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Most problems in computational statistics involve optimization of an objective function such as a
loglikelihood, a sum of squares, or a log posterior function. The EM algorithm is one of the most effective
algorithms for maximization because it iteratively transfers maximization from a complex function to a
simple, surrogate function. This theoretical perspective clari®es the operation of the EM algorithm and
suggests novel generalizations. Besides simplifying maximization, optimization transfer usually leads to
highly stable algorithms with well-understood local and global convergence properties. Although
convergence can be excruciatingly slow, various devices exist for accelerating it. Beginning with the EM
algorithm, we review in this paper several optimization transfer algorithms of substantial utility in
medical statistics.

1 Introduction

Medical statistics employs a broad array of models for description, analysis and
inference. In estimating parameters, most of these models require optimization of an
objective function such as a loglikelihood, a sum of squares, a penalized loglikelihood
or a log posterior function. Some loglikelihoods are relatively simple to optimize, for
example those encountered in generalized linear models with canonical link functions.
Other loglikelihoods are inherently more nonlinear and consequently more challeng-
ing. Although Newton's method and its statistical cousin Fisher scoring are routinely
used to maximize well-behaved loglikelihoods, both algorithms have their drawbacks.
Newton's method entails calculation of complicated second derivatives and is equally
happy to head toward a minimum or saddlepoint as it is toward a maximum. Scoring
requires calculation of the expected information matrix. Outside exponential families
of distributions, this task is often impossible. For problems with large numbers of
parameters, both algorithms involve large matrix inversions. It is hardly surprising
that statisticians ®nd the simplicity and numerical stability of the EM algorithm
appealing. The EM algorithm is based on an optimization transfer principle that
replaces a complex optimization problem by a sequence of simpler ones. In this paper
we argue that optimization transfer rather than missing data is the key ingredient of
the EM algorithm. We illustrate this point of view by presenting several algorithms
that involve no missing data, but otherwise mimic the general behaviour of the EM
algorithm.

In discussing the EM algorithm one should keep in mind that it is not so much an
algorithm as a prescription for constructing an algorithm. In Section 2, we review the
theoretical underpinnings of the EM algorithm and illustrate its application to latent
class models for the analysis of diagnostic accuracy. In many cases either the E-step or
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the M-step of the EM algorithm is intractable. The EM gradient algorithm provides a
straightforward remedy for the failure of the M step. We discuss the EM gradient
algorithm in conjunction with an application to mixed logistic regression. Stochastic
sampling provides a computationally more expensive remedy for the failure of the E-
step.1 These two devices and variations on the EM theme such as Bayesian EM,2 the
ECM algorithm3 and accelerated EM4±6 (this is also discussed in an unpublished
manuscript by M Jamshidian and RL Jennrich) all belong in the armoury of every
research statistician.

More esoteric but equally worth knowing is the central role of convexity in the EM
algorithm. The ascent property of the EM algorithm ultimately depends on convexity
through the entropy inequality. We hope to convince readers that even in the absence
of missing data convexity can be exploited to create optimization transfer algorithms.
The analogies between the EM algorithm and other optimization transfer algorithms
are so strong that a uni®ed theory can be erected to cover both local and global
convergence. In Section 3 we discuss the desirable properties that optimization
transfer often shares with the EM algorithm. Section 4 describes several concrete
examples. Naturally, design of these new algorithms relies on art as much as science.
However, the same can be said for the EM algorithm when one re¯ects on the clever
missing data structures that stand behind many speci®c EM algorithms.

2 The EM algorithm

2.1 Overview
At the heart of the classical EM algorithm7 is the notion of missing or incomplete

data, which can consist of missing observations in the ordinary sense or theoretically
missing entities concocted by the statistician speci®cally to simplify optimization. Let
Y denote the observed data, Z the missing data, and X � �Y;Z� the complete data. The
EM algorithm, like all maximum likelihood algorithms, seeks to maximize the log-
likelihood L��� of the observed data with respect to a vector of unknown parameters �.
If f �Xj�� denotes the density function of the complete data, then the EM algorithm
maximizes the surrogate function

