N-terminal region of Ax21 (Lee et al., 2009), the
flg22 peptide derived from bacterial flagellin (Gomez-
Gomez and Boller, 2000) and the elf18 peptide, derived
from the EF-Tu protein (Zipfel et al., 2006) respectively.

In animals, positional cloning of a spontaneous muta-
tion that caused lipopolysaccharide resistance and sus-
ceptibility to Gram-negative infection led to the isolation of
Toll-like receptor 4 (TLR4), which shared striking struc-
tural similarities to XA21 (Song et al., 1995; Poltorak
et al., 1998) and, like XA21, is an essential host sensor of
microbial infection. To date, 13 human TLRs have now
been described (Mishra et al., 2008) and all recognize
PAMPs presented in invading microbes and activate cor-
responding PRR-mediated signalling pathways (Hornef
et al., 2008).

In this review, we discuss the isolation and character-
ization of Ax21 and present a model for XA21-mediated
immunity based on recent results (Fig. 1).

Ax21 (activator of XA21-mediated immunity)

A screen for Xoo mutants defective in genes required for
activation of XA21-mediated immunity (the rax genes) led
to the identification of the raxA, raxB and raxC encoding
components of a bacterial type I secretion system. Xoo
mutants carrying knockouts in any of these genes lose the
ability to trigger XA21-mediated immunity and are no
longer able to secrete Ax21 (Lee et al., 2006). Another
class of rax mutants involved in sulfation were also
isolated. These include raxST, which encodes a protein
with similarity to mammalian tyrosine sulfotransferases
(da Silva et al., 2004) and the raxR and raxP genes,
which encode genes critical for synthesis of
3′-phosphoadenosine 5′-phosphosulfate (PAPS). Based
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on these results, we hypothesized that RaxST utilizes
PAPS to transfer a sulfuryl group toAx21 (Lee et al., 2006).

These genetic screens were non-saturating because of
the labour involved in the screen. It was necessary to
grow rice plants for 6 weeks before inoculation because
XA21-mediated resistance is only expressed at the adult
stage and because scoring required another 10 days to
assay symptom development. To quantify the response,
we measured the length of bacterial induced lesions
because a hypersensitive response, which is typical of
many plant defence responses, cannot easily be
observed in the XA21/Ax21 interaction. Thus, although
the screens led to the identification of key genes control-

ling Ax21 activity and allowed us to establish increasingly
focused models on the function of the putative Ax21, we
failed to identify Ax21 itself.

Based on our model that Ax21 was likely a type I
secreted, sulfated peptide, we switched to a biochemical
approach. This was made possible both by the establish-
ment of a new bioassay system (Lee et al., 2006) and by
advances in proteomic analyses. Ax21 was isolated by
analysis of bioactive fractions from Xoo strain PXO99Az
using liquid chromatography-tandem mass spectrometry
(LC-MS/MS). The identified peptides were derived from a
194-amino-acid protein encoded by a gene designated
ax21 (Lee et al., 2009). An Xoo mutant strain lacking ax21
is unable to trigger XA21-mediated immunity.

The Ax21 protein carries two predicted tyrosine sulfa-
tion sites. An Ax21-derived synthetic peptide (17-amino-
acid) containing a sulfated tyrosine-22 (axYS22) is
sufficient for Ax21 activity, whereas peptides lacking
tyrosine sulfation and peptide variants carrying alanine in
place of the tyrosine are inactive (Lee et al., 2009). In vivo
co-immunoprecipitation experiments demonstrated that
axYS22 binds to XA21 in transgenic plants expressing an
N-terminal Myc-epitope-tagged XA21 (Lee et al., 2009).
Although all Xanthomonas species tested carry ax21 (Lee
et al., 2009), Xoo strains lacking the sulfation and/or
secretion systems can no longer elicit the XA21-mediated
defence response (da Silva et al., 2004). These results
indicate that sulfation on the axY22 peptide is critical for
XA21/Ax21 recognition in rice.

Ax21 is present in all sequenced Xanthomonas
species, in Xylella fastidiosa, the causal agent of Pierce’s
disease on grapes, and in the human pathogen, Stenotro-
phomonas maltophilia (Lee et al., 2009). The amino acid
sequence of axYS22 peptide is 100% conserved in all
sequenced Xanthomonas species. X. fastidiosa and S.
maltophilia peptides show 77% and 65% identity respec-
tively (Lee et al., 2009).

