
EM-BrA2CE v0.1: A vocabulary and execution model

for declarative business process modeling

Stijn Goedertier, Raf Haesen and Jan Vanthienen

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Economics and Applied Economics

KBI 0728

EM-BrA2CE v0.1: A Vocabulary and Execution Model for

Declarative Business Process Modeling

Stijn Goedertier1, Raf Haesen1,2 and Jan Vanthienen1

1 Katholieke Universiteit Leuven,

Department of Decision Sciences & Information Management,

Naamsestraat 69, B-3000 Leuven, Belgium

{stijn.goedertier;raf.haesen;jan.vanthienen}@econ.kuleuven.be

2 Vlekho Business School Brussels, Belgium

Koningsstraat 336, 1000 Brussels, Belgium

raf.haesen@vlekho.wenk.be

Abstract

In management theory of the last decades, much importance has been attached to
a process-oriented perspective on organizational (re)structuring. Yet to date, organi-
zations still experience difficulties in applying this process-oriented perspective to the
design and maintenance information systems. The root of the problem lies with a pro-
cedural representation of business processes that contains inadequate information for
computer systems to provide flexible automated business process support. The counter-
part of a procedural representation is a declarative one that explicitly takes into account
the business concerns that govern business processes. Recently, a number of process
modeling languages have appeared that could be identified as declarative languages.
These modeling languages have very distinct knowledge representation backgrounds,
often lack a formal execution model and often only model one aspect of the many
business concerns that exist in reality. What is needed are meaningful ways to com-
bine several kinds of expressions, called business rule types, independently of the used
methods for knowledge representation and reasoning. In this paper, we present the
EM-BrA2CE (Enterprise Modeling using Business Rules, Agents, Activities, Concepts
and Events) Framework, a unifying vocabulary and execution model for declarative
process modeling. The vocabulary is described in terms of the Semantics for Business
Vocabulary and Rules (SBVR) standard and the execution model is presented as a
Colored Petri Net (CP-Net). In addition, we show how declarative process models can
contribute to the model-driven design of Service-Oriented Architectures.

keywords: Business Process Management, Business Modeling, Service Modeling, SBVR,
Service-Oriented Architecture

1

CONTENTS 2

Contents

1 Introduction 3

2 Related work 5

3 Procedural versus Declarative Process Modeling 6
3.1 Business Concerns Made Explicit . 7
3.2 Declarative Business Rule Enforcement . 8
3.3 Declarative Communication Logic . 8
3.4 Dynamic Execution Scenarios . 9
3.5 Activity-level Granularity . 9
3.6 Model Differentiation by Modality . 10
3.7 Assumption bias . 11
3.8 Runtime Alteration . 11
3.9 No Human-Machine Distinction . 11
3.10 Coordination Work is Work . 12
3.11 Multi-state Activities . 12
3.12 Third-person perspective . 12
3.13 Meaning is Separate from Expression . 12

4 An Introduction to Declarative Process Modeling 13
4.1 Process Model = State Space + Transition Constraints 13
4.2 History-dependent behavior . 14
4.3 Running example: payment-after-shipment 15

5 A Vocabulary for Declarative Process Modeling 16
5.1 Candidate Ontology Language . 18
5.2 An Introduction to SBVR . 19
5.3 The EM-BrA2CE Vocabulary . 22

5.3.1 Business concept – business concept type 22
5.3.2 Activity – activity type . 24
5.3.3 State – state space . 26
5.3.4 Agent – Role . 27
5.3.5 Event – event type . 29
5.3.6 Deontic assignment . 30
5.3.7 Non-functional, quality-of-service concerns 32
5.3.8 Cost and time concerns . 33

5.4 Business Rules in the EM-BrA2CE Framework 34
5.4.1 Providing Logical Foundations for Temporal Rules 35
5.4.2 Semantic Formulation of Temporal Rules 37
5.4.3 Control-flow: temporal deontic rule 37
5.4.4 Control-flow: activity precondition 38
5.4.5 Control-flow: activity postcondition 39
5.4.6 Control-flow: reaction rule . 39
5.4.7 Control-flow aspect: dynamic integrity constraint 40
5.4.8 Control-flow aspect: activity cardinality constraint 40
5.4.9 Control-flow aspect: serial activity constraint 41
5.4.10 Control-flow aspect: activity order constraint 41
5.4.11 Control-flow aspect: activity exclusion constraint 41
5.4.12 Control-flow aspect: activity inclusion constraint 42

Declarative Process Modeling: A Vocabulary and Execution Model 3

5.4.13 Data aspect: Static integrity constraint 42
5.4.14 Data aspect: derivation rule . 42
5.4.15 Organization aspect: activity authorization constraint 43
5.4.16 Organization aspect: activity allocation rule 43
5.4.17 Organization aspect: visibility constraint 44
5.4.18 Organization aspect: event subscription constraint 44

6 An Execution Model for Declarative Process Modeling 44
6.1 Business Rules in the Activity Life Cycle 44
6.2 A CP-Net-based Execution Model . 46

6.2.1 Places and Color Sets . 48
6.2.2 The Create transition . 50
6.2.3 The Schedule transition . 53
6.2.4 The Assign and Revoke transition 54
6.2.5 The Start transition . 55
6.2.6 The fact manipulation transitions . 55
6.2.7 The Complete transition . 57
6.2.8 The Abort, Skip and Redo transitions 59

6.3 Unspecified semantics . 62
6.3.1 Reactive Behavior . 62
6.3.2 Transaction Handling . 62
6.3.3 Composite State Transitions . 63

7 Towards a Declarative Service-Oriented Architecture 63

8 Evaluation of the EM-BrA2CE Framework 66

9 Conclusion 67

1 Introduction

In management theory of the last decades, much importance has been attached to a process-
oriented perspective on organizational (re)structuring. Porter (1985), for instance, intro-
duced the idea of the value chain to better understand the activities through which com-
panies gain a competitive advantage. Kaplan (1998) drew attention to the technique of
Activity-Based Costing. Davenport (1993) and Hammer and Champy (1993) coined the
terms process innovation and business (process) reengineering (BPR). Processes also have
a prominent place within the movement of continuous quality improvement. Six Sigma,
for instance, has a measurement-driven methodology both to reduce variability in existing
process designs and to create new process designs (Motorola Inc., 1986; Ehrlich, 2002).

Yet to date, organizations still experience difficulties in applying this process-oriented
perspective to the design and maintenance information systems. Process-aware informa-
tion systems (PAIS) (Dumas et al., 2005) provide automated support for the business
processes of an organization by partially automating the (coordination) work. According
to zur Muehlen (2004), the first process-aware information systems started to appear in
the 1980s out of document management systems, e-mail systems and database management
systems. Nonetheless, data management, not process management, demanded most of the
attention in the 1980s. Real interest for automated business process support arose in the
1990s with the advent of new communication standards and new IT infrastructures. In
an attempt to integrate disparate modules, ERP vendors started to adopt capabilities for

Declarative Process Modeling: A Vocabulary and Execution Model 4

automated process support. At the same time a comparable effort was undertaken by Enter-
prise Application Integration (EAI) tool vendors, developing process-oriented mechanisms
for application interoperability. In spite of these evolutions, process-aware information sys-
tems are sometimes far from the business requirements of efficiency, effectiveness, flexibility
and compliance. For instance, information systems have at first sight made the business
processes of organizations more compliant. By automating the coordination of work, or-
ganizations have better control over the actions of involved actors. Moreover, automated
processes can help organizations in demonstrating business process compliance to all stake-
holders. However, the downside is that automated business processes are often inflexible.
In particular, automated processes have proved to be difficult to adapt at design time where
each changed requirement triggers a lengthy development cycle in which it is impossible to
identify and include all control and correction steps a priori (Heinl et al., 1999). Moreover,
at run time, automated processes are often found too rigid to deal with the contingencies
of real-life situations (Sadiq et al., 2005).

The root of the problem lies with a procedural representation of business processes that
provides computer systems with inadequate information to deal with the idiosyncracies of
every-day situations. In general, one can think of, among other, the following business
concerns to play a governing role in the organization of work:

• Business regulations: externally imposed directives such as among others legal
requirements, standards and contracts.

• Business policies: internally defined directives involving among others business
strategies, tactics and operational procedures.

• Costs and benefits: the incurred benefits and costs of an activity.

• Lead time: the overall time to enact a process.

• Information prerequisites: the information required to enact a process.

• Technical and common-sense constraints

Organizations often only implicitly think about these business concerns when they design
business processes but pay little attention to documenting why specific design choices have
been made. Instead of making these business concerns explicit, they are implicitly used to
determine task control flows, information flows and work allocation schemes. In other words
these aspects remain implicit but their effects are – so to speak – hard-coded directly in
procedural process models.

The counterpart of a procedural representation is a declarative one. A process model
is declarative when it explicitly takes into account the business concerns that govern a
business process leaving as much freedom as is permissible at execution time for determining
a valid and suitable execution plan. Recently, a number of process modeling languages have
appeared that could be identified as declarative languages. These modeling languages have
very distinct knowledge representation backgrounds, often lack a formal execution model
and often only model one aspect of the many business concerns that exist in reality. What
is needed are meaningful ways to combine several kinds of expressions, called business
rule types, independently of the used methods for knowledge representation and reasoning.
In this paper, we show how the business concerns that govern business processes can be
modeled declaratively.

The paper is structured as follows. In section 2 we introduce some languages for declar-
ative process modeling that exist in the literature. In section 3 we contrast declarative and

Declarative Process Modeling: A Vocabulary and Execution Model 5

procedural process modeling and provide an informal introduction to declarative process
modeling in the next section 4. In section 5 we give a vocabulary for declarative pro-
cess modeling, called the EM-BrA2CE Vocabulary. This vocabulary is an extension of the
SBVR and allows to declaratively refer to the state of a business process. In this section
we also identify a number of types of business rule that are formulated in this vocabulary.
Several of these business rule types are underpinned by a form of temporal logic. In section
6 an execution model is provided by modeling the dynamics of an activity life cycle through
the use of Colored Petri Nets. In section 7 we show how declarative process models can
contribute to the model-driven design of Service-Oriented Architectures. Finally, in section
8, we give a brief evaluation of the proposed framework.

2 Related work

In the literature, languages such as the case handling paradigm (van der Aalst et al., 2005),
OWL-S (The OWL Services Coalition, 2006), the constraint specification framework of
Sadiq et al. (Sadiq et al., 2005), the Web Service Modeling Ontology (WSMO) (Roman
et al., 2005), the ConDec language Pesic and van der Aalst (2006) and the PENELOPE
language (Goedertier and Vanthienen, 2006b) can be categorized as declarative languages.

None of these languages for declarative process modeling are expressive enough to cover
the many real-life business concerns that exist in reality. For instance, the ConDec language
and the PENELOPE language only allow to express business rules about sequence and
timing constraints, i.e. the control flow aspects (Jablonski and Bussler, 1996). Web Service
Orchestration standards such as OWL-S (The OWL Services Coalition, 2006) and WSMO
(Roman et al., 2005), on the other hand, include the organizational and data model aspects,
but do not provide a temporal logic to express temporal relationships between concepts such
as activities or events.

Moreover, these languages make use of very different knowledge representation paradigms.
For instance, the ConDec language is expressed in Linear Temporal Logic (LTL) whereas
the PENELOPE language is expressed in terms of the Event Calculus. These heterogenous
knowledge representation paradigms raise the question how it will be possible to reason
about such heterogeneously expressed knowledge.

Finally, these languages do not have an explicit execution model or have an execution
model that explicitly assumes either human or machine-mediated service enactment. The
WSMO, for instance, has a specific execution model (WSMX) (M. Zaremba, 2005) that
is focused on Web service mediated service orchestration. The case handling paradigm,
for instance, assumes humans to perform atomic tasks but has an orchestration engine to
perform the orchestration (coordination) work.
A common idea of declarative business process modeling is that a process is seen as a
trajectory in a state space and that declarative constraints are used to define the valid
movements in that state space (Bider et al., 2000). The differences between declarative
process languages can in part be brought back to a different perception of state.

• The state space of the case-handling paradigm (van der Aalst et al., 2005) comprises
the state of business concepts and activities. Although there is still a preferred or nor-
mal control-flow defined between the activities, the user has the freedom of choice to
execute, skip and redo activities within a number of constraints based on availability
of case data and the executed activities.

• In the constraint specification framework of Sadiq et al. (2005), order and inclusion
constraints can be specified in a state space composed of activities.

Declarative Process Modeling: A Vocabulary and Execution Model 6

• The state space of the ConDec language (Pesic and van der Aalst, 2006) consists
exclusively of activities. Using Linear Temporal Logic the authors construct a tem-
plate language that declaratively describes the temporal relationships between activ-
ity types.

• Another kind of constraint are the so-called temporal deontic assignment rules of the
PENELOPE language (Goedertier and Vanthienen, 2006b). Here the state space con-
sists of the temporal obligations and permissions that rest upon the agents involved
in a business process.

Sadiq et al. (2005) show how it can be advantageous to combine both declarative and
procedural aspects in process models. The authors present a foundation set of constraints
for partial process modeling. A process model can contain, in addition to pre-defined
activities and control flow, several so-called pockets of flexibility. Such pockets consist of
activities, sub-processes and so-called order and inclusion constraints. Each time during
enactment when a pocket of flexibility is encountered, the elicitation of the work within the
pocket is done by a human end-user through a so-called “build” activity. Although such
a combined approach has advantages, it is not considered in the research proposal that
focusses exclusively on declarative process modeling.

The idea of declarative business process modeling is related to the business rules ap-
proach (Ross, 2003; Kardasis and Loucopoulos, 2005). By documenting and formalizing
business rules, it is hoped that changes to these rules will no longer result in an avalanche
of required information system updates and will thus reduce the IT bottleneck when bring-
ing about business changes. Consequently there is a vivid interest among practitioners
(Debevoise, 2005) and commercial software vendors in the confluence of business rules and
business process modeling. ILOG, for example offers ILOG JRules integration solutions
for several existing BPM products and Microsoft has added business rules functionality
to BizTalk. In general, commercial approaches integrate production rule specification with
imperative business process modeling. The integration is realized by including explicit calls
to a rule engine in the business process model. In BizTalk, for example, such a call is rep-
resented as a so-called decision shape. On the basis of the information that a process gets
back from the rule engine, the process is carried further. Although this approach allows for
specifying to some extent the logic of control flow, data flow and task allocation by means
of rules, these approaches do not belong to the category of declarative process modeling
languages defined in the next section.

3 Procedural versus Declarative Process Modeling

A business process model is called procedural when it contains explicit, prescriptive infor-
mation about how processes should proceed, but only implicitly keeps track of why these
design choices have been made. When modeling business processes procedurally, modelers
inevitably make a number of modeling assumptions that are not present in the earlier spec-
ified requirements, this is called the assumption bias of a model. Therefore procedural
models inherently risk to be over-specified as they are likely to impose more restrictions
on the control flow, information flow and work allocation in business process models than
is strictly required. Procedural process models are modeled with procedural languages
such as WorkflowNets (van der Aalst, 1997), the Business Process Execution Language
(BPEL) (Andrews and et al., 2003), the Business Process Modeling Notation (BPMN)
(Object Management Group, 2006a) and UML Activity Diagrams (Object Management
Group, 2005).

3.1 Business Concerns Made Explicit 7

Procedural modeling Declarative modeling

Business concerns implicit explicit
Rule enforcement what, when and how what
Communication what, how what
Execution scenario design-time run-time
Execution mechanism state-driven goal-driven
Model granularity process-centric activity-centric
Modality what must what must, ought and can
Assumption bias over-specified under-specified
Alteration design time design and run time
Coordinator/Worker human-machine agent
Coordination/Activity coordination 6= activity coordination = activity
Activity life cycle single event multiple life cycle events
Language procedural declarative

Table 1: Procedural versus declarative process modeling

The counterpart of a procedural process model is a declarative one. Process modeling
is said to have a declarative nature, when it explicitly takes into account information
about the benefits, costs, time characteristics, constraints and business goals of a process,
leaving as much freedom as is permissible at execution time for determining a valid and
suitable execution scenario. Declarative process modeling does not merely focus on how an
end state must be reached, but rather considers what is, must, ought and can be done in
order to achieve the business goals. Declarative process models are modeled with declar-
ative languages. The case handling paradigm (van der Aalst et al., 2005), the constraint
specification framework of Sadiq et al. (2005), the ConDec language (Pesic and van der
Aalst, 2006) and the PENELOPE language (Goedertier and Vanthienen, 2006b) can be
categorized as such declarative languages. Table 1 summarizes the differences between pro-
cedural and declarative process modeling. These differences are discussed in the subsequent
paragraphs.