Q��j�n� � E�ln f �Xj��jY; �n�
with respect to its left argument. This gives the update �n�1 of the current iterate �n in
the search for the maximum likelihood estimate �̂. The essence of good optimization
transfer is that maximizing Q��j�n� is much simpler than maximizing L���. If this is
not the case, then the statistician has chosen the wrong missing data structure. The
price of simpli®cation by optimization transfer is iteration. Formation of the con-
ditional expectation of the complete data loglikelihood ln f �Xj�� given the observed
data Y and the current parameter vector �n constitutes the E-step of the EM algorithm.
Maximization of this conditional expectation Q��j�n� constitutes the M-step. A sur-
prising feature of the EM optimization transfer is that increasing Q��j�n� forces an
increase in L���. This ascent property holds because L��� ÿQ��j�n� attains its mini-
mum at � � �n. In view of this fact, we can argue that
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L��n�1� � Q��n�1j�n� � �L��n�1� ÿQ��n�1j�n��
� Q��nj�n� � �L��n� ÿQ��nj�n��
� L��n�

with strict inequality when �n�1 6� �n.
Proof that L��� ÿQ��j�n� attains its minimum at � � �n hinges on the entropy inequality

Eg�ln g� � Eg�ln h� �2:1�
which is a direct consequence of Jensen's inequality.8,9 In inequality (2.1) g and h
denote probability densities with respect to a measure �, and Eg denotes expectation
with respect to the probability measure gd�. Equality occurs if and only if g � h except
for a set of measure zero. If we assume that l�yj�� � eL��� is the density of the observed
data Y and apply (2.1) with g equal to the conditional density f �xj�n�=l�yj�n� and h
equal to the conditional density f �xj��=l�yj��, then we ®nd that

Q��j�n� ÿ L��� � E�ln f �Xj��
l�Yj��
� �

jY � y; �n�

� E�ln f �Xj�n�
l�Yj�n�
� �

jY � y; �n�

� Q��nj�n� ÿ L��n�
2.2 Application to latent class models for diagnostic accuracy

Sensitivity and speci®city are two measures routinely used to assess the accuracy of
diagnostic tests or diagnosticians in medical research. Sensitivity is the probability of a
`positive' test result given that the patient has the disease, while speci®city is the
probability of a `negative' test result given that the patient does not have the disease.
Both sensitivity and speci®city can be calculated directly when there exists a de®nitive
reference test. Latent class analysis has been applied to assess diagnostic accuracy when
it is impossible to calculate estimates of sensitivity and speci®city directly.10±16 The
premise of the latent class model is that the tests are imperfect indicators of the un-
observed true disease status, which is treated as a latent variable. Responses within a
latent class are assumed to be independent. Departures from independence in the
observed table of test outcomes occur as the result of mixing the two unobserved latent
tables. Here we consider the situation in which inference for four diagnostic tests are of
interest. (Unfortunately, three or fewer tests renders the following model unidenti-
®able.17) Let the diagnostic tests A, B, C and D each have two categories, `positive' (1) or
`negative' (0), indexed by i, j, k and l, respectively. The cell frequencies in the
crossclassi®cation of the results of the tests follow a multinomial distribution with 24

cells. Let yijkl and �ijkl denote the observed and expected cell frequencies, respectively,
and let pijkl and �ijkl denote the observed and expected cell probabilities, respectively. In
this notation we have yijkl � Npijkl and �ijkl � N�ijkl, where N � Pijkl yijkl �

P
ijkl �ijkl is

the sample size. Finally, let T denote the latent variable for the true disease status, i.e. T
= 1 if a patient has the disease, and T = 0 otherwise. If T is indexed by t, then �ijkl can
be decomposed as
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�ijkl �
X1

t�0

�ABCDT
ijklt �

X1

t�0

�T
t �

ABCDjT
ijkljt �2:2�

where �T
t is the probability that a patient has disease status t and �

ABCDjT
ijkljt is the

conditional probability that he or she shows test results �i; j; k; l� given disease status t.
Clearly X1

t�0

�T
t � 1;

X
ijkl

�
ABCDjT
ijkljt � 1; t � 0; 1

The sensitivity and speci®city of test A are

�
AjT
1j1 � �ABCDjT

1���j1 and �
AjT
0j0 � �ABCDjT

0���j0

respectively, where a plus sign denotes summation over a corresponding subscript.
The sensitivities and speci®cities for the other tests are de®ned similarly. The EM
algorithm is well suited for maximum likelihood estimation with latent class models.
Indeed, Goodman17 developed the speci®c EM algorithm now described several years
before Dempster et al. enunciated the general EM algorithm in 1977.7 The complete
data xijklt include a hidden indicator t of disease status for each patient represented in
the observed data yijkl. If we make the natural local independence assumption that the
response variables �A;B;C;D� are independent conditional on the disease status t of a
patient, then