Thus, Ax21 satisfies a key aspect of the definition of
PAMPs: it is conserved within a class of microbes
(Medzhitov, 2001; Beutler, 2004). The specificity con-
ferred by a post-translational modification, Tyr22 sulfation
of axYS22, supports an emerging theme for PAMPs – that
sequence variation and post-translational modifications,
such as glycosylation, acetylation and sulfation, can
modulate PRR-dependent recognition (Taguchi et al.,
2003; Kunze et al., 2004; Sun et al., 2006).

The non-RD kinase domain

XA21 is a receptor kinase, which consists of LRR, trans-
membrane, juxtamembrane (JM) and intracellular kinase
domains (Song et al., 1995). Kinases are classified as
arginine-aspartate (RD) or non-RD kinases. RD kinases
carry a conserved arginine (R) immediately preceding

Fig. 1. A model XA21-mediated immunity. ER chaperones and
co-chaperones such as BiP3 and SDF2 are involved in XA21 bio-
genesis (Park et al., 2010). XA21 is processed through the ER and
translocated to the PM. XB24 physically associates with the XA21
JM domain, promotes autophosphorylation, and keeps XA21 in an
inactive state (Chen et al., 2010b). Ax21 binding to the XA21 LRR
domain induces dissociation of XA21 from XB24 and activates the
XA21 non-RD kinase domain. (Wang et al., 1998; Lee et al., 2009;
Chen et al., 2010b). Autophosphorylated Thr705 transfers its phos-
phoryl group to another XA21 residues, activating XA21 (Chen
et al., 2010a). XA21 transphosphorylates downstream target pro-
teins that have not yet been identified. XB3 may serve to activate a
downstream MAPK cascade (Wang et al., 2006). In the nucleus,
WRKY transcription factors regulate defence-related genes, such as
PR1 and PR10, either positively or negatively (Peng et al., 2008;
Peng et al., 2010). Recruitment of XB15 to Ser697 in the XA21 JM
domain and subsequent dephosphorylation of phosphorylated resi-
due(s) attenuates the XA21-mediated immune response.
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the catalytic aspartate (D) (Dardick and Ronald, 2006).
In contrast to RD kinases, non-RD kinases typically
carry a cysteine or glycine in place of the arginine. We
previously reported that non-RD kinases are associated
with the control of early signalling events in both plant
and animal innate immunity (Dardick and Ronald, 2006).
For example, in humans, recognition of PAMPs at the
cell surface is largely carried out by TLRs (Nurnberger
and Brunner, 2002). TLR1, TLR3, TLR5, TLR6, TLR7,
TLR8 and TLR9 associate with the non-RD interleukin-1
receptor associated kinase (IRAK) family (Akira and
Takeda, 2004), and TLR3 and TLR4 associate with the
non-RD receptor interacting-protein (RIP) kinases
(Meylan et al., 2004) via adaptor proteins.

In plants, receptor kinases demonstrated to function in
mediating innate immunity also fall into the non-RD class
(Dardick and Ronald, 2006) or are associated with
non-RD receptor kinases (Chinchilla et al., 2007; Miya
et al., 2007; Wan et al., 2008). Plant genome analyses
have revealed the presence of a large family of the
non-RD receptor kinases at the cell surface, with 35
encoded in the Arabidopsis genome and 328 found in the
rice genome (Dardick and Ronald, 2006). These include
the Arabidopsis PRRs FLS2 and EFR (Gomez-Gomez
and Boller, 2000; Zipfel et al., 2006), the rice XA26, Pid2
(Sun et al., 2004; Chen et al., 2006) and XA21 (Song
et al., 1995). The Arabidopsis BRI1-associated receptor
kinase 1 (BAK1) that associates with FLS2 is an RD
kinase (Li et al., 2002; Chinchilla et al., 2007), suggesting
that RD receptor kinases may need to associate with
non-RD PRRs to transduce the immune response.

The majority of RD receptor kinases are regulated by
autophosphorylation of the activation loop, a centrally
located domain that is positioned close to the catalytic
centre (Adams, 2003). In contrast, non-RD receptor
kinases, the activation loop is not autophosphorylated.
These results suggest that this important class of non-RD
kinases use alternative mechanisms for activation
(Dardick and Ronald, 2006).

