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Chapter 1

Introduction

The `EM1 program is a general system for the analysis of nominal, ordinal, and interval level
categorical data. It can be used to obtain parameter estimates for

• log-linear models

• log-multiplicative association models,

• correspondence analysis,

• regression models for categorical dependent variables,

• path models for categorical endogenous variables,

• latent structure models for categorical items,

• lisrel-like models for categorical endogenous variables,

• models for nonresponse in categorical variables,

• log-rate and discrete-time logit models for analyzing event history data.

It should be noted that the purpose of this manual is not to explain in detail all these models,
but to demonstrate the use of the `EM program by means of many examples of input files. The
various models and the technical details on their estimation are described in Vermunt (1996b,
1997) and the references cited below.

Below, first some additional general information will be given (sections 1.1 and 1.2). The
different types of models that can be estimated with `EM are presented in the next seven
chapters: models for cell frequencies (chapter 2), regression models (chapter 3), path models
(chapter 4), latent class models (chapter 5), path models with latent variables (chapter 6),
models with partially missing data (chapter 7), and event history models (chapter 8). Chapter
9 deals with settings which can be changed by the user to influence the working of the program.
Chapter 10 describes the components which appear in the output file. And finally, chapter 11
presents the complete `EM command syntax.

1.1 Running the program

The DOS protected mode version of `EM is compiled with Borland Pascal 7.0. It runs on a
DOS computer with a mathematical co-processor. Since it uses extended memory, the size of
the problems that can be dealt with depends mainly on the amount of internal memory of the
computer that is used. The program is started at the DOS prompt by typing:

1The name `EM stands for ‘log-linear and event history analysis with missing data using the EM algorithm’.
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LEM <name of the input file> <name of the output file>.

If the input and output files are not specified, the program will ask to supply their names.
The Windows 95 version of `EM is written in Delphi Pascal 2.0. In this version, which is

started by running the executable file LEMWIN.EXE, the user has three text windows at his
disposal: Input, Output, and Log. A model has to be specified in and runned from the Input
window. The resulting output and log files are automatically loaded when activating the Output
and Log window, respectively.

Most of the items in the File, Edit, and Window submenus of the Windows version of `EM

are standard in Windows 95 applications. Here, we describe only the use of the menu items
which are specific for `EM .

The Run item in the File submenu, as well as the Examples submenu are only visible when
the Input window is active. A model that is specified in the Input window is runned by clicking
on Run. The Examples submenu can be used to load one of the example input files in the
Input window. There are more than 200 examples covering the hole range of models that can
be estimated with `EM .

The GoTo submenu, which is only visible when the Output window is active, can be used to
jump to the begin of one of sections of the output file.

The Chi-squared option from the Tools submenu can be used to compute Chi-squared proba-
bilities. The Preferences option in the same submenu makes it possible to change some settings.
More precisely, clicking on Font yields the standard Windows dialog for changing the font type
and size. The Show Log item makes it possible to turn on/off the appearence of a log window
when `EM is running. The Confirm item switches off/on the confirmation requests appearing if
the content of the Input or Output window is not saved. By clicking on Reset, the default Font,
Show Log, and Confirm settings are restored. Finally, the default window sizes can be restored
by means of Restore in the Window submenu.

Thus, both in the DOS and the Windows version, one has to prepare an input file using the
`EM command syntax. The `EM syntax consists of commands which have to be typed in lower
case and of which only the first three characters are significant. The input file is read in free
format, with spaces or commas as separation characters. Comments can be put in the input file
using asterisks. When a ‘*’ is encountered, the rest of the line is considered to be comment, and
therefore skipped.

1.2 Some technical details on parameter estimation

Parameter estimation is performed by means of maximum likelihood. Several procedures are im-
plemented for obtaining maximum likelihood estimates of the model parameters. The iterative
proportional fitting (IPF) algorithm is used for estimating simple hierarchical log-linear models
(Bishop, Fienberg, and Holland, 1975). Non-hierarchical log-linear models, log-multiplicative
models, regression models based on cumulative link functions, and models with the more com-
plicated type of equality and fixed-value restrictions on conditional probabilities are estimated
with the uni-dimensional Newton algorithm (Goodman, 1979; Vermunt, 1996b, 1997). The same
kind of algorithm is used to estimate models with non-parametric ordinal constraints (see Croon,
1990) and with linear restrictions on cell frequencies (see Haber and Brown, 1986; and Bergsma,
1997).

ML estimates of the parameters of models containing latent variables or partially missing data
are computed by means of the Expectation Maximization (EM) algorithm (Dempster, Laird,
and Rubin, 1979; Vermunt 1996b, 1997), where the above-mentioned methods are applied in the
M step. Although this EM algorithm can sometimes be a bit slow, it is extraordinary stable.2

2Actually, `EM uses a variant of the EM algorithm which combines features of the GEM (Little and Rubin,
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For most models, it is also possible to use one of four other algorithms for parameter estima-
tion, namely, Newton-Raphson, Steepest-descent, Broyden-Fletcher-Goldfarb-Shanno (BFGS),
or Levenberg-Maquardt (see Press et all, 1986). Both the information matrix used in Newton-
Raphson and Levenberg-Maquardt and the gradient vector used in all four methods are approx-
imated numerically. It should be noted that the information matrix is also used for computing
asymptotic standard errors and checking identification.

1987) and the ECM (Meng and Rubin, 1993) algorithms. GEM involves improving the expected complete data
likelihood in the M step rather than maximizing it, while ECM implies that a conditional maximization procedure,
such as IPF or uni-dimensional Newton, is used in the M step rather than a multidimensional maximization
procedure (see Vermunt, 1996b, 1997).
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Chapter 2

Models for cell frequencies

The main topic of this chapter is the specification of log-linear models for multi-way frequency
tables. But also some other types of models for cell frequencies are presented, such as log-
multiplicative association models, log-rate models, models with linear restrictions on cell fre-
quencies, and correspondence analysis.1

2.1 Hierarchical log-linear models

Suppose we want to specify a log-linear model for a three-way frequency table formed by the
variables A, B, and C. A saturated log-linear model for this table is given by

log mabc = u + uA
a + uB

b + uC
c + uAB

ab + uAC
ac + uBC

bc + uABC
abc , (2.1)

where mabc denotes an expected cell count and the u terms log-linear parameters.
A subset of the family of log-linear models are hierarchical log-linear models. When a

particular interaction effect is included in a hierarchical log-linear model, all lower-order effects
containing a subset of the indices of the effect concerned must be included in the model as well.
An attractive feature of hierarchical log-linear models is that they can be estimated with the
simple Iterative Proportional Fitting (IPF) algorithm, which fits the set of margins which have
to be reproduced according to the specified model.

In `EM , the specification of a hierarchical log-linear model will at least consist of the following
four pieces of information:

- the number of variables,
- the dimensions or number of categories of the variables,
- the model to be estimated,
- the table with observed frequencies.

A `EM input file specifying an independence model for a three-way frequency table formed by
the variables A, B, and C can be specified as follows:

* example 2.1a: hierarchical log-linear model
man 3
dim 2 2 3
mod {A,B,C}
dat [31 77 35

68 60 65
1Some textbooks which describe extensively the models discussed in this chapter are Bishop, Fienberg, and

Holland (1975), Goodman (1978), Haberman (1978, 1979), Knoke and Burk (1980), Agresti (1990), Hagenaars
(1990), and Vermunt (1996b, 1997).

7



44 147 61
68 50 44]

The command man indicates the number of manifest variables.2 With dim one specifies the
dimensions of the table to be analyzed. It should be noted that when reading the frequencies
the levels of the last variable in the list is assumed to change first. So, here C (which has three
categories) changes first, while A changes last.

The hierarchical log-linear model of interest is specified with the command mod (model),
where the fitted margins must be given between curly braces or parentheses.

One way of specifying the data to be analyzed is – as is done in the above example – to
type the frequency table between square brackets after the command dat. Another option is
to specify (again after the command dat) the name of the file from which the frequencies have
to be read. As is shown in section 2.7, it is also possible to use data in the form of individual
records rather than in the form of a frequency table.3

In the next example, we will specify a no-three-variable interaction model for the same
frequency table. Now we will, however, use our own variable labels, put some comments in the
input file, and read the observed frequency table from a file:

* example 2.1b: hierarchical log-linear model
* A = age; R = religious membership; P = Political preference
* no-three-variable interaction model
man 3 * number of (manifest) variables
dim 2 2 3 * levels of the variables
lab A R P * variable labels
mod {AR,AP,RP} * log-linear model
dat ex21.fre * file containing frequency table

As can be seen, the command lab is used to specify the variable labels. The default variable
labels for manifest variables are A, B, C, D, etc.. It is recommended to use upper case letters for
the variable labels to prevent that they are confounded with the `EM commands, which have
to be typed in lower case.4

It will be clear that by replacing the model specification in example 2.1b one can easily
specify any other type of hierarchical log-linear model for frequency table ARP. For instance,

mod {ARP}

would yield a saturated model and

mod {AR,RP}

a model in which A and P are conditionally independent of one another given a person’s score
on R.

The default coding scheme which is used to identify the parameters of hierarchical log-linear
models is effect coding. Dummy coding can requested with the command dum. For instance,
adding the line

dum 2 2 3

to the above input file will yield dummy coded parameters, in which the last categories of A, R,
and P are used as reference categories.

2We use the term manifest variables to be able to distinguish them from latent variables (lat, chapter 5),
response indicators (res, chapter 7), continuous exogenous variables (con, chapter 3), and the time and the risk
variable (tim and ris, chapter 8).

3In some situations it is even necessary to use individual records, i.e., in models with continuous exogenous
variables and in most types of event history models.

4It is also possible to use labels which are longer that one character (up to three characters). In that case, one
must separate the variables by means of a ‘.’.
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2.2 Non-hierarchical log-linear models

Log-linear models can be defined in a much more general way by viewing them as a special case
of the family of generalized linear models (McCullagh and Nelder, 1989). In its most general
form, a log-linear model can be defined as

log mi =
∑
j

βjxij , (2.2)

where i denotes a cell entry, βj is a particular u term, and xij is an element of the design matrix.
This much more general formulation makes it possible to specify all kinds of non-hierarchical

models. Usually, the design matrix is used to impose one of the following three types of restric-
tions on the log-linear parameters: fixing parameters to zero in a non-hierarchical way, making
parameters equal to one another, or specifying parameters to be in a fixed ratio to one another
(Haberman, 1978; Agresti, 1990; Rindskopf, 1990; Vermunt, 1996b, 1997).

In `EM , these non-hierarchical log-linear models can be specified by means of the options
for user-defined designs. In addition, there are some predefined designs for the most common
situations, namely, for simple log-linear effects, uniform associations, row and columns associ-
ations, symmetric associations, diagonal and off-diagonal parameters, total score parameters,
difference parameters, and parameters of ranking models.

2.2.1 Using design matrices

The `EM program has two commands for specifying design matrices: cov(..) and fac(..). The
functioning of cov(..) resembles the interval level covariates in SPSS, while fac(..) resembles
the nominal factors in GLIM. The complete syntax of these two command is:

cov(<margins>,<# of effects>,<group margin>,<a/b/c>,<# of groups>)
fac(<margins>,<# of effects>,<group margin>,<a/b/c>,<# of groups>)

The use of these commands can be illustrated with the same data example as was used in the
section on hierarchical log-linear models (2.1). Suppose we want to specify hierarchical log-linear
model {AR,RP} for table ARP. Using the command cov(..), this can be accomplished as follows:

* example 2.2a: use of cov(..)
* hierarchical model {AR,RP}
man 3
dim 2 2 3
lab A R P
mod {cov(ARP,7)}
dat ex22.fre
des [ 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 * A 1

1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 * R 1
1 0 -1 1 0 -1 1 0 -1 1 0 -1 * P 1
0 1 -1 0 1 -1 0 1 -1 0 1 -1 * P 2
1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 * AR 11
1 0 -1 -1 0 1 1 0 -1 -1 0 1 * RP 11
0 1 -1 0 -1 1 0 1 -1 0 -1 1] * RP 12

As can be seen, cov(ARP,7) is used between the curly braces of the model. The first parameter
ARP indicates the margin for which a design will be specified. The second parameter 7 indicates
the number of log-linear effects.

The command des is used to specify the design matrix defining the seven parameters for
margin ARP. As with the frequencies, one can either specify the design matrix between square
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brackets or specify the name of the file from which the design matrix must be read. Note that
what is specified is, in fact, a transposed design matrix, in which the first four rows refer to
the one-variable parameters and the last three rows to the two-variable interactions. It is not
necessary to include a main effect (a row with ones) because the main effect is automatically
included in the model to ensure that the sample size is reproduced.5

In example 2.2a, we specified a design for the complete table ARP. However, the obligation
to indicate for which margin a particular design will be given makes it possible to specify user-
defined designs in a much more compact way. The same model can also be specified as follows:

* example 2.2b: compact use of cov(..)
* hierarchical model {AR,RP}
man 3
dim 2 2 3
lab A R P
mod {cov(A,1),cov(R,1),cov(P,2),cov(AR,1),cov(RP,2)}
dat ex22.fre
des [1 -1 * A 1

1 -1 * R 1
1 0 -1 * P 1
0 1 -1 * P 2
1 -1 -1 1 * AR 11
1 0 -1 -1 0 1 * RP 11
0 1 -1 0 -1 1] * RP 12

As can be seen, the model defines that there is one effect for margin A, one for R, two for P, one
for margin AR, and two for margin RP. The design matrix can now be much smaller, namely,
for each effect it contains as many number as the number of cells in the margin concerned.
For example, cov(P,2) results in 2 times 3 numbers in the design matrix. The `EM program
automatically expands the specified designs to the complete table.6

Example 2.2b can easily be modified in such a way that we get dummy coded log-linear
parameters rather than effect coded ones. This can be accomplished with the following design
matrix:

des [1 0 * A 1
1 0 * R 1
1 0 0 * P 1
0 1 0 * P 2
1 0 0 0 * AR 1
1 0 0 0 0 0 * RP 11
0 1 0 0 0 0] * RP 12

As can be seen, the last categories of A, R, and P are used as reference categories.
The second command that can be used to specify user-defined designs is fac(..). This

command makes it possible to specify nominal, dummy-coded, designs in a very compact way.
With fac(..), the same hierarchical log-linear model {AR,RP} could be specified as

* example 2.2c: use of fac(..)
* hierarchical model {AR,RP}

5When reading the design matrix, the variables change in the order in which they are specified in dim and lab,
that is, the last variable changes first. The order in which they appear in cov(..) is irrelevant. In other words,
cov(ARP,7) and cov(PAR,7) are completely equivalent statements.

6When reading the design matrix, it is assumed that the user-defined designs are in the order in which they
appear in the model specification.
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man 3
dim 2 2 3
lab A R P
mod {fac(A,1),fac(R,1),fac(P,2),fac(AR,1),fac(RP,2)}
dat ex22.fre
des [1 0 * A 1

1 0 * R 1
1 2 0 * P 1 and P 2
1 0 0 0 * AR 11
1 2 0 0 0 0] * RP 11 and RP 12

The margins for which effect are specified and the number of effects is the same as in example
2.2b with cov(..). For example, fac(P,2) indicates that there are two effects for margin P.
The design matrix, however, is different. The design for variable P consist of three numbers (1,
2 and 0) rather that 2 times 3 numbers. These numbers indicate that the first parameter (1)
concerns P=1 and the second (2) P=2. The zero (0) for the third level of P indicates that there
is no parameter for P=3, or in other words, it is the reference category.

So far, the commands cov(..) and fac(..) were used only to specify hierarchical log-linear
models. Of course, in these situations we do not need to use these commands because the model
can much more easily be specified using the notation with fitted marginals.

With cov(..) and fac(..), it is quite easy to specify non-hierarchical models which con-
tain higher-order effects without including all the lower-order effects concerned. Suppose, for
instance, that we want to modify example 2.2b by fixing the first-order effect of A to zero.
Since the model still includes the interaction effect between A and R, it is no longer a hierarchi-
cal model. Therefore, we can no longer specify the complete model using the fitted marginals
method. With cov(..), such a model could be specified as follows:

* example 2.2d: including a higher-order effect with cov(..)
man 3
dim 2 2 3
lab A R P
mod {RP,cov(AR,1)}
des [1 -1 -1 1] * AR 11
dat ex22.fre

This model includes the one-variable effects of R and P and the two-variable interactions AR
and RP. As can be seen, the notation of hierarchical log-linear models and the commands for
user-defined designs may be used together.

The command cov(..) can also be used to restrict parameters to be in a fixed proportion to
one another. These types of restrictions are usually called linear or ordinal restrictions on the
log-linear parameters. Suppose, for instance, that we want to make the interaction RP linear in
P, with the scores -1, 0, and 1 for the categories of P. This could be specified as

* example 2.2e: linear/ordinal constraints with cov(..)
man 3
dim 2 2 3
lab A R P
mod {AR,P,cov(RP,1)}
des [-1 0 1 1 0 -1] * RP with P linear
dat ex22.fre

11



As will be explained in section 2.3, this model describes the relationship between R and P by
means of a row-association structure.

Another type of restrictions that can be imposed by means of cov(..) and fac(..) are
equality constraints on the log-linear parameters. For instance,

* example 2.2f: equality constraints with cov(..)
man 3
dim 2 2 3
lab A R P
mod {AR,P,cov(AP,RP,2)}
des [1 0 -1 -1 0 1 * AP 11

0 1 -1 0 1 -1 * AP 12
1 0 -1 -1 0 1 * RP 11
0 1 -1 0 1 -1] * RP 12

dat ex22.fre

gives a model in which the interaction terms AP and RP are assumed to be equal to one another.
With cov(AP,RP,2) we indicate that there are two parameters which concern the margins AP
and RP. In the design matrix, first the designs for the two effects for AP are defined and then for
the two effects for RP. The `EM program will constrain the first effect for margin AP to be equal
to the first effect for RP. In addition, the second effect for AP is made equal to the second effect
for RP.

The same type of restriction could also be specified with fac(AP,RP,2). In that case, the
design matrix would be of the form

des [1 2 0 0 0 0 * AP
1 2 0 0 0 0] * RP

The design generating command fac(..) is much more flexible than was demonstrated so far.
To illustrate this, let us give another couple of examples on the use of this command. Suppose
we want to specify a symmetry model for a square mobility table or some other type of turnover
table. This can easily be accomplished by

* example 2.3a: symmetry model with fac(..)
* O=origin; D=destination
man 2
dim 5 5
lab O D
mod {fac(OD,15)}
des [1 2 3 4 5

2 6 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15]

dat ex23.fre

The model defines that, besides the main effect, there are 15 parameters for the origin-destination
table OD. The symmetric structure is specified in the design matrix. It should be noted that, in
fact, the 15th parameter in the design is redundant. Thus, including the main effect, the model
has 15 independent parameters and not 16. An alternative specification of the same symmetry
model is

12



* example 2.3b: symmetry model with fac(..)
man 2
dim 5 5
lab O D
mod {fac(O,D,4),fac(OD,10)}
des [1 2 3 4 0 * O

1 2 3 4 0 * D
1 2 3 4 0 * OD
2 5 6 7 0
3 6 8 9 0
4 7 9 10 0
0 0 0 0 0]

dat ex23.fre

Here, the symmetry model is specified as a model in which the one-variable effects of O and
D are equal to one another and in which the two-variable interaction term has a symmetric
structure. As can be seen, the last categories of O and D are used as reference categories in the
dummy-coded design that is generated.

The symmetry model can easily be transformed into a quasi-symmetry model, namely, by
allowing the one-variable effect of O and D to be different. This can be realized by replacing the
model by

{O,D,fac(OD,10)}

and omitting the first two rows of the design matrix.
The last example on the use of fac(..) concerns a quasi-independence model for the same

square table. Such a model can be specified by

* example 2.3c: quasi-independence model with fac(..)
man 2
dim 5 5
lab O D
mod {O,D,fac(OD,5)}
des [1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5]

dat ex23.fre

Here, the quasi-independence is specified as an independence model with an additional set of
parameters for the elements of the main diagonal of square table OD.7

2.2.2 Some predefined designs

Besides the possibility of specifying non-hierarchical log-linear models by means of user-defined
designs, the `EM program contains a number predefined designs for the most common types of
effects. This implies that in many situations, non-hierarchical models can be estimated without
the necessity of specifying a design matrix.

The predefined design can be called with the command spe(..) (special designs), which
complete syntax is

7It should be noted that the quasi-independence model can also be specified using structural zeros (see section
2.4).
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spe(<margins>,<type of effect>,<group margin>,<a/b/c>,<# of groups>)

The crucial parameter is, of course, <type of effect>, which indicates which type of design
has to generated. The possible types of effects are simple log-linear parameters, sum-score pa-
rameters, parameters of symmetric associations, diagonal and off-diagonal parameters, difference
parameters, and parameters of ranking models.

Let us see how some of the input examples presented above can be simplified by means of
the use of spe(..). For instance, the model in which we included a higher-order effect without
including particular lower order effects (example 2.2d), can also be specified as

mod {RP,spe(AR,1a)}

The <type of effect> ‘1a’ generates the design for simple log-linear effects. The same type
can be used for specifying equality restrictions between simple log-linear effects (example 2.2f).
For instance,

mod {AR,P,spe(AP,RP,1a)}

will make the two-way iterations AP and RP equal to one another without the necessity of
specifying a design matrix. Example 2.2e, which contains a linear constraint on variable P with
respect to its relationship to R, can more easily be defined by

mod {AR,P,spe(RP,1b)}

where type 1b indicates a uniform or linear-by-linear association parameter. The symmetry
model of example 2.3a may be specified by

mod {spe(OD,3a)}

since 3a generates exactly the symmetric structure that is set up there with fac(..). Finally,
the quasi-independence model of example 2.3c can also be defined by

mod {O,D,spe(OD,5a)}

because type 5a yields a set of parameters for the main diagonal.

2.2.3 Using a group margin

So far, no attention was dedicated to the last three (optional) parameters that can be used with
the commands cov(..), fac(..), and spe(..). These parameters make it possible to let the
specified effects differ across levels of some other variables, which are called grouping variables.
In fact, they can be used to specify higher-order interaction terms in a compact way.

Suppose that we are analyzing simultaneously the mobility tables of different birth cohorts
(generations), and that we assume just a simple quasi-independence model for the relationship
between the occupation of the father and the occupation of the son. A possible specification for
the three-way table concerned could be

* example 2.4: the use of grouping variables
* C=cohort; F=father; S=son
man 3
dim 7 5 5
lab C F S
mod {CF,CS,fac(FS,5,C,c)}
des [1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5]

dat ex24.fre
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The hierarchical CF and CS terms indicate that the first-order effects of F and S differ across
cohorts. Moreover, with the last two parameters in fac(FS,5,C,c), it is indicated that the
diagonal parameters defined via fac(..) differ for the various levels of C. The fourth parameter
can have values a (homogeneous), b (simple heterogeneous), or c (heterogeneous). Homogeneous
means that there is no interaction, which is the same as not using a group margin. Simple
heterogeneous gives a log-multiplicative interaction structure, that is, a multiplicative scaling
factor for each level of the joint grouping variable (Xie, 1992; Vermunt, 1996b, 1997).8 And
finally, heterogeneous models yield standard log-linear higher-order interaction terms.