�
ABCDjT
ijkljt � �AjT

ijt �
BjT
jjt �

CjT
kjt �

DjT
ljt ; i; j; k; l; t � 0; 1 �2:3�

This translates into the complete data loglikelihoodX
ijklt

xijkltln ��ABCDT
ijklt � �

X
ijklt

xijkltln ��T
t �

AjT
ijt �

BjT
jjt �

CjT
kjt �

DjT
ljt �

The EM algorithm permits straightforward estimation of the parameters �T
t , �

AjT
ijt , �

BjT
jjt ,

�
CjT
kjt , and �

DjT
ljt of the model as summarized in:

■ E-step. The expected values of the complete data are imputed as

xn
ijklt � yijkl

�ABCDTn
ijklt

�ABCDn
ijkl

conditional on the observed data and the current estimated cell probabilities �n.
■ M-step. The surrogate function Q��jy; �n�

Q��jy; �n� �
X
ijklt

xn
ijkltln ��T

t �
AjT
ijt �

BjT
jjt �

CjT
kjt �

DjT
ljt �

is maximized with respect to the parameters, yielding for example
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�Tn
t �

xn
����t

N

�
AjTn
ijt � xn

i���t

xn����t

Exact solution of the M-step is possible in this example because the surrogate function
separates the various parameters. Thus, the EM algorithm transforms a complex,
nonlinear optimization problem with equality and boundary constraints into a
sequence of simple optimization problems with exact solutions. This is an extremely
attractive feature of the EM algorithm when it occurs, and it does for a large number
of interesting problems.7,18

2.3 EM gradient algorithm
The EM gradient algorithm19 is ideally suited to problems where the M-step of the

EM algorithm cannot be solved exactly. A natural candidate for solving the M-step in
such cases is Newton's method. Because Newton's method converges quickly (at a
quadratic rate) while the EM algorithm converges slowly (at a linear rate), there is
little point in taking multiple Newton's steps within each M-step. Thus, the EM
gradient algorithm iterates according to

�n�1 � �n ÿ d20Q��nj�n�ÿ1 d10Q��nj�n�
� �n ÿ d20Q��nj�n�ÿ1 dL��n�

where the operator dij takes the ith partial derivative with respect to the left argument
and the jth partial derivative with respect to the right argument of Q. Substitution of
dL��n� for d10Q��nj�n� is valid because L��� ÿQ��j�n� attains its minimum at � � �n. At
the optimal point �̂, the EM gradient algorithm map shares with the EM algorithm
map the differential

I ÿ d20Q��̂j�̂�ÿ1 d2L��̂� � ÿd20Q��̂j�̂�ÿ1�d2L��̂� ÿ d20Q��̂j�̂�� �2:4�
Since the dominant eigenvalue of the differential of an algorithm map determines the
local rate of convergence of the algorithm in a neighbourhood of �̂, the EM and EM
gradient algorithms behave almost identically. One can even show that the EM
gradient algorithm obeys the ascent condition L��n�1� � L��n� near �̂.19

2.4 Application to mixed logistic regression
Follmann and Lambert20 employ mixed logistic regression to analyse the dose±

response experiments of Ashford and Walker21 on trypanosomes ± protozoans causing
sleeping sickness and nagana. Here we consider a simple version of their more general
nonparametric models. To accommodate the overdispersion in the trypanosome data,
Follmann and Lambert postulate an underlying dichotomous latent variable T with
two classes t � 1; 2 having probabilities �T

1 and �T
2 � 1ÿ �T

1 . The observed data are
frequencies yij, where i � 1; . . . ; s indexes the dose levels and j � 1; 2 indexes the
response (dead or alive). The complete data are frequencies xijt conveying latent class
status as well as dose level and response. If we let �Y

ij denote the probabilities of the
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observable responses and �
YjT
ijjt denote the conditional probability of response j given

latent class t at dose level i, then we can write the loglikelihood of the observed data as

L��� �
Xs

i�1

X2

j�1

yijln ��Y
ij �

�
Xs

i�1

X2

j�1

yijln

 X2

t�1

�T
t �

YjT
ijjt

!