The XA21 LRR recognizes Ax21

Based on models for animal receptor kinase function, we
proposed that the LRR domain of XA21 recognizes Ax21
and that this recognition activates downstream phospho-
rylation events (Ronald, 1997). In support of this hypoth-
esis, we showed that a natural variant of XA21, called
‘XA21 family member D’ (designated XA21D), which lacks
the transmembrane and kinase domains, is able to confer
partial resistance to Xoo expressing Ax21 (Wang et al.,
1998). Xa21D is 99% identical to the Xa21 LRR in nucle-
otide sequence and confers Ax21-specific resistance.
Based on these results, we hypothesized that the XA21D
and XA21 LRR domains bind directly to Ax21 (Wang et al.,

1998). Due to the lack of both the transmembrane and
kinase domains, the secreted XA21D was predicted form a
heterodimer with an unidentified, endogenous receptor
kinase (Wang et al., 1998). We hypothesized that, upon
Ax21 binding to XA21D, the unidentified intracellular
domain of the unidentified receptor kinase would be acti-
vated, partially transducing the defence response and
leading to partial resistance phenotype (Wang et al.,
1998).

In other words, the kinase activity of XA21 is at least
partially dispensable for the innate immune response.
Supporting this hypothesis, we subsequently demon-
strated that a mutation in the conserved Lys736 residue
(XA21K736E) in the XA21 kinase domain that is required
for catalytic activity can still partially function in resistance,
with levels of resistance similar to that observed for that of
XA21D (Liu et al., 2002).

Despite this hypothesis, we have not yet identified an
XA21 co-regulator. An important discovery in 2002 by
two independent research groups identified such a
co-regulator in Arabidopsis, called ‘BAK1’ (Li et al., 2002,
Nam and Li, 2002). Arabidopsis FLS2 form heterodimers
with BAK1, demonstrating that BAK1 serves as a
co-regulator of Arabidopsis PRR-mediated immunity
(Chinchilla et al., 2007; Heese et al., 2007). Further inves-
tigations demonstrated that BAK1 also functions with mul-
tiple PRRs including EFR (Chinchilla et al., 2007; Heese
et al., 2007; Kemmerling et al., 2007; Shan et al., 2008).
Taken together, the results of XA21D, XA21K736E and the
studies of Arabidopsis BAK1 support the existence of a
co-regulator functioning with XA21. Whether or not this
hypothetical co-regulator can associate with the other pre-
dicted 328 non-RD receptor kinases in rice is an important
question.

Activation of XA21 is regulated by the JM domain

It is now clear that the JM domain of receptor kinases can
play an important role in regulating the function of kinase.
For example, in animals, deletion of the JM domain of the
ErbB-1 (epidermal growth factor receptor, an RD receptor
kinase) results in a severe loss of tyrosine phosphoryla-
tion (Thiel and Carpenter, 2007). Two conserved tyrosine
phosphorylation sites Tyr605 and Tyr611 of EphB2 (Eph
receptor B2) are essential for EphB2 kinase autophos-
phorylation and biological responses (Binns et al., 2000;
Zisch et al., 2000). Phosphorylation of the JM domain of
the TbR-I (transforming growth factor b receptor, an RD
receptor kinase) eliminates the binding site for the
FKBP12 (12 kDa FK506-binding protein) inhibitor protein,
leading to activation of the TbR-I kinase (Hubbard, 2001;
Huse et al., 2001).