The fifth and last parameter (<# of groups>) can be used to further restrict the interaction
terms which result from using a group margin. In fact, it allows to specify a design for the group
margin. A negative number means that this will be an interval design and a positive number
that this will be a nominal design. For example, fac(FS,5,C,c,3), in combination with the
additional line

1 1 1 2 2 3 3

in the design matrix, yields a model in which the diagonal parameters are equal across cohorts
1, 2, and 3, across 4 and 5, and across 6 and 7. On the other hand, fac(FS,5,C,c,-2) in
combination with an interval level design of the form

1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3

will produce linearly changing diagonal parameters. The same kinds of restrictions on the group
margin can be used in combination with a log-multiplicative interaction structures, that is, with
a simple heterogenous model (Vermunt, 1996b, 1997).9

2.3 Association models

The `EM program has a special set of tools for specifying models with uniform (U), row (R),
column (C), and row and column (R+C) associations. These log-linear models is often referred to
as association models type I (Goodman, 1979, 1991; Haberman, 1978). Moreover, it is possible to
specify log-multiplicative row-column (RC) associations, often referred to as association models
type II, and their multidimensional variants, the so-called RC(M) models (Goodman, 1979, 1986,
and 1991; Clogg, 1982, Clogg and Shihadeh, 1994).

Assume that A is the row variable and B the column variable. Uniform (U), row (R),
column (C), and row and column (R+C) associations are obtained by restricting the two-variable
interaction term uAB

ab by

uAB
ab = uAB xa xb ,

uAB
ab = uAB

a xb ,

uAB
ab = uAB

b xa ,

uAB
ab = uAB

a xb + uAB
b xa ,

respectively. Here, uAB, uAB
a , and uAB

b denote restricted interaction terms and xa and xb

equidistant row and column scores.10 The log-multiplicative RC model restricts

uAB
ab = µa φ νb ,

8For identification, the scaling factor of the first group is fixed to be equal to one.
9As in unrestricted log-multiplicative models, also in restricted log-multiplicative models the first group pa-

rameter is fixed to one for identification.
10It should be noted that this type of constraints can also be specified via user-defined designs, that is, with

the command cov(..).
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where µa and νb are row and column scores to be estimated and φ is an association parameter.11

In square tables, we will sometimes want to restrict the row and column scores to be equal to one
another (Goodman, 1979; Luijkx, 1994). A RC(M) model involves restricting the two-variable
interaction uAB

ab by

uAB
ab =

M∑
m=1

µm
a φmνm

b , (2.3)

where M is the number of dimensions.12 An important recommendation has to be made with
respect to the use RC and RC(M) models. Since these models may have local maxima, one must
always try out different sets of (random) starting values.

The models presented above all have their multiple-group variants in which the parameters
are allowed to differ across levels of some other variables (Clogg, 1982; Clogg and Shihadeh,
1994). For the log-linear association models, the multiple-group variants are equivalent to the
way we used a grouping variable in subsection 2.2.3. In RC models, however, the use of a
grouping variable is less standard because it leads to several variants. In its most general form,
the multiple-group RC model is given by

uAB
ab + uABC

abc = µac φc νbc ,

where C is the grouping variable. Partially heterogenous specifications are obtained by assuming
the row scores, the column scores, or both not to depend on C. In almost the same way, one
can define a multiple-group variant of the RC(M) model (Becker and Clogg, 1989), that is,

uAB
ab + uABC

abc =
M∑

m=1

µm
ac φm

c νm
bc .

Although it is possible, in RC(M) models, one will generally not use the above-mentioned par-
tially heterogenous specifications.

There are three commands which can be used in to specify association models. The command
ass1(..) can be used to specify log-linear association models, that is, U, R, C, and R+C models.
With ass2(..), one can define log-multiplicative RC association models. And finally, ass3(..)
defines a variant of the R+C models in which the grouping variable enters log-multiplicatively
(Xie, 1992). The complete syntax of these commands is

ass1/2/3(<row margin>,<column margin>,<group margin>,<type of model>,
<type of symmetry>,<# of rows>,<# of columns>,<# of groups>)

The specification of a <row margin> and a <column margin> is, of course, obligatory. The
optional specification of a <group margin> makes it possible to allow parameters to vary among
levels of some other variables. The value of the parameter <type of model> consists of a number
(between 2 and 6) and a letter (between a and e). The number indicates the type of association
model and the letter the way that the parameters vary across levels of the (joint) grouping
variable.13

11Identifying restrictions must be imposed on the parameters of RC models. In the default setting, `EM

identifies the row, column, and association parameters by fixing the unweighted mean of the row and column
scores to 0 and their unweighted standard deviation to 1. These identifying restrictions can be changed by means
the command sca.

12Additional identifying restrictions have to be imposed compared to the RC (or RC(1)) model. In `EM , the
unweighted scores of the various dimensions are orthogonalized by means of a singular value decomposition.

13The exact meaning of these numbers and letters is described in chapter 11.
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Suppose we have a 6 by 4 table for which we want to specify a RC model. This could be
specified as follows:

* example 2.5: the use of ass2(..)
man 2
dim 6 4
lab R C
mod {R,C,ass2(R,C,5a)}
dat ex25.fre

where ass2(..) indicates that it is a log-multiplicative model, and 5a that it is a row and
column model (5) with equal parameters across groups (a).14 Now let us introduce a grouping
variable G with 5 categories. In that case, we could, for example, have a model like

* example 2.6a: ass2(..) with a grouping variable
man 3
dim 5 6 4
lab G R C
mod {GR,GC,ass2(R,C,G,5e)}
dat ex26.fre

Here, the type of association model, 5e, indicates that it is a row and column model (5) with
different row, column, and association parameters (e) for the levels of the grouping variable G.

RC(M) models can simply be specified by calling the ass2(..) command several times in
combination with models 5a or 5e. For instance, example 2.5, can be transformed into a RC(2)
model by replacing the model by

mod {R,C,ass2(R,C,5a),ass2(R,C,5a)}

With the parameter <type of symmetry> it is possible to constrain row and column scores
to be equal in different partial associations (Clogg, 1982). An example of the use of this option
is

* example 2.6b: ass2(..) with symmetry
man 3
dim 5 6 4
lab G R C
mod {G,R,C,ass2(G,C,5a,a),ass2(G,R,5a,a),ass2(R,C,5a,a)}
dat ex26.fre

With ‘a’, the last parameter in the ass2(..) statements, it is indicated that the scores for G, R,
and C are equal in all partial associations.

And finally, the last three parameters of ass1/2/3(..), <# of rows>, <# of columns>, and
<# of groups>, make it possible to further restrict the row, column, and association parameters.
Their use is exactly the same as that of the parameter <# groups> in the user-defined designs
(see subsection 2.2.3). A zero means no restrictions, a positive number indicates that a nominal
design will be given, and a negative number that an interval design will be given. An example
of the use of these options is

* example 2.6c: designs for row, column, and group variables
man 3
dim 5 6 4

14Since we did not specify a grouping variable, the a in the model specification is, in fact, redundant.
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lab G R C
mod {GR,GC,ass2(R,C,G,5b,4,3,-2)}
des [1 1 2 2 3 4

1 2 3 3
1 1 1 1 1 1
-2.5 -1.5 -.5 .5 1.5 2.5]

dat ex26.fre

Here, 5b indicates that we have a simple heterogenous model, that is, a model in which only
the φ parameters depend on G. Furthermore, it is indicated that there are 4 different row scores
and 3 different column scores, and that we want to specify an interval design for φg consisting of
two parameters. In des, it is specified which rows and columns have equal scores. In addition,
the design for the association parameters is given. Applications of RC models with this type of
restrictions on the grouping variable can be found in Luijkx (1994) and Wong (1995).

2.4 Using a weight vector

The general log-linear model described in equation 2.2 can be extended by one additional com-
ponent zi, that is, a weight vector:

log(mi/zi) =
∑
j

βjxij . (2.4)

The weight vector15 can, among other things, be used to specify log-rate models, models
with structural zeros, and models with fixed effects (Haberman, 1978; Laird and Oliver, 1981;
Willekens and Shah, 1983; Clogg and Eliason, 1987).

Suppose we want to specify the same quasi-independence model as in example 3d, but now
using structural zeros for the elements of the main diagonal instead of diagonal parameters.
Such a model can be specified by

* example 2.7: quasi-independence model with wei(..)
man 2
dim 5 5
lab O D
mod {O,D,wei(OD)}
sta wei(OD) [0 1 1 1 1

1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0]

dat ex27.fre

With wei(OD),16 it is indicated that there will be specified a set of weights for the margin OD.
The weights are specified with the command sta (starting value). As can be seen, for each of
the main diagonal elements we specified a weight of zero, which means that they are treated as
structural zeros.

An example of a log-rate model could concern an analysis of death rates. For instance,
assume that we have an age (7 age groups) by period (5 periods) table with number of deaths
and a 7 by 5 table with number of persons at risk in each age-period combination. An example
of a log-rate model for this data is

15In SPSS, an element zi is called a cell weight. In the GLIM terminology, the vector with elements log(zi) is
called an offset.

16The use of the command wei is changed compared to the experimental version 0.11 of the `EM program.
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* example 2.8a: log-rate model
* A=age; P=period
man 2
dim 7 5
lab A P
mod {A,P,wei(AP)}
sta wei(AP) ex28.wei
dat ex28.fre

The files ex28.fre and ex28.wei contain the observed number of deaths and the observed size
of the risk population for each combination of A and P. This example can easily be transformed
into an age-period-cohort (APC) model (Fienberg and Mason, 1979; Hagenaars, 1990). With
fac(..), we can add a cohort effect to the model as follows:

* example 2.8b: APC model for rates
man 2
dim 7 5
lab A P
mod {A,P,fac(AP,11),wei(AP)}
des [7 8 9 10 11 * A=1

6 7 8 9 10 * A=2
5 6 7 8 9 * A=3
4 5 6 7 8 * A=4
3 4 5 6 7 * A=5
2 3 4 5 6 * A=6
1 2 3 4 5] * A=7

sta wei(AP) ex28.wei
dat ex28.fre

It should be noted that to identify the parameters of APC models, one has to impose additional
identifying restrictions on the model parameters.17

2.5 Linear restrictions on cell frequencies

Besides specifying models with log-linear and log-multiplicative terms, it is also possible to
impose linear restrictions on the cell frequencies (see Haber and Brown, 1986). Each of the
linear restrictions will be of the form∑

j

cj

∑
i

aijmi = 0 . (2.5)

The matrix A, which consists of ones and zeros, specifies a number of sums of frequencies (or
margins), while the vector c defines a contrast for these sums of frequencies. This model is,
actually, a special case of the general class of marginal models proposed by Lang and Agresti
(1994) and further developed by Bergsma (1997).

These linear restrictions can be specified in `EM with the command lin(..), which complete
syntax is

lin(<margins>,<# of constraints>)

17The cohort parameters can also be specified via a predefined design, in this case, via a set of difference score
parameters.
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Note that it is not necessary to specify the elements of A since the program automatically
computes the requested margins. This means that only the vector of contrast has to be specified.

An important application of the linear model for cell frequencies is the marginal homogeneity
model. A marginal homogeneity model for a 5 by 5 mobility table can be specified by

* example 2.9: marginal homogeneity
man 2
dim 5 5
lab O D
mod {lin(O,D,4)}
dat ex29.fre
des [1 0 0 0 0 * O=1

0 1 0 0 0 * O=2
0 0 1 0 0 * O=3
0 0 0 1 0 * O=4
-1 0 0 0 0 * D=1
0 -1 0 0 0 * D=2
0 0 -1 0 0 * D=3
0 0 0 -1 0] * D=4

With lin(O,D,4), it is specified that there are four linear restrictions in which the margins O
and D are involved.18 The first four lines in the design matrix are the elements of c for margin
O, the other lines for corcern margin D. As can be seen, the first element of the margin O minus
the first element of the margin D is specified to be zero. The same applies to the second, third,
and fourth elements of O and D.

2.6 Correspondence analysis

With `EM , it is also possible to perform correspondence analysis (Greenacre, 1984; Gifi, 1990).
Although this technique seems to fall outside the `EM modeling framework, it is implemented
because it is an important explorative analysis method for categorical data. In addition, there is
a strong relationship between correspondence analysis and the RC models discussed in section
2.3 (Goodman, 1986, 1991).

Correspondence analysis can be requested with the command cor(..). An example of
correspondence analysis of a two-way table is

* example 2.10: correspondence analysis
man 2
dim 7 7
mod cor(1)
fre ex210.fre

With cor(1) after mod, it is indicated that the ‘model’ is a correspondence analysis type 1,
which is a simple correspondence analysis of a two-way table.19

An example of multiple correspondence analysis of a six-way frequency table is

* example 2.11: multiple correspondence analysis
man 6
dim 2 5 3 2 5 2
mod cor(2,3,2)
dat ex211.fre

18Note that the restriction for the fifth margin is omitted because it is redundant.
19Correspondence analysis of two-way tables is sometimes also referred to as (canonical) correlation analysis.
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The value 2 of the first parameter in cor(2,3,2) indicates that it is a multiple correspondence
analysis.20 The second (optional) parameter denotes the number of dimensions for which one
wants output on variables and categories. The third parameter, which is optional as well,
indicates for how many dimensions one wants object scores.

Besides the two correspondence analysis methods presented in the above examples, it is
possible to request an association analysis with marginal or uniform weights. These association
analysis models – specified by cor(3) and cor(4), respectively – are least squares variants of
the log-multiplicative association models presented in section 2.3.

2.7 Using record type data

So far, we assumed that the data is specified in the form of a frequency table which is either
included in the input file or read from another file. It is, however, also possible to use data in
the form of individual records. To indicate that the data are individual records, one only has to
specify the number of records with the command rec. An example is

* example 2.12a: use of record type data
man 3
dim 2 2 3
lab A R P
mod {AR,RP}
rec 221 * the data file contains 221 records
dat ex212.dat * name of the data file

where the first five records of the data file ex210.dat could be

1 1 1
1 2 1
2 2 3
1 2 3
2 2 2
etc.

As can be seen, the data file contains the values of the variables A, R, and P for each person.
The values may range from 1 to the number of categories of the variable concerned.

The commands that define the format of the data must be given after the model specification.
Two important additional command with regards to the format of the data are the ski [..]
(skip columns) and rco (read count). The command ski [..] can be used to indicate that
some columns must be skipped when reading the data file. This makes it possible to have more
variables in the data file than are actually used in the model to be estimated. With rco, one
can indicate that the records contain a count or frequency. For example,

* example 2.12b: use of ski and rco
man 3
dim 2 2 3
lab A R P
mod {AR,RP}
rec 20 * data file contains 20 records
ski [2 4] * skip the second and the fourth column
rco * the records contain a count
dat ex212.dat

20Multiple correspondence analysis is sometimes also referred to as optimal scaling or homogeneity analysis.
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where the first five records of the data file could now be

1 3 1 1 1 30
1 4 2 1 1 2
2 1 2 1 3 23
1 4 2 2 3 5
2 3 2 2 2 234
etc.

As indicated with ski, only the variables in columns 1 (A), 3 (R), and 5 (P) are actually used in
the analysis. The last column contains a count or frequency.
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Chapter 3

Regression models

The previous chapter presented log-linear models in which no distinction is made between de-
pendent and independent variables. This chapter discusses the estimation of regression models
for categorical dependent variables with `EM .

3.1 Multinomial logit models

The multinomial logit model is a special case of the log-linear models discussed in the previous
section. Assume that we are analyzing a three-way table ABC in which C is the dependent
variable. In that case, the saturated logit model equals

log mabc = αAB
ab + uC

c + uAC
ac + uBC

bc + uABC
abc . (3.1)

In fact, this model is very similar to the saturated log-linear model described in Equation 2.1.
The only difference is the inclusion of the αAB

ab parameters which assure that the margin of the
joint independent variable, AB, is reproduced.1

As demonstrated by Haberman (1979), in its most general form the multinomial logit model,
or multinomial response model, can be written down as

log mik = αk +
∑
j

βjxijk , (3.2)

where k is used as the index for the joint distribution of the independent variables and i as an
index for the levels of the response variable. The αk parameters make the margin of the joint
independent variables fixed.

Another way to specify the multinomial logit model is as a logistic model for the probability
of having value i on the response variable given that one has value k on the joint independent
variables, that is, for πi|k. This yields

πi|k =
exp

(∑
j βjxijk

)
∑

l exp
(∑

j βjxljk

) . (3.3)

Let us start with the same frequency table as in examples 2.1 and 2.2 of chapter 2. A multinomial
logit model for variable P with two independent variables A and R can be specified as follows:

* example 3.1a: multinomial logit model for P
man 3
dim 2 2 3

1It should be noted that, in fact, αAB
ab = u + uA

a + uB
b + uAB

ab .
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lab A R P
mod {AR,AP,RP}
dat ex31.fre

Here, the multinomial logit model is defined as a hierarchical log-linear model. The margin of
the independent variables, AR, is reproduced by including the term AR in the model. In addition,
there are interactions between R and P and between A and P.

An alternative specification, which is more close to the model description in equation 3.3, is
obtained by replacing the model specification by

mod P|AR {AP,RP}

By the statement P|AR before the model specification, it is indicated that a multinomial logit
is specified for πp|ar rather than a log-linear model for expected cell frequency marp. As will be
explained in more detail in chapter 4, this specification decomposes the joint distribution of A, R,
and P, πarp, into πarπp|ar. No restrictions are imposed on πar, while the requested multinomial
logit is estimated for πp|ar.

The commands for specifying non-hierarchical log-linear models can also be used in logit
models. Suppose we want to treat the trichotomous dependent variable P as ordered by imposing
restrictions on the two-variable interactions PA and PR, for instance, by assuming them to be
linear in P. This can be accomplished by means of cov(..), that is, by replacing the model
specification by

mod P|AR {P,cov(PA,1),cov(PR,1)}

and including the design matrix

des [-1 0 1 1 0 -1
-1 0 1 1 0 -1]

As can be seen from the design matrix, we assigned scores -1, 0, and 1 to the levels of P.
Another option is to estimate the scores of P rather than fixing them. This can be done with a
log-multiplicative RC model, that is,

mod P|AR {P,ass2(A,P,5a,a),cov(R,P,5a,a)}

Note that we assume that the scores for P are equal in both two-variable interaction terms.

3.2 Cumulative link functions

As was demonstrated above, the multinomial logit model can be restricted to take the order of
the categories of the dependent variables into account by assigning or estimating category scores.
This is, however, not the only possible method for dealing with ordinal dependent variables. An
alternative set of models involves defining a linear model for a transformation of the cumulative
response probabilities (McCullagh and Nelder, 1989; Agresti, 1990). The `EM program can
deal with four types of cumulative response models: logit, probit, complementary log-log, and
log-log models.2 These cumulative models are of the form

g[P (Y ≤ i|k)] = γi +
∑
j

βjxjk , (3.4)

2These models can, of course, also be used if the dependent variable is dichotomous. In that case, the binary
version of the model concerned is obtained.
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where Y is the dependent variable, i is a value of Y , g[...] is the link function and γi the threshold
parameter belonging to ith level of the dependent variable Y .3

An additional restriction that can be imposed on the model described in equation 3.4 is
assuming the threshold parameters to be equidistant, that is,

γi = γ + xi γ
′ . (3.5)

Here, xi is the score assigned to level i of the response variable. In `EM , these category scores
have a mutual distance of 1 and a mean of 0. This leads to a regression model in which the
response variable is discrete and assumed to be of interval measurement level.

Suppose we want to transform the multinomial logit model of example 3.1a into a cumulative
logit model. This can be done by

* example 3.1b: cumulative logit model
man 3
dim 2 2 3
lab A R P
mod P|AR cum(a) {cov(A,1) cov(R,1)}
dat ex31.fre
des [1 -1 * A

1 -1] * R

The main difference with the multinomial logit model is the inclusion of the statement cum(a).
This indicates that one wants to estimate a cumulative model of type ‘a’, which is a cumulative
logit model. Types ‘b’, ‘c’, and ‘d’ refer to a probit, complementary log-log, and log-log model,
respectively, while their restricted variants (see equation 3.5) are denoted by ‘e’, ‘f’, ‘g’, and
‘h’.4

Another difference with the specification of multinomial logit models is that it is no longer
possible to specify effects using the simple fitted marginals notation. In cumulative models, the
effects must be specified via user-defined designs (cov(..) or fac(..)) or predefined designs
(spe(..)).

3.3 Continuous covariates

The `EM program also allows the user to include continuous variables as exogenous variables in
a regression model for a categorical response variable. To make that possible, we have to define
the regression model concerned on the individual level rather than on the level of a frequency
table.

Let the index k in the regression models described in equations 3.2, 3.3, and 3.4 now denote
a particular individual observation rather than a cell in the marginal distribution of the inde-
pendent variables. This means that a particular xijk or xjk contains the value of observation k
on the independent variable j (for response category i).

An example of a multinomial logit model for dependent variable P with two continuous
covariates is:

* example 3.2: logit model with continuous covariates
man 1
con 2

3Since, except for the log-log model, positive values of βj imply a negative relationship between the independent
and response variables, the sign of the βj parameters is sometimes reversed in cumulative response models. Here,
we just work with the description in formula 3.4.

4It is also possible to specify a linear regression model with a normally distributed error term via type ‘i’.
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dim 3
lab P x
mod P|x {P,cov(x,1,P,c,-2),cov(x,2,P,c,-2)}
rec 100
des [1 0 -1

0 1 -1
1 0 -1
0 1 -1]

dat ex10.dat

The statement con is used to specify the number of continuous variables. The label for the
continuous covariates is ‘x’, which is the same as the default label. Continuous variables can be
used in the regression model by means of the command cov(..). The first parameter in cov(..)
must be the label of the continuous covariates, in this case, x; the second one indicates the
number of the covariate. So, here, we included both the effect of the first and second continuous
covariate on P in the model. As can be seen, dependent variable P is used as a grouping variable
to create and interaction between P and the covariate concerned. The contrasts in the design
matrix indicate that an effect-coding scheme is used for grouping variable P to identify the
parameters.5

Another way to use continuous covariates in the model specification is as grouping variables
in cov(..), fac(..), or spe(..). The above model can also be specified as

mod P|x {P,spe(P,1a,x,c,1),spe(P,1a,x,c,2)}

Here, spe(..) is used to specify an interaction term between P and the two continuous covariates.
The last parameter in spe(..) denotes the covariate number. Note that we no longer need to
specify a design matrix since predefined design type 1a generates the necessary contrast for P.

If continuous exogenous variables are used, the data file must be in the form of individual
records. The first columns must contain the categorical variables. As indicated in the above
input file, the data file ex10.dat will contain 100 records. The first five records of this file might
be

1 10 3.5
2 8 4.6
1 3 7.1
3 11 3.0
2 5 -0.2
etc.

Of course, the data file could contain more columns, which could be skipped with ski [..]. It
is also possible to add a count to the records (see section 2.7).

The above example can easily be transformed into, for example, a cumulative probit model
for P. In that case, the model specification would be

mod P|x cum(b) {cov(x,1) cov(x,2)}

We no longer need to use P as a grouping variable in cov(..) because, as in all cumulative
response models, the covariate effects do not interact with the dependent variable.