For the complete data we assume a linear logistic regression model of the form

ln
�

YjT
i1jt
�

YjT
i2jt
� �0t � �1Di

the covariate Di being ln �dosei�. The model has parameter vector � � ��01; �02; �1; �
T
1 �,

and complete data loglikelihoodX2

t�1

x��tln ��T
t � �

X2

t�1

Xs

i�1

X2

j�1

xijtln ��YjT
ijjt � �2:5�

The E-step of the EM algorithm replaces the xijt by their expected values

xn
ijt � yij

�Tn
t �

YjTn
ijjt

�Yn
ij

conditional on the observed data and the current parameter vector �n. The M-step of
the EM algorithm immediately yields the update

�T ;n�1
t � xn

��t

N

where N is the number of subjects. Estimation of the logistic regression parameters
can be accomplished by iteratively weighted least squares using the imputed data xn

ijt.
22

However, iterating within each M step defeats the simplicity of the EM algorithm.
The EM gradient algorithm now comes to the rescue and suggests that we apply one
step of Newton's method to that part of Q��j�n� captured by the triple sum in (2.5) with
the imputed data xn

ijt replacing the complete data xijt. We omit the mechanics of
Newton's method because for the most part they appear in Section 4.1. To summarize,
we recommend in this problem using the exact solution for �T ;n�1

t and applying one
step of Newton's method to update the remaining parameters. Such a hybrid algorithm
is consistent with the venerable dictum of numerical analysis that one should ap-
proximate only when absolutely necessary.
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3 Desirable features of optimization transfer

Despite its shortcomings, Newton's method is the gold standard for optimization al-
gorithms in computational statistics. Besides leading to a fast, quadratic rate of
convergence in a neighbourhood of the global maximum, Newton's method auto-
matically provides the asymptotic covariance matrix of the parameter estimates. The
price exacted for these advantages include its failure to distinguish local maxima, local
minima, and saddlepoints from the global maximum when it is started too far from the
global maximum, the necessity of computing second derivatives, and the chore of
inverting the observed information matrix. Inversion of the observed information
matrix is particularly problematic if it is ill-conditioned or exceptionally large. For
example, in emission tomography the number of parameters is typically on the order
of 104.2,23±25 Optimization transfer as we construe it mimics the EM algorithm by
constructing a surrogate function Q��j�n� and maximizing it with respect to its left
argument. This action gives the updated iterate �n�1 to the current iterate �n in
maximizing an objective function L���. We drop from the EM paradigm the require-
ment of viewing Q�� j �n� as a conditional expectation, but we retain the requirement
that the difference L��� ÿQ�� j �n� achieve its minimum at � � �n. The latter con-
dition is the key ingredient in proving the ascent property L��n�1� � L��n� that lends
numerical stability to the algorithm. In Section 4 we illustrate how appropriate
surrogate functions can be constructed by exploiting convexity features of L���.

Each of the optimization transfer algorithms discussed in the sequel enjoys good
global and local convergence properties.7,19,26,27 Each converges to the global maxi-
mum if the objective function L��� is strictly concave. If the objective function is not
concave, but all stationary points are isolated, then an optimization transfer algorithm
is guaranteed to converge to one of the stationary points. This stationary point need
not be a local maximum. In unusual circumstances, even the ordinary EM algorithm
will converge to a saddlepoint.26,27 If we cannot maximize Q�� j �n� exactly, then the
EM gradient algorithm is available. To ensure that the EM gradient algorithm works
properly, we require that the Hessian matrix d20Q��nj�n� be negative de®nite and that
a limited line search be conducted in the Newton direction from the current point �n.
With these provisos, the EM gradient algorithm also converges to one of the stationary
points, provided these are isolated. Finally, the local rate of convergence of an
optimization transfer algorithm (in either its exact or EM gradient forms) is deter-
mined by the dominant eigenvalue of the differential (2.4).7,19

As noted in the Introduction, optimization transfer often substitutes a simple
optimization problem for a dif®cult one. In doing so it can achieve one or more of the
following objectives: (i) avoid large matrix inversions; (ii) linearize the optimization
problem; (iii) separate the parameters of the optimization problem; and (iv) handle
equality and inequality constraints gracefully. All of these advantages are nicely
illustrated in the examples considered in Section 4. These examples include: (a)
BoÈhning and Lindsay's quadratic lower bound principle,28,29 (b) Dutter and Huber's
optimization transfer for elliptically symmetric distributions,30 (c) an adaptive barrier
method for convex programming,31 (d) application of De Pierro's ®rst convexity
argument to image reconstruction in transmission tomography5,23,32 and (e) extension
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of De Pierro's second convexity argument to optimization transfer for generalized
linear models with canonical link functions, probit regression, multinomial regression,
and least L1 regression.23 To our knowledge, example (e) is new.