3.1 Business Concerns Made Explicit

Declarative process modeling makes the underlying business concerns explicit in the form
of business vocabulary and business rules. Business rules are atomic, formal expressions
of business policies, business regulations and common-sense constraints. Business rules
make business concerns explicit and traceable. Business rules can be seen as a common
language between the business-side and IT-side of organizations. Such a language allows
the business-side to formally represent models of how it operates internally and how it can
legally interact with business partners. At the same time, such a common language allows
the IT-side to have Information Systems support business processes accordingly, with as
little development effort as possible. Ideally, Information System Technology must support
declarative business process models in such a way that they become human-understandable,
yet machine-executable specifications. In this way, changes to policies and regulations can
be traced back to the business processes were they are to be enforced.

3.2 Declarative Business Rule Enforcement 8

3.2 Declarative Business Rule Enforcement

Procedural process languages predominantly focus on the control-flow perspective of busi-
ness processes. In such process languages it might be possible to enforce business rules
using a control-flow-based modeling construct. For instance, the enforcement of a deriva-
tion or integrity constraint can be directly modeled in BPEL as a calculation or input
validation step. The left-hand side of Figure 1 represents an excerpt from a BPMN model
that models the enforcement of a discount rule as a decision shape in BPMN. Another
example involves the enforcement of authorization rules. The left-hand side of Figure 2
models an authorization rule as a decision shape in BPMN. The disadvantage of procedu-
ral process modeling is that business rules cannot be formulated independently from the
process models in which they are to be enforced. Consequently, the same business rule is
often duplicated in several procedural process models. When the business rule changes it is
likely that all process models must be reexamined. Declarative process modeling separates
business rule modeling from business rule enforcement. In particular, it does not make use
of control flow to indicate when and how business rules are to be enforced. Instead, it is left
to the execution semantics of the declarative process models to define an execution model
in which different kinds of business rules are automatically enforced. The latter is indicated
in the right-hand side of Figures 1 and 2. This separation of business rule specification and
enforcement facilitates design-time flexibility.

accept
order

yes

regular
invoice

no

invoice
with 10%
discount

invoice

Loyal
customer?

invoice

accept
order

“It is advisable that a
loyal customer gets a

10% discount”

Figure 1: Example: separating logic from enforcement (Goedertier and Vanthienen, 2006a)

order

reject
order

accept
order

yes

no

Is the order
available-to-

promise?

no

yes
Is the

customer
age below
18 year?

order

yes

reject
order

no

accept
order

Is the order
available-to-

promise?

“A Customer aged

under 18 cannot
place an order”

age
violation

Figure 2: Example: separating logic from enforcement (Goedertier and Vanthienen, 2006a)

3.3 Declarative Communication Logic

Procedural process models are overburdened with communication activities intended to
notify an external business partner about the occurrence of a relevant business event or to
transmit information. Figure 3 represents an excerpt from the BPMN specification (Object
Management Group, 2006a, p. 107) that contains the communication activities ‘receive
order’ and ‘send invoice’. Such communication activities depict communication logic in a
procedural manner, because they specify how and when business events are communicated

3.4 Dynamic Execution Scenarios 9

and information is transmitted. Declarative process models are only concerned with the
ability of business agents to perceive business events and business concepts. When an agent
(for instance a business partner) can perceive a particular event, the event becomes non-
repudiable to the agent, irrespective of how the agent is notified of the event. The execution
semantics of a declarative process model determines how events are communicated. In
particular, events can be communicated as messages that are sent by the producer (push
model), retrieved by the consumer (pull model) or via a publish-subscribe mechanism.

Figure 3: Example: separating communication logic from process models (Object Management
Group, 2006a, p. 107)

3.4 Dynamic Execution Scenarios

Unlike procedural process modeling, declarative process modeling does not involve the pre-
computation of task control flows, information flows and work allocation schemes. Whereas
procedural process models explicitly enumerate all possible execution scenarios, these
scenarios remain implicit in declarative process models. An explicit enumeration of all
different execution scenarios is often not required – and often even difficult to obtain (Heinl
et al., 1999) – for modeling purposes. However, for model checking (verification) purposes,
execution trajectories can still be obtained from implicit process models. During the exe-
cution of a declarative process model, a suitable execution scenario is constructed (either
by a human or machine coordinator) that realizes the business goals of the process model.
The latter is called goal-driven execution and its automation is akin to planning in the
domain of Artificial Intelligence (Fikes, 1971). In contrast, the execution mechanism of
procedural process modeling languages is called state-driven.

3.5 Activity-level Granularity

Declarative process models also have a more fine-grained model granularity than pro-
cedural process models. Whereas procedural process languages are process-centric in
that they model business processes, declarative process languages are activity-centric,
as they model the business concerns related to a set of activity types. Business process
models are composed of activity types, but the same activity type can occur in multiple
business process models. In addition, many business concerns range over activity types
and are not specific to one business process model in particular. Therefore activity-centric
models have the advantage that these governing aspects are not a-priori straitjacketed into
a particular business process model. For instance, the regulation that a purchase order
must never be paid prior to the reception of an invoice, can possibly be relevant in different
business processes. To allow the reuse of this regulation, it must be specified across the
boundaries of artificially delineated business process models. Although the process-oriented
view on organizations has lead to a better understanding of the value chain (Porter, 1985;
Davenport, 1993) and has improved business process redesign, there is little motivation in

3.6 Model Differentiation by Modality 10

letting this process-centricity set the granularity for process modeling. When required, a
process-centric model can be obtained from an activity-centric model, the converse is not
generally true.

3.6 Model Differentiation by Modality

Another point of differences is the modality that is attached to the information in process
models. Procedural process models inherently have the necessity modality (what must)
attached, whereas procedural process languages allow to differentiate by attaching different
modalities like intention (what ought), advice (what should), possibility (what can) and
certainty (what is) to parts of the process model. These modalities offer run-time flexibility.
In particular, they allow to distinguish between what is strictly required (hard constraint)
and what is merely desirable (soft constraint) behavior in a business process. This can help
the coordinator of a business process to come up with a suitable yet valid execution plan.

The idea of different modalities is related to the research of Suchman (1995), Schmidt
and Simone (1996) and Ross (2003). Suchman (1995) points out that business process
models can never fully represent cooperative work in all its facets. In any organization,
representations of work are required to create a common understanding of the work and
thus facilitate coordination. However, workers may and should have conflicting views on
the work. Suchman warns that a normative, prescriptive account of how the work gets done
might severely differ from specific working practices. Although representations of work are
a useful tool to reason about work and to steer activities, they risk to become useless when
used outside the context of the work. According to the seminal work of Suchman (1987)
representations of work need to be under-specified such that they are plans for situated
action, in which the worker uses a plan as a guideline to go about but also determines the
most suitable activity to undertake by himself from the context of the process in situ. To
emphasize her point Suchman uses the metaphor of a map. “Just as it would seem absurd
to claim that a map in some strong sense controlled the travelers movements through the
world, it is wrong to imagine plans as controlling actions. On the other hand, the question
of how a map is produced for specific purposes, how in any actual instance it is interpreted
vis-à-vis the world, and how its use is a resource for traversing the world, is a reasonable
and productive one.”

The situated action perspective on process models implies that there is little benefit
in the automation of work coordination. However, this implication is not in congruence
with the empirical evidence of many successful BPM automations found in contempo-
rary organizations. Schmidt and Simone (1996) and Schmidt (1999) distinguish between
two, according to them equally possible, accounts of process models by contrasting the
metaphor of process models as scripts with Suchman’s metaphor (1987) of process models
as maps. A business process model can play the role of a script when it contains explicit,
prescriptive information about how processes should proceed by making pre-computations
of task dependencies. “A script offers a limited selection of safe, secure, legal, valid, ad-
visable, efficient or otherwise prescribed moves while excluding moves that generally would
be considered unsafe, etc” The application of a script can relieve the worker of computing
“a myriad of task interdependencies” and optimization concerns. Conversely, a business
process model can play the role of a map when it contains a codified set of functional
requirements that provide a heuristic framework for distributed decision making. It is im-
portant that in the vision of Schmidt and Simone a same process model can be either a
script or a map, depending on whether the context of the process conforms to relevant,
pre-defined task interdependencies or not.

A more refined view of Schmidt and Simone’s dichotomy is to acknowledge that a process

3.7 Assumption bias 11

model can be used as a script and a map within the same execution context. Interestingly
this combined view corresponds to the relationship between business process models and
business rules depicted by (Ross, 2003). In Ross’ view, process models consist of a set
of pre-computed task dependencies, effectively called scripts, that can be supplemented
with business rules that are either a number of strict rules that must be observed at all
times or a number of heuristic guidelines that can just as easily be discarded. In terms
of Suchman’s traveler metaphor this would suggest the existence of a series of predefined
sub-trajectories, scripts, that control a traveler’s movements and a number of strict rules
and guidelines that give direction to a travelers’s movements, but leave the traveler with
some freedom in choosing his or her own destination and trajectory.

3.7 Assumption bias

The business rules in declarative process models can be traced back to an original re-
quirement, a regulation, a policy or a common sense constraint. Consequently, declarative
process models are likely to only contain a minimum of constraints regarding a particular
business process. This is not generally the case for procedural process models. Because
procedural process models are the result of an implicit pre-computation of task dependen-
cies, it is not generally guaranteed that procedural process models do not include a number
of additional assumptions that overly specify the underlying business process.

3.8 Runtime Alteration

The declarative information about a business process allows a coordinator to reason about
the effect of run-time alteration of the execution plan. Such adaption can be seen as devi-
ating from the outlined soft constraints to better fit the idiosyncracies and contingencies of
real-life situations. Procedural process models do not allow this form of reasoning. In pro-
cedural process models all control flows, information flows and work allocation policies have
been pre-computed. Without information about the strict business rules (hard constraints)
and guidelines (soft constraints) that have led to a particular process model, it is difficult
to reason about the effect of a run-time alteration. For instance, Reichert and Dadam
(1998) describe the rationale of the ADEPT(flex) workflow management system (WfMS)
in which end-users can change the process model of the process instance at runtime. Al-
though ADEPT(flex) provides extensive user support to prevent non-permissible structural
changes, it provides little support in defining and distinguishing between non-permissible
and non-advisable business changes. In particular ADEPT(flex) preserves control flow and
data flow consistency regarding the addition, deletion and movement of tasks, but pro-
vides little support in identifying the business constraints and guidelines that restrict the
modification of business process instances.

3.9 No Human-Machine Distinction

Information systems and machinery have lead to an extensive automation of both work and
coordination work. But not all activities in every business process can be fully automated.
Likewise, not every business process lends itself to the same degree of automated coordina-
tion. In many cases, some of the (coordination) work is performed by machines and some
of it by humans. Ideally, declarative process models make abstraction from the differences
between humans and machines in performing (coordination) work. Rather than making
an ontological distinction between concepts like humans and machines, both concepts are
unified through the use of the agent metaphor (Woolridge and Wooldridge, 2001). Agents
can be entire organizations, organizational units or individual workers and machines. In

3.10 Coordination Work is Work 12

many cases, individual agents – whether humans, machines or a combination of both – act
on behalf of the organization to which they pertain.

3.10 Coordination Work is Work

Business process management is about the coordination of work (Schmidt and Simone,
1996). Procedural process models are often an explicit specification of the coordination
work. In contrast, declarative process models make no difference between coordination
work and regular work. What may appear as work to an external agent, may very well
be coordination work to another agent. For instance, a sales representative may instruct
the expedition department to ship an order by a particular due date, but this activity may
conceal the coordination of many other activities within the expedition department.

3.11 Multi-state Activities

Procedural process models do not explicitly consider the life cycle of the activities within
a business process. The performance of an activity then most generally corresponds to its
start or completion. Declarative process models, in contrast, consider other events in the
life cycle of activities such as the creation, scheduling, assignment, start, fact manipulation,
completion, skipping, cancelation and redoing of an activity.

3.12 Third-person perspective

The growing popularity of the Internet based on new IP-based communication protocols
and technologies such as XML, has given rise to the requirement of automated coordination
of business processes across the boundaries of individual organizations. As a consequence,
it is not always technically or economically viable to have processes coordinated centrally.
Another consequence of distribution is that it is unlikely that process designers can come
up with only one representation of work. In many cases all business partners that partici-
pate in a cooperation might have different representations of the cooperative work. These
representations are to be kept in part private from other process business partners. In
conclusion a BPMS must try to reconciliate the disparate, public representations of the
cooperative work that exist among business partners in an inter-organizational business
process.

Business process management must reconcile disparate views of work. Business pro-
cesses may include the concerns of many stake holders. When modeling behavior it is
proposed to adopt a third-person perspective – what will an actor with a particular role do
in response to what others do? – rather than a first-person perspective – what will I do in
response to what others do? In a third-person perspective all roles, actors and organization
structures are named without the modeler adopting a particular viewpoint. A third-person
modeling perspective has the advantage that it is possible to distinguish multiple interact-
ing actors within a single organization. Another advantage is that business rules can be
more easily shared in a business community when they are expressed from a third-person
perspective. This does not imply that all behavior and business facts are visible to all
actors in a system.

3.13 Meaning is Separate from Expression

Procedural process models make no distinction between meaning and expression. In re-
ality, the same meaning can be expressed using many different notations and expressions.

Declarative Process Modeling: A Vocabulary and Execution Model 13

Declarative process modeling provides a general vocabulary to discuss the meaning of dif-
ferent kinds process expressions. For instance, it is possible to express a process model
in part using the BPMN. However, as not all aspects of business process models can be
modeled using the BPMN (Wohed et al., 2006), a BPMN diagram is unlikely to be fully
interchangeable with a declarative process model.

4 An Introduction to Declarative Process Modeling

Each business process can be modeled by describing its state space and the set of business
rules that constrain the possible transitions in this state space. The possible movements
within a business process’ state space, can be described by twelve generic activity state
transitions: create, schedule, assign, revoke, start, addFact, removeFact, updateFact,
complete, abort, skip and redo. Because they are generic, these twelve activity state
transitions provide a means of defining an execution model that is described in section 6.
Informally, it suffices to check prior to the occurrence of a state transition of a particular
type whether a number of particular business rules will be violated or not. When no
business rule is violated, the state transition can take place. When, on the other hand, the
transition would lead to an intolerable violation of a business rule, the state transition is
prevented from taking place.

4.1 Process Model = State Space + Transition Constraints

Consider, for example, a process model called ABC that expresses that for each process
instance the activities of type A,B and C can be performed at most once. Additionally,
the constraint is imposed that activity C may only be started if activity A has already
completed. In terms of the above defined terminology this process can be modeled as:

• state space: the state space of ABC is described by facts about

– composite activity types: ABC

– atomic activity types: A, B, C

– activity event types: created, assigned, started, completed

• rule: “There is exactly one A activity that has parent an ABC activity”

• rule: “There is exactly one B activity that has parent an ABC activity.”

• rule: “There is exactly one C activity that has parent an ABC activity.”

• rule: “A C activity can only start after an A activity has completed.”

The four business rules express a necessary abstract state (hard constraints). An execution
model for these business rules can be defined in terms of the activity state transitions
that are constrained by these rules. For instance, the first business rule must be enforced
when the coordinator of an ABC activities creates a new A activity, when the execution
plan already contains an A activity. The last business rule can be operationalized as a
precondition on the start of an activity of type C, requiring the completion of an activity
A.

It is instructive to compare the declarative process model ABC of the previous para-
graph with its procedural counterpart. Figure 4 depicts three BPMN process models that
to some extent model the intended business process. Figure 4 a) attempts to model the
described process by means of an ad-hoc sub-process. Notice however that in this BPMN

4.2 History-dependent behavior 14

A C

B

~

(a) under specified

A C

B

(b) correct

A CB

(c) over specified

Figure 4: Expressing the ABC process model in BPMN

solution it is not possible to express the activity order constraint that C requires A nor
to express that each task can be performed only once. Figure 4 b) depicts the described
process using a complex gateway, for which the OutgoingCondition (Object Management
Group, 2006a, p. 261) must specify that either A, A and B or no activities can follow.
Although this model portrays a correct semantics it is somewhat overburdened by decision
shapes. In practice, modelers give away freedom of choice in exchange for a more simple
process model. For instance, Figure 4 c) depicts a process model that adheres to the de-
scribed semantics but that is overly restrictive with respect to the ordering of the activity
B.