5The use of grouping variables is explained in subsection 2.2.3.
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Chapter 4

Path models

Path models are structural models with more than one endogenous variables. In the same way
as ordinary path models consist of a set or ordinary regression equations, log-linear path models
consist of a series of logit models for a set of categorical endogenous variables (Goodman, 1973).

4.1 Conditional probability structure

Suppose we want to specify a path model with two endogenous variables, political preference
(P ) and voting behavior (V ), and two exogenous variables, age (A) and religion (R). The first
step in defining a path model for the four-way table ARPV is the decomposition of their joint
probability, πarpv, into a set of marginal and conditional probabilities on the basis of the assumed
causal ordering of the variables (Goodman, 1973; Wermuth and Lauritzen, 1983, 1990). In this
case, the following decomposition seems to be most appropriate:

πarpv = πar πp|ar πv|arp . (4.1)

Such a model can be specified with `EM by

* example 4.1: conditional probability structure
man 4
dim 2 2 3 2
lab A R P V
mod AR

P|AR
V|ARP

dat [15 16 50 27 30 5 18 50 31 29 51 14
35 9 127 20 58 3 21 47 30 20 40 4]

As can be seen, with mod we can specify the requested probability structure.1 The model
described in equation 4.1 and specified in example 4.1a is, in fact, an unrestricted model. It is,
however, possible to modify the probability structure in such a way that one obtains a restricted
model. For example, a model in which P is assumed not to depend on A, and V not to depend
on R is obtained by replacing the model specification by2

1This specification in terms of conditional probabilities is an important change compared to the experimental
version 0.11 of the `EM program.

2It should be noted that if we are not interested in the parameters of AR, we can also omit AR from the
model specification: Variables which are used as independent but not as dependent are automatically treated as
exogenous. Moreover, variables which do not appear in the model specification are assumed to be endogenous
but independent of the other variables.
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mod AR
P|R
V|AP

The possibility of specifying such restricted probability structures can, among other things, be
used for defining discrete-time Markov models (Bishop, Fienberg, and Holland, 1975; Agresti,
1990). Suppose we have panel data which provide information on the same variable at five
points in time. A first-order Markov model for the five-way cross-tabulation concerned can be
specified by

* example 4.2a: first-order Markov model
man 5
dim 2 2 2 2 2
mod A B|A C|B D|C E|D
dat ex42.fre

where A-E are the labels for the variable of interest at the different point in time. It can easily
be seen that the value of the response variable at a particular point in time depends only on the
value at the previous point in time.

4.2 Logit parameterization

Specification of either a restricted or unrestricted probability structure is usually only the first
step in the specification of a path model for categorical data. In most situations, we want to
further restrict the probabilities by means of a set of regression equations. In `EM , it is possible
to restrict each of the probabilities by means of a log-linear model, a multinomial logit model,
or one of the cumulative response models.3

Suppose that we want to specify a path model consisting of a series of logit models for the
table ARPV (see example 4.1). This model could, for instance, be of the form

mod AR
P|R {RP}
V|ARP {AV,RV,PV}

Here, the margin AR is fixed. Furthermore, P is assumed not to depend on A, and a saturated
logit model is specified for πp|r. Note that exactly the same model is obtained if ‘P|R {PR}’
is replaced by ‘P|AR {PR}’, that is, by restricted logit model for πp|ar. Finally, a logit model
without three- and four-variable interaction terms is defined for dependent variable V.

In fact, every type of specification that is allowed in the models described in chapters 2 and
3 can also be used in path models, that is, hierarchical and non-hierarchical models, association
models, cumulative link functions, etc.. If no model is specified for a probability, the program
will assume a saturated log-linear model for the probability concerned.

There is one additional feature that is relevant in the context of log-linear path models,
namely, the possibility to impose equality constraints on the parameters appearing in different
submodels.4 Suppose, for instance, that we want to specify a first-order Markov model in which
the association structure between subsequent time points is equal for all transition probabilities.
This can be accomplished as follows:

3In his paper on modified path models, Goodman (1973) proposed specifying log-linear or logit models for the
unrestricted set of probabilities. As demonstrated by Vermunt (1996a, 1996b, 1997), it is computationally more
efficient to specify the regression models for the restricted probabilities. In addition, it may prevent fitted zeros.

4In this context, the term submodel is used to denote the model for one of the probabilities in a path model.
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* example 4.2b: restrictions across submodels via all
man 5
dim 2 2 2 2 2
mod A {A} B|A {B} C|B {C} D|C {D} E|D {E}
all {cov(AB,BC,CD,DE,1)}
des [1 -1 -1 1 * AB

1 -1 -1 1 * BC
1 -1 -1 1 * CD
1 -1 -1 1] * DE

dat ex42.fre

In the model specification, we defined only the one-variable effects, that is, the effects which
differ across time points. The command all {<parameters>} is used to specify an additional
set of parameters which may appear in any of the submodels. Between the parentheses one may
use the commands cov(..), fac(..), spe(..), ass1(..), ass2(..), and ass3(..). The use
of these commands is described in subsections 2.2 and 2.3. Above, cov(..) – in combination
with the correct design matrix – was used to constrain the two-variable interactions to be equal
across time point.5

4.3 Restricting probabilities

The previous two sections described two different methods for specifying restricted path mod-
els: omitting particular variables from a conditional probability and restricting a probability by
means of a log-linear or cumulative link parameterization. The `EM program contains two addi-
tional commands to specify constraints on the probabilities: eq1 to specify equality constraints
and eq2 to specify both equality and fixed-value restrictions.6

The use of the command eq1 is quite simple. Suppose for instance, that we want to modify
the above Markov model into a stationary Markov model, in other words, πb|a = πc|b = πd|c =
πe|d. This can be accomplished by

* example 4.2c: the use of eq1
man 5
dim 2 2 2 2 2
mod A {A}

B|A {AB}
C|B eq1 B|A
D|C eq1 B|A
E|D eq1 B|A

dat ex42.fre

With the command eq1, one can indicate that a particular set of conditional probabilities equals
another set of probabilities.7 In this case, we made C|B, D|C, and E|D equal to B|A. Although
here we specified a just simple saturated for B|A, any type of model could be specified for the
probability appearing after eq1.

The use of eq2 is a bit more complicated because it requires the specification of a kind of
design matrix. The same model as in example 4.2c can be specified with eq2 as

5We could replace cov(..) by spe(AB,BC,CD,DE,1a), the predefined design for simple effects. In that case, it
is no longer necessary to specify a design matrix.

6Although not discussed below, the command lin(...) described in section 2.5 can also be used to impose
any type of linear restriction on the probabilities.

7An important requisite to be able to use eq1 is, of course, that the two sets of probabilities have the same
structure: The number and order of the categories of the dependent and independent variables must be equal.
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* example 4.2d: the use of eq2
man 5
dim 2 2 2 2 2
mod A

B|A eq2
C|B eq2
D|C eq2
E|D eq2

des [1 0 2 0 * B|A
1 0 2 0 * C|B
1 0 2 0 * D|C
1 0 2 0] * E|D

dat ex42.fre

The numbers in the design matrix have the following meaning: 0 indicates a free parameter, -1
denotes a parameter which has a fixed value, and positive numbers are parameters which are
restricted to be equal, where the parameters with the same number are equal. So, here, the
(1,1) and the (2,1) combinations are constrained to be equal across time points, while the (1,2)
and the (2,2) combinations are unrestricted.8

To demonstrate the flexibility of eq2, let us present another (fictive) restricted Markov model,

* example 4.2e: the use of eq2
man 5
dim 2 2 2 2 2
mod A

B|A eq2
C|B eq2
D|C eq2
E|D eq2

des [1 0 0 2 * B|A
1 0 0 3 * C|B
-1 0 0 2 * D|C
3 0 -1 0] * E|D

sta D|C [.9 .1 .5 .5]
sta E|D [.5 .5 .2 .8]
dat ex42.fre

Here, some conditional probabilities are made equal to one another, and others are fixed to a
particular value. From the design matrix, it can be seen that it is assumed that the probability
of B = 1 given A = 1 equals the probability of C = 1 given B = 1, the probability of B = 2
given A = 2 equals the probability of D = 2 given C = 2, and the probability of C = 2 given
B = 2 equals the probability of E = 1 given D = 1. In addition, the probability of D = 1
for C = 1 and the probability of E = 1 for D = 2 are fixed to specific values, which are is
specified with sta. The command sta (starting value) can be used to specify starting values
for the model parameters. The fixed probabilities will, of course, retain their starting values, in
this case, .9 and .2, respectively.

On the one hand, eq2 is more flexible than eq1, because with eq2 it is not necessary to specify
two complete sets of probabilities to be equal to one another. But, on the other hand, when
using eq2, it is no longer possible to specify a regression model for the probabilities concerned.

8It should be noted that, in this case, the same constraints can also be imposed with a log-linear parameteri-
zation of the conditional probabilities, for instance, by means of the command fac(..).
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Besides equality and fixed-value restrictions, it is possible to impose a specific type of inequal-
ity restrictions on conditional probabilities. More precisely, a non-parametric ordinal model can
be specified for probabilities which consist of one ordered independent variable and one ordered
dependent variable (Croon, 1990).

Suppose we have a dependent variable Y with levels i and an independent variable X with
levels k. If here is a strictly positive relationship between Y and X, the cumulative response
probability, P (Y ≤ i|X = k), must satisfy

P (Y ≤ i|X = k) < P (Y ≤ i|X > k) . (4.2)

On the other hand, a strictly negative relationship implies that

P (Y ≤ i|X = k) > P (Y ≤ i|X > k) . (4.3)

Putting or1 behind a probability will produce the restrictions described in equation 4.2, while
or2 will give the ones of equation 4.3. Examples on the use of these commands will be presented
in the context of ordinal latent class models (see subsection 5.2.3).
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Chapter 5

Latent class models

One of the most important features of the `EM program is that it cannot only deal with observed
(manifest) variables, but also with unobserved (latent) variables. This makes it, among other
things, possible to specify factor analytic models for categorical latent variables with categorical
indicators. These models are called latent class models (LCM).1

5.1 Unrestricted latent class models

In the classical formulation, the latent class model is defined as a probability model (Lazarsfeld
and Henry, 1968; Goodman, 1974). Suppose we have four manifest variables denoted by A, B,
C, and D which serve as indicators for a categorical latent variable X. The classical formulation
of the unrestricted latent class model is:

πxabcd = πx πa|x πb|x πc|x πd|x . (5.1)

Usually, πx is called a latent probability, while the conditional probabilities – πa|x, πb|x, πc|x,
and πd|x – are called conditional response probabilities.

As can be seen from equation 5.1, the manifest variables are assumed to be independent
of one another within the levels the latent variables. This is called the assumption of local
independence. As demonstrated by Haberman (1979), the same unrestricted LCM model can
also be formulated as a log-linear model for the incomplete frequency table mxabcd, that is, as

log mxabcd = u + uX
x + uA

a + uB
b + uC

c + uD
d + uXA

xa + uXB
xb + uXC

xc + uXD
xd . (5.2)

The relationship between the two formulation of the LCM can be illustrated by writing the
conditional probabilities in equation 5.1 as a function of the log-linear parameters appearing in
equation 5.2 (Haberman, 1979; Heinen, 1996). For instance,

πa|x =
exp

(
uA

a + uXA
xa

)
∑

a exp (uA
a + uXA

xa )
, (5.3)

which is a saturated logit model for the probability on A given X.
In `EM , both formulations of the latent class model can be used. The classical formulation

is, however, computational more efficient because it breaks down the problem in a number
smaller problems. For instance, in case of the above example, instead of working with a five-way
table (mxabcd), one works with a one-way table (πx) and four two-way tables (πa|x, πb|x, πc|x,
and πd|x). And, if one is interested in the log-linear parameters, one may parameterize the
conditional probabilities using a logit model as described in equation 5.3.

A latent class model for a four-way observed table ABCD can be specified with `EM as
1Textbooks which deal with LCMs are Goodman (1978), Haberman (1979), McCutcheon (1987), Hagenaars

(1990), and Vermunt (1997).
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* example 5.1a: unrestricted LCM
lat 1
man 4
dim 2 2 2 2 2
mod X A|X B|X C|X D|X
dat [59 56 14 36 7 15 4 23

75 161 22 115 8 68 22 123]

Here, ‘lat 1’ indicates that the model contains one latent variable, which default label is ‘X’.
The first number after dim specifies the number of latent classes, the last four numbers the
dimensions of the four manifest variables. With mod we can specify the probability structure
which was described in equation 5.1. As can be seen, the latent class model is just a path model
in which one of the variables is unobserved. The data specified after fre consists of the observed
four-way frequency table ABCD.

The log-linear latent class model described in equation 5.2 is obtained by replacing the model
specification by

mod {XA,XB,XC,XD}

As can be seen, we simply specify a hierarchical log-linear model for the incomplete frequency
table XABCD. The two parameterizations can be combined by specifying the model as

mod X {X} A|X {XA} B|X {XB} C|X {XC} D|X {XD}

Here, the probability structure of the classical LCM is combined with the logit parameterization
of described in equation 5.3.2. This is the same as in Formann’s (1992) linear-logistic LCM.

5.2 Restricted latent class models

In fact, any type of specification that can be used in models for completely observed tables can
also be used when there are latent variables. We can use eq1 and eq2 to impose equality and
fixed-value restrictions on the probabilities of latent class models, and or1 and or2 to impose
ordinal restrictions (see section 4.3). User-defined designs, predefined designs, and association
models can be used to further restrict the log-linear parameter of latent class models. And
finally, cumulative link functions can be used to specify latent class models for ordinal items.
It should be noted that – although in practice it will not often be useful – it is even possible
to use different types of restrictions, or parameterizations, for the various conditional response
probabilities of a LCM.

5.2.1 Equality and fixed-value restrictions on probabilities

The simplest type of equality restriction in the context of latent class analysis is assuming that
two sets of conditional response probabilities are equal to one another. For example, we could
assume that πa|x = πb|x and πc|x = πd|x. With the command eq1, we can specify such a restricted
LCM as follows:

* example 5.1b: restricted LCM via eq1
lat 1
man 4
dim 2 2 2 2 2
mod X

2It should be noted that, in fact, it is not necessary to specify the saturated models after the probabilities. If
nothing is specified, `EM will assume a saturated log-linear or logit model for the probability concerned.
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A|X
B|X eq1 A|X
C|X
D|X eq1 C|X

dat ex51.fre

As can be seen, πb|x is made equal to πa|x by putting the statement eq1 A|X after B|X. In
addition, πd|x is made equal to πc|x by specifying eq1 C|X behind D|X.

More complicated equality and fixed-value restrictions can be imposed by means of the very
flexible command eq2. A fictive example of the use of this command is

* example 5.1c: restricted LCM via eq2
lat 1
man 4
dim 2 2 2 2 2
mod X

A|X eq2
B|X eq2
C|X eq2
D|X eq2

des [1 0 0 2 * A|X
2 0 0 1 * B|X
3 0 0 -1 * C|X
-1 0 0 3] * D|X

dat ex51.fre
sta C|X [.5 .5 .9 .1]
sta D|X [.1 .9 .5 .5]

Here, particular probabilities are assumed to be equal to one another while other ones are fixed
to a specific value. First, we specify eq2 after the set of probabilities for which we want to specify
equality and fixed-value restrictions. Then, with a type of design matrix which is specified with
des, it is indicated which probabilities are free (a zero), equal (equal positive numbers), and
fixed (a minus one). And finally, the values for the fixed probabilities are specified as starting
values, that is, by means of the command sta. In the example, the probability of A = 1 for
class 1 equals the probability of B = 2 for class 2, the probability of A = 2 for class 2 equals the
probability of B = 1 for class 1, and the probability of C = 1 for class 1 equals the probability
of D = 2 for class 2. In addition The probability of C = 2 for X = 2 and the probability of
D = 1 for X = 1 are fixed to .1. 3

An interesting type of application of equality restrictions on probabilities is the specification
of probabilistic Guttman scales (Proctor, 1970; McCutcheon, 1987). Assume that we have 4
items which can be ordered with respect to their difficulty. Item A is the easiest item and item D
is the most difficult one. One of the probabilistic Guttman models is the Proctor model, which
can be specified as follows

* example 5.1d: Proctor model
lat 1
man 4
dim 5 2 2 2 2
mod X

3Mooijaart and van der Heijden (1992) gave the likelihood equations to be solved in the M step of the EM
algorithm for LCMs with these general types of equality and fix-value restrictions. `EM solves these equations
by means of the uni-dimensional Newton algorithm (Vermunt, 1997).
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A|X eq2
B|X eq2
C|X eq2
D|X eq2

dat ex51.dat
des [1 0 0 1 0 1 0 1 0 1

1 0 1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 1 0 1
1 0 1 0 1 0 1 0 0 1]

As can be seen, we have a model with 5 latent classes, which are the five Guttman types. The
error probabilities, which denote the probabilities of giving incorrect answers given the scale
type to which one belongs, are assumed to be equal across items and categories.

A Proctor model with item-specific errors is obtained by replacing the design matrix with
constraints by

des [1 0 0 1 0 1 0 1 0 1
2 0 2 0 0 2 0 2 0 2
3 0 3 0 3 0 0 3 0 3
4 0 4 0 4 0 4 0 0 4]

Another even less restrictive probabilistic Guttman model is the latent distance model, which
is obtained by the following design matrix:

des [1 0 0 1 0 1 0 1 0 1
2 0 2 0 0 3 0 3 0 3
4 0 4 0 4 0 0 5 0 5
6 0 6 0 6 0 6 0 0 6]

In this model, the error rates are item specific. In addition, they are category specific, except
for the easiest and the most difficult item.

5.2.2 Restrictions on log-linear parameters

User-defined and predefined designs can, among other things, be used to specify equality restric-
tions among the two-variable interaction terms of different indicators:

* example 5.1e: LCM with equal two-variable effects
lat 1
man 4
dim 2 2 2 2 2
mod X {X} A|X {A} B|X {B} C|X {C} D|X {D}
all {spe(XA,XB,XC,XD,1a)}
dat ex51.fre

In section 4.2, it was already explained how to restrict log-linear parameter across submodels via
the command all. With the predefined design type 1a, which generates simple log-linear effects,
it is indicated that the two-variable interactions are equal across items. As is explained below,
this restricted LCM is, in fact, a discretized variant of the well-known Rasch model (Heinen,
1996; Lindsay, Clogg, and Grego, 1991).

The probabilities Guttman models can also be specified using a log-linear parameterization.
For example, the latent distance model is obtained as follows:
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* example 5.1f: Latent distance model
lat 1
man 4
dim 5 2 2 2 2
mod X

A|X {}
B|X {}
C|X {}
D|X {}

all {fac(AX,BX,CX,DX,6)}
dat ex51.dat
des [1 0 0 1 0 1 0 1 0 1

2 0 2 0 0 3 0 3 0 3
4 0 4 0 4 0 0 5 0 5
6 0 6 0 6 0 6 0 0 6]

Thus, rather than directly restricting the error probabilities using eq2, we restrict them by
means of a set of log-linear restrictions specified via the command fac(..).

5.2.3 Ordinal indicators

Suppose we want to specify a restricted latent class model for 5 items, each having 3 ordered
categories. With `EM , various types of restricted LCMs can be formulated for such polytomous
ordered items. One may use a priori zeros, non-parametric ordinal restrictions (see equations
4.2 and 4.3), log-linear association structures, log-multiplicative association structures, or cu-
mulative link functions (see section 3.4).

Clogg (1979) proposed a LCM for Likert-type items, which involves contraining some of the
conditional response probabilities to zero. The easiest way to specify such a model with `EM is

* example 5.2a: LCM for Likert-type items
lat 1
man 5
dim 3 3 3 3 3 3
mod X A|X B|X C|X D|X E|X
dat ex52.fre
sta A|X [.7 .3 .0 .2 .6 .2 .0 .3 .7]
sta B|X [.7 .3 .0 .2 .6 .2 .0 .3 .7]
sta C|X [.7 .3 .0 .2 .6 .2 .0 .3 .7]
sta D|X [.7 .3 .0 .2 .6 .2 .0 .3 .7]
sta E|X [.7 .3 .0 .2 .6 .2 .0 .3 .7]

This latent class model has as many latent classes as the number of categories of the items.
In addition, the conditional response probabilities are restricted in such way that the item
responses correspond to value of the latent variable or an adjacent value. In this case, this
involves making the (3,1) and (1,3) latent-manifest combinations structurally zero, which is
accomplished by specifying zero starting values for these probabilities.4

4It should be noted that because of the structural zeros, 10 parameter will not be estimable. Therefore, to
obtain the correct number of degrees of freedom, one has to add 10 to the reported number of degrees of freedom.
The model can, however, also be specified in such a way that one does not have this problem. One option is to
use the eq2 command to indicate which probabilities are fixed to zero. Another possibility is to use weight vectors
to fix the wanted probabilities to zero in combination with user-defined designs to specify the log-linear effects
for the non-zero probabilities.
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The commands or1 and or2 can be used to specify non-parametric ordinal latent class models
(Croon, 1990). Suppose that all 5 items are scored in the same direction and that, in addition,
we want a model with 5 latent classes. Such a model can be specified by

* example 5.2b: non-parametric ordinal LCM
lat 1
man 5
dim 5 3 3 3 3 3
mod X

A|X or1
B|X or1
C|X or1
D|X or1
E|X or1

dat ex52.fre

As can be seen, we just put the statement or1 after each of the response probabilities. If
particular items are coded in a reversed order, that is, in such a way that a negative relationship
with the latent variable can be expected, we have to use or2 instead of or1 for the items
concerned. The number of latent classes can be modified by changing the first number after the
command dim.

Other types of ordinal models are obtained by imposing restrictions on the two-variable
interaction terms in log-linear LCMs. For instance,

* example 5.2c: LCM with uniform association
lat 1
man 5
dim 5 3 3 3 3 3
mod X {X}

A|X {A,ass1(A,X,2a)}
B|X {B,ass1(B,X,2a)}
C|X {C,ass1(C,X,2a)}
D|X {D,ass1(D,X,2a)}
E|X {E,ass1(E,X,2a)}

dat ex52.fre

gives a uniform association structure for the relationship between latent and manifest variables.5

It should be noted that the assumptions which underlie this model are stronger than ordinal.
In fact, we treat both the latent variable and the indicators as discrete interval level variables.
The above input file can easily be transformed into a row- or column association model. If we
replace 2a by 3a, we obtain a row-association model, which means that the latent variable will
be interval level and the items ordinal.6 Type of model 4a (column association) will yield a
model in which the items are treated as discrete interval variables and the latent variable as
nominal.7

Also the log-multiplicative association model can be useful in the context of LCMs for ordinal
indicators. For instance,

5Rather than using ass1(..), one could also specify the uniform association model with a user-defined design
(cov(..) and des) or with predefined design (spe(..)) type 1b.

6In fact, it a nominal model in the items because there is no guarantee that row parameters are ordered. In
practice, we can, however, expect them to be ordered.