4 Examples of optimization transfer algorithms

4.1 Quadratic lower bound principle
BoÈhning and Lindsay29 introduced a lower bound algorithm under the assumption

that a negative de®nite matrix B can be found such that d2L��� ÿ B is nonnegative
de®nite for all �. They set

Q��j�� � L��� � dL���t��ÿ �� � 1

2
��ÿ ��tB��ÿ ��

where the superscript t indicates a transpose operation. Since

L��� � L��� � dL���t��ÿ �� � 1

2
��ÿ ��td2L������ÿ ��

for some intermediate point �� between � and �, it follows that

L��� ÿQ��j�� � 1

2
��ÿ ��t�d2L���� ÿ B���ÿ ��

� 0

Clearly L��� ÿQ��j�� attains its minimum at � � �. The quadratic lower bound al-
gorithm amounts to maximizing L��� by Newton's method with B substituted for
d2L���. BoÈhning and Lindsay28,29 apply the quadratic lower bound principle to logistic
regression, multinomial logistic regression, mixture models, and Cox's proportional
hazards model. Here we illustrate the implementation of the algorithm on logistic
regression. Let zi denote a (large) vector of predictors for each observation yi, and let
hzi; �i �

P
j zij�j; i � 1; . . . ;m. The yi are assumed to be realizations of independent

Bernoulli random variables with success probabilities

�i � exp �hzi; �i�
1� exp �hzi; �i�

The loglikelihood, score, and the observed information are

L��� �
Xm

i�1

�yiln�i � �1ÿ yi�ln �1ÿ �i��

dL��� �
Xm

i�1

�yi ÿ �i�zi

ÿd2L��� �
Xm

i�1

�i�1ÿ �i�ziz
t
i

Because �i�1ÿ �i� � 1=4 for each i, the nonpositive de®nite matrix B � ÿPm
i�1

1
4 zizt

i is
designed so that d2L��� ÿ B is nonnegative de®nite.
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4.2 Dutter and Huber algorithm
Dutter and Huber30 introduced an optimization transfer algorithm for elliptically

symmetric densities
eÿ1=2���2�

c� det �
�1=2

on Rk, where c� is a normalizing constant, �2 � �yÿ ��t
ÿ1�yÿ ��, and ��s� is a in-
creasing, strictly concave function. The multivariate t is a well-known example of an
elliptically symmetric distribution33,34 If y1; . . . ; ym is a sequence of independent
realizations from the density (3.8) with location vectors �1; . . . ; �m and scale matrices

1; . . . ;
m, then the surrogate for the actual loglikelihood L��� is the normal log-
likelihood

Q��j�n� � ÿ 1

2

Xm

i�1

fwi��n��2
i ��� � ln det �
i����g �4:1�

where wi��n� � �0��2
i ��n�� is a weight associated with the ith observation. Note that the

difference L��� ÿQ��j�n� attains its minimum at �n because �0�sn�sÿ ��s� attains its
minimum at s � sn. The array of techniques from linear algebra and multivariate
analysis for maximizing the normal loglikelihood can be brought to bear on maxi-
mizing Q��j�n�.

As a simple illustration of the Dutter and Huber algorithm, consider least Lp

regression.35 If the independent realizations y1; . . . ; ym have unit variances and
0 < p � 2, then the choice ��s� � sp=2 leads to least Lp regression. The Dutter and
Huber algorithm minimizes at each iterationXm

i�1

wi��n��yi ÿ �i����2

with weights wi��n� � jyi ÿ �i��n�jpÿ2. In other words, least Lp regression can be done
by iteratively reweighted least squares. A problem with this algorithm is that in®nite
weights occur for those observations with zero residuals. Rede®ning the weights as

wi��n� � 1

�� jyi ÿ �i��n�j2ÿp

for a small � > 0 overcomes this dif®culty. This choice of weights corresponds to

�0�s� � 1

�� s1ÿp=2

and also leads to a maximum likelihood algorithm. For p � 1 the slightly revised
algorithm minimizes the criterionXm

i�1

�j yi ÿ �i��� j ÿ� ln ��� j yi ÿ ���� j��

46 MP Becker et al.



4.3 Transmission tomography
In transmission tomography, high energy photons are sent from an external source

through the body to an external detector. In statistical image reconstruction, the plane
region of an X-ray slice is divided into small rectangular pixels, and pixel j is assigned
an attenuation coef®cient �j. Each photon sent from the source along projection i (line
of ¯ight) has probability exp �ÿhli; �i� of avoiding absorption by the body, where li is
the vector of intersection lengths lij of the ith projection with the jth pixel. For a
Poisson number (mean di) of photons departing along projection i, the number yi of
photons detected is Poisson with mean di exp �ÿhli; �i�. Since different projections are
independent, the loglikelihood reduces to