4.2 History-dependent behavior

Sometimes the behavior of a process instance is dependent on its own history. For instance,
a worker is refused authorization to perform a certain task, when he or she has performed
a related task in the past. Another example is the occurrence of history-based joins in the
control flow of a business process (van der Aalst and ter Hofstede, 2002; van Hee et al.,
2006b). This non-local behavior of business processes presents many challenges for process
modeling (van Hee et al., 2006a). Consider as an example the process model ABCD in
which each activity A,B, C and D can be performed at most once for each process instance.
Moreover, the tasks A and C are mutually exclusive and D can only start when either A

or C has been performed.

• state space:

– composite activity types: ABCD

– atomic activity types: A, B, C, D

– activity event types: created, assigned, started, completed

• rule: “There is exactly one A activity that has parent an ABCD activity”

• rule: “There is exactly one B activity that has parent an ABCD activity.”

• rule: “There is exactly one C activity that has parent an ABCD activity.”

• rule: “There is exactly one D activity that has parent an ABCD activity.”

• rule: “A and C activities are mutually exclusive.”

• rule: “An activity D can only start after either an A activity or a C activity has
completed.”

• rule: “If an activity B has started, activity D can only start after the completion of
B.”

4.3 Running example: payment-after-shipment 15

A

DB

C

Figure 5: History-based join

The last rule makes the process model ABCD history dependent. In particular, the start
of an activity D depends on whether or not an activity B has been started in the history
of a process instance. Because of the local nature of process languages like Petri nets or
the BPMN this history-dependent join is difficult to model. The BPMN model, depicted
in Figure 5, contains two complex gateways to model ABCD. Notice however that this
visual representation does fully represent the intended semantics. In particular, due to the
local nature of a BPMN model it cannot check whether an activity B has started or not.
Consequently, this cannot be represented by an IncomingCondition on the second complex
gateway. Even in this simple example the semantics of the history-based join can only be
specified in BPMN using textual annotations.

4.3 Running example: payment-after-shipment

The above mentioned process models ABC and ABCD are only concerned with the control-
flow aspects of process modeling and make abstraction from data and organizational mod-
eling aspects. To further illustrate declarative process modeling, an order-to-cash business
process will be used as a running example throughout the text. The example has two
versions: a payment-after-shipment and a shipment-after-payment version, both depicted
using the Business Process Modeling Notation (BPMN) Object Management Group (2006a)
in Figure 6. The payment-after-shipment process can be declaratively modeled as follows:

• state space: the state space of the order-to-cash process is described by facts about

– roles: buyer and seller.

– composite activity types: coordinate purchase order, coordinate sales order.

– atomic activity types: Coordinate purchase order can consist of place order
and pay activities. Coordinate sales order can consist of accept order, reject
order, and ship activities.

– activity event types: created, assigned, started, completed

– event types: timeout, obligation violated

– business concepts: order, order line

– business fact types: order has order line, order is critical, order has due date,
order has discount, order has customer, customer is loyal customer, customer is
corporate customer,... Place order can manipulate the business fact types ‘order
has order line’ and ‘order has due date’,...

• rule: “Initially a buyer has the permission to perform a place order activity.”

• rule: “When a buyer completes a place order activity, the seller has the obligation
to perform a accept order activity or a reject order activity within 2 time units.”

Declarative Process Modeling: A Vocabulary and Execution Model 16

• rule: “When the buyer completes a place order activity, the buyer has the obligation
to perform a pay activity within 2 time units after the seller completes the ship
activity.”

• rule: “When the seller completes a accept order activity, the seller has the obligation
to perform a ship activity within 2 time units.”

• rule: “ There exists exactly one place order activity that has parent a handle purchase
order activity.”

• rule: “There exists at most one accept order activity that has parent a handle sales
order activity.”

• rule: “Activities that have type place order, accept order, reject order and ship order
must not be performed in parallel.”

• rule: “Accept order and reject order activities are mutually exclusive.”

• rule: “Accept order and ship activities are mutually inclusive.”

• rule: “After the start of a ship activity, the order lines of the order can no longer be
changed.”

• rule: “Each order has at least one order line.”

• rule: “The agreed price of a sales item is less or equal to the standard price of the
sales item.”

• rule: “A luxury product has a value-added-tax of 20 percent.”

• rule: “An order has a 10 percent discount if the order is from a loyal customer.”

• rule: “An agent that has age less than 18 years can not perform a place order
activity.”

• rule: “An agent that has function junior sales representative can not perform an
accept order or reject order activity that is identified by an order that has an amount
larger than 2000 euro.”

• rule: “Coordinate purchase order can make visible the business fact type ‘order has
rejection notice.” “It is necessary that a rejection notice is only visible to an agent
that is a corporate customer.”

• rule: “A buyer can subscribe to completed in the context of ship.” “It is not possible
that an agent that has role buyer perceives an event that is about a ship activity for
an order that has a total amount of less than 2000 euro.”

5 A Vocabulary for Declarative Process Modeling

In this section the vocabulary (or the metamodel) of the EM-BrA2CE Framework is de-
scribed that contains the fundamental building blocks for modeling business processes.
EM-BrA2CE stands for ‘Enterprise Modeling using Business Rules, Agents, Activities,
Concepts and Events’. Figure 7 depicts the relationship between the main building blocks
of the framework.

Declarative Process Modeling: A Vocabulary and Execution Model 17

B
U

Y
E

R

placeOrder

pay

[violation(obligation(seller, xorr(acceptOrder(seller,

buyer), rejectOrder(seller, buyer)), 2))]

acceptOrder(seller, buyer)

[violation(obligation(seller,

ship(seller, buyer), 4))]

ship(seller, buyer)

rejectOrder(seller, buyer)

acceptOrder ship

rejectOrder

placeOrder(buyer, seller)

[violation(obligation(buyer,

pay(buyer, seller), 5))]

pay(buyer, seller)

S
E

L
L

E
R

(a) payment-after-shipment

B
U

Y
E

R

placeOrder pay

[violation(obligation(seller, xorr(acceptOrder(seller,
buyer), rejectOrder(seller, buyer)), 2))]

acceptOrder(seller, buyer)

ship(seller, buyer)

rejectOrder(seller, buyer)

acceptOrder

rejectOrder

placeOrder(buyer, seller)

S
E

L
L

E
R

ship

[violation(obligation(buyer, pay(buyer,
seller), 4))]

pay(buyer, seller)

[violation(obligation(seller, ship(seller,
buyer), 6))]

(b) shipment-after-payment

Figure 6: Two order-to-cash processes

business rulesdefine and
constrain

determine rights
and duties of

define
reactions to

motivate

events

WHEN?

agents
and roles

WHO? WHERE?

business
concepts

WHAT?

policies and
regulations

WHY?

activities

HOW?

determine
sequence of

Figure 7: The EM-BrA2CE Framework

5.1 Candidate Ontology Language 18

This section is structured as follows. First it is motivated why the SBVR was chosen
as ontology language. Subsequently, an introduction to the SBVR is provided. In the next
section the EM-BrA2CE Vocabulary is defined that extends the SBVR. In a subsequent
section, some candidate logics and rule languages are briefly introduced that can be used to
express temporal aspects of business processes. Finally, a classification is given of a number
of candidate business rule types that are to be used for declarative process modeling.

5.1 Candidate Ontology Language

There exist several candidate ontology languages (or metamodeling languages) that can
be used to define a metamodel for declarative process modeling. Among the most promi-
nent candidates are the tandem Meta Object Facility(MOF) / Unified Modeling Language
(UML) (Object Management Group, 2006c), the Web Ontology Language (OWL) and the
Web Service Modeling Language (WSML) (Roman et al., 2005). Nonetheless it was chosen
to model the metamodel in terms of the vocabularies provided by the Semantics of Busi-
ness Rules and Vocabulary (SBVR) language (Chapin, 2005; Object Management Group,
2006b). The SBVR was chosen because it possesses many desired properties:

• Model granularity. Information models can use different levels of granularity to
represent concepts in the world. In the last decade two paradigms have emerged:
object-level and fact-level granularity. Fact-orientation perceives the world in terms
of facts rather than in terms of objects, attributes and relationships. Fact types
have a finer granularity compared to object types. This facilitates the expression of
business rules (Halpin, 2000) and postpones implementation decisions about grouping
attribute and relationship types into object types (Leung and Nijssen, 1988; Halpin,
1991).

• Local Closure. In knowledge representation one has to deal with incomplete knowl-
edge of the world. In SBVR it is possible to indicate the predicates (fact types) over
which the model has complete knowledge. Such a construct is called local closure
and it is possible to indicate local closure in SBVR. In general, two assumptions
are possible: an open-world and a closed-word assumption. Under an open-world
assumption (OWA) it is accepted that a model incompletely represents the world.
Under a closed-world assumption (CWA) it is assumed that the model completely
represents the world. There is a difference between both assumptions when reasoning
with negation (Wagner, 1991).

• High-Order Classification. In many conceptual information models it is most
natural to be able to have instances of types that are types themselves (Halpin, 2004).
This paradigm is known as higher-order typing. In UML, higher-order typing can be
obtained using the UML stereotype mechanism (Atkinson and Kühne, 2003; Object
Management Group, 2006c). In logic higher-order typing pertains to Higher-Order
Logic. When restricted to Henkin semantics there exist a proof logic for higher-order
logic that is sound and complete (Henkin, 1950). The SBVR has been given such a
semantics.

• Business Rules as natural language expressions. Business rules are most often
expressed in language. Consequently, the SBVR combines linguistics and formal
logic. In particular, it has a vocabulary to express the meaning of (natural) language
expressions in terms of formal logic. These are the fundamental building blocks for
developing a natural language parser that allows to express the meaning of rules that
have a textual notation. To date, two SBVR natural language parsers have been

5.2 An Introduction to SBVR 19

developed: the Unisys Rules Modeler (Baisley, 2005; Unisys, 2005) and SBeaVeR
(Digital Business Ecosystem (DBE), 2007).

• Rule modality. One of the characteristics of declarative process models is that
they make a distinction between business rules that cannot be violated, that can be
violated and guidelines. The current SBVR specification requires business rules to be
either a necessity, an obligation, a prohibition or a possibility.

• Reification. The SBVR allows propositions to be treated as concepts in their own
right. As such, propositions can be made about other propositions. This is called
‘objectification’ is the standard. Objectification is, for instance, useful to represent
that a particular business fact has been asserted or retracted in the context of a given
activity.

The SBVR has many features that make it an attractive languages for declarative process
modeling. Nonetheless the SBVR does also have its shortcomings. For instance the SBVR
does not incorporate any form of temporal logic. In a dynamic world of business processes,
such knowledge representation and reasoning mechanisms are required to reason about
properties qualified in terms of time or the effect of activities on the state of the world.
Furthermore, the SBVR lacks the semantics to model business rules in terms of a number
of general rules and exceptions. Such a means for representing and reasoning with default
knowledge is, for instance, provided by defeasible logic Nute (1994); Antoniou et al. (2001).
This way of knowledge representation is valuable, because it facilitates the incremental
specification of business rules Grosof et al. (1999): new rules can be added without the
conditions of previous rules need to be reconsidered. Ordinary rules, in contrast, require a
complete, encyclopedic knowledge of all rules to be updated or decided upon.

5.2 An Introduction to SBVR

The Semantics of Business Vocabulary and Business Rules (SBVR) provides a number of
conceptual vocabularies for modeling a business domain in the form of a vocabulary and a
set of rules. As the EM-BrA2CE vocabulary extends the fundamental vocabularies of the
SBVR, these vocabularies will be discussed in the remainder of this section.

In SBVR, meaning is kept separate from expression. As a consequence, the same mean-
ing can be expressed in different ways. In real-life, meaning is more often expressed in
textual form than in diagrams as statements provide more flexibility in defining vocabu-
lary and expressing rules. For these reasons, the SBVR specification defines a structured,
English vocabulary for describing vocabularies and verbalizing rules, called SBVR Struc-
tured English (Object Management Group, 2006b, p. 133). One of the techniques used by
SBVR structured English are font styles to designate statements with formal meaning. In
particular,

• the term font is used to designate a noun concept.

• the name font designates an individual concept.

• the verb font is used for designation for a verb concept.

• the keyword font is used for linguistic particles that are used to construct statements.

The definitions and examples in the remainder of the text use these SBVR Structured
English font styles.

5.2 An Introduction to SBVR 20

In SBVR a vocabulary and a set of rules make up a so called conceptual schema. A
conceptual schema with an additional set of facts that adheres to the schema is called a
conceptual model. Figure 8 depicts the relationship of a conceptual schema and a con-
ceptual model to some of the core building blocks in SBVR. These core building blocks
are part of the SBVR Meaning and Representation Vocabulary. This vocabulary contains
among others the following definitions (Object Management Group, 2006b, p. 13):

A conceptual schema is a combination of concepts and facts (with semantic formu-
lations that define them) of what is possible, necessary, permissible, and obligatory
in each possible world.
A conceptual model or fact model is a combination of a conceptual schema and,
for one possible world, a set of facts (defined by semantic formulations using only
the concepts of the conceptual schema).

The facts in a conceptual model may cover any period of time. Changing the facts in a
conceptual model creates a new and different conceptual model. In this way the SBVR
gives conceptual models a monotonic semantics.

SBVR:ConceptualSchema

SBVR:ConceptualModel

SBVR:VerbConcept

SBVR:Concept

SBVR:Factis in

includes

is closed in

is semi-closed in

is in includes

is internally closed in

underlies

is based on

fact type has fact in conceptual model

Figure 8: A MOF/UML representation of SBVR conceptual schema and model (Object Manage-
ment Group, 2006b)

Informally speaking, the nouns and verbs that occur within a particular vocabulary can
be related to noun concepts (or object types) and verb concepts (or fact types). In natural
language, the grammar of a basic sentence can be seen as a subject-verb-object triple. Just
as verbs can have the roles of subject and object in a sentence, verb concepts can have
roles that refer to noun concepts playing a part, assuming a function or being used in some
situation. In the SBVR Meaning and Representation Vocabulary, depicted in Figure 9,
these concepts are formally defined as follows.

A meaning represents what is meant by a word, sign, statement, or description;
what someone intends to express or what someone understands.
A concept is a meaning that represents a unit of knowledge created by a unique
combination of characteristics.
A verb concept or fact type is a concept whose instances are all actualities and
that is a basis for atomic formulation, having at least one role. Concept type:
concept type.
A noun concept is a concept that is not a verb concept. Concept type: concept
type.
An individual concept is a concept that corresponds to only one thing. General
concept: noun concept. Concept type: concept type.

5.2 An Introduction to SBVR 21

A role is a noun concept that corresponds to things based on their playing a part,
assuming a function or being used in some situation. Necessity: each role is of at
most one fact type. ‘Verb concept has role’ is an abstraction of a thing playing a
part in instances of the fact type. Concept type: concept type.
A concept type is a noun concept that specializes the concept ‘concept’.
‘Concept1 specializes concept2’ the concept1 incorporates each characteristic in-
corporated into the concept2 plus at least one differentiator. This represents the
specialization-generalization relationship.
An SBVR:proposition is a meaning that is asserted when a sentence is uttered or
inscribed and which is true or false.
An SBVR:fact is a proposition that is taken as true.

SBVR:IndividualConceptSBVR:ConceptType

SBVR:NounConcept SBVR:VerbConcept

SBVR:Proposition

SBVR:Meaning

SBVR:Concept

SBVR:Role

SBVR:Fact

hasRole

1..*

1

*

specializes

*

Figure 9: A MOF/UML representation of the SBVR Meaning and Representation Vocabulary

Although concepts have a particular meaning they by themselves do not constitute any
statement about what is true, possible, necessary, permissible, and obligatory in a possible
world. Such statements can be expressed by means of rules. The SBVR Vocabulary for
Describing Business Rules, depicted in Figure 10, contains among others the following
abbreviated definitions.

A business policy is a directive that is not actionable whose purpose is to guide
an enterprise.
A rule is an actionable directive that introduces an obligation or a necessity.
A business rule is a rule that is under business jurisdiction. ‘business rule is de-
rived from business policy’ represents the business policy from which a business
rule originates.
A structural (business) rule is a (business) rule that is intended as a definitional
criterion. A structural rule expresses a necessity that cannot be violated.
An operative business rule is a business rule that is intended to produce an ap-
propriate or designed effect. An operative business rule expresses an obligation
that can be violated.
A level of enforcement is something that represents a position in a graded or or-
dered scale of values that specifies the severity of action imposed in order to put
or keep an operative business rule in force. ‘operative business rule has level of
enforcement’ the level of enforcement that a particular operative business rules
has.