7If assume the column parameters to be equal across items, we get an ordinal model in the latent variable.
This can be accomplished by imposing restrictions among submodels with the command all.
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* example 5.2d: LCM with log-multiplicative RC association
lat 1
man 5
dim 5 3 3 3 3 3
mod X {X} A|X {A} B|X {B} C|X {C} D|X {D} E|X {E}
all {ass2(A,X,5a,a),ass2(B,X,5a,a),ass2(C,X,5a,a),

ass2(D,X,5a,a),ass2(E,X,5a,a))}
dat ex52.fre

defines a latent class model in which both the scores of the categories of items and the scores
of the latent classes are estimated. By using the ass2(..) terms after ‘all’, it is possible to
restrict the scores of the latent classes to be equal across items. The last parameter in the
ass2(..) statements is the <type of symmetry> parameter. Its value a indicates that the row
and column scores are equal to the scores of the same variable in other partial associations.8

The fourth method for defining LCMs for ordinal items is the use of cumulative link functions
for the conditional response probabilities appearing in the basic equation 5.1. An example is

* example 5.2e: ordinal LCM with cumulative link functions
lat 1
man 5
dim 5 3 3 3 3 3
mod X {X}

A|X cum(a) {cov(X,1)}
B|X cum(a) {cov(X,1)}
C|X cum(a) {cov(X,1)}
D|X cum(a) {cov(X,1)}
E|X cum(a) {cov(X,1)}

des [-2 -1 0 1 -2
-2 -1 0 1 -2
-2 -1 0 1 -2
-2 -1 0 1 -2
-2 -1 0 1 -2]

dat ex52.fre

Here, the effects of X on the items are described by means of a set of cumulative logit models,
in which X is treated as an interval level variable. Although not demonstrated here, we could
modify this input in such a way that X is either nominal or ordinal. In addition, the cumulative
logit link could be replaced by another link function. For instance, if we change cum(a) into
cum(b), we get a latent class model in which the conditional response probabilities are restricted
by means of probit models.

5.2.4 Latent trait models

Latent trait models are measurement models in which a continuous latent variable is assumed to
determine the individuals’ responses on a set of categorical, dichotomous or polytomous, items.
The relationship between the latent variable and the items is described by means of a logistic
(logit) or normal ogive (probit) model.

As demonstrated by Heinen (1996), latent trait models are strongly related to LCMs. Ac-
tually, they are so strongly related that by means of `EM it is possible to obtain marginal

8Although most researchers will call this LCM ordinal, there is no guarantee that the scores of the categories
of the items are ordered. If this is not the case for one of the items, we can, for instance, restrict the scores of
categories which have the wrong order to be equal.
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maximum likelihood (MML) estimates of the parameters of latent trait models assuming either
a parametric, partially semi-parametric, or fully semi-parametric representation of the distribu-
tion of the latent trait variable.9 Parametric means that the distribution of the latent variable
is assumed to be known, for instance, Gaussian or uniform. In partially semi-parametric MML,
the latent trait is approximated by means of discrete (latent class) variable. The scores of the
categories of this discrete latent variable (the locations of the latent nodes) are fixed, but the
latent distribution (the weights of the latent nodes) is treated as unknown. And finally, fully
semi-parametric MML differs from semi-parametric MML in that it involves estimation of both
the scores and the distribution of the discrete latent variable.

Some of the restricted LCM presented in the previous subsections are, actually, (fully) semi-
parametric latent trait models: example 5.1e is a semi-parametric Rasch model, example 5.2c
is a partially semi-parametric partial credit model, example 5.2d is a fully semi-parametric
polytomous version of the two-parameter logistic model, and example 5.2e is a partially semi-
parametric graded response model (Heinen, 1996). Small modifications of these example input
files would yield other types of (fully) semi-parametric latent trait models.

Although in parametric models the latent trait is actually a continuous variable, when es-
timating these models, one has to approximate the assumed distribution function by means of
a number of discrete points (latent nodes, quadrature points). The standard practice in pro-
grams for estimating latent trait models, such as Bilog (Mislevy and Bock, 1990) and Multilog
(Thissen, 1988), is to approximate the latent distribution by means of around 10 discrete points.
This means that, in fact, a restricted latent class is specified in which the latent distribution,
πx, is fixed and in which scores are assigned to the latent classes.

It will now be clear that such continuous latent variable models can also be estimated with
`EM . The latent distribution can be fixed with eq2 or with a weight vector (wei(X)), while the
a priori scoring of the categories of X can be accomplished by linearly restricting the interaction
terms in the submodels for the conditional response probabilities. An example of such a model
is

* example 5.3a: latent trait model with normally distributed X
lat 1
man 5
dim 9 2 2 2 2 2
mod X {wei(X)}

A|X {A,spe(AX,1b)}
B|X {B,spe(BX,1b)}
C|X {C,spe(CX,1b)}
D|X {D,spe(DX,1b)}
E|X {E,spe(EX,1b)}

dat ex53.fre
sta wei(X) nor(1,8)

yields a two-parameter logistic model for 5 dichotomous items. In this example, the latent
distribution is approximated by 9 nine discrete points.10 Since now the latent distribution must
not be estimated but treated as fixed, we no longer include the first-order term X in the model
for πx but indicate that a vector of weights (or a fixed effect) will be specified for X. The
values of the entries of the weight vector are specified with sta (starting value). In this case,

9It is well-known that conditional maximum likelihood estimates of the item parameters of Rasch models can
be obtained without introducing a latent variable (Mellenberg and Vijn, 1981; Kelderman, 1984). Such models,
which contain a set of total score parameters, can be estimated with `EM using either fac(..) or the predefined
design for total score parameters (2a).

10Of course, if one does not find this accurate enough, one may increase the number of latent nodes just by
increasing the number of classes.
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we used the special option nor(..) to generate starting values which are in agreement with
a normal distribution. The first parameter in nor(..) determines the method that has to be
used to approximate the normal distribution (1=rescaled density; 2=piece of the cumulative
distribution) and the second the range of the normal distribution that has to be used (8 means
from -4 to +4). The relationship between the latent variable and the items is restricted by
means of an uniform association model specified by means of spe(..).

In almost the same way, we could specify Rasch models, polytomous generalizations of the
Rasch and the two-parameter logistic models, and latent trait models with cumulative link
functions. In addition, we could assume other types of distributional forms for the latent trait
variable.

Not only latent trait models, but also factor analytic models for ordinal items can be esti-
mated with `EM . By specifying a probit model for the conditional response probabilities, one
obtains a model that is equivalent to the factor analytic model for dichotomous items (Christof-
fersen, 1975) or its extension to ordered polytomous items (Muthén, 1984).11 The only difference
is that in `EM the parameters are estimated by ML, while these factor analytic models are usu-
ally estimated by Generalized Least Squares. Thus,

* example 5.3b: factor analysis model for dichotomous items
lat 1
man 5
dim 9 2 2 2 2 2
mod X {wei(X)}

A|X cum(b) {spe(X,1b)}
B|X cum(b) {spe(X,1b)}
C|X cum(b) {spe(X,1b)}
D|X cum(b) {spe(X,1b)}
E|X cum(b) {spe(X,1b)}

dat ex53.fre
sta wei(X) nor(1,8)

gives both a factor analysis model for dichotomous items and a normal ogive latent trait model.

11The relationship between latent trait models with a probit link and equivalent factor analysis models, including
the differences in their parameterization, is explained by Mislevy (1986) and by Takane and De Leeuw (1987).
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Chapter 6

Path models with latent variables

In chapter 4, we demonstrated how to specify path models for categorical variables, while in
chapter 5 it was explained how to define LCMs. The combination of the possibility of specifying
a probability structure with the possibility of defining categorical latent variables yields quite
a general type of model which can be seen as a categorical variant to the well-known Lisrel
model for interval level data (Jöreskog and Sörbom, 1988). That is the reason why Hagenaars
(1990, 1993) called this ‘a modified Lisrel approach’. An interesting feature of this path model
with latent variables is that it contains most of the extensions which are proposed for the
standard LCM as special cases (Vermunt, 1996b, 1997). The best-known of these extensions
are models with several latent variables, multiple group models, models with external variables,
local dependence models, latent Markov models, latent budget models, and several types of finite
mixture models, such as mixed logit/probit, mixed Markov, mixed Rasch, and mixed ranking
models.

6.1 General model

To demonstrate the potentials of the modified Lisrel model which was originally proposed by
Hagenaars (1990, 1993), we will first present quite an extended example which combines several
features of the model, that is,

* example 6.1: modified Lisrel model
lat 2
man 11
dim 2 2 2 2 3 2 2 2 2 2 2 2 2
lab W Y R S T A B C D E F G H
mod RST

W|R {RW}
Y|WST {WY,STY}
A|W {A}
B|W {B}
C|W {C}
D|W {D}
E|Y eq1 A|W
F|Y eq1 B|W
G|Y eq1 C|W
H|Y eq1 D|W

all {spe(AW,BW,CW,DW,1a)}
dat ex61.fre

41



Here, R, S, and T are exogenous variables, W and Y are latent variables, A-D serve as indicators
for W, and E-H serve as indicators for Y. In fact, it is a model for a two-wave panel, in which
the exogenous variables are measured at the first point in time and the items at both the first
and second point in time. The exogenous variables are used to explain both a person’s latent
state at the first point in time and the transitions that occur between the latent state at the
first point in time and the latent state at the second point in time. The measurement model
for W and Y is quite parsimonious, that is, it is assumed to have a Rasch-type structure (equal
two-variable interactions) and it is assumed to be time homogeneous.

This was quite a complicated example. The next sections present extensions of the standard
LCM which are special cases of the general path model with latent variables.

6.2 Models with several latent variables

A latent class model with two latent variables denoted by W and Y , each having two indicators,
is defined as (Goodman, 1974)

πwyabcd = πwy πa|w πb|w πc|y πd|y .

In `EM , such a model can be specified by

* example 6.2: LCM with 2 latent variables
lat 2
man 4
dim 2 2 2 2 2 2
lab W Y A B C D
mod YW A|W B|W C|Y D|Y
dat ex62.fre

As can be seen, the probability structure is used to indicate that each of the latent variables has
its own set of indicators.

Although in this case it is not relevant because the latent variables are both dichotomous,
the possibility to specify a log-linear model for the marginal table WY make it possible to further
restrict the relationship between the latent variables. Hagenaars (1986), for instance, proposed
symmetry and quasi-symmetry models for the associations between the latent variables. If we
now assume that we work with trichotomies rather that dichotomies and that, in addition, the
items concern measurements at two point in time, a latent symmetry model could be specified
as

* example 6.3: LCM symmetry model
lat 2
man 4
dim 3 3 3 3 3 3
lab W Y A B C D
mod YW {spe(YW,3a)}

A|W
B|W
C|Y eq1 A|W
D|Y eq1 B|W

dat ex63.fre

The symmetric structure is defined by the predefined design for symmetry. In addition, the
measurement part of the model is assumed to be equal for the two time points.
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6.3 Multiple group models

In multiple groups analysis, both the latent distribution and the conditional response probabil-
ities are allowed to differ among subgroups. The multiple group LCM for a set of three items is
defined as (Clogg and Goodman, 1985; McCutcheon, 1988)

πwabcg = πg πw|g πa|wg πb|wg πc|wg .

As can be seen, the model just involves including an additional variable (indicating group mem-
bership) into the model (Hagenaars, 1990), which in this case is denoted by G. This multiple-
group model can be defined in `EM by

* example 6.4: multiple-group LCM
lat 1
man 4
dim 2 3 2 2 2
lab W G A B C
mod G W|G A|WG B|WG C|WG
dat ex64.fre

Here, both the latent distribution and the conditional response probabilities differ across levels
of G, which is sometimes called a completely heterogenous model. A model in which the mea-
surement model equals among levels of G is obtained by replacing the above model specification
by

mod G W|G A|W B|W C|W

There are, in addition, all types of intermediate or partially heterogenous specifications. One
could, for instance, specify a model in which particular conditional response probabilities depend
on G and others not. Another possibility is to restrict the conditional response probabilities by
means of no-three-variable interaction models.

6.4 Models with external variables

LCMs with external variables (Goodman, 1974; Clogg, 1981; Hagenaars, 1990) are similar to
multiple group models. The main differences between these two models are that in models with
external variables there may be more than one variable that influences the latent distribution
and that the external variables do not influence the conditional response probabilities.1 A LCM
with three external variables R, S, and T could be defined as

πwrstabc = πrst πw|rst πa|w πb|w πc|w ,

where πw|rst may be further restricted by a logit model. With `EM , such as model could be
specified as

* example 6.5: LCM with 3 external variables
lat 1
man 6
dim 2 2 2 3 2 2 2
lab W R S T A B C
mod RST

1Another extension of the standard LCM, the latent budget model (Van der Heijden, Mooijaart, and De Leeuw,
1992), is very similar to the LCM model with external variables as it is defined here.
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W|RST {WRS,WT}
A|W
B|W
C|W

dat ex65.fre

Besides a measurement model for W, this model contains a logit model for the relationship
between the external variables and the latent variable W. Note that the specification of the fixed
margin RST could also be omitted from the model specification.

It is also possible to use continuous external variables in a LCM (Dayton and Macready,
1988; Van der Heijden and Dessens, 1994). The use of continuous covariates in `EM was already
explained in subsection 3.3. In almost the same way as they were used there in a multinomial
logit model, they can also be used in a LCM. A LCM with two continuous covariates and three
indicators can be specify as follows:

* example 6.6: LCM with 2 continuous covariates
lat 1
man 3
con 2
dim 2 2 2 2
lab W A B C
mod W|x {W,cov(x,1,W,c,-1),cov(x,2,W,c,-1)}

A|W
B|W
C|W

rec 221
des [1 -1

1 -1]
dat ex66.dat

The data must now be in record format, where the first three columns contain the individuals’
scores on the indicators and the last two columns on the continuous external variables.

It is also possible to specify latent trait models with external variables. There are two different
ways of incorporating external variables in latent trait models. The first method involves, as
in the above LCMs, specifying a regression model for the latent variable. The second method
substitutes the effects of the latent variable on the items by effects of the external variables and
an error term (Zwinderman, 1991). Using the latter method, we could specify a Rasch model
with two external variables as follows:

* example 6.7a: Rasch model with external variables
lat 1
man 5
dim 9 2 2 2 2 2
lab W R S A B C
mod RS

W {wei(W)}
A|WRS {A}
B|WRS {B}
C|WRS {C}

all {spe(AW,BW,CW,1b),spe(AR,BR,CR,1a),spe(AS,BS,CS,1a)}
dat ex67.fre
sta wei(W) nor(1,8)
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Here, W no longer serves as a latent variable, but as a normally distributed error term in the
linear regression of the latent variable on the external variables. The effects of R and S on the
items have to be interpreted as effects of these variables on the latent trait variable.

The other way of including external variables in latent trait models or factor analysis models
for ordered items is

* example 6.7b: factor analysis model with external variables
lat 1
man 5
dim 9 2 2 2 2 2
lab W R S A B C
mod RS

W|RS cum(f) {spe(R,1a),spe(S,1a)}
A|W cum(b) {spe(W,1b)}
B|W cum(b) {spe(W,1b)}
C|W cum(b) {spe(W,1b)}

dat ex67.fre

Here, the latent variable W is related to the external variables by means of a restricted probit
model (cum(f)), that is, a probit model with equidistant thresholds (see equation 3.5. This is a
method to specify the that latent variable W follows a conditional normal distribution given the
external variables.

6.5 Local dependence models

While in the standard LCM the items are assumed to be conditionally independent of one
another, it not a problem to relax this assumption. This leads to what is called a local dependence
model (Hagenaars, 1988). Suppose that we want to modify the latent class model described in
equation 5.1 by allowing for a direct relationship between C and D. One option, in which we
make no decision about the causal order between C and D, is to specify a model of the form

πxabcd = πx πa|x πb|x πcd|x .

On the other hand, if D can be assumed to be posterior to C, a specification of the form

πxabcd = πx πa|x πb|x πc|x πd|cx .

is more appropriate. The former specification is obtained as follows:

* example 6.8: local dependence models
lat 1
man 4
dim 2 2 2 2 2
mod X A|X B|X CD|X
dat ex68.fre

while in the latter specification, the model specification is of the form

mod X A|X B|X C|X D|CX

Of course, it is also possible to further restrict the probabilities πcd|x and πd|cx, for instance, by
a no-three-variable interaction model.
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6.6 Latent Markov models

Another special case of the path model with latent variables is the latent Markov model (Wiggins,
1973; Poulsen, 1982; Van de Pol and De Leeuw, 1986; and Van de Pol and Langeheine, 1990).
Suppose we have observations of the same variable at four occasions. A latent Markov model
for such a situation could be defined as

πwxyzabcd = πw πx|w πy|x πz|y πa|w πb|x πc|y πd|z .

Here, W -Z are latent (state) variables at the four points in time; A-D are manifest variables
which serve as indicators for these latent variables. With `EM , such a model can be specified
by

* example 6.9: latent Markov model
lat 4
man 4
dim 2 2 2 2 2 2 2 2
lab W X Y Z A B C D
mod W X|W Y|X Z|Y

A|W B|X eq1 A|W C|Y eq1 A|W D|Z eq1 A|W
dat ex69.fre

As can be seen, we imposed the additional restriction that the measurement model is time-
homogeneous, which is one of the possible identifying restrictions.

There are many extension of the simple latent Markov model described above, such as
models with more than one indicator per occasion and multiple group models (Van de Pol
and Langeheine, 1990), models with external variables (Vermunt, Langeheine, and Böckenholt,
1995), and models with more complicated measurement parts (Vermunt and Georg, 1995). All
these extensions can be dealt with within the general framework of path modeling with latent
variables.

6.7 Mixture models

The last rather broad class of models that can be seen as special cases of the path model with
latent variables are finite mixtures of multinomial distributions. Suppose that there are four
observed variables A, B, C, and D and a mixture variable X. In its most general form, a finite
mixture of multinomial distributions is given by

πabcd =
∑
x

πx πabcd|x .

The type of mixture model that is obtained depends, of course, on the restrictions that are
imposed on πabcd|x. For instance, assuming independence between A, B, C, and D yields the
LCM. On the other hand, assuming that

πabcd|x = πabc πd|xabc

in combination with a logit or probit parameterization of πd|xabc gives a mixed logit or probit
model (Kamakura, Wedel, and Agrawal, 1992; Formann, 1992). An example of a mixed logit
model for dependent variable D is

* example 6.10: mixed logit model
lat 1
man 4
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dim 2 2 2 2 2
lab X A B C D
mod X ABC

D|XABC {DX,DA,DB,DC}
dat ex610.fre

As can be seen, X is assumed not to be related with the observed covariates A, B, and C. Although
this is not necessary within the context of path models with latent variables, it is an assumption
that is generally made in mixed discrete choice models. Replacing the model by

mod X ABC
D|XABC cum(b) {spe(X,1a),spe(A,1a),spe(B,1a),spe(C,1a)}

yields a mixed probit model.
Mixed Markov models (Poulsen, 1982, Langeheine and Van de Pol, 1990, 1994) are obtained

by setting

πabcd|x = πa|x πb|ax πc|bx πd|cx .

Such a model can be specified with `EM by

* example 6.11: mixed Markov model
lat 1
man 4
dim 2 2 2 2 2
lab X A B C D
mod X A|X B|AX C|BX D|CX
dat ex611.fre

By means of the command eq1 it is easy to transform this model into a stationary mixed Markov
model.

Rost (1990) proposed a mixed Rasch model. This model involves estimating the Rasch model
by conditional maximum likelihood, where both the total-score parameters and item difficulties
are allowed to vary among latent classes. With `EM it can be specified as

* example 6.12: mixed Rasch model
lat 1
man 4
dim 2 2 2 2 2
lab X A B C D
mod X ABCD|X {AX,BX,CX,DX,spe(ABCD,2a)}
dat ex612.fre

Besides the two-variable interactions between the items and the latent variable, this model
includes a set total-score parameters. 2

With `EM , it is also possible to specify the mixed ranking models proposed by Croon (1989)
and Croon and Luijkx (1993). Assume that we have information on the ranking of three objects,
where variable A indicates the object of first choice, B the second, and C the third.3 A mixed
Bradley-Terry-Luce (BTL) model can be specified as follows

2It should be noted that one additional restrictions have to be imposed to identify all model parameters. For
instance, we could set the difficulty of D equal to zero for one latent class.

3Note that here the rankings are the variables and the objects are the levels of these variables. So, B = 3
means that second choice is object number three.
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* example 6.13a: mixed ranking model (BTL model)
lat 1
man 3
dim 2 4 4 4
lab X A B C
mod X

A|X {}
B|AX {wei(AB)}
C|ABX {wei(AC),wei(BC)}

all {spe(A,B,C,1a,X,c)}
sta wei(AB) [0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0]
sta wei(AC) [0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0]
sta wei(BC) [0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0]
dat ex613.fre

As can be seen, we estimate parameters for the categories of A, B, and C for each level of X. These
are the class-specific utilities of the objects. The structural zeros which are inherent to ranking
data – each particular object can be chosen just ones – is dealt with by a set of weight vectors.
Note that the weight vectors contain zeros on the main diagonal.

Another somewhat different model for ranking data is the Pendergrass-Bradley (PB) model.4

A mixed variant of this model can be specified as follows:

* example 6.13b: mixed ranking model (PB model)
lat 1
man 3
dim 2 4 4 4
lab X A B C
mod X

ABC|X {spe(ABC,7a,X,c),wei(AB),wei(AC),wei(BC)}
sta wei(AB) [0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0]
sta wei(AC) [0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0]
sta wei(BC) [0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0]
dat ex613.fre

Pre-designed type ‘7a’ will generate the correct design for this situation. The parameters are
again the utilities of the objects for each latent class.

4The PB model is based on the assumption that a ranking stems from all possible paired comparisons, while
the BTL model is based on the assumption that ranking is a sequential choice process.
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Chapter 7

Dealing with partially missing data

Quite often it happens that information is missing on one or more of variables for some individ-
uals. The `EM program allows the user to include such cases with partially missing information
in the analysis. Moreover, the definition of response indicators makes it possible to specify mod-
els for the mechanism causing the missing data, sometimes also called models for nonresponse
(Fay, 1986; Baker and Laird, 1988).

7.1 Using partially missing data

Suppose we want specify a model for three-way table ABC. The variables, B and C are, however,
not observed for all individuals. More precisely, one may have missing information on B, C, or
both B and C. As a result, we can construct four different types of observed frequency tables
belonging to the four different subgroups of individuals for whom we have the same type of
information, that is, ABC, AB, AC, and A.

Estimation of a log-linear model for the three-way table ABC using the information of the
above-mentioned four subgroups can be accomplished by the following input file:

* example 7.1: Using partially missing data
man 3
res 1 * one response indicator
dim 4 2 2 2 * with four levels
lab R A B C * and label R
sub ABC AB AC A * defines these four subgroups
mod ABC {AB,BC}

R {R}
dat [50 90 31 9 31 10 3 4 * subgroup ABC

12 19 45 5 * subgroup AB
26 40 11 23 * subgroup AC
10 4] * subgroup A

Here, the option to define response indicators is used to specify that there are four different
observed frequency tables. More precisely, we declared one response indicator (res 1) with
four levels (with dim). With the command sub (subgroups) it is specified which variables are
observed for each of the four subgroups. The data specified with fre consist of the four different
observed frequency tables.