L��� �
Xm

i�1

�ÿdiexp�ÿhli; �i� ÿ yihli; �i� �4:2�

Note the nonnegativity constraints �j � 0 and lij � 0. The loglikelihood in (4.2) can
be abbreviated as L��� �Pi fi�hli; �i� using the strictly concave functions
fi�s� � ÿdieÿs ÿ yis. Following De Pierro's lead32 in emission tomography, de®ne the
admixture constants

�ij �
lij�n

j

hli; �ni
Since

P
j �ij � 1 and fi�s� is concave

L��� �
Xm

i�1

fi
X

j

�ij
�j

�n
j

hli; �ni
 !

�
X

i

X
j

�ijfi
�j

�n
j

hli; �ni
 !

� Q��j�n�
with equality when �j � �n

j for all j. Thus, the difference L��� ÿQ��j�n� attains its
minimum of 0 when � � �n. By construction, maximization of Q��j�n� separates into a
sequence of one-dimensional problems, each of which can be solved approximately by
one step of Newton's method.5

4.4 Linear and convex programming
The standard convex programming problem is to minimize f ��� subject to a set of

linear constraints A� � b and nonnegativity constraints � � 0. Interior point methods
seek the minimum while remaining on the interior f� : A� � b; � > 0g of the feasible
region. Minimization can be transferred to the surrogate function

Q��j�n� � f ��� ÿ �
X

i

h
�n

i ln �i ÿ �i

i
�4:3�

for � > 0. The adaptive barrier term �
P

i��n
i ln �i ÿ �i� on the right of (4.3) has its
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maximum at � � �n and forces �n�1 to have all components positive. Of course, no
component is prevented from tending to 0 as n tends to 1. Lange31 and Iusem and
Teboulle36 independently proposed this optimization transfer algorithm, which applies
regardless of whether f ��� is convex. A single step of Newton's method can be used to
approximately minimize Q��j�n� subject to A� � b and � > 0. The update in this case is

�n�1 � �n ÿGn�I ÿ At�AGnAt�ÿ1AGn� df ��n�
Gn � �d2f ��n� � �Dn�ÿ1

where Dn is the diagonal matrix with ith diagonal element 1=�n
i . As an example con-

sider the linear programming problem of Klee and Minty,37 which requires mini-
mizing � subject to the inequality constraints 0 � �1 � 1 and ��iÿ1 � �i � 1ÿ ��iÿ1 for
i � 2; . . . ;m. This problem illustrates the exponential complexity of the simplex
algorithm. Started at the point � � �0:001; . . . ; 0:001�t when m = 8 and � � 1=4, the
new algorithm achieves the minimum at �0; . . . ; 0; 1�t to four signi®cant digits in 11
iterations and to seven signi®cant digits in 18 iterations.

4.5 De Pierro's second convexity argument
To accommodate a smoothing penalty in emission tomography reconstructions, De

Pierro23 introduced a second method for optimization transfer. In contrast to the
multiplicative technique discussed in our transmission tomography example, his
second technique is additive. Here we extend it to certain generalized linear models,22

multinomial regression, and least L1 regression. Our point of departure is the maxi-
mization of a sum of the form

L��� �
Xm

i�1

fi�hzi; �i� �4:4�

where the functions fi�r� are strictly concave in the real variable r, zi is a vector of k
covariates for the ith of m observations, and � is a parameter vector of length k. In
generalized linear modelling, L��� represents the loglikelihood of m independent
observations from a regular exponential family. In least L1 regression, L��� is the
negative sum of m absolute residuals jyi ÿ hzi; �ij. We consider ®rst the smooth func-
tions fi�r� encountered in generalized linear models and multinomial regression. After
digesting this case, we turn to the nondifferentiable functions fi�r� of least L1

regression and derive an algorithm distinct from that in Section 4.2.
If the fi�r� are twice continuously differentiable, then the ®rst and second

differentials of L��� are

dL��� �
Xm

i�1

f 0i �hzi; �i�zi

d2L��� �
Xm

i�1

f 00i �hzi; �i�ziz
t
i

Provided each f 00�r� is strictly negative, a necessary and suf®cient condition that L���
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be strictly concave is that column vectors zi form a covariate matrix z of full rank k. If
L��� is strictly concave and a stationary point �̂ exists, then �̂ furnishes the global
maximum of L���.38