The SBVR defines a business rule as a rule under business jurisdiction that is derived from
a business policy. This definition can be seen as too limited because very often rules are
imposed on organizations by a third party. On the other hand, imposed rules always have

5.3 The EM-BrA2CE Vocabulary 22

to be internalized and in that regard the definition remains useful. A salient feature is to
assign a level of enforcement to an operative business rule expressing an obligation or a
prohibition. In this way a less crisp distinction can be made between strict business rules
(hard constraints) and guidelines (soft constraints). It is possible that the final SBVR
specification does make a distinction between advice statements and rule statements.

SBVR:StructuralBusinessRuleSBVR:OperativeBusinessRule

SBVR:LevelOfEnforcement

SBVR:ElementOfGuidance

SBVR:BusinessPolicy SBVR:StructuralRuleSBVR:BusinessRule

SBVR:VerbConceptSBVR:Proposition

SBVR:Rule

is basis foris derived from

is based on

has

Figure 10: A MOF/UML representation of the SBVR Vocabulary for Describing Business Rules

In SBVR, meaning remains separate from expression. The SBVR provides a vocabulary
called the Logical Formulation of Semantics Vocabulary to describe the structure and the
meaning of vocabulary and business rules in terms of formalized statements about the
meaning. Such formalized statements are semantic formulations (Baisley et al., 2005).
Besides these fundamental vocabularies, the SBVR provides a discussion of its semantics
in terms of existing, well-established formal logics such as First-Order logic, Deontic Logic
and Higher-Order logic.

5.3 The EM-BrA2CE Vocabulary

Although the SBVR provides extensive vocabularies for expressing business vocabularies
and business rules, the current SBVR specification (Object Management Group, 2006b)
does not have a built-in vocabulary for expressing process-related concepts such as agent,
activity, event or deontic assignment. Such vocabularies and formal semantics for express-
ing dynamic constraints are deferred to a later version of the SBVR standard (Object
Management Group, 2006b, p. 93).

The EM-BrA2CE Vocabulary has such characteristics. The vocabulary defines instance-
level concepts that are meant for describing the state of a business process instance. In
addition, it defines type-level concepts that are meant for describing the state space of
a business process model. Figure 11(a) is a MOF/UML class diagram representation of
the instance-level concepts in the vocabulary. Likewise Figure 11(b) represents the type-
level concepts. Whereas all instance-level concepts extend SBVR:individual concept, all
type-level concepts extend SBVR:concept type. To each instance-level individual concept
a particular type-level concept type corresponds. In the following paragraphs these type-
instance pairs are defined.

5.3.1 Business concept – business concept type

The flexibility of declarative business process modeling comes, among others, from the
under-specification of process models and the use of guidelines (soft constraints). It does,
however, not come from run-time adaptability of the process model. Therefore, the vocab-
ulary distinguishes fact types that can be manipulated in the context of an activity, called

5.3 The EM-BrA2CE Vocabulary 23

business fact typess. The following definitions apply.

A business concept type is an SBVR:concept type that specializes the individual
concept ‘individual business concept’ and that classifies an individual business
concept. Example: the business concept type ‘purchase order’.
An individual business concept is an SBVR:individual concept of which the facts
can be manipulated in the context of an activity. ‘individual business concept is a
business concept type’ is an SBVR:assortment fact type that categories a business
concept as being of a particular business concept type. Example: the individual
business concept ‘anOrderX’, the assortment fact type ‘anOrderX is a purchase
order’.
A business fact type is an SBVR:fact type that has only business concept types
as SBVR:role. Example: the business fact type ‘purchase order has due date time
point’.
A business fact is an SBVR:fact that is the basis for an atomic formulation of
which every role binding is bound to a business concept. Example: the business
fact ‘anOrderX has due date July 2007’.

SBVR:IndividualConcept

Individual
Business
Concept

Conditional
Obligation

Activity or
Service
Instance

Deontic
 Assignment

Agent or
Service
Provicer

Event

Conditional
Permission

Permission ProhibitionObligation

SBVR:Fact

Business
Fact

Activity
Event

Role
State

is about

*

*

retracts

*

*

asserts

*

*

performer

1

*

* has coordinator

*has performer

1 beneficiary

1

*

is of

has

1

has business ID

1..*

*

Agent has Role in context of Activity*

*

is parent of

*
0..1

*

pertains to

*

(a) instance-level

Business
Fact
Type

or
Business

Verb
Concept

SBVR:ConceptType

Activity
Type

or
Service

Capability

SBVR:VerbConcept

Business
Concept

Type

StateSpace

Event
Type

RoleActivity
Event
Type

* can coordinate

*

*

can perform

*

is about

1

*

can manipulate

*

*
can make visible

*

*

has business ID type

1..*

*

has

1

is of

1

can consist of

*

*

Role can subscribe to EventType in context of ActivityType

(b) type-level

Figure 11: A MOF/UML representation of the EM-BrA2CE Vocabulary

5.3 The EM-BrA2CE Vocabulary 24

5.3.2 Activity – activity type

The pair activity – activity type represents two of the most central concepts in the vocab-
ulary. The following definitions apply:

An activity type or service capability is an SBVR:concept type that specializes
the individual concept ‘activity’ and that classifies an activity. Example: the
activity type ‘place order’.
An activity or service instance is an SBVR:individual concept that represents a
unit of (coordination) work to be performed by an agent. Example: the activity
‘anActivityX’.
‘activity has type activity type’ is an SBVR:assortment fact type that categorizes
an activity as being of a given activity type. Necessity: each activity has type
exactly one activity type. Example: anActivityX has type coordinate purchase
order.

A business process consists both of work and coordination work (Schmidt and Simone,
1996). This fundamental finding is recognized in the definitions of activity: an activity can
either represent the act of performing an atomic unit of work or the act of coordinating
a set of sub-activities. The former activity is called an atomic activity whereas the latter
activity is called a composite activity. The fact types can consist of and is parent of
indicate the activities a composite activity can consist of.

‘Activity type can consist of activity type’ is an SBVR:partitive fact type that
represents that an activity of activity type involves the coordination of activities
of activity type.
‘Activity is parent of activity’ is an SBVR:partitive fact type that represents an
activity being composed of other activities. Example: the fact ‘anActivityX is
parent of anActivityY’.
A composite activity type is an activity type that describes a category of compos-
ite activities. Example: the composite activity type ‘coordinate purchase order’.
Necessity: A composite activity type can consist of at least one activity type.
An atomic activity type is an activity type that describes a category of atomic
activities. Example: the atomic activity type ‘place order’, the fact type ‘coordinate
purchase order can consist of place order’.
A composite activity is an activity that represents the coordination of a number
of activities.
An atomic activity is an activity that is not a composite activity and that repre-
sents an elementary unit of work. Necessity: an atomic activity is not parent of
an activity.

When performing coordination work an agent can create an execution plan that consists
of a number of sub-activities. In that case, the agent is identified as the coordinator of
the created sub-activities. This is expressed by the has coordinator verb concept. The
coordinator can schedule each activity in the execution plan for a particular due date, as
expressed by the has scheduled due date fact type. The has coordinator fact type, is set
by the coordinator when he assigns a given activity in the execution plan to a particular
agent.

‘Activity has coordinator agent’ is an SBVR:associative fact type that represents
an agent coordinating an activity.
‘Activity has scheduled due date time point’ is an SBVR:is-property-of fact type

5.3 The EM-BrA2CE Vocabulary 25

that represents the scheduled due date of an activity.
‘Activity has performer agent’ is an SBVR:associative fact type that represents
an agent performing an activity. Necessity: an activity has performer exactly
one agent. Note: The latter constraint is not restrictive, since agents can form
(ad-hoc) groups that are also agents.

An activity is uniquely identified by a set of business concepts. For example, a business
concept of business concept type purchase order uniquely identifies an activity of type
coordinate purchase order. This is expressed by the has business ID fact type. Another
way of looking at business identifies is that they are the object on which an agent performs
an activity. Consequently, the has object fact type is a synonym for the has business ID
fact type and sets the business context of a given activity.

‘Activity type has business ID type business concept type’ is an SBVR:associative
fact type that represents the business concept types that can identify an activity
type. Example: coordinate purchase order has business ID type purchase order.
‘Activity has business ID business concept’ is an SBVR:associative fact type that
represents an activity being (partially) identified by the business concept. Syn-
onym: ‘Activity has object business concept type’ Example: anActivityX has
business ID anOrderX or anActivityX has object anOrderX.

When performing an activity of a particular activity type, an agent can manipulate business
facts of particular business fact types. This is expressed by the can manipulate fact type.
Additionally, agents can retrieve information about particular business fact types when
performing activities. The business fact types that are visible are indicated by the can
make visible fact type.

‘Activity type can manipulate business fact type’ is an SBVR:associative fact type
that represents that a business fact of type business fact type can be asserted or
retracted during the performance of an activity of type activity type. Necessity:
each business fact type that can be manipulated by an activity type is in the state
space of the activity type. Example: place order can manipulate the business fact
type ‘purchase order has due date time point’.
‘Activity type can make visible business fact type’ is an SBVR:associative fact
type that represents the business fact types that can be made visible in the con-
text of activities of activity type. Note: visibility can be restricted by a visibility
constraint. Necessity: each business fact type that can be made visible by an
activity type can be made visible by the activity type. Example: coordinate
purchase order can make visible the business fact type ‘purchase order has due
date time point’.

Within the context of an activity, a worker can perceive and manipulate only those business
facts in which the business ID has a role. When an agent does business fact manipulations
during the performance of an activity, the result of these manipulates is temporarily re-
flected by the asserts and retracts verb concepts. Only upon completion of the activity,
the concept manipulations are committed to the entire system. Section 6 explains the
execution model of EM-BrA2CE process models and discusses this mechanism in detail.

‘Activity asserts business fact’ is an SBVR:associative fact type that represents a
business fact has been asserted in the context of the activity. Example: anActivityY
asserts the business fact ‘anOrderX has due date Juli 2007’.
‘Activity retracts business fact’ is an SBVR:associative fact type that represents
a business fact has been asserted in the context of the activity.

5.3 The EM-BrA2CE Vocabulary 26

5.3.3 State – state space

An activity type (business process model) can be modeled by describing a state space and a
set of business rules that constrain the possible transitions in this state space. Consequently,
an activity (business process instance) has a particular state that corresponds to a specific
set of facts that are true in this state.

A state space is an SBVR:conceptual schema that includes the SBVR:concepts
that describe a set of discrete states of an activity type. Necessity: a state
space can only contain concepts that are instances of the concepts defined in
the EM-BrA2CE Vocabulary.
‘activity type has state space’ is an SBVR:associative fact type that represents
the state space of an activity. Necessity: an activity type has exactly one state
space.
A state is an SBVR:conceptual model that includes facts about the concepts in
the state space, that corresponds to a specific situation of an activity and that is
based on the state space of an activity type.
‘activity has state’ is an SBVR:associative fact type that represents the state of
an activity. Necessity: an activity has exactly one state.

State space is a specialization of an SBVR:conceptual schema, as depicted in Figure 12.
Like a conceptual schema, a state space is described by the concepts, fact types and facts
that adhere to the state space. As such, a state space describes a potentially infinite number
of states. Likewise, state is a specialization of SBVR:conceptual model. Each state is based
on a state space and contains a number of facts that adhere to the fact types in that state
space.

In natural language, state is most often a relative notion that consists of a subgroup
of states. For example, when defining the goal state of a business process, it is useful to
consider the notion of an abstract state.

An abstract state is a set of states that conform to the abstract state and that is
based on the state space of an activity type.
‘state conforms to abstract state’ is an SBVR:associative fact type that a state
corresponds to an abstract state.
‘state space has goal state abstract state’ is an SBVR:associative fact type that
represents an abstract state being a goal or end state of a state space.
‘state space has start state abstract state’ is an SBVR:associative fact type that
represents an abstract state being the start state of a state space.

An SBVR:business rule can be seen as a statement about an abstract state being either a
necessity, an obligation, a prohibition or a possibility.

A logic system is called monotonic when the set of ground facts and logical formula
in the system can produce a set of consequences that monotonically increases, even when
new logical axioms are added. Logics with this property, namely that a derived fact cannot
be invalidated by the addition of a logical formula that is consistent with this fact, are
called monotonic logics. Conversely, a logic is non-monotonic when the addition of a
logical formula can produce a reduction of the set of consequences that can be derived
from it (Brachman and Levesque, 2004). A classical example of a non-monotonic system
is Prolog, as its negation-as-failure entails that the addition of a fact might entail falsity of
a previously derived fact.

In the EM-BrA2CE framework (composite) activities represent the (coordination) work
that occurs in the context of business processes. When an activity state transition oc-
curs, a business process instance enters a new state and the transition is recorded by an

5.3 The EM-BrA2CE Vocabulary 27

Activity or
Service
Instance

SBVR:ConceptualSchema

SBVR:ConceptualModel

SBVR:VerbConcept

SBVR:Concept

AbstractState

SBVR:Fact

Activity
Type

or
Service

Capability

StateSpace

State

has

1

is of

1

conforms to

is in

includes

is closed in

underlies

is based on
is internally closed in

is semi-closed in

1

is of

1

has

is in includes

has as type

is of type

fact type has fact in conceptual model

Figure 12: A MOF/UML representation of state and state space in the EM-BrA2CE Vocabulary

activity event. Furthermore, agents can manipulate business facts in the context of an
activity. Such a system that allows the manipulation of business facts could be interpreted
as non-monotonic. However, the solution of the SBVR can be adopted that considers each
conceptual model, consisting of a conceptual schema and collection of facts, as a logical
system in its own right. Each time the facts in a conceptual model are changed, this creates
a new and different conceptual model. In this way conceptual models are given a mono-
tonic semantics (Object Management Group, 2006b, p. 77). This solution also conserves
monotonicity when using negation-as-failure.

Monotonicity is a desired property for the EM-BrA2CE framework. The contrary,
having derived facts that become inconsistent trough the manipulation of facts, would not
be in keeping with the intent of the EM-BrA2CE Framework to provide a unifying execution
model within which several knowledge representation paradigms can be used separately of
one another. The reason for this is that non-monotonicity requires a logic system to revise
earlier derived facts that might have become invalid; this is known as belief revision. In
a setting of complex logical formulae of different kinds of logic, belief revision would be a
complex operation. As a consequence backward chaining reasoning paradigms provide the
reasoning of choice. Such a reasoning paradigm is, for instance, implemented in Prolog.

5.3.4 Agent – Role

Business Process Management Systems (BPMSs) must support business processes in which
both humans and machines perform (coordination) work. To this end it is useful make
abstraction from the differences between humans and machines through the use of the
agent metaphor. This agent metaphor is present in many other ontologies for business
modeling (Wagner, 2003; Guizzardi and Wagner, 2005). In the vocabulary, the agent
concept in the vocabulary does not only represent individual workers or machines, but also
ad-hoc groups of agents, such as for instance an entire department or company. This is
expressed with the pertains to fact type.

An agent or service provider is an SBVR:individual concept that represents an
actor or a group of actors who can perform activities. Example: the agents
‘workerX’, ‘purchase department’, ‘buyer inc.’.
‘Agent pertains to agent’ is an SBVR:partitive fact type that represents orga-

5.3 The EM-BrA2CE Vocabulary 28

nizational structure and ad-hoc groups of agents. Example: the facts ‘workerX
pertains to purchase department’,‘purchase department pertains to buyer inc.’.
Note: the ‘pertains to’ fact type is transitive.

In the context of a business process an agent can fulfill a particular role that represents
an authorization to perform a number of activities. This conception of role is consistent
with the Role Based Access Control (RBAC) standard (Sandhu et al., 1996; Ferraiolo et al.,
2001; InterNational Committee for Information Technology Standards (INCITS), 2004). In
the vocabulary the following definition applies:

A role is an SBVR:individual concept that represents a set of authorizations with
regard to the performance of activities of given activity types.

Agents that have a particular role in the context of a business process have the authorization
to perform a particular activity. This authorization is expressed by the can perform fact
type. When performing an activity of a particular activity type, an agent can manipulate
business facts of particular business fact types. This is expressed by the can manipulate
fact type. Additionally, agents can retrieve information about particular business fact types
when performing activities. The business fact types that are visible are indicated by the
can make visible fact type.