XA21/Ax21 binding is hypothesized to activate the
non-RD kinase domain via JM domain regulation,
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leading to XA21 autophosphorylation and/or transphos-
phorylation of downstream target proteins (Xu et al.,
2006a; Wang et al., 2006). In support of this hypothesis
several key residues have recently been shown to be
critical for autophosphorylation or transphosphorylation.
For example, autophosphorylation of the XA21 JM
residues Ser686, Thr688 and Ser689 are important
stabilizers of the XA21 protein (Xu et al., 2006a). Trans-
genic rice expressing XA21 mutants with either single or
triple alanine-replacement mutant of these three sites
display slightly compromised resistance compared with
the wild-type XA21 (Xu et al., 2006a). In addition, yeast
two-hybrid studies have been shown that Thr705 in the
XA21 JM region is required for binding to XA21 binding
protein (XBs) including XB3, XB10, XB15 and XB24
(Park et al., 2008; Chen et al., 2010a). More recently, we
have shown that the XA21 JM residue Thr705 is essen-
tial for XA21 autophosphorylation and XA21-mediated
immunity (Chen et al., 2010a). The replacement of
Thr705 by an alanine or a glutamic acid abolishes XA21
autophosphorylation and eliminates the interactions
between XA21 and XB3, XB10, XB15 and XB24 in yeast
or rice. These results suggest that after being autophos-
phorylated, Thr705 may transfer its phosphoryl group to
another XA21 residue, which would activate XA21.
Although Thr residues analogous to Thr705 of XA21 are
present in the JM domains of most RD and non-RD
receptor kinases in plants, this residue is not required
for autophosphorylation of the Arabidopsis RD receptor
kinase BRI1 (Chen et al., 2010a, Wang and Chory,
2006). Additional research is needed to assess whether
Thr705 autophosporylation is critical for function of other
non-RD receptor kinases.

XA21-mediated signalling components: XB3, XA21
binding protein 3, a RING finger ubiquitin ligase

In animals, TLR1, TLR2, TLR4 and TLR6 signalling pro-
ceeds through adaptor molecule myeloid differentiation
factor 88 (MyD88) (Brikos and O’Neill, 2008). MyD88
associates with TLRs to recruit the non-RD serine/
threonine kinase, IRAK1. IRAK1 associates with tumour
necrosis factor receptor associated factor 6 (TRAF6), a
RING (really interesting new gene) finger ubiquitin ligase
(Muzio et al., 2000). TRAF6 autoubiquitinates and acti-
vates downstream mitogen-activated protein kinase
(MAPK) cascades, which mediate downstream events,
such as degradation of inhibitor of nuclear factor kB (IkB)
and release of nuclear factor kB (Suzuki et al., 2002;
Bochud et al., 2007).

Similarly, in vitro assays have shown that the XA21
kinase transphosphorylates the RING finger ubiquitin
ligase XB3 and that XB3 is autoubiquitinated in vitro.
XB3 is required for effective XA21-mediated resistance

(Wang et al., 2006). Given the functional and structural
parallels between XB3 and TRAF6, it is tempting to
speculate that XB3 also activates a MAPK cascade. In
support of MAPK-mediated signaling in plant innate
immunity, two Arabidopsis MAPK cascades have been
demonstrated to function downstream of the flagellin
receptor FLS2. MEKK1 is not required for flagellin-
triggered activation of MPK3 and MPK6 but is essential
for activation of MPK4 (Asai et al., 2002; Ichimura et al.,
2006). EFR-mediated immunity also induces a rapid acti-
vation of MAPKs (Zipfel et al., 2006). A direct role for a
MAPK cascade in Xa21-mediated immunity has not yet
been demonstrated.

XB10, a WRKY transcriptional factor

In animals, one of key mechanisms of PRR-triggered
innate immunity is the activation of defence-related
genes, as mediated by transcription factors (Arancibia
et al., 2007). For example, PAMP-triggered TLRs leads to
the activation of transcription factor NF-kB and the
expression of immune response genes (Wan and
Lenardo, 2010, Arancibia et al., 2007). In plants, which
lack NR-kB orthologues, studies have shown that instead
WRKY transcription factors are the key regulators
(Eulgem, 2005). For example, in Arabidopsis, WRKY22
and WRKY29 function downstream of the FLS2-mediated
immune response. Overexpression of the AtWRKY29
constitutively activates the plant defence response
against bacterial invasion (Asai et al., 2002). Also in Ara-
bidopsis, loss of WRKY70 function compromises both
basal defence responses to bacterial and fungal patho-
gens and RPP4 (recognition of Peronospora parasitica
4)-mediated race-specific resistance to Hyaloperono-
spora parasitica (Li et al., 2004; 2006; Knoth et al., 2007).
In barley, overexpression of either HvWRKY1 or
HvWRKY2 compromises both the basal defence
response and MLA10-mediated race-specific resistance
to Blumeria graminis (Shen et al., 2007).