To effect an optimization transfer, we could use the quadratic lower bound principle
with the matrix B de®ned by

B �
Xm

i�1

inf
r

f 00i �r�ziz
t
i

In examples such as Poisson regression, this procedure fails because infr f 00i �r� � ÿ1
for each i. Even when the quadratic lower bound principle succeeds, inversion of the
matrix B poses a problem when the number of parameters is large. Alternatively, we
can exploit convexity and choose nonnegative numbers �ij such that

P
j �ij � 1 and

�ij > 0 whenever zij 6� 0. Possible candidates for �ij are �ij � z2
ij=jjzijj22, �ij � jzijj=jjzijj1

and �ij � 1=jUij for j 2 Ui and 0 for j 62 Ui, where Ui � fj : zij 6� 0g. In view of the
concavity of the fi, if we let Si � fj : �ij > 0g, then

L��� �
Xm

i�1

fi�hzi; �i�

�
Xm

i�1

fi

�X
j2Si

�ij
zij

�ij
��j ÿ �n

j � � hzi; �
ni
�

�
Xm

i�1

X
j2Si

�ijfi

�
zij

�ij
��j ÿ �n

j � � hzi; �
ni
�

�4:5�

� Q��j�n�
with equality when � � �n. In the surrogate function Q��j�n�, all parameters are
separated. In most cases it is impossible to carry out these one-dimensional maxi-
mizations explicitly. If we resort to the EM gradient algorithm, then we update �n

j by

�n�1
j � �n

j ÿ
�X

i2Tj

f 00i hzi; �
ni� � z2

ij

�ij

�ÿ1X
i2Tj

f 0i �hzi; �
ni�zij �4:6�

where Tj � fi : �ij > 0g and the fi are assumed twice continuously differentiable. As a
®rst application, consider generalized linear models with canonical link functions. If r
denotes the canonical parameter, then the canonical link assumption takes
fi�r� � yirÿ a�r� for each observation Yi � yi from the underlying exponential family.
In this setting the mean and variance of Yi are �i�r� � a0i�r� and vi�r� � a00�r�,22 and
equation (4.6) reduces to

�n�1
j � �n

j �
X
i2Tj

vi�hzi; �
ni� z2

ij

�ij

24 35ÿ1X
i2Tj

yi ÿ �i�hzi; �
ni�� �zij

Examples are:
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(A) Normal distribution (identity link)

�n�1
j � �n

j �
P

i2Tj
�yi ÿ hzi; �

ni�zijP
i2Tj

z2
ij=�ij

Estimation of the variance �2 separates from estimation of �. Conventionally, statist-
icians use the unbiased estimator

�̂2 �
Pm

i�1�yi ÿ hzi; �̂i�2
mÿ k

rather than the maximum likelihood estimator.
(B) Binomial distribution (logit link)

�n�1
j � �n

j �
P

i2Tj
�yi ÿNi�

n
i �zijP

i2Tj
Ni�

n
i �1ÿ �n

i �z2
ij=�ij

Here �n
i � ehzi;�

ni=�1� ehzi;�
ni� is the success probability per trial, and Ni is the number

of trials for the ith case.
(C) Poisson distribution (log link)

�n�1
j � �n

j �
P

i2Tj
�yi ÿ Eiehzi;�

ni�zijP
i2Tj

Eiehzi;�niz2
ij=�ij

Here �i � Eiehzi;�i is the mean of the ith case, Ei being a ®xed and known offset.
The algorithm (4.6) is also applicable to generalized linear models with non-

canonical link functions provided the fi�r� are strictly concave. A case in point is the
probit model for Bernoulli variation. If ��r� denotes the standard normal distribution
function, then the relevant functions

fi�r� � yiln ��r� � �1ÿ yi�ln �1ÿ ��r��
are known to be strictly concave.39 Another example is the gamma model with mean
�ehzi;�i, where � is the ®xed shape parameter. Here we have fi�r� � ÿ�rÿ yieÿr. This
parameterization is more convenient than the canonical parameterization because it
guarantees positivity of the mean.