In the model specification, we used the response indicator R as one of the variables. In fact, we
specified the simplest model for nonresponse, that is, a missing completely at random (MCAR)
response mechanism (see section 7.3). In addition, we specified log-linear model {AB,BC} for
table ABC. It should be noted that the likelihood-ratio statistic yields a simultaneous test for the
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model of interest and the MCAR assumption. A correct test for the model that is postulated for
table ABC – in this case {AB,BC} – can, however, be obtained by means of a conditional likelihood-
ratio test between this model and the saturated model {ABC} (Hagenaars, 1990; Vermunt, 1996a,
1996b, 1997).1

The second example of a model which is estimated using partially missing information con-
cerns a latent class model2 with four items:

* example 7.2: LCM with missing information
lat 1
man 4
res 1
dim 5 2 2 2 2 2
lab R X A B C D
sub ABCD ABC ABD ACD BCD
mod X A|X B|X C|X D|X R
dat ex72.fre

As can be seen, besides persons with completely observed data, there are also persons for which
information on one of the four items is missing. Note that in list of variables after dim and lab,
the response indicators precede the latent variables.

7.2 Record format data

The computation of the different observed frequency tables which are requested as data may
be tedious. It is, however, also possible to circumvent this by using record format data. In
that case, `EM will compute the various frequency tables from the individual records. With a
missing value code, which default value is 0, it is indicated that a particular variable is missing:

* example 7.3: partially missing record format data
man 3
res 1
dim 4 2 2 2
lab R A B C
sub ABC AB AC A
mod ABC {AB,BC}

R {R}
rec 1230
mis 9
dat ex73.dat

The only thing we have changed compared to example 7.1 is that we specified the number of
records (rec 1230) and a missing-data value (mis 9).3

An additional feature that can be used when the data is in the form of individual records is
the possibility to omit the specification of the subgroups. In that case, the program will find out
which subgroups there are in the data. This can save a lot of work in situations in which there
are many different subgroups. If there are more subgroups in the data file than the specified
number of levels the response indicator, the program will give an error message.

1Note that the likelihood-ratio statistic for the saturated model tests only the MCAR assumption.
2Technical details on the estimation of models with both latent variables and partially observed data can be

found in Vermunt (1996b, 1997).
3Note that the missing-data value must be the same for all variables.
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7.3 Ignorable and nonignorable models for nonresponse

So far, we assumed that we just want to use the missing data without worrying about the precise
mechanism causing the missing data. The possibility to define response indicators and to use
them in the log-linear path model can, however, also be used to specify models for nonresponse
(Fay, 1986; Hagenaars, 1990; Vermunt, 1996a, 1996b, 1997).

In the above examples on partially missing data we assumed that the missing data is missing
completely at random (MCAR), which is the strongest possible assumption about the response
mechanism. For the estimation of the structural parameters, this may, however, be no problem
since each ignorable response mechanism will yield the same parameter estimates. A response
mechanism is called ignorable if for each individual the probability of not observing the variables
which are currently missing is independent of the value of the variables that are missing. For
a more precise definition of ignorable response mechanisms, see, for instance, Little and Rubin
(1987) or Vermunt (1996b, 1997).

Suppose we would like to modify example 7.1 by adding a model for the probability of
observing B and C. In that case, it is more appropriate to work with two response indicators:
one indicating whether B is missing and one indicating whether C is missing. An ignorable
response model could be of the form

* example 7.4: Modeling the response mechanisms
man 3
res 2
dim 2 2 2 2 2
lab R S A B C
sub ABC AB AC A
mod ABC {AB,BC}

R|ABC {AR}
S|RABC {RS,AS}

dat ex74.fre

Like in example 7.1, we have four (in this case, 2 times 2) subgroups. Contrary to example 7.1,
however, we used 2 response indicators, one indicating whether B is missing and another whether
C is missing. Now the order in which the subgroups are specified is crucial because that defines
the meaning of the response indicators. The order of the subgroups is such that missingness on
C changes before missingness on B. Since S changes its values before R, S will indicate whether
C is observed and R whether B is observed. More precisely, RS=11 is subgroup ABC, RS=12 is
subgroup AB, RS=21 is subgroup AC, and RS=22 is subgroup A;

The response model in example 7.4 assumes an ignorable response mechanism: both R and
S depend only on A, which is a variable which is observed for all persons. Two examples of
nonignorable response mechanism are:

mod ABC {AB,BC}
R|ABC {AR,CR}
S|RABC {RS,AS,BS}

and

mod ABC {AB,BC}
R|ABC {AR,BR}
S|RABC {RS,AS,CS}

In the former specification, the response indicators do not depend on the variable which miss-
ingness they indicate, while in the latter specification they do. Both models specify, however,
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a nonignorable response mechanism because for some persons the values of response indicators
depend on variables which are missing (Vermunt, 1996b, 1997).

An ignorable response mechanism which uses all additional degrees of freedom obtained from
including observed tables AB, AC and A in the analysis can be specified by means of eq2. Such
a model, which may also be called a saturated missing at random model (Vermunt 1996b, 1997),
is obtained with a model of the form

mod ABC {AB,BC}
RS|ABC eq2

in combination with design matrix

des [0 0 0 0 0 0 0 0
1 1 2 2 3 3 4 4
4 5 4 5 6 7 6 7
8 8 8 8 9 9 9 9]

Here, it is specified that the probability of observing both B and C depends on all three variables,
of observing B and not observing C on A and B, of not observing B and observing C on A and
C, and of neither observing B nor C on A.
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Chapter 8

Event history analysis

Besides for the estimation of log-linear models with latent variables and other types of missing
data, the `EM program can be used for specifying event history models. Two types of event
history models are implemented, namely, piecewise exponential survival models for continuous-
time data (Laird and Olivier, 1981), also known as log-rate models, and logit models for discrete-
time data (Allison, 1982). The event history model may be a model for a single nonrepeatable
event, for competing risks, for repeatable events or other types of clustered observations, or
for multiple-state processes. In addition, it is possible to specify models with nonparametric
unobserved heterogeneity, latent covariates, and partially missing covariates, and, in a discrete-
time framework, with latent and partially missing states (see Vermunt, 1996b, 1997).1

8.1 Log-rate models

Suppose we have a model for a single nonrepeatable event with two categorical covariates A
and B. Let T denote the time variable and δ be a censoring indicator taking the value 0 if an
individual was censored at the recorded time and 1 if an individual experienced the event of
interest at the recorded time. In log-rate models, the time axis is divided into a limited number
a time intervals. Within a time interval, the hazard rate is assumed to be constant, or survival
to be exponential. The time variable T will be used to denote the time interval in which the
event or censoring occurred. A saturated log-rate model for the current situation would be of
the form

log habt = u + uA
a + uB

b + uT
t + uAB

ab + uAT
at + uBT

bt + uABT
abt ,

where habt denotes the constant hazard rate in the tth time interval for A = a and B = b.
The u terms are the (log-linear) parameters of the hazard model. An example of non-saturated
log-rate model, in which all the higher-order interactions are omitted, is

log habt = u + uA
a + uB

b + uT
t .

Note that this is a proportional hazard model since the covariate effects are assumed to be
time independent. Besides by omitting particular terms, we can further simply this model by
imposing constraints on the time dependence of the hazard rate.

The next subsections explain the specification of log-rate models with the `EM program,
including all types of extension of the above model for a single nonrepeatable event.

1Textbooks on event history analysis are Tuma and Hannan (1984), Yamaguchi (1991), Blossfeld and Rohwer
(1995), and Vermunt (1996b, 1997).
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8.1.1 As a log-linear model with a weight vector

One of the two methods for specifying a log-rate model with `EM is as a log-linear with a
weight vector (see section 2.4). In this method, which can be used with most standard programs
for log-linear analysis, the observed frequency table consists of the number of events in each of
the (a, b, t) combinations and the weight vector of the total exposure times (Laird and Olivier,
1981; Clogg and Eliason, 1987; Vermunt, 1996b, 1997). In the case of the above example of a
non-saturated log-rate model, the input file could be of the form

* example 8.1: log-rate model as a log-linear model with a
* weight vector
man 3
dim 2 2 5
lab A B T
mod {A,B,T,wei(ABT)}
sta wei(ABT) ex81.wei
dat ex81.fre

As can be seen, it is assumed that the time variable has 5 levels and that the covariates have
two levels.

It should be noted that although this input file seems to be quite simple, it is not so easy
to specify a log-rate model in this way. The reason for this is that computation of the weight
matrix with exposure times can be quite complicated.

8.1.2 As an event history model

The second method for defining log-rate models involves using the special `EM event history
modeling options. When using this method, it is it is no longer necessary to supply the matrices
with the observed number of occurrences and exposure times as data. The program will compute
this information on the basis of the raw data. Using the commands for specifying hazard models,
the same model as above could now be of the form

* example 8.2: log-rate model as an event history model
man 2
dim 2 2
lab A B
tim 5 [0,4,8,12,16,20]
ris 2 [0,1]
haz {A,B,T}
rec 500
dat ex82.dat

With man, dim, and lab, we provide the necessary information on the covariates. It is also
possible to specify a model for the covariates, which is an option that will be used later on when
discussing models with latent and partially missing covariates.

The command tim is used to define the number and the begin and end points of the time
intervals. In this case, we have 5 time intervals with the begin and end points which are specified
between the square brackets. With ris, one indicates the number of states and the transitions
or risks to be analyzed. Here, we have two states (0 and 1) and one type of risk, namely, the
transition from state 0 to state 1.2 Since two states with transition [0,1] is the default setting,
this line may also be omitted from the model specification. And finally, the command haz is
used to specify the hazard model. Within the parentheses, one can specify the model parameters

2It should be noted that the states are numbered from 0 to the number of states minus 1.
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in the same way as in the log-linear models discussed in the previous chapters, that is, using
the hierarchical log-linear notation, user-defined designs, predefined designs, and log-linear and
log-multiplicative association structures (Vermunt 1996b, 1997). The label for the time variable
is always T.

With rec, it is indicated that the data are now in the form of individual records. The first
five lines of the data file could, for instance, be

1 2 10 0
2 2 5 1
2 1 4 1
1 1 20 0
2 2 15 1
etc.

The first two columns contain the values of the covariates A and B, the third of the time variable,
and the last of the end state or the censoring indicator. As can be seen, the first and fourth
case are censored, the other cases experienced the event. The program will use this information
to make the occurrence and exposure matrix. It is important to note that in the calculation of
the exposure times, events and censorings are assumed to occur in the middle of the indicated
time unit. So, a time of 10 is changed by the program into 9.5, 5 into 4.5, etc. This default
setting in the calculation of exposure times can be changed with the command exp (exposure
time). In the default setting, it is assumed that the time and state of entry into the risk
set are both 0. This can be changed by means of the command rt0 (read time and state at
entry into the risk set), which can, among other things, be used for dealing with left censored
cases and time-varying covariates. The above example can easily be transformed to yield other
types of specifications of the time and covariate dependence of the hazard rate. Using only one
time interval yields an exponential survival model. Specifying as many time interval as times at
which events occur yields a Cox’s proportional hazard model. By including interactions between
T and the covariates, one obtains nonproportional hazard models. And finally, by restricting
the time-dependence, it is possible to approximate the results of parametric hazard models. For
instance, a linear effect of T gives a Gompertz-type model, while a linear effect of log(T) yields
a Weibull-type model (Yamaguchi, 1991).

We could approximate a Gompertz model by replacing the tim statement in the above
example by

time 20

which means that there are twenty time intervals of length 1, and replacing the hazard model
by

haz {A,B,spe(T,1b)}

Note that predefined design type 1b yields a linearly restricted log-linear effect.

8.1.3 Competing risks

The above example can easily be changed into a competing-risk model. The only thing we
need to do is to include an additional variable which indicates the type of event (Larson, 1984;
Vermunt, 1996b, 1997). Suppose that individuals may experience one of two types of events.
An example of the specification of such a model is

* example 8.3: competing-risk model
man 2
dim 2 2
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lab A B
tim 5 [0,4,8,12,16,20]
ris 3 [0,1] [0,2]
haz {TR,AR,B}
rec 500
dat ex83.dat

The difference with the model for a single type of event is that now we have 3 different states
(0, 1, and 2) and two possible transitions or risks, namely, the transition from 0 to 1 and from
0 to 2. The types of transitions form the levels of the so-called risk variable with label R. This
risk variable can be used in the model specification in the same way as the other variables. The
specified hazard model indicates that the time dependence and the effect of A differs for the two
risks, while the effect of B is the same for both types of events.

The data set will again contain information on the value of A, B, and the time that an event
or censoring occurred. The only difference is that the end state can now take on three different
values rather than two: 0 (censored), 1 (event type one), or 2 (event type two).

8.1.4 Repeatable events

The definition of models for repeatable events involves, as in competing-risk models, specifying
the events of interest using the command ris. In addition, the data file must contain information
on the times that each of the events occurred. An example of a model for an event that may
occur at most three times is

* example 8.4: repeatable events
man 2
dim 2 2
lab A B
tim 5 [0,4,8,12,16,20]
ris 4 [0,1] [1,2] [2,3]
haz {T,AR,B}
zer
rec 500
epi 3
dat ex84.dat

As can be seen, it is specified that individuals can occupy 4 different states, and that there are
three possible transitions, that is, from 0 to 1, 1 to 2, and 2 to 3. These transitions denote the
first, second, and third occurrence of the event of interest. Again, we have a risk variable with
label R which can be used in the specification hazard model. In the example, it is assumed that
the time dependence and the effect of B are the same for the first, second, and third occurrence
of the event under study, while the effect of A differs for the three events.

The above input file contains two commands which were not yet explained: zer and epi.
With zer, it is indicated that the time variable must be set back to zero after each event.
This implies using waiting time rather than process time as the relevant time dimension. If we
omit the zer statement, the time variable will be process time. The command epi 3 after the
specification of the number of records means that the data set contains information on the end
times and states for three episodes or spells, in this case, the times and states belonging to the
first, second, and third occurrence of the event of interest. The first five records of the data file
could, for instance, be

1 2 10 1 25 2 40 3
2 2 5 1 14 2 17 2
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2 1 4 1 4 1 4 1
1 1 20 0 20 0 20 0
2 2 15 1 30 2 30 2
etc.

The first record belongs to someone who experiences all three events. The second person experi-
ences event 1 and 2 and is censored 3 time units after experiencing the second event (17-14). It
should be noted that if the state does not change between two subsequent episodes or spells, a
record is assumed to be censored. Record three is censored immediately after the first occurrence
of the event of interest. The fourth case was censored after 20 time units without experiencing
an event. And finally, the last record belongs to someone who is censored after the second
occurrence of the event of interest.

8.1.5 Multiple states

Combining the competing-risk and the repeatable-event situations gives rise to what is called
a multiple-state process. This is an event history which may contain different types of events
which, in addition, may occur several times. Suppose that we are interested in the transitions
between three states. An input file for such a situation could be

* example 8.5: multiple-state process
man 2
dim 2 2
lab A B
tim 4 [0,12,24,36,48]
ris 3 [0,1] [0,2] [1,0] [1,2] [2,0] [2,1]
haz {TR,AR,BR}
rec 500
epi 3
rt0
dat ex85.dat

As can be seen, there are six possible transition between the three states. This means that the
risk variable R has six levels. Because the command zer is not included in the input file, the
model uses process time as the relevant time dimension, which means that it is a (non-stationary)
Markov model (Tuma and Hannan, 1984). Besides the number of records (rec 500) and the
number of episodes per record (epi 3), it is specified that the records contain a starting time
and state (rt0). The first five records of the data file could be

1 2 0 2 10 1 25 2 40 0
2 2 0 1 5 2 14 3 27 2
2 1 0 0 4 1 4 1 4 1
1 1 0 0 20 0 20 0 20 0
2 2 0 2 15 1 30 2 48 2
etc.

Columns three and four contain the starting time and state. The begin time for each of the five
records is 0, while the starting state differs per record.

8.1.6 Multivariate hazard model

Besides by means of the ris, zer, and epi commands, there is another method for specifying a
general class multivariate hazard models in a more compact way, that is, by the command mult.
This method is especially useful if each of the types events can occur several times, if a simple
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exponential model is assumed for the time dependence, and if the hazard rate does not depend
on the number of previous occurrences of the events of interest. This method can, for instance,
be used for specifying (multivariate) Poisson regression models (Böckenholt and Langeheine,
1996; Wedel et all, 1993) and stationary Markov models with covariates. An example of the use
of the command mul is

* example 8.6: multivariate hazard model
man 2
dim 2 2
lab A B
tim 1 [0,1000]
mul 3
haz {AR,BR}
exp 1
rec 500
dat ex86.dat

By specifying that there is only one time interval, it is assumed that the hazard rate is time
independent.3 The statement mul 3 indicates that there are three types of events. It should be
noted that each of the three types of events may occur as many times as one wants. The hazard
model specifies the covariate effects to be event specific. The command exp 1 indicates that the
exposure time in the reported time unit is 1 rather than .5, which means that we do not want
to subtract .5 from the reported times in the data file.

The data file will contain a slightly different type of information compared to the hazard
models specified so far. For each person, we have to supply, besides the covariate values, the
total exposure time to and the number of occurrences of the three events of interest. The first
records in the data file could, for instance, be

1 2 10 2 5 2 3 0
2 2 10 5 6 2 7 2
2 1 10 4 6 4 4 1
1 1 5 0 10 1 10 3
2 2 3 2 10 1 8 2
etc.

The first individual is exposed 10 time units to event type 1, 5 time units to event type 2, and 3
time units to event type 3. This person experiences the three types of events 2, 2, and 0 times,
respectively. In the same way, we have to interpreted the event history information for the other
cases.

8.1.7 Left censoring

The problem of left censoring is not so easy to deal with when the time of entry into the risk set
in unknown. However, if there is information on the time that left censored cases enter into the
risk set, dealing with left censoring just involves specifying a begin time and state (Guo, 1993;
Vermunt, 1996b, 1997). An example is

* example 8.7: left censoring
man 2
dim 2 2
lab A B

3One time interval with a lower limit equal to zero and an upper limit equal to the largest observed survival
time is the default setting.
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tim 5 [0,4,8,12,16,20]
ris 2 [0,1]
haz {A,B,T}
rec 500
rt0
dat ex87.dat

As can be seen, this is a proportional hazard model for a single nonrepeatable event. With rt0
is it indicated that the records in the data file contain a starting time and state. The first five
records of this file could be

1 2 0 0 9 0
2 2 4 0 10 1
2 1 0 0 4 1
1 1 5 0 16 1
2 2 0 0 20 0
etc.

Each of the five presented records has a starting state of 0. Records two and three are left
censored since they enter into the risk set in the 4th and 5th time unit, respectively.

8.1.8 Fixed-effect approach to unobserved heterogeneity

One method for dealing with unobserved heterogeneity is by means of the random-effects ap-
proach which is discussed in the subsection 8.4.1. Another method is the fixed-effect approach
which involves including a cluster-specific nuisance parameters in the hazard model (Yamaguchi,
1986; Vermunt, 1996b, 1997). This method only works if most of the clusters in the sample expe-
rience there is more than one observation and if one is only interested in the effects of covariates
which either vary over time or over observations belonging to the same cluster.4

Suppose we have survival data for observations belonging to 200 clusters. The fixed-effect
approach involves including a separate parameter for each cluster in the hazard model. Suppose
that besides the unobserved heterogeneity component, we have two dichotomous covariates A
and B. A model for such a situation could be

* example 8.8: fixed-effects approach to unobserved heterogeneity
man 2
dim 200 2 2
lab F A B
tim 5 [0,4,8,12,16,20]
ris 2 [0,1]
haz {F,A,B,T}
rec 500
dat ex88.dat

As can be seen, the cluster-specific fixed effects are defined by including a covariate with 200
levels in the model. The data for the observations belonging to the first three clusters could be
of the form:

1 2 2 14 1 * observation 1 in cluster 1
1 2 1 20 0 * observation 2 in cluster 1

4A cluster can be formed by a number of observations from the same individual, for instance, on repeatable
events, but also by number of dependent observations from different individuals, for instance, from individuals
belonging to the same family.
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2 1 2 4 1 * observation 1 in cluster 2
3 1 1 9 0 * observation 3 in cluster 3
3 1 2 12 1 * observation 3 in cluster 3
3 2 1 10 1 * observation 3 in cluster 3
3 2 2 20 0 * observation 3 in cluster 3
etc.

8.2 Discrete-time logit models

8.2.1 As an event history model

In the case of discrete-time event history data, one generally regresses the transition probability
at a particular time interval on a set of covariates by means of a logit model (Allison, 1982). A
saturated discrete-time logit model for a single nonrepeatable event with two covariates A and
B can be written as

λabt =
exp

(
u + uA

a + uB
b + uT

t + uAB
ab + uAT

at + uBT
bt + uABT

abt

)
1 + exp

(
u + uA

a + uB
b + uT

t + uAB
ab + uAT

at + uBT
bt + uABT

abt

) ,

where λabt is the probability of experiencing the event of interest in the tth time interval, given
that one did not experience the event before. By omitting certain parameters or restricting the
parameters in some other way, one can obtain more parsimonious specifications.

The definition of discrete-time logit models with `EM is similar to the specification of log-
rate models. There is, however, one important difference, that is, the non-transitions have to
be included in the list of risks. The covariates have to interact with the risk variable, which
serves as a kind of dependent variable. This is the same as in standard logit models where
the covariates interact with the dependent variable as well. An example of an `EM input file
defining a discrete-time logit model is

* example 8.9: discrete-time logit model
man 2
dim 2 2
lab A B
dis
tim 5 [0,1,2,3,4,5]
ris 2 [0,0] [0,1]
haz {AR,BR,TR}
rec 500
dat ex89.dat

The command dis indicates that it is discrete-time logit model rather than a log-rate model.
As can be seen, the [0,0] transition is specified to be one of the risks. In the hazard model,
the covariates and time variable interact with the risk variable R.

Each of the generalization of the simple hazard model for a single nonrepeatable event
discussed above can also be used in the context of discrete-time logit models.

8.2.2 As a log-linear path model

Rather than by above formulation, the discrete-time logit model can also be specified in terms
of transitions between states occupied at particular points in time. This yields a formulation
which is a special case of the log-linear path models discussed in chapter 4 (Vermunt, 1996b,
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1997). Let St denote the state occupied at time point t. The discrete-time logit model can now
be written as

πst|abst−1
=

exp
(
u

St−1St
st−1st + u

ASt−1St
ast−1st + u

BSt−1St

bst−1st
+ u

ABSt−1St

abst−1st

)
∑

st
exp

(
u

St−1St
st−1st + u

ASt−1St
ast−1st + u

BSt−1St

bst−1st
+ u

ABSt−1St

abst−1st

)
where πst|abst−1

is the probability of occupying state st at T = t given that A = a, B = b,
and St−1 = st−1. To obtain the standard parameterization of discrete-time logit models, the u
parameters in which St = St−1 have to be set to zero. It should be noted this is a model for
different types of transitions which, in addition, can occur several times. Models for a single
nonrepeatable event, multiple-risk models, and models for a single type but repeatable event
can be obtained by making certain transition probabilities structurally zero.

When the discrete-logit model is defined in this way, it can be specified as a log-linear path
model. Suppose we have information on the states that a person occupies at five discrete points
in time. Let denote these state by G, H, I, J, and K. An example of a model with two covariates
A and B for the transition between these five time points is

* example 8.10a: discrete-time logit model as a log-linear
* path model
man 7
dim 2 2 2 2 2 2 2
lab A B G H I J K
mod H|ABG {AGH}

I|ABH {AHI}
J|ABI {AIJ}
K|ABJ {AJK}

all {spe(BGH,BHI,BIJ,BJK,1a)}
rec 500
dat ex810.dat

This is, actually, a non-stationary Markov model in which two external variables are used to
explain individual differences in the transition probabilities between five time points. With all,
it is specified that the effect of B on the transition probabilities is time homogeneous.