‘Role can perform activity type’ is an SBVR:associative fact type that represents
that an agent that has a given role can perform an activity of a particular activity
type.
‘Role can coordinate activity type’ is an SBVR:associative fact type that repre-
sents the authorization that an agent of a particular role can coordinate an activity
of a particular activity type.
‘Agent can have role role’ is an SBVR:associative fact type that represents that
an agent can assume a particular role.
‘Agent has role role in the context of activity’ is an SBVR:associative fact type
that represents that an agent assumes a particular role in the context of an
activity. Note: These authorizations can be restricted by an activity authorization
constraint.

The EM-BrA2CE execution model distinguishes activity state transitions related to coordi-
nation (create, schedule, assign, revoke) and state transitions related to performing actual
work (start, addFact, removeFact, updateFact, complete). Consequently, the vocabulary
makes a distinction between the coordinator and the performer of an activity. The activity
hierarchy determines whether an agent can coordinate an activity. In particular, when
an agent has the authorization to perform a particular composite activity, he has the au-
thorization to coordinate the activities of which the composite activity is parent. This is
expressed by the following business rules.

It is necessary that a role can coordinate an activity type1, if an activity type2

can consist of the activity type1 and role can perform activity type2.
It is necessary that an activity1 has coordinator an agent, if the activity1 has
parent an activity2 and activity2 has performer the agent.

The activities that are performed by a subsidiary agent, are performed by the agents to
which the agent pertains.

5.3 The EM-BrA2CE Vocabulary 29

5.3.5 Event – event type

In the last decades, events have been actively investigated in research communities such
as the Knowledge Representation domain, Active Database domain, the architecture de-
scription domain. But even within these domains there exist quite distinct conceptions
events. A substantial distinction is whether these events are considered volatile or non-
volatile. Volatile events are perdurants that are immediately consumed (removed) after
detection. In the Active Database community event definition languages and event de-
tection prototypes such as for example SAMOS (Gatziu and Dittrich, 1993) and Snoop
(Chakravarthy and Mishra, 1994) have this conception of event. Non-volatile events,
on the other hand, are endurants that are never removed but are considered to persist. In
the Event Calculus (Kowalski and Sergot, 1986), for instance, events are considered to per-
sist. In active database systems, volatile events have been used to model reactive behavior.
Each time when an event is detected, it is reacted upon and the event is removed from
the model. The disadvantage of such an event removal policy, however, is that it does not
allow for detecting so-called composite events. Composite events represent situations
that correspond to the (non-)occurrence of several (atomic) events. To detect composite
events, events need to non-volatile or they must at least be retained in the system during
some time. Unlike atomic events, which occur at a particular point in time, composite
events occur over a time interval that spans at least the occurrence times of each involved
atomic event. Many event detection languages, among which SAMOS and Snoop, do not
incorporate this interval logic and Galton and Augusto (2002) report on the unintended
semantics of some composite event operators in these languages.

In the EM-BrA2CE Vocabulary, the state of an activity (or service instance) includes
the event history of the activity or its sub-activities. Consequently, events are given a
non-volatile semantics. Although composite events are not considered explicitly by the
vocabulary, composite events can still be included in business rules expressions.

An event is an SBVR:individual concept that corresponds to an instantaneous,
discrete state change of a concept in the world.
‘Event is about SBVR:concept’ is an SBVR:associative fact type that represents
the concept whose state change is reported by the event.
An event type is an SBVR:concept type that specializes the individual concept
‘event’ and that classifies an event.
‘event type is type of event’ is an SBVR:assortment fact type that categorizes an
event as being of a particular event type. Necessity: it is necessary that an event
has type exactly one event type.
‘event occurs at time’ is an SBVR:is-property-of fact type that represents the time
at which an event occurs.

Although events occur instantaneously, they are asserted to the state space and are as-
sumed not to be retracted. As such events make up the history of a business process.
For the purpose of declarative process modeling such an event history allows for a greater
expressiveness compared to procedural process languages. In such languages, the state
of a process instance is represented by tokens that are local to the enabled activities. In
order to allow historic events to influence the current behavior, the event history has to be
reflected into the local state of the tokens. van Hee et al. have shown that such history-
dependent behavior is in general difficult to model using Petri nets and propose to include
event history into the state of a process instance.

Unlike many ontologies for business modeling, such as for instance the Agent-Object-
Relationship (AOR) (Wagner, 2003) or Unified Foundational Ontology (UFO) (Guizzardi

5.3 The EM-BrA2CE Vocabulary 30

and Wagner, 2005), a distinction is made between activities and events. Activities are
performed by agents and have a particular duration whereas events occur instantaneously
and represent a state change in the world. Changes to the life cycle of an activity are
reflected by means of activity events. In section 6 twelve generic activity state transitions
are described that correspond to twelve activity life cycle events.

An activity event type is an event type that describes a category of activity
state changes. Example: the activity event types ‘created’, ‘scheduled’, ‘assigned’,
‘revoked’, ‘started’, ‘factAdded’, ‘factRemoved’, ‘factUpdated’, ‘aborted’, ‘skipped’,
‘completed’ and ‘redone’.
An activity event is an event that corresponds to the state change of an activity.
Necessity: it is necessary that an activity event is about exactly one activity.
Necessity: it is necessary that an activity event has exactly one activity event
type. Example: anEventX, anEventX has type scheduled, anEventX is about
anActivityX.
A business fact event is an event that involves the state change of a business fact.
Necessity: a business fact event is about exactly one business fact.

The distinction between activity and event allows for reactive behavior. At each point
during execution the history of a business process instance might be inspected through the
use of an event query language. When an external event is added to the current state of
an activity, that activity enters a new state. In this new state, the activity can undergo an
additional transition as a reaction to the external event. Because this second transition is
also recorded as an activity event, the system keeps track of its own state, reflecting the
external (composite) events that have been reacted upon. The latter prevents the system
from reacting twice to the same event.

The fact type ‘role can subscribe to event type in context of activity type’ expresses
the visibility of events to agents in the context of an activity. It does not express how
agents are notified of the event, which can generally occur using either a pull, a push or
a publish-subscribe mechanism (Bailey et al., 2005). Furthermore, it is possible that the
visibility is constrained by so-called event subscription constraint business rules.

‘role can subscribe to event type in context of activity type’ is an SBVR:associative
fact type that expresses that an agent with a particular role can subscribe to an
event of event type in the context of an activity of activity type. Example: seller
can subscribe to completed in the context of ship.
‘agent perceives event’ is an SBVR:associative fact type that expresses that an
event is non-repudiable to a particular agent. Example: anAgentX perceives
anEventY.

5.3.6 Deontic assignment

Business regulations impose sequence and timing constraints on the activities in business
processes. In a software-release process, for instance, a new version may only be put in
production after it has been tested and approved. Similarly, in an order-to-cash process, an
order may only be shipped by the dispatching office after it has been accepted by a salesper-
son. Designers often think implicitly about these kinds of permissions and obligations when
modeling and hard-code their sequence and timing constraints in procedural, control-flow
based process models. Such procedural languages define an explicit order relation between
the activities in the process. What is lacking is a declarative approach that makes the
partial order relations due to legal requirements more explicit. Bons et al. (1995) identify

5.3 The EM-BrA2CE Vocabulary 31

this need to incorporate the legal state into the model of a trade procedure. To this end,
the authors propose to annotate the states in Petri nets with a description of the deontic
state. Regulations can be specified between the business partners in a business collabo-
ration (between external agents). In this context regulations are called business protocols
Bussler (2001) or business contracts. Several authors describe a language for intelligent
agents to reason about contract state (Maŕın and Sartor, 1999; Yolum and Singh, 2004;
Knottenbelt and Clark, 2004; Governatori, 2005; Paschke and Bichler, 2005; Goedertier
and Vanthienen, 2006b).

In the vocabulary the legal permissions and obligations that originate from business
regulations are called deontic assignments. A deontic assignment represents among others
the obligation or permission of an agent to perform a particular activity by a particular
due date.

A deontic assignment is an individual concept that represents an obligation,
prohibition, permission, conditional obligation or conditional permission of an
agent towards another agent (beneficiary) regarding the performance of an activity
with respect to a given due date.
‘deontic assignment has due date’
‘deontic assignment involves activity’
‘deontic assignment has performer agent’
‘deontic assignment has beneficiary agent’
An obligation is a deontic assignment that represents the obligation of an agent
to perform a particular activity by a particular due date.
A permission is a deontic assignment that represents the permission of an agent
to perform a particular activity before a particular due date.

A deontic assignment can also be expressed conditionally. When an agent performs a
given activity a conditional deontic assignment may result from it. For instance, in the
shipment-after-payment process model visualized in Figure 6(b) a buyer makes a conditional
commitment when he places an order. In particular, a buyer has the conditional obligation
to pay the seller if the seller accepts the order. If the seller rejects the order, no obligation
results from it. The following definitions are included in the vocabulary:

An conditional obligation is a conditional deontic assignment that represents the
conditional obligation that rests on an agent to perform a particular activity before
a given due date, after – and on the condition that – a particular agent has done
a particular activity within a particular due date.
An conditional permission is a deontic assignment that represents the conditional
permission of an agent to perform a particular activity before a particular due
date, after – and on the condition that – a particular agent has done a particular
activity within a given due date.
‘conditional deontic assignment has conditional due date date’
‘conditional deontic assignment involves conditional activity’
‘conditional deontic assignment has conditional performer agent’
‘conditional deontic assignment has conditional beneficiary agent’

The existence of deontic assignments is entirely defined by temporal deontic rules and
is dependent on the historic behavior of agents playing a particular role in the context
of a composite activity. Deontic assignments should not be confused with the deontic
propositions of the SBVR. The Deontic propositions in SBVR resemble those of Standard
Deontic Logic (SDL) (Føllesdal and Hilpinen, 1971) and express that a particular state of
affairs is permissible, necessary, obligatory or prohibited. Like SDL the SBVR expresses

5.3 The EM-BrA2CE Vocabulary 32

the obligation to bring about a certain proposition in an impersonal way: it cannot express
the agent to whom a particular obligation or permission applies. Another difference with
deontic assignments is that deontic propositions are static; they cannot represent deontic
properties that come into effect and cease to hold because of timeouts on deadlines or other
events. Finally, the SBVR is not able to express so called contrary-to-duty obligations
(Governatori and Rotolo, 2002), reparative obligations that come into existence as the
result of the violation of an obligation. For instance, after a due date on an obligation to
pay has passed, a violation event occurs.

A violation event is an event that occurs when an agent does not perform an
obligation within the due date of that obligation.
Necessity: Each violation event is about exactly one obligation.

Many deontic logics are closed such that, for instance, prohibition can be derived from the
lack of either an obligation or a permission deontic assignment. It would however be unfair
to assume that a process modeler must specify deontic assignment rules for each activity
type that occurs within a process model. Therefore it is useful to indicate the activities
for which explicit deontic assignments must be derived in order to perform them. This is
expressed by the is-property-of fact type ‘activity type is deontically closed in state space’
(Segerberg, 1982).

‘activity type is deontically closed in state space’ is a fact type that expresses
that in each state based on the state space, the entire extension of every deontic
assignment that involves an activity of the activity type is given in the facts
included in the state.

When an activity type is deontically closed in a state space, prohibition is derived from
the absence of permission or obligation. When, in contrast, this is not the case, no deontic
assignment can be derived from the absence of information.

5.3.7 Non-functional, quality-of-service concerns

Given its origin in telecommunication, the term ‘quality of Service’ (QoS) at first sight has
little ado with business modeling. However, in the academic research involving web services,
the term quality of service refers to a number of non-functional quality requirements such
as availability, robustness, scalability, security and trust information (Roman et al., 2005).
QoS concerns are also business concerns that can be specified in a language that the business
understands. The vocabulary considers the following QoS concerns.

Spatial availability is a quality of service specification that determines the location
from which activities of a given activity type can be performed or that business
facts of a given business fact type can be accessed.
Temporal availability is a quality of service specification that determines the
amount of time during a time period that activities of a given activity type can
be performed or that business facts of a given business fact type can be accessed.
Response time is a quality of service specification that determines the maximum
time period it may take to perform a state transition on an activity of given ac-
tivity type or on a business fact of a given business fact type.
Throughput is a quality of service specification that determines the ratio of ac-
tivity state transitions or business fact accesses per unit of time.
Historic window is a quality of service specification that determines the time pe-
riod during which historic information about activity events or business concept

5.3 The EM-BrA2CE Vocabulary 33

manipulations must be stored.
Latency is a quality of service specification that determines the maximum delay
by which concept modifications are propagated.
Security is a quality of service specification that determines the identity, privacy,
alteration and repudiation facets related to performing activities or consulting
information.

Quality of service specifications can be imposed both on fact types (information) and
activity types (processes). QoS concerns must be both information- and process-aware
rather than exclusively information- or process-driven. This entails that Quality of Service
(QoS) specifications on information access should contain information about the activity (or
service) context in which information is retrieved. This is particularly important when the
same information (or facts) is required in the context of different activities with different
QoS requirements. For example, when verifying whether a customer is a high-volume
customer, it is not so important to have zero latency on the historic sales records that
are consulted. In contrast, when determining the total amount of outstanding debt with
a customer, it is likely that sales records must be consulted without latency. Clearly the
activity context in which information (facts) are retrieved is an important differentiator of
QoS specifications. This is reflected in the vocabulary:

‘Fact type must have temporal availability in the context of activity type’
‘Fact type must have spatial availability in the context of activity type’
‘Fact type must have response time in the context of activity type’
‘Fact type must have throughput in the context of activity type’
‘Fact type must have historic window in the context of activity type’
‘Fact type must have latency in the context of activity type’
‘Fact type must have security in the context of activity type’

QoS specifications on information (or fact types) must be process aware. This relation
also holds in the opposite sense: QoS specification on processes (or activity types) must be
information aware. The latter is particularly important when strict QoS specifications on
business processes are disproportionate with less strict QoS specifications on information.
The fact types ‘activity type can manipulate business fact type’ and ‘activity type can
make visible business fact type’ keep track of the business fact types that are accessed by
activities of a given activity type. It can be used to determine whether activity type QoS
specifications are aligned with fact type QoS specifications.

‘Activity type must have spatial availability’
‘Activity type must have temporal availability’
‘Activity type must have response time’
‘Activity type must have throughput’
‘Activity type must have historic window’
‘Activity type must have latency’
‘Activity type must have security’

5.3.8 Cost and time concerns

Cost and time concerns affect the coordination of activities (or services). For example, in
an order acceptation process, a sales representative will not include an expensive review
creditworthiness activity that is disproportionate with the insignificant amount of the order.
Likewise, a sales representative would not schedule a slow, time-consuming shipment for a
rush order of an important customer.

5.4 Business Rules in the EM-BrA2CE Framework 34

The performance of an activity (or service) inadvertently has financial implications.
When activities are performed among agents of different organizations, the financial im-
plication is called a price. When activities are performed among agents that pertain to
the same organization, the financial implication is called a cost. O’Sullivan et al. (2002)
discuss different techniques for agents (or service providers) to charge money for providing
their services and to settle payment. Within organizations cost accounting techniques are
usually put in place to determine the internally incurred cost of the activities (or services)
that are performed and corresponding incentive-compatible cost allocation models. The
EM-BrA2CE Vocabulary does not provide a vocabulary to express charging styles, settle-
ment models and allocation schemes in detail. Instead, it provides a single cost measure
that informs the coordinator of an activity about the expected financial impact of having
the activity performed.

Cost of performance is the cost that is incurred when performing a given activity.
‘Activity has an expected cost of cost of performance’ is an SBVR:is-property-of
fact type that represents the cost of performance that is expected to be incurred
prior to the start of the activity. Example: anActivityY has an expected cost of
4.5 euro.

Derivation rules can specify the fact type ‘activity has an expected cost of cost of performance’
based on the properties of the activity such as the activity type, the agent assigned to per-
form the activity, the object (or business id) of the activity and the scheduled due date of
the activity.

The performance of an activity (or service) inadvertently takes time. When performing
a coordination activity, a coordinating agent must take into account the scheduled due date
of the coordination activity. In particular, all required sub-activities in the execution plan
of the coordination activity must be completed prior to the completion of the coordination
activity. For instance, when a sales representative coordinates the processing of a sales
order, the order acceptation and shipment sub-activities must be completed before the
due date imposed on the coordination activity. Many non-functional properties influence
the time required for a service provider to perform an activity: capacity, throughput,
arrival rates. The EM-BrA2CE Vocabulary does not provide a vocabulary to express these
concerns. Instead, it provides a time measure that informs the coordinator of an activity
about the expected duration of performing an activity.