In rice, OsWRKY62 (XB10) regulates XA21-
mediated immune response (Peng et al., 2008), indicating
another level of conservation between the Arabidopsis
and rice PRR signalling pathways. Transgenic rice
plants overexpressing OsWRKY62 are compromised in
XA21-mediated immunity to Xoo, suppressing the acti-
vation of defence-related genes including OsPR1 and
OsPR10 (Peng et al., 2008). These results indicate that
OsWRKY62 can function as a negative regulator of innate
immunity.

OsWRKY28, OsWRKY71 and OsWRKY76, together
with OsWRKY62, comprise the rice WRKY IIa subfamily
(Peng et al., 2010). Transgenic lines overexpressing all
four genes showed resistance against Xoo, displaying
activation of OsPR10 expression. These results indicate a
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functional interaction between WRKY IIa members in
regulating plant innate immunity (Peng et al., 2010).
WRKY IIa proteins contain putative leucine zipper
motifs at the N-terminus, suggesting potential dimeriza-
tions between proteins. It has been shown that leucine
zipper motifs are critical for the physical interaction of
WRKY IIa protein in Arabidopsis (Xu et al., 2006b). There-
fore, it may be that different combinatorial dimers formed
by WRKY IIa proteins may exhibit different functions in
regulating target gene expression (Peng et al., 2010).
Although this study suggests a functional link between
OsWRKYs and XA21 in XA21-mediated immunity to Xoo,
the physical location of the in vivo interaction remains to
be elucidated.

XB15, a protein phosphatase 2C

Although PRR-mediated immune responses are clearly
essential for innate immunity in both plants and animals,
sustained or highly induced immune response can be
harmful (Lang and Mansell, 2007). It is therefore neces-
sary that PRR signalling through non-RD kinases be
under tight negative regulation.

In contrast to animals, where negative regulators have
been shown to act at multiple levels within TLR signalling
cascades, negative regulation of plant innate immunity
is not well understood. One important class of negative
regulators are protein phosphatase 2Cs (PP2Cs), a group
of serine/threonine phosphatases (Schweighofer et al.,
2004). Arabidopsis PP2C, kinase-associated PP (KAPP),
interacts with many receptor kinases, including CLAVATA1
(CLV1), somatic embryogenesis receptor kinase 1, BRI1,
BAK1 and FLS2 (Braun et al., 1997; Stone et al., 1998;
Gomez-Gomez et al., 2001; Shah et al., 2002; Ding et al.,
2007). Overexpression of KAPP in Arabidopsis results in
loss of sensitivity to flagellin treatment, suggesting that
KAPP negatively regulates the FLS2-mediated immune
response (Gomez-Gomez et al., 2001). Although the rice
KAPP protein emerged as a good candidate for being a
negative regulator of the XA21-mediated innate immune
response, it does not interact with XA21 (van der Knaap
et al., 1999). Instead, another PP2C (XB15) was isolated
from yeast two-hybrid screen using the intracellular portion
of XA21 as bait (Park et al., 2008). Additional in vitro
biochemical experiments showed that XB15 can effec-
tively dephosphorylate XA21 in a temporal- and dosage-
dependent manner. Xb15 mutant and Xb15 RNAi lines
display spontaneous cell death in the absence of obvious
stress and disease with constitutive expression of
defence-related OsPR genes (Park et al., 2008). Overex-
pression of the Xb15 in an XA21 rice line compromised
resistance to the Xoo, demonstrating that XB15 negatively
regulates the XA21-mediated innate immune response
(Park et al., 2008).

XB24, a novel ATPase

Recently, we showed that XB24, a previously uncharac-
terized ATPase, interacts with XA21 and regulates XA21-
mediated immunity (Chen et al., 2010b). XA24 has no
significant annotated motifs except for a C-terminal ATP
synthase alpha- and beta-subunits signature (ATPase)
motif with sequence PSINERESSS. None of plants and
human proteins containing a conserved ATPase motif
shares similarity beyond the ATPase motif with XB24.
XB24 displays significant ATP hydrolysis activity, while
XB24 mutant containing a single amino acid change
Ser154 with Ala had only negligible ATPase activity, indi-
cating that the XB24 protein possesses an ATPase activity
and that amino acid Ser154 is essential for its ATPase
activity (Chen et al., 2010b). XB24 promotes autophos-
phorylation of the XA21 protein in vitro. XB24 is not
transphosphorylated by the XA21 protein in the absence
or presence of Xoo expressing Ax21 (Chen et al., 2010b).
Autophosphorylation of XA21 is enhanced in the pres-
ence of rice-expressed XB24 but not in the XB24 mutant,
demonstrating that XB24 enhances XA21 autophospho-
rylation and that its ATPase activity is required for this
function. In planta silencing of Xb24 expression enhances
XA21-mediated disease resistance (Chen et al., 2010b).