Multinomial regression models are not generalized linear models, but they do
belong to the more general family of exponential dispersion models.40 The loglike-
lihood for a loglinear model with count yi in the ith of m cells is

L��� �
Xm

i�1

yihzi; �i ÿNln
hXm

i�1

ehzi;�i
i

where N �Pm
i�1 yi. The inequality
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Xm

i�1

exp �hzi; �i� �
Xk

j�1

X
i2Tj

�ij exp
h zij

�ij
��j ÿ �n

j � � hzi; �
ni
i

�
Xk

j�1

X
i2Tj

�ijgij��jj�n�

�
Xk

j�1

gj��jj�n�

based on the convexity of er implies that

L��� �
Xm

i�1

yihzi; �i ÿNln
hXk

j�1

gj��jj�n�
i

� Q��j�n�
with equality at � � �n. Although this surrogate maximization function Q��j�n� does
not separate parameters, it does yield simple one-step Newton updates. The ®rst
differential d10Q��j�n� of Q��j�n� has entries

@Q��j�n�
@�j

�
Xm

i�1

yizij ÿN
X
i2Tj

gij��jj�n�zijPk
l�1 gl��lj�n�

and the second differential ÿd20Q��j�n� is a nonnegative de®nite matrix that can be
expressed as a rank-one perturbation of a diagonal matrix. Computation of the inverse
of ÿd20Q��j�n� is therefore straightforward using the Sherman±Morrison formula.41

In least L1 regression, the functions fi�r� � ÿjyi ÿ rj are concave but not different-
iable. Minimization of the surrogate function in (4.4) with separated parameters
reduces to solving for each j the minimization problem

min
�j

X
i2Tj

wijdi ÿ �jj

where wi � jzijj and

di � �n
j � �yi ÿ hzi; �

ni��ij

zij

Statisticians will immediately recognize the solution as the median of the discrete
random variable taking the value di with probability proportional to the weight wi.

In all of the examples discussed in this section, the optimization transfer algorithm
avoids matrix inversion. This is a major advantage in problems with many parameters.
The primary shortcoming of the algorithm is that it can exhibit the same painfully
slow convergence seen in the EM algorithm. Our limited experience to date suggests
that acceleration techniques based on conjugate gradients and quasi-Newton methods
help a great deal.42 Further work on acceleration of these algorithms and on the
optimal selection of the �ij is certainly warranted.
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5 Discussion

Theoretical development and practical application of the EM algorithm have
emphasized the statistical concept of missing data. This notion can re¯ect missing
observations in the ordinary sense or theoretically hidden random variables. The E-
step of the algorithm ®lls in the missing data and constructs a surrogate function
Q��j�n� for the loglikelihood L���. The M-step maximizes Q��j�n� with respect to its
left argument to give the next iterate �n�1. Statisticians have exercised great creativity
in identifying appropriate missing data structures. The resulting algorithms often give
intuitively appealing parameter updates that incorporate parameter constraints
gracefully. Many statisticians, the current authors included, have been seduced by the
technical challenges of constructing EM algorithms.

While we do not want to deprecate these creative outlets, we have argued here that
the strength of the EM algorithm lies not so much in its exploitation of missing data
structures as in its optimization transfer interpretation. The ascent property and the
convergence behaviour of the EM algorithm depend on optimization transfer, not on
missing data. In constructing a surrogate function Q��j�n� for a loglikelihood or more
general objective function L���, the key requirement is that the difference
L��� ÿQ��j�n� achieves its minimum at � � �n. The examples covered in Section 4
and, indeed, the classical EM algorithm itself illustrate the crucial role of convexity in
de®ning appropriate surrogate functions. Almost all of the well-known inequalities in
mathematics revolve around convexity as well. It is our belief that statisticians will
eventually derive as much pleasure and pro®t from de®ning optimization transfer
algorithms based on convexity as they have from identifying missing data structures.

If simplicity and elegance are the hallmarks of the EM algorithm, then an often
painfully slow rate of convergence is its Achilles heel. We would be remiss if we failed
to mention at least a few of the devices for accelerating the EM algorithm. Early on,
Louis6 suggested Aitken acceleration. This proposal has had more theoretical than
practical impact. More recently, Jamshidian and Jennrich4 advocated generalized
conjugate gradients. This device reduces iteration counts by one or two orders of
magnitude in many hard problems. Similar and even more spectacular accelerations
can be achieved by combining quasi-Newton techniques43 with the EM gradient
algorithm.44 Such hybrid algorithms are particularly attractive because they retain the
robust behaviour of the underlying optimization transfer algorithm during early
iterations while taking advantage of the rapid quadratic rate of convergence of
Newton's method during late iterations. Quasi-Newton accelerations also accom-
modate parameter constraints more naturally than generalized conjugate gradients.
Nonetheless, it is premature to declare victory in the battle to improve the per-
formance of the EM algorithm. This is still an area in need of more research. Good
algorithm design, here as elsewhere in biostatistics, is as relevant as ever.
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