Duration of performance is the duration that is required to perform an activity.
‘Activity has an expected duration of duration of performance’ is an SBVR:is-property-of
fact type that represents the expected time needed to complete a particular ac-
tivity. Example: anActivityY has an expected duration of three working days.

Derivation rules can define the fact type ‘activity has an expected duration of duration of
performance’ based on the properties of the activity such as the agent assigned to perform
the activity and the object (or business id) of the activity .

5.4 Business Rules in the EM-BrA2CE Framework

This section identifies sixteen business rule types. They refer to one of the three aspects of
business process modeling that are generally considered (Jablonski and Bussler, 1996): the
control-flow, the data and the organizational aspect. The control-flow aspect of business
process models describes the activities and their execution order. The data aspect deals
with business and processing data, such as events that flow between the agents that are
internal or external to the process model. The organizational aspect provides information

5.4 Business Rules in the EM-BrA2CE Framework 35

Table 2: Business rule types

business rule type aspect modality

Temporal deontic rule control flow alethic
Activity precondition control flow alethic, deontic, guideline
Activity postcondition control flow alethic, deontic, guideline
Dynamic integrity control flow alethic, deontic, guideline
Activity cardinality control flow alethic, deontic, guideline
Serial activity constraint control flow alethic, deontic, guideline
Activity order control flow alethic, deontic, guideline
Activity exclusion control flow alethic, deontic, guideline
Activity inclusion control flow alethic, deontic, guideline
Reaction rule control flow alethic, deontic, guideline
Static integrity data alethic, deontic, guideline
Derivation rule data alethic, deontic, guideline
Activity authorization organization alethic
Activity allocation rule organization alethic, deontic, guideline
Visibility constraint organization alethic
Event subscription organization alethic

about the organizational structure in the form of human and machine roles responsible for
executing tasks. Table 2 indicates the model aspect of each business rule type identified in
the framework.

Ross (2003) advocates that business rules not always need to express strict necessities
but also guidelines or possibilities. Correspondingly, the SBVR standard classifies business
rules according to the intended modality as being either structural or operative (Object
Management Group, 2006b). Structural business rules express a necessity or impossibility
that cannot be violated without leaving the system in an inconsistent state. Operative
business rules express an obligation or a prohibition that agents can violate. To each
operative business rule a level of enforcement can be assigned that indicates the degree
in which a business rule must be enforced and allows to distinguish advice - what ought
to be true - from strict obligation - what should be true. In the remainder of this section
sixteen business rules as defined as specializations of structural or operative business rules or
guidelines. Table 2 indicates the possible modalities that can be attached to each business
rule type identified in the framework.

5.4.1 Providing Logical Foundations for Temporal Rules

The semantics of SBVR expressions is underpinned by first-order logic, Simple Deontic
Logic, restricted Higher-Order logic and reification. Although Structured English provides
two linguistic techniques to express temporal relationships: objectification (Object Man-
agement Group, 2006b, p. 59, p. 198) and intensional roles, it lacks a temporal logic
to represent and reason about temporal relationships. The inclusion of temporal logic is
deferred to a later version of SBVR (Object Management Group, 2006b, p. 93). The lat-
ter is likely to be required for the purpose of declarative process modeling. For instance,
looking at some existing languages for declarative process modeling, it can be observed
that the ConDec language of Pesic and van der Aalst (2006) makes use of Linear Temporal
Logic (LTL) to express business rules and that the PENELOPE language (Goedertier and
Vanthienen, 2006b) makes use of the Event Calculus to model the effects of performing ac-

5.4 Business Rules in the EM-BrA2CE Framework 36

tivities with respect to the coming into existence (or ceasing to exist) of temporal deontic
assignments. The following candidate temporal logics could be incorporated to define the
semantics of declarative process models:

• An event query language. At this point it might be useful to define a number of
event operators that are useful to query the event history of a particular activity.
To this end the event operators of Snoop (Chakravarthy and Mishra, 1994) could be
adopted that have been given interval semantics by Galton and Augusto (2002). The
negation event operator requires closure the EM-BrA2CE:event concept and of all
related event fact types in the EM-BrA2CE Vocabulary.

• Linear Temporal Logic (LTL). As demonstrated by Chomicki (1995) and Bacchus
and Kabanza (2000) and Pesic and van der Aalst (2006) (Past) LTL expressions can
be used to represent desirable or undesirable patterns within a history of events.
LTL is a modal temporal logic that allows to express temporal constraints on infinite
paths within a state space. LTL formula can be evaluated by obtaining the Büchi
automaton that is equivalent to the formula and checking whether a path corresponds
to the automaton. Unfortunately most LTL checking algorithms assume infinite paths
and construct non-deterministic automata (Pesic and van der Aalst, 2006). Another
disadvantage is that LTL does not allow to express the effect that results from a
particular transition in a state space. For these reasons, it is not evident to express
a goal state in LTL nor to construct automata for planning an execution scenario to
obtain a goal state (Bacchus and Kabanza, 2000).

• The Event Calculus. In first-order logic there is a formalism that elegantly cap-
tures the time-varying nature of facts, the events that have taken place at given time
points and the effect that these events reflect on the state of the system. This formal-
ism is called the Event Calculus. The Event Calculus, introduced by Kowalski and
Sergot (Kowalski and Sergot, 1986), is a logic programming formalism to represent
and reason about the effect of events on the state of a system expressed in terms
of fluents. The Event Calculus is appealing for several reasons. For instance, the
Event Calculus builds on a first-order predicate logic framework, for which efficient
reasoning algorithms exist. In addition the Event Calculus not only has the ability
to deductively reason about the effects of the occurrence of events events (leading
to the coming into existence of fluents or the ceasing to hold), most importantly, it
also has the ability of reasoning abductively. Abductive reasoning over the event
calculus has been shown to be equivalent to planning. In particular, abductive rea-
soning produces a sequence of transitions (denoted by events) that must happen for
a particular fluent to hold in the future (Eshghi, 1988; Shanahan, 1997; Van Nuffelen
and Kakas, 2001). For these reasons, the Event Calculus is a suitable language both
for specifying the semantics of state transitions in the EM-BrA2CE framework and
as a planning mechanism.

The business rules types that are introduced later in this section can be given a plethora
of logical foundations. Consequently, providing one particular logical foundations for these
rules would not be in keeping with the intent of EM-BrA2CE Framework to provide a
unifying vocabulary and execution model within which several knowledge representation
paradigms can be used separately of one another. Instead, the text relates the business
rule types to existing work in the literature and indicates which temporal logic could be
applied.

5.4 Business Rules in the EM-BrA2CE Framework 37

5.4.2 Semantic Formulation of Temporal Rules

As business rules are most often formulated as (natural) language statements, the SBVR
contains an English vocabulary for describing vocabularies and stating rules. The process-
ing of natural language pertains to the Artificial Intelligence domain of Natural Language
Processing (NLP). It involves on the one hand the understanding of natural language state-
ments in terms of semantic formulations (Baisley et al., 2005), and on the other hand the
verbalization of semantic formulations into natural language statements. To date, two
SBVR natural language parsers have been developed: the Unisys Rules Modeler (Baisley,
2005; Unisys, 2005) and SBeaVeR (Digital Business Ecosystem (DBE), 2007). These parsers
analyze the meaning of natural language expressions in terms of semantic formulations.

The kinds of semantic formulations described by the SBVR do not allow to represent
temporal knowledge (Object Management Group, 2006b, p. 39). In particular, it is not
possible to describe the semantic structure of business rules that discuss the relationship
between states and events or that define the effect of activities. The hereafter introduced
business rule types of the EM-BrA2CE Vocabulary are likely to require such semantic
formulations. However, including temporal semantic formulations requires choosing for a
particular logic to represent temporal knowledge. As this is not in keeping with the intent
of provide a unifying framework, semantic formulations are left outside the framework.

5.4.3 Control-flow: temporal deontic rule

Business policy and regulations contain a lot of implicit order and timing information. In
a trade community, for instance, different business protocols might exist for engaging in a
business interaction. Such business protocols lay down the obligations and permissions of
all business partners in an interaction and can be expressed in the form of temporal deontic
rules.

A temporal deontic rule is a structural business rule that defines when deontic
assignments come into existence or cease to exist based on the (non-)occurrence
of events.

The rules describe behavior from a third-person perspective and can, for instance, be
expressed in the PENELOPE language (Goedertier and Vanthienen, 2006b).

The displayed temporal deontic rules categorize the external business regulation payment-
after-shipment visualized in Figure 6(a). Assuming that the agents in a business interaction
do not intend to violate these deontic assignment rules, the resulting permissions and obli-
gations impose partial order constraints on the activities in a business process.

It is necessary that initially a buyer has the permission to perform a place order
activity.
It is necessary that when a buyer completes a place order activity, the seller has
the obligation to perform a accept order activity or a reject order activity within
2 time units.
It is necessary that when the buyer completes a place order activity, the buyer
has the obligation to perform a pay activity within 2 time units after the seller
completes the ship activity.
It is necessary that when the seller completes a accept order activity, the seller
has the obligation to perform a ship activity within 2 time units.

In the activity life cycle of the EM-BrA2CE Framework, a temporal deontic rule con-
strains schedule, start and redo activity state transitions. Temporal deontic rules indirectly

5.4 Business Rules in the EM-BrA2CE Framework 38

affect the sequence and timing of activities. An agent who coordinates an activity will try
to observe the deontic assignments that result from performing the activities. In addition,
the coordinator will take into account that other agents potentially could violate the deon-
tic assignments that are imposed on them. In particular, a coordinator will schedule the
activities such that he does not violate any permissions and that the deadlines on obliga-
tions are observed. Additionally, he will take appropriate action when other agents violate
the deadlines that are imposed on them.

5.4.4 Control-flow: activity precondition

Although any activity state transition can be constrained using preconditions, we only
consider preconditions imposed on the start and complete activity transitions to be business
rules. A precondition on the start transition is called an activity precondition:

An activity precondition is a business rule that defines the conditions that are
required to start an activity of a given activity type.
Example:
To start an accept order activity, it is necessary that a place order activity has
been completed and that no accept order or reject order activity has been started.
To start a reject order activity, it is necessary that a place order activity has been
completed and that no accept order or reject order activity has been started.
To start a ship activity, it is necessary that a accept order activity has been
completed and that no ship order activity has been started.
To start a pay activity, it is necessary that a accept order activity has been
completed, a ship order activity has been completed and that no pay activity has
been started.

In the Web Service Modeling Ontology (WSMO) (Roman et al., 2005), it is possible to
assign a precondition to a service capability. However, preconditions can only be expressed
in terms of (business) concepts. In particular, it is not possible to include event conditions
or to query the properties of activities. This limitation potentially has the disadvantage
that it is required to add artificial business concepts to a business vocabulary. For instance,
instead of stating that an order has been accepted, it is required to refer to a potentially
artificial business concept acceptation notice. The same activity preconditions, expressed
in terms of business concepts only, would then be formulated as:

To start an accept order activity, it is necessary that the order exists and does
not have an acceptation notice or a rejection notice.
To start a reject order activity, it is necessary that the order exists and does not
have an acceptation notice or a rejection notice.
To start a ship activity, it is necessary that the order the order has an acceptation
notice and does not have a shipping order.
To start a pay activity, it is necessary that the order the order has an acceptation
notice and the order has a proof of delivery and the order has not yet been paid.

Unlike the EM-BrA2CE Framework, WSMO makes a distinction between the state of the
information space and the state of the world. Because the EM-BrA2CE Framework is more
situated on the conceptual modeling level, no such distinction between the world and the
information system is made.

In the activity life cycle of the EM-BrA2CE Framework, an activity precondition con-
strains start and redo activity state transitions.

5.4 Business Rules in the EM-BrA2CE Framework 39

5.4.5 Control-flow: activity postcondition

A precondition on the complete transition is called an activity postcondition:

A business fact postcondition is a business rule that specifies the abstract state
of an activity of a particular activity type upon its completion.
Example:
To complete an activity that has type place order, it is necessary that the order
exists.
To complete an activity that has type accept order, it is necessary that the order
has an acceptation notice.
To complete an activity that has type reject order, it is necessary that the order
has a rejection notice.
To complete an activity that has type ship, it is necessary that the order has a
proof of delivery.
To complete an activity that has type pay, it is necessary that there exists a proof
of payment.

This constraint subsumes a mandatory constraint in the case handling paradigm and is
similar to a postcondition in WSMO. The case handling paradigm allows to specify which
case data types are free, mandatory or restricted with respect to performing an activity
of a particular activity type (van der Aalst et al., 2005). A free business fact type can
be manipulated in every sub-activity. A business fact type is mandatory for a particular
activity type, when a fact of this fact type is required for the completion of the particular
activity. A business fact type is restricted to a particular (or a number of) activity type,
when a fact of this fact type can only be manipulated in the context of an activity of
this type. van der Aalst et al. (2005) provide a means in which these constraints can be
operationalized by considering them as post conditions on the completion of a particular
activity. In WSMO, it is possible to assign a post condition to a service capability. However,
the same restriction applies as with respect to preconditions.

In the activity life cycle of the EM-BrA2CE Framework, an activity post condition
constrains complete activity state transitions.

5.4.6 Control-flow: reaction rule

A reaction rule or event-condition-action (ECA) rule is a business rule that ex-
presses the activities that are to be undertaken, given the (non-)occurrence of
certain events and a particular condition being fulfilled.

In spite of their apparent simplicity, business processes using only reaction rules cannot
be classified as being declarative process models. The reason is that process models that
are composed of reaction rules only constitute an explicit execution scenario that risks to
be over-specified and can be regarded to be as procedural as control-flow based models.
What is needed is a hybrid approach, in which the freedom of choice that is left by other
business rules is filled in – when required – by a small set of reaction rules. Therefore,
reaction rules are considered among other business rules to specify behavior, but constitute
by themselves no means for declarative process modeling. Another problem is that ECA
rules and reaction rules in general lack comprehensibility. It is difficult to understand even
a small number of reaction rules. To tackle the comprehensibility problem, reaction rules
need to be grouped in small sets of reaction rules that display mutually exclusive behavior
for a given situation. This can be addressed by grouping reaction rules into so-called
decision points (Goedertier and Vanthienen, 2005). The properties of relevant abstract

5.4 Business Rules in the EM-BrA2CE Framework 40

states in the execution model of a business process can be used to describe decision points.
For example, the above discussed payment-after-shipment temporal deontic rules, state
that a seller has the obligation to either accept or reject an order, when a buyer places
an order. Although possible from a modeling perspective, the protocol does not stipulate
what the buyer must do in case the seller, for instance, rejects the order. This freedom of
choice can be represented as an abstract state or decision point that is described by the
following abstract state expression:

An agent of role seller has the obligation either to accept or reject an order.

From this abstract state a number of mutually exclusive abstract states can be derived:
the seller has accepted the order, the seller has rejected the order or the order times out.
Reaction rules can impose a suitable reaction to each of these states:

When an order is rejected and if the order is critical , then notify a purchase
representative.
When an order is rejected and if the order is not critical , then reorder with a
different seller.
When an order times out and if the order is critical , then notify a purchase
representative.
When an order times out and if the order is not critical , then reorder with the
same seller.

In the activity life cycle of the EM-BrA2CE Framework, a reaction rule defines start

activity state transitions.

5.4.7 Control-flow aspect: dynamic integrity constraint

Within the context of an activity, agents can manipulate business facts that are related
to the activity. There are, however, conditions on the state change of business facts that
could prevent an activity from taking place. Wagner (2003) calls such conditions dynamic
integrity constraints.

A dynamic integrity constraint is a business rule that defines the admissible state
changes of a business fact.
Example: After the start of a ship activity, the order lines of the order can no
longer be changed.

Activities always remain implicit in these rules as the fact type ‘activity type can manipulate
business fact type’ already relates activities to business fact types.

In the activity life cycle of the EM-BrA2CE Framework, a dynamic integrity constraint
constrains start, redo, addFact, removeFact and updateFact activity state transitions.