Based on these results, we propose that XB24 physically
associates with XA21 and promotes autophosphorylation
of certain Ser/Thr sites on XA21, keeping the XA21 protein
in an inactive state (Chen et al., 2010b). Upon recognition
of Ax21, the XA21 kinase becomes activated, triggering
downstream defence responses. The mechanism(s) for
XA21 activation following perception ofAx21 likely requires
dissociation of XA21 from XB24 and/or removal of the
XB24-promoted phosphorylation. Together with our previ-
ously studies that the association between XB24 and XA21
is compromised while the association between XB15 and
XA21 is enhanced upon Ax21 triggering (Park et al., 2008;
Chen et al., 2010b), our model suggests that the regulation
by XB24 occurs before Ax21 recognition while regulation
by XB15 occurs after Ax21 recognition.

Another regulation in the endoplasmic reticulum: quality
control of XA21 BiP-heat shock protein 70

In animals, extracellular PRRs are translated on the endo-
plasmic reticulum (ER) membrane, enter the ER lumen
and undergo glycosylation (Ruddock and Molinari, 2006;
Akashi-Takamura and Miyake, 2008). For further protein
processing, before being translocated to the PM, newly
synthesized PRRs interact with different ER chaperones
that will assist them to fold properly and to avoid aggre-
gation in a process called ER quality control (ER QC)
(Meusser et al., 2005; Ruddock and Molinari, 2006).
Therefore, most TLRs interact with at least one
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ER-resident chaperone for protein folding and trafficking.
For example, ER chaperone protein, gp96, is required for
functional expression of both intracellular and cell surface
TLRs, including TLR2, TLR4, TLR5, TLR7 and TLR9
(Yang et al., 2007). In addition to ER chaperones,
N-glycosylation, which is essential for the function of TLRs
(Leifer et al., 2004), is also known to be important for
correct protein folding and ER QC (Kleizen and Braak-
man, 2004, Meusser et al., 2005).

In Arabidopsis, components in the ER QC, calreticulin3
(CRT3) and UDP-glucose:glycoprotein glycosyltrans-
ferase (UGGT), are required for EFR function, as loss of
either CRT3 or UGGT leads to complete loss of EFR
accumulation (Li et al., 2009; Saijo et al., 2009). In addi-
tion, an ER protein complex compromising stromal-
derived factor-2 (SDF2), heat shock protein 70 (HSP70)
BiP and co-chaperone HSP40 ERdj3B is indispensible
for proper biogenesis of EFR, demonstrating a physiologi-
cal involvement of ER QC and PRR function in plant
(Nekrasov et al., 2009).

The involvement of ER QC and ER-associated degra-
dation (ERAD) in XA21-mediated immunity was demon-
strated through isolation of an in vivo XA21 protein
complex (Park et al., 2010). An approximately 75 kDa
protein co-immunoprecipiated with XA21 was identified as
OsBiP3 through LC-MS/MS sequencing. Overexpression
of BiP3 compromised XA21-mediated immunity. Trans-
genic lines overexpressing OsBiP3 displayed significantly
decreased XA21 accumulation and inhibited a protein
processing of XA21, suggesting that continuous and/or
prolonged binding of overexpressed OsBiP3 results in
XA21 degradation possibly via ERAD. This result also
suggests that accumulation of BiPs is able to attenuate a
receptor-mediated signal transduction pathway causing
an ER stress by targeting the receptor to the ERAD.
Supporting this hypothesis, BiP has been known to target
permanently misfolded proteins for ERAD in mammals
and yeast when prolonged ER stress induce excessive
loading of unfolded and/or misfolded proteins (Kleizen
and Braakman, 2004).