To obtain exactly the same parameterization of the parameters as in standard discrete-time
logit models, one has to specify the model by means of user defined designs. The parameters
have to be restricted in such a way that they indicate the main effect for and covariate effects on
the transitions from state 1 to 2 and from state 2 to 1. This can, for instance, be accomplished
as follows:

* example 8.10b: discrete-time logit model as a log-linear
* path model, with standard parameterization
man 7
dim 2 2 2 2 2 2 2
lab A B G H I J K
mod H|ABG {fac(GH,2) fac(GH,2,A,c,-1)

I|ABH {fac(HI,2) fac(HI,2,A,c,-1)
J|ABI {fac(IJ,2) fac(IJ,2,A,c,-1)
K|ABJ {fac(JK,2) fac(JK,2,A,c,-1)

all {fac(GH,HI,IJ,JK,2,B,c,-1)}
des [0 1 2 0 0 1 2 0 1 -1

0 1 2 0 0 1 2 0 1 -1
0 1 2 0 0 1 2 0 1 -1
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0 1 2 0 0 1 2 0 1 -1
0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 1 -1]

rec 500
dat ex810.dat

The factors specify effects for the (1,2) and (2,1) transitions, where A and B are used as grouping
variables to generate the right interaction terms.

8.2.3 Other link functions

Rather than using a logit link to investigate the covariate effects on the transition probability,
we can also use one of the other types of links function implemented in `EM that is, a probit,
complementary log-log, or log-log link.

Suppose that we have a model for a single nonrepeatable event and that we have observations
for 5 time points. At the first time point every one is in state 1, while at one of the next time
points one can experience a transition form state 1 to state 2. The (2,1) transition is assumed
to be impossible. A discrete-time probit model for this situation can be specified as follows

* example 8.11: discrete-time probit model
man 7
dim 2 2 2 2 2 2 2
lab A B G H I J K
mod H|ABG cum(b) {spe(A,1a) wei(GH)}

I|ABH cum(b) {spe(A,1a) wei(HI)}
J|ABI cum(b) {spe(A,1a) wei(IJ)}
K|ABJ cum(b) {spe(A,1a) wei(JK)}

all {eff(H,I,J,K,1,B,c,-1)}
rec 500
des [1 1 1 1 1 1 1 1 1 -1]
sta log wei(GH) [0 0 -1000 0]
sta log wei(HI) [0 0 -1000 0]
sta log wei(IJ) [0 0 -1000 0]
sta log wei(JK) [0 0 -1000 0]
dat ex811.dat

The probit link is specified by the cum(b) statements after the transition probabilities. The
effect of A is assumed to be time dependent, while the effect of B is time independent. The
weight vectors, which because of the log statement after sta are in the probit scale, make the
(2,1) transition for each time point equal to zero. Note that the probability that a z-value is
smaller than -1000 equals zero.

A log-log model for the probability of not having event, which is equivalent to a comple-
mentary log-log model for the probability of having an event, can be obtained by replacing the
cum(b) statements by cum(d). In addition, the starting values weight vector in the log-log scale
must be changed into [0 0 1000 0]. Note that exp(-exp(1000)) equals zero.

8.3 Time-varying covariates

One of the strong points of event history analysis is the possibility of using time-varying co-
variates. In `EM , there are two methods for including time-varying covariates in log-rate or
discrete-time logit models: episode splitting and expansion of the state space.
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8.3.1 Episode splitting

Episode splitting involves creating episode records for which the covariates are constant (Bloss-
feld and Rohwer, 1995; Vermunt, 1996b, 1997). An episode record contains, besides the covariate
values, the starting time and state and the end time and state of the episode. For each individ-
ual, we have as many episode records as the number of times that the time-varying covariates
change their values plus one.

Suppose that we have a hazard model with two time-constant covariates A and B and a
dichotomous time-varying covariate C. A `EM input file for this situation could be of the form

* example 8.12: time-varying covariate via episode splitting
man 3
dim 2 2 2
lab A B C
tim 5 [0,4,8,12,16,20]
ris 2 [0,1]
haz {A,B,C,T}
rec 800
rt0
dat ex812.dat

The model specification is the same as in the case in which all covariates are time constant.
What is different is the structure of the data. With rt0 it is indicated that the records in data
file contain a starting time and state. The first seven episode records in the data file could, for
example, be

1 2 2 0 0 14 0 * episode 1 for case 1
1 2 1 14 0 20 0 * episode 2 for case 1
2 1 2 0 0 4 1 * episode 1 for case 2
1 1 1 0 0 9 0 * episode 1 for case 3
1 1 2 9 0 12 1 * episode 2 for case 3
2 2 1 0 0 10 1 * episode 1 for case 4
1 2 2 0 0 20 0 * episode 1 for case 5
etc.

The first two records belong to the first case, the third record to the second case, the fourth and
fifth record to the third case, and the last two records to the fourth and fifth case, respectively.
As can be seen, the first episode for case 1 ends at the 14th time unit. At that time unit the
value of C changes from 2 to 1. Therefore, the second episode for case 1 starts at time unit 14
with a value of 1 for time-varying covariate C. Case 2 (episode record 3) does not have a change
in C, while case 3 (records 4 and 5) experiences a change in C at time unit 9. The value of C do
not change for cases 4 and 5.

8.3.2 Expansion of the state space

Another method for dealing with time-varying covariates is via expansion of the state space.
Although this method is conceptually more complicated, it has some important advantages. First
of all, it makes it unnecessary to perform episode splitting with some other computer program. In
addition, it makes it possible to simultaneously model the covariate and the dependent process,
including the use of latent variables for dealing with unobserved heterogeneity (Vermunt 1996b,
1997).

Suppose we have the same problem as above, that is, a model with two time-constant and one
time-varying covariate. Assume again that the time-varying covariate can take on two values.
We can specify the same model for a single nonrepeatable event in the following way
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* example 8.13: time-varying covariate via expansion of the
* state space
man 2
dim 2 2
lab A B
tim 5 [0,4,8,12,16,20]
ris 4 [0,1] [2,3]
haz {A,B,R,T}
rec 500
rt0
epi 2
dat ex813.dat

As can be seen, we have 4 states and two transition of interest. State 0 means that the event
did not occur and that the time-varying covariate has value 1, state 1 that the event did occur
and that the time-varying covariate has value 1, state 2 that the event did not occur and that
the time-varying covariate has value 2, and state 3 that the event did occur and that the time-
varying covariate has value 2. So, in fact, we cross the normal state space of two values with
the possible values of the time-varying covariate.

The transitions [0,1] and [2,3] denote the occurrence of the event of interest for individuals
with values 1 and 2 on the time-varying covariate, respectively. So, in fact, the risk variable has
the same function as the time-varying covariate C in the previous example. Of course, transitions
from state 0 to states 2 and from state 2 to state 0 are possible as well. These changes in the
value of the time-varying covariate for individuals who did not experience the event are, however,
not modelled and therefore not specified as risks.

With rt0 and epi 2 it is indicated that the records in the data file contain a starting time
and state and, in addition, two episodes or spells. The records for the same five cases as in the
previous examples are now

1 2 0 2 14 0 20 0 * case 1
2 1 0 2 4 3 4 3 * case 2
1 1 0 0 9 2 12 3 * case 3
2 2 0 0 10 1 10 1 * case 4
1 2 0 2 20 2 20 2 * case 5
etc.

The starting time is 0 for all cases, while the starting state is either 0 or 2. Cases 1 and 3 change
their values on the time-varying covariate. Cases 2, 3, and 4 experience the event, while cases 1
and 5 are censored.

8.3.3 In log-linear path models

If a discrete-time model is specified as a log-linear path model, the use of a time-varying covariate
involves using one additional variable for each time point. Assume that we have observations on
the occurrence of a single nonrepeatable event at three time points. Let A and B be time-constant
covariates, D, E, and F the value of a time-varying covariate at each of the three time-points, and
I, J, and K the states occupied at the three time points. A discrete-time logit model for such
situation could be of the form

* example 8.14: log-linear path model with time-varying
* covariates
man 8
dim 2 2 2 2 2 2 2 2
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lab A B D E F I J K
mod I|ABD {AI,BI,DI}

J|ABIE {AJ,BJ,EJ wei(IJ)}
K|ABJF {AK,BK,FK wei(JK)}

rec 500
dat ex810.dat
sta wei(IJ) [1 1 0 1]
sta wei(JK) [1 1 0 1]

In this model, the time-constant covariates and the time-varying covariates have time-specific
effect. The weight vectors are used to make the (2,1) transition impossible.

8.4 Latent variables

One of the strong points of the `EM program is that it makes it possible to simultaneously spec-
ify a (log-linear path) model for the covariates and an event history model for the dependent
process under study. This makes it straightforward to include latent variables in event history
models. Below, three possible application of the use of latent variables are presented: correct-
ing for unobserved heterogeneity, correcting for measurement error in observed covariates, and
correcting for measurement error in observed states.

8.4.1 Unobserved heterogeneity

Hazard models with a non-parametric characterization of the distribution of the unobserved
heterogeneity component can be specified by including a latent covariate in the model. This
approach to unobserved heterogeneity is called a non-parametric random-effects approach (Heck-
man and Singer, 1982, 1984; Mare, 1994; Guo and Rodriguez, 1994; Vermunt 1996b, 1997). An
example of a model for a single nonrepeatable event with two observed and one unobserved
covariate is

* example 8.15a: unobserved heterogeneity
man 2
lat 1
dim 2 2 2
lab X A B
mod X|AB {X}
tim 5 [0,4,8,12,16,20]
ris 2 [0,1]
haz {A,B,X,T}
rec 500
dat ex815.dat

As can be seen, this model contains a latent variable X with two classes. The model for the
covariates specifies that X is independent of the observed covariates A and B, which is the standard
assumption in models with unobserved heterogeneity. In the hazard model, the latent variable X
can be used in the same way as the observed covariates and the time variable. Here, we specified
a simple proportional hazard model.

Interesting variants can be obtained by changing the specification of the covariate or hazard
part of the model. For instance, replacing the mod statement by

mod X|AB {XA,XB}
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yields a model in which the unobserved heterogeneity is related to the observed heterogeneity. In
addition, we might include interactions between X and the other variables in the hazard model,
for example, by a hazard model of the form

haz {XA,XB,XT}

Another possibility is the specification of mover-stayer structures (Farewell, 1982). This involves
restricting the hazard rate for one of the latent classes to zero, which can be accomplished by

haz {A,B,T,wei(X)}

in combination with

sth wei(X) [1 0]

to specify the (starting) values of the weight vector which appears in the hazard model.
Of course, it is also possible to assume the latent variable to have more than 2 latent classes.

This can be accomplished by changing the number of levels of the latent variable in dim. As was
already explained in the context of latent trait models, one can also approximate continuous
mixing distribution by fixing the form of the latent distribution and assuming the effect of the
latent variable to be linear. A model with a normally distributed mixture variable is obtained
by

* example 8.15b: unobserved heterogeneity with normally distributed
* mixture variable
man 2
lat 1
dim 9 2 2
lab X A B
mod X|AB {wei(X)}
tim 5 [0,4,8,12,16,20]
ris 2 [0,1]
haz {A,B,spe(X,1b),T}
rec 500
sta wei(X) nor(1,8)
dat ex815.dat

For the distribution of latent variable X with 9 classes, we specify a weight vector which has a
normal distribution as ”starting value”. In addition, the effect of X on the hazard rate is made
linear by predefined design type 1b.

Although in the above example we used only one latent variable, it is also possible to specify
hazard models with more than one latent covariate. This can be useful in models for competing
risks, repeatable events, or multiple-state processes. Note that in models with several latent
variables, we also have to specify a model for the (nonparametric) joint distribution of the
unobserved variables.

8.4.2 Measurement error in covariates

Another application of latent class models in the context of event history analysis is correcting
for measurement error in observed covariates (Vermunt 1996b, 1997). Assume that A, B, and C
are imperfect indicators for the latent variable X which we want to use as a covariate in a hazard
model. Such a model can be specified as follows:
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* example 8.16: measurement error in observed covariates
man 3
lat 1
dim 2 2 2 2
lab X A B C
mod X A|X B|X C|X
tim 5 [0,4,8,12,16,20]
ris 2 [0,1]
haz {T,X}
rec 500
dat ex816.dat

As can be seen, the covariate model is just a latent class model. The latent covariate X is used
in the hazard model, which in this case is a proportional hazard model.

8.4.3 Measurement error in observed states

Latent variables can also be used to correct for measurement error in the observed states if a
discrete-time logit model is specified as a log-linear path model (Vermunt, 1996b, 1997). An
example of discrete-time logit model for transitions between latent states is

* example 8.17: discrete-time logit model for latent states
man 7
lat 5
dim 2 2 2 2 2 2 2 2 2 2 2 2
lab V W X Y Z A B G H I J K
mod W|ABV {AVW}

X|ABW {AWX}
Y|ABX {AXY}
Z|ABY {AYZ}
G|V
H|W eq1 G|V
I|X eq1 G|V
J|Y eq1 G|V
K|Z eq1 G|V

all {spe(BVW,BWX,BXY,BYX,1a)}
rec 500
dat ex817.dat

In fact, this is a latent Markov model with covariates. As can be seen the measurement error
in the observed states G, H, I, J, and K is assumed to be time homogeneous. As in the example
on transitions between observed states, the parameterization of the effects may be adapted to
agree with the standard discrete-time logit model.

8.5 Partially missing data

Not only the latent variables approach, but also the `EM tools for dealing with partially observed
data can be used in the context of event history analysis.

8.5.1 Missing data in covariates

One type of partially missing data that can be dealt with are missing values on the covariates
in a hazard model (Schluchter and Jackson, 1989; Baker, 1994; and Vermunt, 1996b, 1997).
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Suppose that we have a hazard model with two covariates A and B and that for some individuals
the value of B is missing. Such a problem can be handled as follows with `EM :

* example 8.18: partially missing covariate
man 2
res 1
dim 2 2 2
lab S A B
sub AB A
mod AB S|A
tim 5 [0,4,8,12,16,20]
ris 2 [0,1]
haz {A,B,T}
rec 500
dat ex818.dat

The res and sub statements are used to specify that there are persons with missing information
on B. The model statement mod AB S|A indicates that the missing data are assumed to be
missing at random (MAR). The specification of the hazard model is exactly the same as when
there is no missing data.

Of course, it not a problem to specify other types of models for the response mechanism.
For instance,

mod AB S|B

would yield a NMAR (not missing at random) or nonignorable response mechanism. In addition,
it is possible to use the response indicator as a covariate the hazard model to check whether the
hazard rate differs for individuals for which B is missing.

8.5.2 Missing data in states

In event history analysis, we are often confronted with missing data on the dependent variable.
Two common forms of missing data are right censoring and left censoring. Right censoring is
easy to deal with as long as it can be assumed that the missing data are MAR. Left censoring
causes no problems if the time of entry into the risk set is known. If we have other types of
missing data or if we want to specify a model the response mechanism, it may be useful to use
the tools for dealing with partially missing developed in the context of log-linear path models.
These models for nonresponse can be used if a discrete-time logit model is specified as a log-linear
path model (Baker, 1994; Vermunt, 1996b, 1997).

Suppose we have a discrete-time logit model for five point in time. For all individuals we
have information on the state occupied at the first point in time, but that information may be
missing for any of the other four time points. An example of a model for such a situation is

* example 8.19: discrete-time logit model with partially
* observed states
man 7
res 4
dim 2 2 2 2 2 2 2 2 2 2 2
lab S T U V A B G H I J K
sub STUV STU STV ST

SUV SU SV S
TUV TU TV T
UV U V -
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mod H|ABG {AGH}
I|ABH {AHI}
J|ABI {AIJ}
K|ABJ {AJK}
S|GH {S}
T|SHI {ST}
U|STIJ {STU}
V|STUJK {STUV}

all {spe(BGH,BHI,BIJ,BJK,1a),spe(GS,HT,IU,JV,1a),
spe(HS,IT,JU,KV,1a)}

rec 500
dat ex819.dat

As can be seen, we specified a model with four response indicators. The subgroups are specified
in such a way that S, T, U, and V indicate missingness of H, I, J, and K, respectively. In the model
for the response mechanism, the probability of observing a person’s state is assumed to depend
on the previous and the current state, which implies a nonignorable nonresponse mechanism. In
addition, these effects are assumed to be time homogeneous.
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Chapter 9

Settings

Besides the commands for specifying the log-linear and hazard model of interest and the for-
mat of the data, `EM contains a large number of additional commands. The purpose of the
most important ones are described below. Most of these commands have to be used after the
specification of the model and the data format, and their mutual order is free.

9.1 Reading data, designs, and fixed-value parameters

In the examples presented in the previous chapters, we already demonstrated the usage of the
commands, dat, des, and sta.

With dat, we specified the data or the file from which the data could be read. The data
could be either in the form of a frequency table or individual records. The command dat is
always required.

The command des was used to specify the designs ‘announced’ in the model specification.
The designs must be defined in the order in which they appear in the model specifications. Per
submodel, first the user-defined design are expected and then the designs associated with the
restricted association models.

With sta, we specified ‘starting values’ for a weight vector defined via wei() and for prob-
abilities which to be fixed to a particular value via eq2. Below, we discuss another possible
reason for using sta.

9.2 Influencing the estimation process

9.2.1 Starting values: identification and local maxima

A well-known problem in the estimation of models with latent variables and other types of
missing data is the occurrence of local maxima. Moreover, identification is not always assured.
Therefore, it may be helpful to be able to manipulate with the starting values of the parameter
estimates.

In the default setting, `EM will produce random starting values for the parameters in models
with latent variables or missing data. The seed of the random number generator is initiated on
the basis of the current time (seconds and hundreds of seconds). The random number generator
yields starting values between -0.25 and 0.25 for the log-linear parameters. If there are no latent
variables or missing data, the starting value for all (log-linear) parameters is zero.

Although for most users the default setting with respect to starting values will be sufficient,
there are several commands to overrule this default setting. By putting ran after a submodel we
get random starting values in situations in which we would not have them. In the same way, but
now with nra, it is possible to suppress the random starting values in a particular submodel.
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With the command see <seed>, it is possible to set the seed of the random generator to a
specific value. Besides, it is possible to request more extreme starting values.

And finally, the command sta can be used to give starting values for specifics parameter of
the log-linear, while sth serves the same purpose for parameters of the hazard model.

9.2.2 Newton-type algorithms

The main algorithm implemented in `EM is the EM algorithm, with IPF and uni-dimensional
Newton in the M step of the algorithm. For most models, it is, however, possible to switch to a
Newton-type algorithm after some iteration. This can be indicated by means of the command
new <iteration> <algorithm>. The algorithms which are implemented are Newton-Raphson,
BFGS, Levenberg-Maquardt, and Steepest-descent.

9.2.3 Convergence

The iterations are stop when a convergence criterium is reached or when a certain amount of
iterations is performed. The criterium is the minimum increase in the log-likelihood function
between subsequent iterations. Its default value is 0.000001. The criterium can be change with
the command cri <value criterium>. The maximum number of iterations is set to 5000.
This can be changed with ite <maximum number of iterations>.

9.2.4 Coding of parameters

The command dum <reference categories> can be used to change the coding scheme of
the hierarchical log-linear parameters and the parameters obtained via the predefined design
(spe(..)) type 1a. With sca <scaling method>, one can specify the scaling method for the
parameters of log-multiplicative association models.

9.2.5 Others

Three additional commands for influencing the estimation process: ste (step size), mit (M
iterations), add (add to cell frequencies), and sim (simulate data).

With ste <decrease factor>, one can change the step size used by the Newton-type algo-
rithms, including the uni-dimensional Newton algorithm which is used in the M step of the EM
algorithm. The default step size is 1.

The command mit <number> makes it possible to change the number of iterations in the M
step of the EM algorithm. The default value is 1.

With add <number>, one can add a small number to each cell entry of the frequency table
to be analyzed. This command can only be used in conjunction with data in the form of a
frequency table. Moreover, the command must precede the specification of the frequency table.

An interesting option is the possibility to simulate data. It should be noted that this is
only possible for the log-linear model and not for the hazard model. This is accomplished with
the command sim <number of cases> <file to write data>. Of course, it is important to
supply starting values for the parameters, since these will serve as the population values.

9.3 Output options

9.3.1 Suppress

The output file contains an echo of the input, statistics, frequencies, R-squared measures, log-
linear parameters, hazard parameters, (conditional) probabilities, and latent class output. In
some cases, we may want to suppress some of this information from the output file, for instance,
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to save time or disk space. There are several commands, which do all start with the character
‘n’ of no, to suppress particular output sections. These no commands are: nec (echo of the
input), nfr (observed and expected frequencies), nze (zero observed frequencies), nR2 (R-squared
measures), nco (conditional probabilities), nla (latent class output), npa (parameters estimates),
nse (standard errors), and nlo (output for log-linear model).

9.3.2 Additional

Besides suppressing output, it is also possible to ask additional output. More precisely, one can
request to write some information to a specified file. These write commands start with the char-
acter ‘w’. We have the write commands wda (data), wfr (frequencies), wfi (fitted frequencies),
wma (marginal table), wco (conditional probabilities), wpo (posterior probabilities), wla (latent
classification probabilities), wse (standard errors, correlations, variances, and covariances), wha
(hazard rates), wsu (survival probabilities), wex (exposure times), and wfa (failures).
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Chapter 10

Content of the output file

During a run, the user is informed about the action that `EM is performing. This may be
loading data, iteration number, computation of frequencies and statistics, standard errors, log-
linear parameters, or latent class parameters. In addition, at each iteration the value of the
log-likelihood function, the increase in the log-likelihood function, and the value of the likelihood-
ratio chi-squared statistic are printed to the screen.

Depending on the type of application, the output file may consist of the following sections:

1. Input;

2. Statistics;

3. Frequencies;

4. Pseudo R-squared measures;

5. Log-linear parameters;

6. Hazard parameters;

7. (Conditional) probabilities;

8. Latent class output.

The next sections of this chapter describe these eight output parts.

10.1 Input

The first item in the output file is an echo of the input file. This item can be suppressed by
means of the command nec (no echo).

10.2 Statistics

After the echo of the input file, the output file contains a set of items which are grouped under
the name statistics. The first two items of the statistics part are:

• number of iterations;

• last increase in the log-likelihood.

The next part contains the statistics for the log-linear (path) model and the hazard model. Let
ni be an observed cell count and m̂i and estimated expected cell count. For a log-linear (path)
model, the program reports
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• Pearson chi-squared statistic,

X2 =
∑

i

(ni − m̂i)
2

m̂i
;

• likelihood-ratio chi-squared statistic,

L2 = 2
∑

i

ni log
(

ni

m̂i

)
;

• Read-Cressie chi-squared statistic with λ=2/3,

RC2 =
2

λ (λ + 1)

∑
i

ni

[(
ni

m̂i

)λ

− 1

]
;

• index of dissimilarity,

D =
∑

i

abs (ni − m̂i) / (2 N) ;

• number of degrees of freedom,

df = number of observed frequencies− number of (log-linear) parameters ;

• log-likelihood function,

logL` =
∑

i

ni log π̂i ;

• number of (log-linear) parameters;

• BIC based on the L2 statistic,

BIC1 = L2 − df log N ;

• AIC based on the L2 statistic,

AIC1 = L2 − df 2 .