5.4.8 Control-flow aspect: activity cardinality constraint

An agent that performs a composite activity, actually constructs an execution plan. This
coordination work involves, among others, the creation of a number of activities. Although
the composites of a coordination plan are defined by the ‘activity type can consist of
activity type’ fact type, the fact type does not impose any restrictions on the number of
such activities that may be included in the execution plan. For instance, an execution plan
in the context of a handle purchase order activity might involve two separate ship activities,
but it may only contain one accept order activity. Such cardinality restrictions are imposed
by activity cardinality constraints.

5.4 Business Rules in the EM-BrA2CE Framework 41

A activity cardinality constraint is a business rule that limits the number of activ-
ities of a particular activity type that occurs within the context of a same parent
(coordination) activity.
Example:
There exists exactly one place order activity1 that has parent a handle purchase
order activity2.
There exists at most one accept order activity1 that has parent a handle sales
order activity2.

This business rule type can be expressed in the ConDec language with so-called existence
constraints.

In the activity life cycle of the EM-BrA2CE Framework, an activity cardinality con-
straint constrains create, start and redo activity state transitions.

5.4.9 Control-flow aspect: serial activity constraint

When coordinating a composite activity, it is also relevant to know whether two activities
can be performed concurrently. This is expressed by a serial activity constraint.

A serial activity constraint is a business rule that imposes that activities belonging
to a particular set of activity types must not be performed in parallel.
Example:
Activities that have type place order, accept order, reject order and ship order
must not be performed in parallel.

Sadiq et al. (2005), for instance, include serial activity constraints in their constraint spec-
ification framework.

A serial activity constraint constrains schedule, start and redo activity state transitions.

5.4.10 Control-flow aspect: activity order constraint

An order constraint on two activities is a stronger condition than a seriality constraint.

An activity order constraint is a business rule that imposes that activities of
particular activity types must be performed in a specified order.
Example:
An accept order activity1 can only start after a place order activity2 has completed.

This can, for instance, be expressed with an order constraint in the constraint specification
framework of Sadiq et al. (2005) or with different types of relation constraints in the ConDec
language. The ConDec language, in particular, allows for expressing a

In the activity life cycle of the EM-BrA2CE Framework, an activity order constraint
constrains schedule, start and redo activity state transitions.

5.4.11 Control-flow aspect: activity exclusion constraint

An activity exclusion constraint is a business rule that imposes that two activities
of a particular activity type are mutually exclusive.
Example:
It is necessary that accept order and reject order activities are mutually exclusive.

This can, for instance, be expressed with an exclusion constraint in the constraint specifi-
cation framework of Sadiq et al. (2005) or with different types of negation constraints in
the ConDec language.

5.4 Business Rules in the EM-BrA2CE Framework 42

In the activity life cycle of the EM-BrA2CE Framework, an activity exclusion constraint
constrains create, start and redo activity state transitions.

5.4.12 Control-flow aspect: activity inclusion constraint

An activity inclusion constraint is a business rule that imposes that two activities
of a particular activity type are mutually inclusive.
Example: It is obligatory that accept order and ship activities are mutually inclu-
sive.

This can, for instance, be expressed with an inclusion constraint in the constraint specifi-
cation framework of Sadiq et al. (2005).

In the activity life cycle of the EM-BrA2CE Framework, an activity inclusion constraint
constrains complete activity state transitions.

5.4.13 Data aspect: Static integrity constraint

The performer of an activity can perform particular manipulations (addition, removal or
update) of business facts. These state transitions are among others subject to particular in-
tegrity constraints. Integrity constraints involve cardinality constraints, domain constraints
and the like.

A static integrity constraint is a business rule that constrains the domain over
which business facts can range by expressing a logical assertion that can, cannot,
must or must not remain true (Wagner, 2003).
Example:
It is necessary that each order has at least one order line.
It is advisable that the agreed price of a sales item is less or equal to the standard
price of the sales item.

Integrity constraints can be operationalized by verifying whether the manipulation of a
business fact (addition, removal and update) would lead to a violation of the integrity
constraint. Not every integrity constraint needs to be evaluated. For instance, only those
integrity constraints that range over a fact type that is currently being manipulated. In the
database literature efficient algorithms have been proposed for static constraint verification
(Gupta et al., 1994).

In the activity life cycle of the EM-BrA2CE Framework, a static integrity constraint
constrains addFact, removeFact and updateFact activity state transitions.

5.4.14 Data aspect: derivation rule

Almost any knowledge representation language allows to express so-called derivation or
deduction rules.

A derivation rule is a business rule that defines a business fact in terms of existing
business facts (Wagner, 2003).
Example:
It is necessity that a luxury product has a value-added-tax of 20 percent.
It is advisable that an order has a 10 percent discount if the order is from a loyal
customer.

5.4 Business Rules in the EM-BrA2CE Framework 43

A derivation rule can have a deontic instead of an alethic nature. In other words, derivation
rules can be SBVR:structural business rules or SBVR:operative business rules. These rule
types require a different execution semantics. For instance, a business rule might recom-
mend a particular price, but leave a salesperson with the freedom of choice of determining
a custom-tailored prices.

In the above explained non-monotonic setting, each time facts of this fact type are
required (for instance in the context of evaluating another business rule) the derivation rule
can be consulted. Consequently, derivation rules augment the fact base (SBVR:conceptual
model) during the processing of state transition requests. However, when a state transition
occurs all derived facts are not automatically transferred to the new state. Reasoning
paradigms such as backward chaining automatically support this execution semantics.

In the activity life cycle of the EM-BrA2CE Framework, a derivation rule constrains
addFact and updateFact activity state transitions.

5.4.15 Organization aspect: activity authorization constraint

An activity authorization constraint allows to constrain the agent-role assignments that
can be granted to an agent. For instance, the fact ‘sales representative can perform accept
order’ is constrained by the rule that sales orders larger than 2000 euro cannot be reviewed
by junior sales representatives.

An activity authorization constraint is a structural business rule that dynamically
constrains the activities that can be assigned to an agent on the basis of the
properties of the activity, the business facts in its state space and the properties
of the agent.
Example: It is necessary that an agent that has age less than 18 years can not
perform a place order activity.
It is necessary that an agent that has function junior sales representative can not
perform an accept order or reject order activity that is identified by an order that
has an amount larger than 2000 euro.

A similar kind of rule has been described by Strembeck and Neumann (2004) in the context
of the Role-based access control (RBAC) standard Sandhu et al. (1996); Ferraiolo et al.
(2001); InterNational Committee for Information Technology Standards (INCITS) (2004).

In the activity life cycle of the EM-BrA2CE Framework, an activity authorization con-
straint constrains assign activity state transitions.

5.4.16 Organization aspect: activity allocation rule

It is possible that agents have the authorization to perform a particular activity, but that
they are not the primary designated performers of a task. Activity allocation rules are
guidelines that indicate to what extent assigning an activity to an agent is desirable.

An activity allocation rule is an operative business rule that indicates the assigning
of an activity to a particular agent as an obligation or a prohibition. In both cases a
level of enforcement indicates the degree to which such an assignment is desirable.
Example: It is not advisable that an agent that has function purchase department
head is assigned to an activity that has type archive document.

Whereas activity authorization constraints deal with authorization, activity allocation rules
deal with the fair distribution of work.

In the activity life cycle of the EM-BrA2CE Framework, an activity authorization con-
straint constrains assign activity state transitions.

Declarative Process Modeling: A Vocabulary and Execution Model 44

5.4.17 Organization aspect: visibility constraint

The fact type ‘Activity type can make visible business fact type’ indicates the business fact
types that can be made visible in the context of an activity. It is possible to constrain the
visibility of facts with visibility constraints.

A visibility constraint is a structural business rule that dynamically constrains
the visibility of business facts within an activity according to the properties of the
activity, the business facts in its state space and the agent that has been assigned
to the activity.
Example: Coordinate purchase order can make visible the business fact type ‘order
has rejection notice’
It is necessary that a rejection notice is only visible to an agent that is a corporate
customer.

5.4.18 Organization aspect: event subscription constraint

The fact type ‘role can subscribe to event type in context of activity type’ expresses the vis-
ibility of events to agents in the context of an activity. With event subscription constraints
is it possible to conditionally limit the visibility of events.

A event subscription constraint is a structural business rule that constrains the
conditions under which agents who have a particular role in the context of an
activity can perceive the occurrence of an activity event.
Example: A seller can subscribe to completed in the context of ship.
A buyer can subscribe to completed in the context of ship.
It is not possible that an agent that has role buyer perceives an event that is about
a ship activity for an order that has a total amount of less than 2000 euro.

When an event occurs, each agent who has a particular role in the context of the activity
and whose role is subscribed to the event type and for whom no subscription constraints
apply, can perceive the event. Consequently, the event is non-repudiable to external agents
such that any legal obligation that results from the event can be enforced.

6 An Execution Model for Declarative Process Modeling

Few process languages have a formal execution model. The Business Process Modeling
Notation (BPMN) (Object Management Group, 2006a; Wohed et al., 2006) and UML
Activity Diagrams Object Management Group (2005); Störrle and Hausmann (2005), for
instance, lack such formal semantics. It is nonetheless difficult to unambiguously describe
the meaning of a language in terms of informal, natural language. In addition a formal
execution model allows to reason about language properties and to check whether a process
model possesses much desired temporal properties. The latter is the case for Petri nets and
WorkflowNets, for instance. These languages have a algebraical notation that is useful for
defining and proving formal properties of the language and for state space analysis. In
this section, an execution model is defined for declarative process models that have been
modeled using the EM-BrA2CE Vocabulary.

6.1 Business Rules in the Activity Life Cycle

A common idea of declarative business process modeling is that a process is seen as a trajec-
tory in a state space and that declarative constraints are used to define the valid transitions

6.1 Business Rules in the Activity Life Cycle 45

in that state space (Bider et al., 2000). Accordingly, in the EM-BrA2CE Framework each
business process can be modeled by describing the state space of each (composite) activity
type and the set of business rules that constrain transitions in this state space. In terms of
the EM-BrA2CE Vocabulary the state space of an activity type can be described by a set
of facts about the roles, sub-activity types (if any), business concept types, business fact
types and event types that are relevant in describing the state of activities of the activity
type.

The possible movements within a business process’ state space, can be described by
twelve generic activity state transitions that represent a change in the life cycle of an
activity in a business process. Because these transitions are generic they provide a means
of defining an execution model for the EM-BrA2CE Framework. At each state a worker
or coordinator might request a particular state transition to occur. This is modeled with
the following state transition requests:

• create(AId,AT,BId, PId, CoordinatorId): requests the creation of a new activity
AId of type AT with business identifiers BId, parent activity PId by an agent
CoordinatorId. Activity event types: created, createRejected.

• schedule(AId,DueDate, CoordinatorId): requests the due date of activity AId to
be set to DueDate by an agent CoordinatorId. Activity event types: scheduled,
scheduleRejected.

• assign(AId,AgentId, CoordinatorId),revoke(AId,AgentId, CoordinatorId): requ-
ests the assignment or revocation of the assignment of activity AId to an agent
AgentId by an agent CoordinatorId. Activity event types: assigned, assignRejected,
revoked, revokeRejected.

• start(AId,WorkerId): requests an activity AId to start by an agent WorkerId.
Activity event types: started, startRejected.

• addFact(AId,C,WorkerId), removeFact(AId,C,WorkerId), updateFact(AId,C1,

C2,WorkerId): requests the addition or removal of business fact C or the update of
a business fact C1 by C2 within the context of activity AId by an agent WorkerId.
Activity event types: factAdded, factUpdated, factRemoved, addFactRejected,
updateFactRejected, re− moveFactRejected.

• complete(AId,WorkerId): requests the completion of activity AId by an agent
WorkerId. Activity event types: completed, completeRejected. Upon completion
of an activity, all business fact manipulations are committed to change to globally
visible business facts.

• skip(AId,CoordinatorId), abort(AId,CoordinatorId), redo(AId,CoordinatorId):
requests to skip, abort or redo an activity AId by an agent CoordinatorId. Activity
event types: skipped, skipRejected, aborted, abortRejected, redone, redoRejected.

Figure 13 illustrates a number of state transitions that occur to a place order activity a1.
Each state transition results in a new set of concepts and ground facts, and thus a new
state, that are partially represented in the columns of the figure. As each new activity
state is considered to be a new SBVR:conceptual model, deductive reasoning can use a
monotonic reasoning paradigm (Object Management Group, 2006b, p. 77). The current
state of an activity determines which state transitions can occur. These state transitions
might be subject to business and non-business concerns. The Petri net of Figure 14 models
the allowable sequences of transitions in the activity life cycle as imposed by non-business

6.2 A CP-Net-based Execution Model 46

concerns. In the next section the semantics of the state transitions with regard to their
effect on the state of an activity are explained in detail using a CP-Net model.

time

assign(a1,agent1,...) complete(a1,agent1)

has(order1,line1) has(order1,line1)
agent1 agent1 agent1

a1 a1 a1 a1
e1,e2 e1,e2,e3 e1,e2,e3,e4,e5 e1,e2,e3,e4,e5,e6

…,(e2,scheduled) …,(e3,assigned) …,(e5,factAdded) …,(e6,completed)
(a1,agent1) (a1,agent1) (a1,agent1)

business facts
agent

activity
event

has type
has performer

...

addFact(a1,[...],...)schedule(a1,duedate1,….)

Figure 13: An illustration of the state transitions of a place order activity a1

These twelve transitions represent work coordination work, and exception handling.
The create, schedule, assign, and revoke transitions represent coordination work that is
to be executed by a coordinator agent as part of constructing an execution plan. The
start, addFact, removeFact and updateFact transitions represent the actual work that
is to be executed by a worker agent. The skip, abort and redo transitions represent the
coordination work related to exception handling.

Business rules constrain the transitions in a state space. Informally, it suffices to check
prior to the occurrence of a state transition whether relevant business rules will be violated
or not. When no business rule is violated, the state transition can take place. When, on
the other hand, the transition would lead to an intolerable violation of a business rule, the
state transition is prevented from taking place. In each state an agent might request a
particular state transition to occur. Table 3 indicates which business rule types constrain
which state transition types.

6.2 A CP-Net-based Execution Model

In this section a formal execution semantics for the EM-BrA2CE framework is provided
in terms of timed Colored Petri Nets (CP-Net). There are several reasons for choosing
CP-Nets. First of all, CP-Nets have a formal semantics (Jensen, 1993, 1996). Furthermore
CP-Nets represent an expressive, high-level modeling language that portrays more modeling
convenience compared to, for instance, classical Petri nets. Although each CP-net can be
translated into a classical Petri net and vice versa, this does not guarantee the suitability
of Petri Nets for modeling in practice (Jensen, 1993). In particular, it is difficult to model
data manipulations with classical Petri nets, not allowing for token colors. Another reason
for using CP-Nets is that CP-Net models can be simulated, making CP-Nets suitable for
rapid prototyping process models and for generating artificial data sets of event logs that
can later be used to evaluate the performance of process mining algorithms (Goedertier
et al., 2007b). Additionally, CP-Nets allow for formal state space analysis that would,
in theory, allow for directly analyzing the state space of individual declarative business
process models. However, the inclusion of fact-oriented case data and event history into
the state space of process models can be expected to result in too large a state space for
analyzing realistic models. Consequently, reduction techniques would have to be put in
place to reduce the state space into a state space of interest.

Jensen (1996) provides an extensive introduction to the semantics and analysis methods
of CP-Nets. Throughout this section the semantics of CP-Nets in terms of their differences
to classical Petri nets will be informally discussed whenever a new language construct is
encountered.