To investigate if BiP3 overexpression affects signalling
pathways mediated by other receptor kinases, we inves-
tigated OsBRI1-mediated responses to brassinolide.
Although OsBRI1 shows an overall structural similarity
with XA21 (He et al., 2000), unlike XA21 it falls into the
RD class of kinases. We found that BiP3 overexpressing
lines maintain sensitivity to brassinolide, indicating that
BiP3 overexpression does not interfere with OsBRI1-
mediated signalling. Taken together, these results indicate
that altered BiP3 expression does not affect all
RK-mediated signalling pathways and does not affect a
general ER stress response.

Similar to Arabidopsis SDF2, OsSDF2 is involved in
XA21-mediated immunity. XA21 transgenic lines silenced

for OsSDF2 displayed severe disease symptoms after
Xoo inoculation, indicating that OsSDF2 is involved in
XA21 biogenesis (C-J. Park, unpubl. data). It has been
also shown that both XA21 and EFR are highly glycosy-
lated, which may occur in the ER during maturation
(Nekrasov et al., 2009; Park et al., 2010). Therefore, the
conserved requirements for the ER proteins, BiP and
SDF2, for both XA21 and EFR biogenesis provide strong
evidence that ER QC is involved in plant innate immunity,
playing a role in PRR trafficking to the PM.

Perspectives

Recognition of PAMPs by PRRs is critical to both plant
and animal survival. We have recently shown that Ax21 is
a sulfated peptide that binds the rice PRR, XA21 (Lee
et al., 2009). The high level of conservation of Ax21 in
Xanthomonas, in Xylella and in the human pathogen
Stenotrophomonas suggests a critical role for this protein
in the biology of these pathogens. Preliminary studies
suggest that Ax21 may function in quorum-sensing, a
process where bacterial molecules can serve as signals
to recognize bacterial population size, leading to changes
in expression of specific genes (Bassler and Losick, 2006,
Lee et al., 2006). Currently, we are further investigating
such a function for Ax21.

Although PRR activation processes are believed to
cause rapid phosphorylation of many proteins through
mostly unknown regulatory networks, no direct targets
of PRRs have yet been reported (Gomez-Gomez and
Boller, 2002; Boller and Felix, 2009). It is also unknown
how PRR phosphorylation can activate ion channels and
the NADPH oxidase complex. To answer these funda-
mental questions and further understand XA21-mediated
immune response, identification of additional components
in the XA21 complex is essential. One approach is to use
phosphoproteomic analysis and quantitative LC-MS/MS
phosphopeptide comparisons to identify proteins differen-
tially phosphorylated after Ax21 treatment. Proteins that
show unique phosphorylation patterns would be good
candidates for XA21 direct target(s).

Because PAMPs are essential for survival or pathoge-
nicity, they cannot be easily mutated without compromis-
ing microbial fitness (Gomez-Gomez et al., 1999; Kunze
et al., 2004). Thus, approaches directed at harnessing
PRR-mediated immunity will be a useful strategy for
enhancing resistance in agricultural crops. For example,
rice varieties carrying Xa21 carry robust resistance to
diverse strains of Xoo (Wang et al., 1996).

The non-RD domain, a newly recognized hallmark of
receptor kinases that function as PRRs, is highly
expanded in rice compared with Arabidopsis (35 in Ara-
bidopsis and 328 in rice). For example, the LRR XII sub-
family, which includes FLS2, EFR and XA21, contains
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over 100 members in rice but only eight in Arabidopsis
(Dardick and Ronald, 2006). In addition, there are several
non-RD receptor kinase subfamilies that are specific to
rice and that are lacking in Arabidopsis. Thus, although it
appears that all Arabidopsis subfamilies have a rice coun-
terpart, the converse is not true. Rice carries over 70
members of the WAKa, WAKc and WAKL families; none is
present in Arabidopsis (Dardick and Ronald, 2006). The
large numbers of non-RD receptor kinases in rice suggest
that there are probably equally large numbers of extracel-
lular pathogen-derived ligands yet to be discovered. To
determine if the observed rice/Arabidopsis difference in
the number of non-RD receptor kinases is similar between
other monocotyledonous and dicotyledonous species, a
comprehensive analysis of newly released plant genome
sequences, including Medicago, Maize, Wheat, Brassica,
Sorghum, Brachypodium, is needed (Paterson et al.,
2009; IBI, 2010).
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