For a hazard model, the following output is reported:

• Pearson chi-squared statistic;

• likelihood-ratio chi-squared statistic;

• number of degrees of freedom;

• log-likelihood function;

• number of hazard parameters.

And finally, for the log-linear and the hazard model together, the program reports

• total number of parameters (npar);

• log-likelihood function (logL);
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• number of cases (N);

• BIC based on the log-likelihood function,

BIC2 = −2 logL+ npar log N ;

• AIC based on the log-likelihood function,

AIC2 = −2 logL+ npar 2 .

For the more information about the use and interpretation of above statistics, see handbooks
on log-linear modeling, such as Agresti (1990) and Hagenaars (1990).

Besides the above-mentioned statistics, one obtains some information on the identification
of the parameters, that is,

• eigenvalues of the information matrix, number of boundary or non-identified parameters,
and number fitted zeros.
- If all parameters are identified and none of the parameters is on or too near to the bound-
ary, all eigenvalues of the information matrix should be larger than zero. In other words,
zero or negative eigenvalues indicate that some parameters are either not identified or too
close to the boundary to check their identification and calculate their standard errors. If a
parameter is on or close to the boundary, one or more probabilities will be (near to) zero.
- Non-identified parameters may occur in models with latent variables. They may also
occur if one does not impose the required identifying restrictions on the (log-linear) pa-
rameters, that is, if the model contains redundant parameters. A third possible reason is
that parameters may be inestimable as a result of observed zero cell frequencies (Clogg
and Eliason, 1987).
- The program prints a warning if some parameters are non-identifiable or near to the
boundary. The program also reports the number of fitted zeros in the observed frequency
table. Generally, we can correct the number of degrees of freedom by subtracting the num-
ber of fitted zeros and adding the number of non-identifiable parameters to the reported
number of degrees of freedom.
- The output file will not contain the information on identification if the model contains
association models (ass(..)), log-multiplicative scaling factors (grouping type b), lin-
ear restrictions on frequencies (lin(..)), or constraints on the (conditional) probabilities
(eq2, or1, or or2).
- The computation of the information matrix and its eigenvalues can be suppressed with
the command nse (no standard errors).

10.3 Frequencies

For every (nonresponse) subgroup, the program will give the following information:

• observed frequencies;

• estimated expected frequencies;

• standardized residuals,

ri =
ni − m̂i√

m̂i
;

• Pearson chi-squared statistic;
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• likelihood-ratio chi-squared statistic.

This output part, which can be quite large for huge tables, can be suppressed with the command
nfr. One can also suppress only information for the observed zero entries by means of nze. If
the observed frequency table has more than 1000 cells, the program will report only the non-zero
observed cells.

10.4 Pseudo R-squared measures

For each of the conditional probabilities of a log-linear path model, the output file contains
the value of five different (pseudo) R-squared measures for nominal dependent variables. These
R-squared measures are based on the well-known definition of explained variance, that is,

R2 =
S2

y − S2
e

S2
y

,

where S2
y and S2

e denote the total and error variance, respectively. The problem is, however,
that for nominal variables there is not a single generally accepted definition of variance. The R-
squared values reported in the output file are based of five different variance measures for nominal
variables, namely, entropy, qualitative variance or concentration, proportion of prediction errors,
log-likelihood function, and likelihood function. For references, see Magidson (1981), Gilula and
Haberman (1994, 1995), Maddala (1983), and Aldrich and Nelson (1984).

Let i denote a value of the dependent variable in the submodel concerned and k a value
of the joint independent variable. Moreover, let π̂i|k denote an estimated expected conditional
probability, nik an observed frequency, and ni+ a marginal frequency obtained by collapsing
over the index k. In addition, let pi+ (= ni+/N) denote the observed marginal probability of
having value i on the dependent variable and p+k the probability of having value k on the joint
independent variable. It should be noted that in models with latent variables or missing data,
nik, ni+, pi+, p+k may be estimated quantities rather than observed ones.

Using entropy as variance measure, the total and error variances equal

S2
y(1) = −

∑
i

pi+ log pi+

S2
e (1) = −

∑
k

[∑
i

π̂i|k log π̂i|k

]
p+k .

Concentration or qualitative variance is defined as:

S2
y(2) =

(
1−

∑
i

(pi+)2
)

/2

S2
e (2) =

∑
k

[(
1−

∑
i

(π̂i|k)
2

)
/2

]
p+k .

The third measure uses the minimum number of classification errors, which yields

S2
y(3) = 1−max(pi+)

S2
e (3) =

∑
k

[
1−max(π̂i|k)

]
p+k .

The fourth R-squared measure uses −2/N times the log-likelihood function as variance measure,
that is,

S2
y(4) = −2/N

∑
k

ni+ log pi+

S2
e (4) = −2/N

∑
k

∑
i

nik log π̂i|k .
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Aldrich and Nelson (1984) proposed a pseudo R-squared measure based on the log-likelihood
function which is defined by

(
S2

y(4)− S2
e (4)

)
/
(
1 + S2

y(4)− S2
e (4)

)
rather than by the standard

R-squared formula.
The fifth R-squared measure is based on the likelihood function raised to the power −2/N .

In a linear regression model estimated via maximum likelihood assuming a normally distributed
error term, such a definition of S2

y and S2
e yields the standard R-squared measure. For (product-

)multinomial sampling, we get

S2
y(5) =

∏
i

(pi+)−2 ni+/N

S2
e (5) =

∏
k

∏
i

(π̂i|k)
−2 nik/N .

This variance measure has, however, one drawback: it cannot be smaller than one and, as a
result, the R2 value cannot become zero. This can be corrected by replacing the standard
R-squared formula by

(
S2

y(5)− S2
e (5)

)
/
(
S2

y(5)− 1
)
.

De computation of these five R-squared measures and their two variants can be suppressed
by means of the command nR2.

10.5 Log-linear parameters

Under the heading log-linear parameters, the `EM output file reports the parameters estimates
of the various submodels, that is, the parameters of the models which are specified for the
different (conditional) probabilities. The computation of these parameters can be suppressed
with the command npa.

The parameters may be log-linear parameters, parameters of one of the various types of
regression models, threshold parameters of cumulative models for ordinal dependent variables,
parameters of log-linear and log-multiplicative association models, or parameters of models
with log-multiplicative scaling factors. For parameters of log-linear and logit models, also the
exponent of the parameter concerned is presented.

In most cases, the program will also report the estimated standard errors of the parameters.
For some types of models, however, the computation of standard errors is not implemented.
More precisely, the output file will not contain standard errors if the specified model contains
association models specified with ass(..), log-multiplicative scaling factors, linear restriction
on cell frequencies, or constraints on the conditional probabilities specified with eq2, or1, or
or2. In fact, standard errors are given in all cases in which the information matrix is computed
to check the identifiability of the model parameters. For parameters which are non-identified or
near to or on the boundary, the program gives no standard errors. The computation of standard
errors, which can be time consuming, can be suppressed with the command nse.

In situations in which the program reports standard errors, one also obtains the z-value for
non-redundant parameters and the value of the Wald chi-squared statistic for sets of parameters.

For the hierarchical log-linear effects and for some of the predefined designs, the user can
determine the coding scheme to be used to identify the parameters. The default coding scheme
is effect coding. This can be changed with the command dum.

The hierarchical log-linear parameters are computed from the cumulated multipliers for each
marginal cell which has to be reproduced according to the specified model, that is, for each of
the minimal sufficient statistics (Vermunt, 1996b, 1997). With these multipliers it is quite easy
to get correct parameter estimates, even in models with structural zeros, fixed effects, or user-
defined effects. However, if the minimal sufficient statistics contain zero entries, computation of
the hierarchical log-linear effects is no longer straightforward. The solution that is chosen here
is to skip the margins containing zeros when calculating a particular parameters. This may lead
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to parameter estimates which are no longer consistent with the requested coding scheme. Thus,
one must be cautious with the interpretation of the reported effects when fitted zero margins
occur. The program gives a warning if there are zeros in the fitted margins.

10.6 Hazard parameters

The output section on hazard parameters gives the parameters of the hazard model and their
asymptotic standard errors. The parameters may be hierarchical log-linear parameters, pa-
rameters from predefined designs, parameters from user-defined designs, and parameters from
association models.

It should be noted that a very specific type of coding scheme is used for the risk variable.
In log-rate models with more than one risk, the time and covariate effects are parameterized
as effects on the different types of events rather than as effects on the overall hazard rate and
effects on the deviation from the overall hazard rate. This is simply accomplished by setting
the effects on the overall hazard rate equal to zero. In discrete-time logit models, within each
origin state, the no-event ‘transition’ is used as reference category (see Vermunt, 1996b, 1997).
This means that the parameters can be interpreted as effects on the odds of having an event of
the type concerned rather than not having an event.

10.7 (Conditional) probabilities

Besides the parameters of the various submodels, the program reports the estimated (condi-
tional) probabilities according to the specified submodels. In situations in which the program
computes standard errors, the program will also report the standard error of each of the condi-
tional probabilities. These standard errors are computed from the variance-covariance matrix of
the log-linear parameters using the delta method. The appearance of this section in the output
file can be suppressed with the command nco.

10.8 Latent class output

When the log-linear path model contains latent variables, the program reports the classical
latent class output. Assume that we have a log-linear path model with two latent variables with
indices x and y and four observed variables with indices a, b, c, and d. The latent class output
consists of the following three items:

• latent and conditional probabilities: π̂xy, π̂a|xy, π̂b|xy, π̂c|xy, and π̂d|xy;

• estimated expected proportion of classification errors if we use modal assignment,

E =
∑
abcd

[
1−max

(
π̂xy|abcd

)]
π̂abcd ;

• reduction in the proportion of classification errors,

lambda =
[1−max (π̂xy)]− E

1−max(π̂xy)
.

It should be noted that the latent and conditional response probabilities which are reported in
this part of the output file need not to be the probabilities which appear in the specification of
the log-linear path model. This has to be taken into account when interpreting the latent class
output. The latent class output can be suppressed by means of the command nla.
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Chapter 11

Complete command syntax

This chapter describes the complete command syntax of the `EM program. Examples of the
use of this syntax can be found in the first chapters of this manual.

The `EM syntax consists of commands which have to be typed in lower case and of which
only the first three characters are significant. It is recommended to use upper-case labels for the
variables to prevent confusion with the `EM commands. The input file is read in free format,
with spaces or commas as separation characters. Comments can be put in the input file using
asterisks. When a ‘*’ is encountered, the rest of the line is considered to be comment, and
therefore skipped.

An input file may consists of four parts, that is, the specification of

1. log-linear (path) model,

2. event history model,

3. data format,

4. settings.

If present, these four parts must appear in this order in the input file. The next four sections of
this chapter describe these four sets of commands. The last section of this chapter deals with the
various types of parameterizations that can be used for restricting cell frequencies, probabilities,
and hazard rates.

11.1 Log-linear (path) model

The first part of the input file will generally consist of the specification of a log-linear (path)
model. In this part, we have to specify which types of variables we are using and which type of
model we want for these variables. The commands described in this section are res, lat, man,
con, dim, lab, sub, mod, and all. These command have to be used in this order, except of the
first four commands – res, lat, man, and con – which order may be interchanged.

• res <number of response indicators>
- This command specifies the number of response indicators. It must be used if one wants
to use partially observed data in the analysis.
- Default: 0.

• lat <number of latent variables>
- This command specifies the number of latent variables which are used in the model.
- Default: 0.
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• man <number of manifest variables>
- This command specifies the number of manifest variables which are used in the model.
- Default: 0.

• con <number of continuous exogenous variables>
- This command specifies the number of continuous exogenous variables which are used in
the model.
- Default: 0.

• dim <list of number of categories of the variables>
- This command specifies the number of categories of the response indicators, latent vari-
ables, and manifest variables. The command dim (dimensions) is required if res+lat+man
is larger than 0.
- One must first specify the number of categories of the response indicators, then of the
latent variables, and then of the manifest variables.
- Note that the index of the last variable changes fastest when reading the observed fre-
quencies, the user-defined designs, and the starting values.

• lab <variable labels>
- The command lab (labels) makes it possible to specify variable labels, first for the
response indicators, then for the latent variables, then for the manifest variables, and the
last one is for the continuous covariates. The set of continuous variables has only one label.
- The variable labels have a maximum length of 3 characters. If only labels of 1 character
are used, as in the examples in the first chapters of this manual, variables need not to be
separated in the model specification. If at least one label is longer than one character, the
variables have to be separated by a point, ‘.’.
- It is recommended to use upper case characters in the labels to prevent confusion with
the `EM commands.
- Default: for the response indicators, K, L, M, etc.; for the latent variables, X, Y, and Z; for
the manifest variables, A, B, C, etc.; and for the continuous variables, x.

• sub <list of subgroups>
- If one has indicated that there is at least one response indicator, one may define the
subgroups for which the same set of variables are observed. The number of subgroups is
equal to the product of the number of categories of the response indicators.
- For every subgroup, the manifest variables whose scores are not missing have to be
specified. It should be noted that the order in which the subgroups are specified determines
the meaning of the response indicators. This feature has to be used if one wants to specify
a model for the response mechanism.
- If all manifest variables are missing in a particular subgroup, the subgroup concerned
has to be denoted by a ‘-’.
- Default: the different subgroups are identified on the basis of the missing data patterns
which are found in the data. Note that if there are response indicators and if the command
sub is skipped, the data must be in the form of (individual) records.

• mod <probability 1> <submodel 1> ran/nra
<probability 2> <submodel 2> ran/nra
<probability 3> <submodel 3> ran/nra
etc.

- This command makes it possible to specify a log-linear (path) model for the latent vari-
ables, manifest variables, response indicators, and continuous exogenous variables declared
earlier. The specification of a log-linear path model consists of two parts: The first part
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is the probability structure for the joint distribution of all variables. The second part
consists of the submodels for the various (conditional) probabilities.
- The probabilities are in the form B|CD, where B is the dependent variable and C and
D serve as independent variables. Thus, dependent and independent variables are sepa-
rated by a ‘|’. There is only one rule with respect to the specification of the probability
structure: A variable may be used only once as dependent. Variables which are used as
independent but not a dependent are treated as exogenous. For the variables which are
not used at all, the program sets up an additional probability in which they are assumed
to be independent of the other variables. If no probability is specified, it is assumed that
the submodel concerns the full table, that is, the table containing all variables.
- The submodels for the various probabilities may be of many different forms. In fact,
there are eight basic types of (sub)models:

1. log-linear model: {<parameters>},

2. unrestricted probability: <probability>,

3. logit model: <probability> {<parameters>},

4. cumulative model: <probability> cum(<type>) {<parameters>},

5. equal submodels: <probability> eq1 <probability>,

6. restricted probabilities: <probability> eq2,

7. ordinal probabilities: <probability> or1 or or2,

8. correspondence analysis: cor(..).

The different types of restrictions are described in more detail in section 11.5. As can be
seen, the specification of a submodel is optional (type 2). If no submodel is specified, a
saturated model is assumed for the (conditional) probability concerned.
- The optional commands ran and nra after the submodel make it possible to change the
default setting with respect to the random starting values for parameters of the submodel
concerned: ran to request random starting values and nra to suppress the random starting
values. The default setting is that random starting values are used if there are latent
variables or partially missing data.
- Default: a saturated model for the full table.

• all {<log-linear effects>} ran/nra
- The optional command all makes it possible to impose restrictions on the parameters
across submodels. The program will find out to which probability a parameter specified
with all belongs. Between the parentheses, one may use the commands cov(..), fac(..),
spe(..), and ass(..). Again, with ran and nra one can change the default setting of
random starting values.

11.2 Event history model

After the specification of a log-linear (path) model, one may specify a hazard model in the form
of a log-rate or a discrete-time logit model. The log-rate model is also known under the name
piecewise exponential survival model. The hazard model may be a model for a single event, a
competing-risk model, a model for repeatable events, or a multiple-state model. In the regression
model for the hazard rates, we can use the latent, manifest, and continuous variables declared
in the log-linear part of input as explanatory variables. In addition, time-varying covariates can
be used.

The event history part of the `EM syntax consists of the commands dis, tim, ris, mul,
haz, zer, and exp. The command dis can be used to indicate that the model is a discrete-time
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logit model, tim to specify the time intervals, ris and mul to specify the types of events, haz
to specify the regression model, zer to set the time to zero after each event, and exp to specify
the exposure time in the time interval in which an event or censoring occurs.

• dis
-By starting the specification of the hazard model with the command dis, we indicate
that we want a discrete-time logit model.
- Default: log-rate model.

• tim <number of time intervals> [<begin and end points>]
- This option makes it possible to specify the time categories for the log-rate or discrete-
time logit model. We can specify the number of time intervals and the begin and end
points of these time intervals. Within these intervals we assume constant hazard rates
or transition probabilities. Obviously, the specified end point of one time interval is the
begin point of the next time interval. The end points are included in the interval, while
the begin points are excluded.
- If the option to specify the begin and end points of the time categories is used, one must
specify one point more than the number of time intervals. The last specified point serves
as end point for the last time interval.
- Default: one time interval (=exponential survival) with begin point 0 and end point
the largest observed survival time. Even if the number of time categories is specified, the
second part remains optional. The default time points are: 0, 1, 2, ..., to the number of
time intervals.

• ris <number of states> [<origin state>,<destination state>] [.,.] etc.
- This option specifies the number of states and the types of risks, transitions, or events
to be analyzed. The states are numbered from 0 to the number of states minus 1. The
transitions to be analyzed are specified between brackets [.,.]
- Time-varying covariates can be included in the model by defining them as different
(sub)states. So, the number of states will generally be equal to the product of the number of
categories of the time-varying covariates and the states which define the events of interest.
- In discrete-time logit models, it is obligatory to include the self-transitions in the list of
possible event.
- Default: In log-rate models, 2 states and one transition, namely, [0,1]. In discrete-time
logit models, 2 states and two transitions, namely, [0,0] and [0,1].

• mul <number of types of events>
- Rather than with ris, the types of events can also be specified via the command mul.
This command makes it possible to specify multivariate event history models in a compact
way. We no longer need to specify the number of states and the possible transitions among
these states. We just indicate that there is a particular number of types of events.
- When using mul, also the data must be defined in another way than when using ris (see
section on data format).
- Default: equal to default for command ris.

• haz <table> {<hazard model>} ran/nra
- This command specifies the regression model for the hazard rates or transition proba-
bilities. The form of the model is the same as for standard log-linear models. Between
the braces, one may uses hierarchical log-linear effects, user-defined designs, predefined
designs, and association models.
- The label T is used for the time variable. If there is more than one possible risk, transi-
tion, or event, the label R is used for this risk variable.
- It is optional to specify the table for which a hazard model is specified. This may be

82



useful if one wants to compare chi-squared statistics across models with different sets of
covariates. If the table is not specified the table will only contain the variables which are
actually used in the hazard model.

• zer
- This command sets the time to zero after every event. This makes it possible to use the
duration since the last event, or waiting time, as the time variable without the necessity
to indicate this in the data file.
- Default: the time continues after an event (process time).

• exp <number between 0 and 1>
- This command makes it possible to specify the (mean) exposure time in the time unit in
which censoring or an event occurs.
- Default: in log-rate models, it is assumed that events an censorings occurs in the middle
of the time unit, which is equivalent to an exposure time of 0.5. In discrete-time models,
events and censorings are assumed to occur at the end of the time unit.

11.3 Data format

The `EM program accepts data in two types of formats: frequency tables and individuals records.
Individual records can be used is all situations. The use of data in the form of a frequency table
is not always allowed. More precisely, the data has to be in the form of individual records

1. if there are continuous covariates (con>0),

2. if there are missing data (res>0) and the subgroups are not specified with sub,

3. if the begin and end points for the time intervals are specified,

4. if the risks are specified with ris or mul.

But, if frequency table data is allowed, it is the default setting, which can be changed with the
command rec (see below).

When reading the data in the form of a frequency table, it is assumed that the index of
the last variable appearing in dim and lab changes first. With missing data, the data for the
different subgroups are read in the order in which they are specified. It the data for a hazard
model are in the form of a frequency table, the index of the time variable changes before the
other variables. First, the table with number of events is read for all subgroups and then the
table with number of censored observations.

Below, the commands for using data in the form of individual records are described. The
command rec must be the first command in the data format section of the input file. The order
of other optional commands is free. The commands rco, ski, and mis are relevant for both
log-linear (path) models and hazard models, while rt0 and epi are only relevant for hazard
models.

• rec <number of records>
- This command has two functions. It indicates that the data are in the form of individual
records and specifies the number of records in the data file.

• rco
- This command indicates that the records contain a count or frequency.
- Default: no count.
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• ski [<list columns to be skipped>]
- This command makes it possible to skip some of the columns of the data file. This means
that the data file may contain more variables than are actually used.
- Default: no columns are skipped.

• mis <missing-value code>
- This command makes it possible to specify a missing-data code for the manifest variables.
This missing-data code is used to determine to which nonresponse subgroup a particular
record belongs.
- Default: 0.

• rt0
- This command indicates that the data file contains information on the time and state on
entry into the risk set (t0 and s0). This option makes it possible use left censored cases
and to perform episode splitting.
- Default: t0 = 0 and s0 = 0.

• epi <number of episodes>.
- This command makes it possible to indicate the number of episodes that must be read
for each record.
- Default: If the events are specified with mul, number of types of events. Otherwise, 1.

Each record must consist of the following components (in this order):

1. if man>0: <values of the manifest variables>;

2. if con>0: <values of the continuous variables>;

3. if rco: <count>;

4. if rto: < t0, s0 >;

5. for i = 1 to the number of episodes: < ti, si >.

Here, ti and si denote the time and the state at the end of the ith episode.
In multivariate hazard models specified with mul, however, steps 4 and 5 are slightly different.

Note that in that case, the number of episodes equals the number of types of events. For each
type of event, we have < t0i, t1i, di >, where t0i is the starting time, t1i the survival time or total
exposure time to event i, and di the number of times that event type i occurred. Specification
of a starting time is only required if this is indicated with rt0. It should be noted that di may
serve as a standard censoring indicator for event type i (a 0 means that the event did not occur
while a 1 means that the event occurred), but may also be used to indicate the number times
that event type i occurred in the observation period. The latter use of di makes it possible to
specify (multivariate) Poisson regression models.

The episodes for each record are read until the state does not change between two episodes
(censored observation) or until the specified number of episodes is reached. The program always
starts on a new line when reading the information on a new record. In other words, it skips
the remaining items which are on the last line of a particular record. This means that is not a
problem if a record contains more episodes than are actually used, as long as they are on the
same line.
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11.4 Settings

This section presents the `EM commands which can be used to change all types of setting. The
order of these commands is free and they are all optional, except of the command dat which
is used to define the data. The command des is required if user-defined designs are declared
in the model specification. Exceptions with respect to the free order of the commands are add,
sim, wla, and wpo.

The commands to change the settings are specified in two parts. The first part consists of
the input and estimation settings. The second part deals with the output settings.

11.4.1 Input and estimation settings

This subsection presents the commands to change input and estimation settings.

• add <number>
- This option makes it possible to add a constant to each cell entry of the observed frequency
table. This can be useful if fitted zeros occur as a result of zeros in the sufficient statistics.
Note that a small number like 0.001 already solves this problem without disturbing the
sample size too much. Agresti (1990) showed, however, that one must be cautious with
the use this option.
- This option can only be used in combination with table format data. In addition, the
command add must be used before the command dat.
- Default: 0.

• cri <minimum increase log-likelihood>
- To change the stop criterion, the minimum increase in the log-likelihood.
- Default: 0.000001.

• dat <file name> or [<data>]
- This command must be used to specify the name of the file containing the data or to
specify the data between square brackets.
- If the data are in the form of a frequency table, the index of the last variable must change
first. The nonresponse subgroups are read in the order in which they are specified.

• des <file name> or [<design>]
- To specify the design matrix for user-defined designs, restricted grouping variables in
user-defined and predefined designs, restricted association models, and equality and fixed-
value restrictions on probabilities. One may specify the designs between square brackets
or in a separate file.
- Of course, it is important to specify the designs for the various effects in the correct
order. The program first expects the designs for the various submodels of the log-linear
path model and then for the hazard model. Within a submodel, first the designs for
cov(..), fac(..), and spe(..), then the ones for ass(..), and then the design for eq2
must be given.

• dum <list of reference categories>
- The command dum makes it possible to change the default effect coding scheme for
hierarchical log-linear parameters and log-linear parameters specified with spe(..) type
1a into dummy coding.
- For each variable, one has to specify the reference category. This has to be a value
between 1 and the number of categories of the variable concerned. In that case, one
obtains dummy-coded parameter estimates.
- By indicating that the reference category is equal to -1, the coding scheme for the variable
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concerned remains effect coding. This makes it possible to combine different types of
coding.
- Finally, by using a reference category of 0, the parameters of the variable concerned will
be identified by omitting the lower-order effects of the other variables.
- Default: effect coding.

• ite <maximum number of iterations>
- To change the maximum number of iterations.
- Default: 5000.

• mit <number M iterations>
- To change the number of M iterations within one EM cycle.
- Default: 1.

• new <iteration> <type>
- This command makes it possible to switch from the standard algorithms (EM, IPF, and
uni-dimensional Newton) to a Newton-type algorithm after a specified number of iteration.
- Besides the iteration at which to switch, the type of Newton algorithm has to be spec-
ified with a number, that is, 1 = Newton-Raphson, 2 = Steepest-descent, 3 = BFGS, 4
= Newton-Raphson combined with EM, 5 = Levenberg-Maquardt, and 6 = Levenberg-
Maquardt combined with EM.
- Default: EM algorithm.

• sca <method>
- This option makes it possible to change the scaling method for the row and column scores
in log-multiplicative association models (RC and RC(M) models). The method must be
indicated with a number: 1 = unweighted (sum of scores equal 0 and sum of squared scores
equal to 1), 2 = uniform weights, 3 = marginal weights, 4 = first phi-parameter fixed to
1 and sum of scores equal to 0, 5 = no rescaling, 6 = fixed scores for first and last level.
- Default: 1 = unweighted.

• see <number>
- This option makes it possible to supply a seed for the pseudo random generator to get a
particular series of random starting values.
- Default: seed is based on the clock of the computer.

• sim <number of cases> <file name>
- This option makes it possible to simulate data according to a specified log-linear path
model.
- Starting values have to be supplied for all model parameters. These starting values will
serve as population values.

• sta <effect> or <probability> <file name> or [<starting values>]
- With sta it is possible to supply starting values for the effects and probabilities included
in the model. The starting values may be in a file or may be specified between square
brackets, or may be in agreement with a normal distribution.
- Examples of the specification of <effect> are AB (hierarchical log-linear), fac(AB) (user-
defined design), and spe(AB,1a) (predefined design). An example of a <probability> is
B|A.
- The starting values are either probabilities or multiplicative parameters. By putting the
statement log between sta and <effect>, one can supply starting values for the log-linear
parameters rather than for the multiplicative parameters.
- Rather than specifying the starting values, it is also possible to generate starting values
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according to a normal distribution. This is specified be with nor(<method>,<range>)
after <effect>. The parameter <method> indicates the method that must be used to
derive the discretized normal probability distribution. The two methods are: 1 = rescaled
density function and 2 = piece of the cumulative distribution function. The parameter
<range> indicates the range of the normal distribution that has to be used. For example,
a range 8 means that z values from -4 to 4 should be used.
- Starting values for the hazard model are specified in the same way but using the command
sth rather than sta.

• ste <decrease factor>
- To decrease the step size of the uni-dimensional and the other types Newton algorithms
by some factor. For example, a decrease factor of 2 will make the step size 2 times smaller.
The use of a smaller step size may be necessary when an algorithm fails to converge. Larger
step sizes can sometimes lead to faster convergence.
- Default: 1.

11.4.2 Output settings

This subsection describes the commands which can be used to suppress parts of the standard
output and to request additional output. Note than the commands for suppressing output start
with a ‘n’ from no. The commands for writing additional output to a specified file start with a
’w’ from write.

• nco
- Suppress printing of the (conditional) probabilities to the output file.

• nec
- Suppress writing of an echo of the input to the output file.

• nfr
- Suppress writing of the observed and estimated expected frequencies to the output file.

• nla
- Suppress writing of the latent class output to the output file.

• nlo
- Suppress writing of the parameters of the log-linear model, the observed and estimated
expected frequencies, the R-squared measures, the conditional probabilities, and the latent
class parameters to the output file.

• npa
- Suppress writing of the log-linear and hazard parameters to the output file.

• nR2
- Suppress writing of the R-squared measures to the output file.

• nse
- Suppress writing of the standard errors and the information on identification (eigenvalues
and fitted zeros) to the output file.

• nze
- Suppress writing of the observed and estimated expected frequencies for the zero observed
cell entries to the output file.
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• wco <file name>
- Write the estimated conditional probabilities to a file.

• wda <file name>
- Write the observed frequency table to file in record format with a count.

• wex <file name>
- Write the (estimated) observed exposure times to a file.

• wfa <file name>
- Write the (estimated) observed failures to a file.

• wfi <file name>
- Write the estimated expected, or fitted, frequencies for the complete table to a file.

• wfr <file name>
- Write the (estimated) observed frequencies for the various submodels to a file.

• wha <file name>
- Write the estimated expected hazard rates to a file.

• wma <margin> <file name>
- Write a specific margin of the estimated expected frequencies to a file.

• wla <file name>
- Write the latent classification probabilities, the modal class, the classification error for
the modal allocation, a random assignment, and the classification error for the random
assignment to a file. Depending on the data format, this is done for each observed cell
entry or each record.

• wpo <file name>
- Write the posterior probabilities to a file. This is done for every observed cell entry or
every record, depending on the data format.

• wsu <file name>
- Write the estimated expected survival probabilities for each origin state to a file.

11.5 Types of restrictions or parameterizations

This section describes the types of restrictions or parameterization that can be used for restrict-
ing cell frequencies, (conditional) probabilities, and hazard rates.

11.5.1 Hierarchical log-linear effects

The simplest type of restrictions are restrictions in the form of hierarchical log-linear effects.
Hierarchical log-linear parameters must specified between the parentheses of the (sub)model
concerned, indicating the margins which have to reproduced according to the specified model.
Hierarchical log-linear effects, which may be used in log-linear models, logit models, and hazard
models, are fitted with the Iterative Proportional Fitting Algorithm (IPF) or one of the multi-
dimensional Newton methods. The first chapters of this manual give many examples on the use
or hierarchical log-linear effects.

88



11.5.2 User-defined designs

User-defined designs can be specified for the effects in log-linear models, logit models, regres-
sion models with cumulative link functions, and hazard models. There are two commands for
specifying user-defined design cov(..) and fac(..), which have to be used between the paren-
theses for the (sub)model concerned. Covariates (cov(..)) make it possible to specify standard
interval level designs, while factors (fac(..)) can be used to specify dummy coded nominal
design in a very compact way. The parameters of user-defined designs are fitted by means of the
uni-dimensional Newton algorithm (Goodman, 1979; Vermunt, 1996b, 1997) or one the multi-
dimensional Newton methods. The first chapters of this manual give many examples on the use
of user-defined designs.

The complete syntax of cov(..) and fac(..) is

cov(<margins>,<# of effects>,<group margin>,<a/b/c>,<# of groups>)
fac(<margins>,<# of effects>,<group margin>,<a/b/c>,<# of groups>).

The parameter <margins> indicates the margins for which the user-defined design will be speci-
fied. The margins are separated by a space or a comma. The fact that one may specify more than
one margin makes it possible to impose restrictions between parameters belonging to different
sets of variables.

The second parameter concerns the number of effects, or the number of (log-linear) param-
eters.

The third parameters is <group margin>. The optional specification of a group margin
makes it possible let parameters vary among levels of some other variables, that is, to specify
higher-order effects. If such a set of grouping variables is used, also the type of interaction has to
be specified with a letter: a, b, or c. The letter a means that there is no higher-order interaction,
which is the same as not using a grouping variable at all. Interaction type b yields a set of log-
multiplicative scaling factors for the (joint) grouping variable (Xie, 1992; Vermunt, 1996b, 1997).
And finally, c yields a standard higher-order interaction effect. These three interaction types
is sometimes referred to as homogeneous, simple heterogeneous, and heterogeneous models. It
should be noted that for identification the first scaling factor is always fixed to one in simple
heterogeneous models. In heterogeneous models, no identifying restrictions are imposed on the
higher-order interaction terms.

The last parameter, <# of groups>, makes it is possible to further restrict the higher-order
interactions introduced by including a grouping variables. A positive number defines the number
of different groups, while a negative number indicates the number of interval designs that will
be defined for the (joint) grouping variable.

The user-defined designs, including the possible restrictions on the group margin, must be
specified with the command des. For each user-defined design, the program will first read the
designs for each of the effects for the first margin, then for the second margin, etc. Let N be the
number of margins in the user-defined design concerned, Tn the number of categories in margin
n, and K the number of effects in the user-defined design concerned. For cov(..), `EM expects
K effects consisting of Tn numbers for each n. Thus, the design for a cov(..) statement will
consist of

∑N
n KTn numbers.

For fac(..), `EM expects Tn numbers for each n, where the numbers must be integers
ranging from 0 to K. A 0 means that no effect is specified for the marginal cell concerned. The
other numbers indicate to which of the K effects a particular marginal cell contributes.

If restrictions are imposed on the (joint) grouping variable, a design for the grouping variable
has to given after the design for the effects. If a positive value is specified for <# of groups>,
the design matrix must contain one number for each category of the (joint) group variable, where
a 0 means no effect for the group concerned and a number between 1 and the specified number
groups indicates to which subgroup each of the cells in group the margin belongs. If a negative
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value is specified for the number of groups, an interval level design is expected for the grouping
variable. The number of entries of this design equals the absolute value of the specified number
of groups times the number of cells in the group margin.

11.5.3 Predefined designs

Besides the possible of specifying a design matrix with cov(..) or fac(..), the `EM program
contains predefined designs for a number of common non-hierarchical (log-linear) effects. These
predefined design can be called with the command spe(..). The complete syntax of this com-
mand, which can be used between the parentheses of log-linear models, logit models, regression
models with cumulative link functions, and hazard models, is

spe(<margins>,<type of effect>,<group margin>,<a/b/c>,<# of groups>).

The specification of <margins> and higher-order interaction terms via (joint) grouping variable
is the same as in cov(..) and fac(..). The difference between the specification of predefined
compared to user-defined designs is the parameter <type of effect>, which replaces the pa-
rameter <# of effects>. This parameter indicates the type of log-linear interaction that one
wants to include in the (sub)model concerned. The possible values of <type of effect> are:

• 1a. standard log-linear parameters,

• 1b. linearly restricted log-linear parameters,

• 2a. total-score parameters,

• 2b. linearly restricted total-score parameter,

• 3a. symmetric association parameters,

• 4a. symmetric association parameters without main diagonal,

• 5a. main diagonal parameters,

• 6a. ranking parameters with objects as variables,

• 7a. ranking parameters with rankings as variables,

• 8a. difference parameters,

• 8b. linearly restricted difference parameter,

• 9a. absolute-difference parameters,

• 9b. linearly restricted absolute-difference parameters.

The parameter of these predefined design by means of the uni-dimensional Newton algorithm
or one of the multi-dimensional Newton methods.

11.5.4 Association models

Another type of interaction terms that can be specified with `EM are row-column association
models (Goodman, 1979; Clogg, 1982; Xie, 1992; Clogg and Shihadeh, 1994; Vermunt, 1996b,
1997). These models for restricting bivariate associations can be defined by the commands
ass1(..), ass2(..), and ass3(..), which may be used within the parentheses ({..}) of log-
linear, logit, or hazard models. Association models are estimated by means of uni-dimensional
Newton.
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The command ass1(..) yields log-linear association models, ass2(..) log-multiplicative
association models, and ass3(..) log-linear association models with a set log-multiplicative
scaling factors for a grouping variable. Note that the association models restrict the two-variable
interaction terms. This implies that, generally, also the one-variable effects for the row and the
column variable must be incorporated in the model.

In the ass1(.) and ass3(..) interactions, the fixed row and column scores have a mean of 0
and a mutual distance of 1. The log-linear association parameters are identified by letting them
sum to zero. In RC models specified with ass2(.), the row and column scores are scaled in such
a way that their sum is 0 and their sum of squares is 1. This default setting can be changed with
the command sca. In RC(M) models, the scores for different dimensions are orthogonalized by
means of a singular value decomposition (Becker, 1990).1

The complete syntax of the three association commands is:

ass1/2/3(<row margin>,<column margin>,<group margin>,<type of model>,
<type of symmetry>,<# of rows>,<# of columns>,<# of groups>)

First, the (joint) row and column variables must be specified. The optional specification of a
(joint) group variable makes is possible to test whether some of the parameters differ among
subgroups.

The fourth parameter <type of model> consists of a combination of a number and a letter,
for example, 4a. The meaning of the numbers is the following:

• 2. linear-by-linear or uniform association,

• 3. row association,

• 4. column association,

• 5. row and column association,

• 6. equal row and column association.

Thus, the number specifies the type of association model. Models 2 to 5 are the same as in the
article of Clogg (1982). In model 6, the row and column parameters are constraint to be equal.

The letter is used to denote the type of interaction with the grouping variable, that is,

• a. homogeneous (2,3,4,5,6),

• b. simple heterogeneous (2,3,4,5,6),

• c. heterogeneous row and/or column (3,4,5,6),

• d. heterogeneous column (5),

• e. heterogeneous row and column (5).

The numbers between braces indicate the types of association models for which the letter con-
cerned is relevant. In homogeneous models, the row and/or column parameters are assumed
to be equal between groups, while heterogeneous indicates that they differ per group. Simple
heterogeneous is situated between homogeneous and heterogeneous: the row and/or column
parameters are equal for every group, but the association parameter, which can be log-linear
(ass1(..)) or log-multiplicative (ass2(..) and ass3(..)) differs per group.

Equality constraints on the row and/or column parameters in different partial associations
can be imposed by means of <symmetry>.2 The <symmetry> parameter can take one of three
values:

1It should be noted that a RC(M) model has to be specified by using the command ass2(..) M times.
2Clogg (1982) used the term symmetry for models with row and/or column scores which are equal in different

partial association.
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• a. symmetric row and/or column parameters (3,4,5,6),

• b. symmetric row parameters (5),

• c. symmetric column parameters (5).

If this option is used, the row and/or column parameters for the partial association concerned
are restricted to be equal to the parameters for the same variable in the other partial association
where <symmetry> is used as well.

The last three optional parameters – <# of rows>, <# of columns>, and <# of groups>
– can be used to further restrict the row, column, and group parameters. Their functioning
is similar to the specification of the number of groups in cov(..) and fac(..). They can be
used to specify nominal or interval designs for the row, column, and group variables. Equality
restrictions involve specifying the number of different rows, columns, or groups with a positive
integer. A negative integer indicates that an interval design will be given for the set of parameters
concerned, where the absolute value of the specified number is the number of effects. And finally,
a 0 means that the set of parameters concerned is not restricted. If these options are used in
combination with <symmetry>, the restrictions must be specified in the first partial association
where the row or column concerned appears.

The nominal or interval designs for the row, column, or group variable are read from the
design matrix specified with des. They are read in the order in which they are specified, after
the user-defined designs for the submodel concerned. A nominal design for restricted rows or
columns consists of numbers between 1 and the number of different scores, where equal numbers
indicate that rows and columns are equal. A nominal design for the interaction with the group
variable consist of numbers from 0 to the number of different groups, where a 0 means that no
association parameter has to be estimated for the group concerned. An interval level design for
the row, column, or group variable consists the specified number of effects times the number of
cells in the margin concerned numbers.

11.5.5 Weight vectors

A weight vector can be used for several purposes, such as the specification exposure times and
risk populations, fixed effects, structural zeros, and cell weights for a weighted analysis. In `EM ,
the use of a weight vector involves two steps. First, with the command wei(<margin>) between
the parentheses of a log-linear, logit, or hazard model, it has to be indicated that a set of cell
weights will be specified for the margin concerned. The second step involves specification of the
cell weights as ‘starting values’, that is, by means of the command sta.

The only necessary modification of the estimation algorithm in situations in which there
are cell weights is that the cell weights have to be used as starting values for the expected cell
frequencies. The estimation of the other parameters proceeds in the usual way.

11.5.6 Linear restrictions

Linear restrictions on cell frequencies and proportions can be imposed by the command lin(..),
which complete syntax is

lin(<margins>,<# of constraints>).

We have to specify the margins involved in the linear constraints and the number of constraints.
The contrasts, which indicate which linear combinations of (marginal) cells sum to zero, have
to be given in the design matrix.

Maximum likelihood estimates of the cell frequencies or proportions under these types of con-
straints are obtained by solving the Lagranger equation with a simple uni-dimensional Newton
algorithm.
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11.5.7 Cumulative link functions

Regression models for ordinal dependent variables based on cumulative link functions can be
specified with submodels of the form

<probability> cum(<type>) {<parameters>}.

First, we have to give the conditional probability for which a regression model will be specified.
With cum(<type>), the type of cumulative link function must be specified. The parameter
<type> can take one of nine values,

• a. logit,

• b. probit,

• c. complementary log-log,

• d. log-log,

• e. logit with equidistant thresholds,

• f. probit with equidistant thresholds,

• g. complementary log-log with equidistant thresholds,

• h. log-log with equidistant thresholds,

• i. linear regression.

The parameters of the model concerned have to be specified between parentheses using the com-
mands cov(..), fac(..), and spe(..). The threshold parameters are automatically included
in cumulative models.

The parameters of regression models with cumulative link function may either be estimated
with uni-dimensional Newton or one of the multi-dimensional Newton algorithms.

11.5.8 Equal submodels

The complete set of parameters of a specific submodel can be made equal to the parameters of
another submodel by means of the command eq1. This command is used as follows:

<probability 1> eq1 <probability 2>.

In fact, we indicate that the complete probability set 2 is equal to probability set 1. It should be
noted that this is only possible if the two sets of probabilities have exactly the same structure,
that is, if the order and the number of the categories of the dependent and independent variables
is the same.

Imposing this type of equality constraints just involves pooling the data for the sets of
probabilities concerned (Vermunt, 1997).

11.5.9 Equalities and fixed-values restrictions on probabilities

With the command eq2 one can specify equality and fixed-value restrictions on probabilities.
This command is used in a model after the specification of a probability, that is,

<probability> eq2.
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In the designs matrix, we can indicate which probabilities are free, which ones are restricted to
be equal, and which ones are restricted to a specific value. Free parameters are denoted by a
0, fixed values by a -1, and equalities by positive integers, where equal numbers indicate that
parameters are equal. It should be noted that equality restrictions cannot only be imposed
within a submodel, but also across submodels. For the fixed-value restrictions, one also has to
supply starting values. These probabilities will be fixed to their starting values.

The algorithm implemented in `EM to obtain maximum likelihood estimates for probabilities
under this type of equality and fixed-value restrictions is based on the Lagranger likelihood
equations given by Mooijaart and Van der Heijden (1992). As explained in Vermunt (1997),
these likelihood equations can be solved by means of uni-dimensional Newton.

11.5.10 Ordinal restrictions on probabilities

The commands or1 and or2 can be used to impose nonparametric ordinal restrictions on con-
ditional probabilities consisting of one dependent and one independent variable. With

<probability> or1/or2,

one can request such an ordinal (sub)model. Note that or1 indicates a positive and or2 a
negative relationship between the two variables.

Maximum likelihood estimates for probabilities under these types of nonparametric order
restrictions are obtained by an uni-dimensional Newton algorithm which activates an equal-
ity constraint appearing in the Lagranger likelihood function when the inequality constraint
concerned is violated. At each iteration it is checked whether the active constraints can be
deactivated.

11.5.11 Correspondence analysis

Besides for estimating log-linear models, regression models, and path models with and without
latent variables, the `EM program can be used for performing correspondence analysis and some
variants of it. The solution for these types of analyses is obtained by means of singular value
decomposition of specific deviation matrices (Greenacre, 1984; Gifi, 1990).

The specification of such an analysis is done as follows:

mod cor(<type>,<# dim. variables/categories>,<# dim. objects>).

Thus, rather than specifying any other type of model after the mod statement, we indicate
that we want to perform correspondence analysis. The parameter <type> can have one of four
different values, that is,

• 1. correspondence or (canonical) correlation analysis,

• 2. multiple correspondence analysis,

• 3. association analysis with marginal weights,

• 4. association analysis with uniform weights.

It is also possible to omit all parameters, that is, to specify just mod cor. In that case, the
program will assume type 1 for two-way tables and type 2 for higher-way tables.

The second parameter makes it possible to indicate the number of dimensions for which
one wants output on variables and categories. The last parameter, which is only relevant in
combination with type 2, can be used to indicate the number of dimensions for which one wants
objects scores. Note that a value of zero suppresses the computation of object scores. The
default number of dimensions for both output parts is two.
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Disclaimer and bugs

It should be emphasized that `EM is distributed without any warranty on the part of the
author. Although the most important parts of program have been tested thoroughly, errors
remain unavoidable. The author would be very grateful if the user would be kind enough to
send a report of detected errors, enclosing input and data files. Any further suggestions for the
improvement of the program are welcome too. Please send to:

Jeroen K. Vermunt
Department of Methodology and Statistics
Faculty of Social and Behavioural Sciences
Tilburg University
P.O. Box 90153
5000 LE Tilburg
The Netherlands
E-mail: j.k.vermunt@uvt.nl

Referencing to `EM

Development of the `EM program has been an enormous amount of work. I would therefore
be grateful if you would add an appropriate reference to my work if you found `EM useful for
your statistical analysis. When you report results obtained with `EM , you should refer to this
manual as “Vermunt, J.K. (1997). LEM: A General Program for the Analysis of Categorical
Data. Department of Methodology and Statistics, Tilburg University” and/or to my published
Ph.D. dissertation “Vermunt, J.K. (1997). Log-linear Models for Event Histories. Thousand
Oakes: Sage Publications”, which describes the models and algorithms implemented in `EM .
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