6.2 A CP-Net-based Execution Model 47

S
k
ip

S
c
h
e
d
u
le

R
e
d
o

C
o
m

p
le

te

S
k
ip

U
p
d
a
te

F
a
c
t

R
e
m

o
v
e
F
a
c
t

A
d
d
F
a
c
t

A
b
o
rt

S
ta

rt

R
e
v
o
k
e

A
s
s
ig

n

C
re

a
te

S
c
h
e
d
u
le

n
o
ts

ta
rt

e
d

n
o
ta

s
s
ig

n
e
d

n
o
ts

c
h
e
d
u
le

d
s
c
h
e
d
u
le

d

a
s
s
ig

n
e
d

s
ta

rt
e
d

c
o
m

p
le

te
d

s
k
ip

p
e
d

a
b
o
rt

e
d

a
c
ti
v
e

F
ig

u
re

1
4
:

A
C

P
-N

et
m

od
el

o
f
th

e
a
ll
o
w
a
bl

e
a
ct

iv
it
y

st
a
te

tr
a
n
si

ti
o
n
s

in
th

e
E
M

-B
rA

2
C

E
ex

ec
u
ti
o
n

m
od

el

6.2 A CP-Net-based Execution Model 48

Table 3: Relating transition types to business rule types

c
re

a
te

sc
h
e
d
u
le

a
ss

ig
n

re
v
o
k
e

st
a
rt

a
d
d
F
a
c
t

re
m

o
v
e
F
a
c
t

u
p
d
a
te

F
a
c
t

c
o
m

p
le

te

sk
ip

a
b
o
rt

re
d
o

Temporal deontic rule x x x
Activity precondition x x
Activity postcondition x
Dynamic integrity x x x x x
Activity cardinality x x x x
Serial activity constraint x x x
Activity order x x x
Activity exclusion x x x
Activity inclusion x
Reaction rule x x x
Static integrity x x x
Derivation rule x x
Activity authorization x
Activity allocation rule x
Visibility constraint
Event subscription

6.2.1 Places and Color Sets

Just as in classical Petri nets the state or marking of a CP-Net is represented by the
tokens that reside in each of the places of the CP-Net at a particular moment. Unlike
classical Petri nets, however, CP-Nets allow to associate a data type, called a token color,
to each place in the CP-Net such that only tokens of an indicated token color may reside
in that place. It is possible for places to contain tokens prior to the occurrence of any state
transition in the net. Such a start state or initial marking can be defined in terms of
initialization expressions for a particular place. The state space of an EM-BrA2CE process
model can be modeled using four places, depicted in Figure 15:

• an agent place of color AGENT of which the tokens represent the agents that can coor-
dinate or perform activities. A domain specific function initAgents() can be used to
define the agents that are initially present.

• an activity place of color ACTIVTY of which the tokens represent the (composite) ac-
tivities that are coordinated or performed by agents. The initial marking this place
consists of a so-called rootActivity, that is parent to all other activity instances.

• a businessfacts place of color FACTLIST that holds one list token representing a list of
business facts that can be manipulated by performing activities. A domain specific
function initFacts() can be used to define the initial business facts, such as properties
of agents, that are present in the system.

• an eventhistory place of color EVENTLIST that holds one list token representing an
ordered list of historic events that have taken place throughout the life cycle of indi-
vidual activity instances. This place contains the empty list [] as initial marking.

6.2 A CP-Net-based Execution Model 49

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

Figure 15: The CPN places that span the state space of declarative business process models

This representation depicts how state in the EM-BrA2CE is constituted of a current state
of affairs represented by the agent, activity and businessfacts places and a history of past
business events, represented by the eventhistory place. There is some redundancy in this
conception of business process state: the current state of affairs can always be obtained by
“replaying” the history of past business events. However, this redundancy can be introduced
without loss of generality. Moreover, not having to calculate the current state of the process
model facilitates process modeling and improves efficiency of simulations.

In the source code below this paragraph, the above token colors are defined in terms of
Standard ML (Milner et al., 1990), a functional programming language with compile-time
type checking and type inference. The fact-oriented metamodel of the EM-BrA2CE Vo-
cabulary is translated into the color sets FACT, CONCEPT and AGENT, which are here treated as
synonyms. These color sets represent a quadruple consisting of a statement identifier (for
reification purposes), a subject identifier, a predicate representing one of the fact types and
a value. For instance, the fact that a worker workerX belongs to department departmentY is
now represented as a quadruple (statementZ,workerX,fromDepartment,departmentY). To express
the existence of an individual concept workerX of concept type agent the following quadru-
ple can be constructed: (statementZZ,workerX,has as type,agent). This form of knowledge
representations corresponds to RDF with reification (W3C, 2004), one of the foundation
languages of the Semantic Web. Notice treating FACT and CONCEPT as synonyms is a simpli-
fication of the SBVR ontology language. However, the simplification is only a limitation in
the context of higher-order typing. The idea of representing agents as tokens in a CP-Net
is, among other, present in van der Aalst’s (1998) representation of workflow.

colset AGENTid = int with agentL..agentU;

colset CONCEPTid = int with cL..cU;

colset VALUE = union nb:INT + st:STRING + id:CONCEPTid;

colset NOUNCONCEPTTYPE = subset STRING with [...];

colset VERBCONCEPTTYPE = subset STRING with [...];

colset FACTTYPE = union nount:NOUNCONCEPTTYPE + verbt:VERBCONCEPTTYPE;

colset FACT = product (*the statement id*) CONCEPTid *
(*the subject id*) CONCEPTid *
(*the predicate*) FACTTYPE *
(*the object/value*) VALUE;

colset FACTLIST = list FACT;

colset CONCEPT = FACT;

colset AGENT = CONCEPT;

The ACTIVITY color set is a septuple composed of an integer that denotes the non-business
activity identifier, an activity type, a business id that is a list of business concepts that
uniquely identify the activity, an activity identifier that denotes the immediate parent ac-
tivity, an agent identifier that denotes agent that is currently assigned as the coordinator or
performer of the activity, a time indication that denotes the due date by which the activity
is to be performed, an event list that keeps track of the concept manipulation events that
have occurred within the context of the activity. In addition activity is defined as a timed
token. This allows to model time evolution. The idea of representing individual activities

6.2 A CP-Net-based Execution Model 50

as tokens in a CP-Net is based on Guenther and van der Aalst’s (2005) representation of
Case Handling in CP-Nets.

colset ACTIVITYid = int with aL..aU;

colset ACTIVITYTYPE = subset STRING with [...];

colset ACTIVITY = product (*the activity id*) ACTIVITYid *
(*the activity type*) ACTIVITYTYPE *
(*the business id*) FACTLIST *
(*the parent id*) ACTIVITYid *
(*the coordinator/worker*) AGENTid *
(*the due date*) TIMESTAMP *
(*transaction events*) EVENTLIST

(*timed token*) timed;

The EVENT color represents the activity events that have occurred. It is a septuple
represented as the cardinal product of an activity identifier, an activity type, a business id
that is a list of business concepts that uniquely identify an activity, an event type denoting
the nature of the activity state transition, an agent identifier that denotes the agent who
has brought about the state transition, a list of facts that specify the event and a time
indication that denotes the time at which the state transition has occurred. The idea
of incorporating history into an event history token stems from van Hee et al. (2006b),
Although the authors do not propose to incorporate activity events but rather propose to
incorporate the consumption and production of tokens in each input and output place as
events.

colset EVENTTYPE = subset STRING with ["created","createRejected",

"scheduled","scheduleRejected",

"assigned","assignRejected",

...,

"completed","completeRejected"];

colset EVENT = product (*the activity id*) ACTIVITYid *
(*the activity type*) ACTIVITYTYPE *
(*the business id*) FACTLIST *
(*the event type*) EVENTTYPE *
(*the coordinator/worker*) AGENTid *
(*event parameters*) FACTLIST *
(*the time of occurrence*) TIMESTAMP;

colset EVENTLIST =list EVENT;

Because each place in a CP-Net can contain multiple tokens, possibly of the same token
color, the content of a place can be represented as a multi-set. This might raise the
question why both the businessfacts and the eventhistory place consist of exactly one list
token containing an ordered list of tokens. The reason for this modeling feature, is that
it cannot be foreseen at design-time how many tokens will actually be required in order
to fire a transition. For instance, it is not possible to foresee which and how many tokens
representing business concepts, business facts and events actually need to be inspected
when deciding upon assigning an agent to a particular activity. In addition, to trigger
a transition upon the non-presence of a token without using inhibitor arcs also requires
this modeling feature (Mulyar and van der Aalst, 2005). To overcome this problem, it
is required to take all business concept, business fact and event tokens into consideration
by removing a list with all tokens from both places, querying this list and returning a
potentially updated list of tokens upon termination of a transition.

6.2.2 The Create transition

As in classical Petri nets, the dynamics of CP-Nets come from transitions (represented as
rectangles). Places in CP-Nets are linked to transitions via input and output arcs. Input
arcs indicate that a particular transition may remove (consume) tokens from a particular

6.2 A CP-Net-based Execution Model 51

logs(e::es,eh)
parent

newcid

cid

aid+1 aid

cs

at

coordinator eh

1`parent ++ create(a,e)

Create

[businessIDs(at,cs,cid)=SOME(bidcs,newcs,newcid),
isParent(parent,at,bidcs,cs),
started(parent),
canCoordinate(coordinator,a,parent),
requestCreate(aid,at,bidcs,newcs,parent,coordinator,
cs,eh)=SOME(a,e::es)]

conceptID
ConceptId

initConceptId()

CONCEPTid

activityID

initActivityId()

ACTIVITYid

activitytype

initActivityType()

ACTIVITYTYPE

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

Figure 16: A CP-Net model of the Create transition

place, whereas a output arcs indicate that a transition may add (produce) tokens to a
particular place. Informally, a CP-Net transition may fire (fire rule) when on each input
place a required number of tokens can be found that together satisfy the guard condition
of that transition. As a result of firing, a transition consumes a number of tokens on each
input place and produces a number of tokens on each output place. The value and amount
of tokens consumed and produced in place can be manipulated through the use of arc
expressions.

The Create transition, depicted in Figure 16, is one of the most complex transitions in
an activity life cycle as it involves many aspects:

• the determination of the activity type

• the determination of the activity identifiers

• the determination of the parent activity

• the determination of the agent who coordinates the activity

• establishing whether the activity can be created

• logging the creation of an activity as an event in the event history

In the remainder of this section these aspects are discussed consecutively.
The determination of the activity type of the activity that is about to be created can

be modeled by consuming and producing an ACTIVITYTYPE token from the activitytype place
and binding it to the variable at. As the same token is consumed and produced by the
create transition, the incoming and outgoing arc are replaced by a bidirectional arc, that
is both an input and an output arc. Because the ACTIVITYTYPE token is not timed, it can
be consumed at the same modeling time for the creation of other activities. This pattern
applies to the whole CP-Net, such that it allows for the desired behavior that activity state
transitions can occur concurrently.

In the EM-BrA2CE Vocabulary activities have two identifiers: a non-business identifier
and a business identifier. The determination of a non-business identifier is modeled
using the “ID Manager” Pattern (Mulyar and van der Aalst, 2005). Initially the activityID

place stores one token with an integer value determined by initActivityID(). Each time the
Create transition fires, the token is consumed and used as an identifier for the activity to
be created. In addition, the incremented integer value is produced on the output arc. By

6.2 A CP-Net-based Execution Model 52

incrementing and memorizing the last identifier value, the uniqueness of the non-business
identifier can be guaranteed.

The determination of an activity business identifier is more complex as it involves
real-world business concepts. In some cases, the creation of a activity will (in part) involve
the creation of a new business concept whilst in other cases the creation of an activity only
involves the identification of existing business concepts. For instance, when a customer
applies for credit, the activity applyForCredit might be identified by a new business concept
of type creditApplication representing the new credit application. In contrast, when a cus-
tomer wants to modify the requested duration of the credit, the activity requestChange might
be identified by the already existing creditApplication business concept. This complexity is
encapsulated within the guard condition businessIDs(at,cs,cid)= SOME(bidcs,newcs,newcid).
The function businessIDs(at,cs,cid) takes as input the variable at, a list of existing business
concepts, bound to the variable cs and a unique identifier for new business concepts to be
created, bound to variable cid. On its output the businessIDs either returns NONE when
it fails to determine suitable business identifiers or a triple SOME(bidcs,newcs,newcid) with
respectively the existing and newly generated business concepts and newcid with a properly
incremented value of cid.

Some activities can exist only within the life cycle of a (composite) parent activity,
whereas other activities can also be created independent from a parent activity. The latter
activities have rootActivity as their immediate parent. The logic of determining a proper
parent for an activity to be created is encapsulated in the isParent(parent,at,bidcs,cs)

guard condition. The input variable parent is bound to an ACTIVITY token from the activity

place. Additionally, for a child activity to be created, it required that the coordinating
parent activity has already started. This is expressed with the started(parent) guard con-
dition.

Upon creation of an activity is is unclear who will eventually perform the activity
until an activity is assigned to a particular agent. Until that period, the accountability
for an activity can be attributed to the coordinating agent (human or system) who
has created the activity. In order to determine the coordinating agent an AGENT token
is consumed and produced from the agent place and bound to the coordinator variable.
When activities are created within the context of a parent activity, the agent assigned to
the parent activity is also the coordinator of the new child activity. For instance, when
agentX has been assigned to the parent activity handleCreditApplication he is also identified
as the coordinator of a newly created child activity reviewCredit. When, in contrast, an
activity has the rootActivity as parent, an agent can only create an activity when it has to
role of an agent who can coordinate the particular activity. This logic is concealed in the
canCoordinate(coordinator,a,parent) guard condition.

Additionally, a set of domain-specific business rules might determine whether the spec-
ified activity can be created or not. The guard condition

requestCreate(aid,at,bidcs,newcs,parent,coordinator,cs,eh)=SOME(a,e::es)

is a hook that allows for the evaluation of business rules to check whether an activity
with the specified features can be created. The creation of an activity might depend on
the evaluation of strict business rules (hard constraints) and upon the freedom of choice
of agents not to follow general guidelines (soft constraints) with regard to the creation of
a particular activity. When no activity is to be created the function returns either NONE

resulting in a failure of the guard condition or SOME(a,e::[]) for which e is bound to an
event of type createRejected. When on the contrary an event must be created the function
returns SOME(a,e::es). In this case a is bound to a new activity token that is produced in
place activity. In addition, e is bound to an event of type created and es represents a list

6.2 A CP-Net-based Execution Model 53

1`parent++schedule(a,e,d) log(e,eh)

eh

cs1`a++1`parent

coordinator
Schedule

[active(a),
hasParent(a,parent),
d <= dueDate(parent),
canCoordinate(coordinator,a,parent),
requestSchedule(a,parent,coordinator,cs,eh,d)=SOME(e)]

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initConcepts()

FACTLIST

Figure 17: A CP-Net model of the schedule transition

of events that represents the newly created business concept identifiers (if any). The arc
expression 1‘parent ++ create(a,e) returns the parent token and, in the case of a successful
created event, a new activity token a. This activity token also receives a token time that
indicates the earliest time at which another activity state transition can occur. In this way,
time can be incorporated into the model. The events es are added as transaction events to
the newly created activity. Only when the activity completes these transaction events are
committed and affect the list of business concepts and facts cs.

Via the arc expression logs(e::es,eh) multiple events related to the Create transition are
incorporated in the event history, bound to the variable eh. The event e is of the event
type created or createRejected. Additionally, the events es, related to the newly created
identifying business concepts also need to be added to the event history.

6.2.3 The Schedule transition

Time aspects are often an important aspect in the coordination of activities. An important
timing aspect is the time point at which an activity is expected to be completed. In the
EM-BrA2CE Vocabulary this moment is called the due date of an activity. Due dates on
activities originate from (informal) service-level agreements, legal requirements or in-house
timing policies and strategic plans. When it becomes clear that an activity is not going
to be fulfilled before due date, coordinating agents must make alternative arrangements
to speed up the processing of the activity or the minimize the consequences of tardiness.
Making these arrangements is called deadline-based escalation by van der Aalst et al.
(2007). The authors classify a number of escalation mechanisms that can be put in place
and evaluate these mechanisms by means of simulation.

Figure 17 depicts the Schedule transition. In this transition the following aspects are
contained:

• the identification of the parent activity

• the identification of an agent who can coordinate the activity

• establishing whether the specified schedule does not violate any business constraints
or guidelines

• logging the scheduling of an activity as an event in the event history

In the remainder of this section these aspects are discussed consecutively.
In general, the life cycle of child activities is contained within the life cycle of a parent

activity. This means that activities are created only when their immediate parent activity

6.2 A CP-Net-based Execution Model 54

has already started. Furthermore, a child activity must be completed prior to the com-
pletion of its parent activity. This conception of composite activities has an important
consequence for scheduling activities: an activity cannot be scheduled with a due date
later than the due date of its parent. Both the activity to be scheduled a and its parent
activity parent are consumed from the activity place. Guard condition hasParent(a,parent)

ensures that parent is bound to the parent activity of a. Furthermore, guard condition
d <= dueDate(parent) ensures that the chosen due date d occurs before the due date of the
parent activity.

The agent who will schedule the activity, the coordinator, is identified via the guard
condition canCoordinate(coordinator,a,parent).

To check whether the chosen due date d does not violate any hard business constraints
and to model the freedom of choice with respect to observing soft business guidelines re-
garding deadlines, the Schedule transition has a requestSchedule(a,parent,coordinator,cs,eh,d)

= SOME(e) guard condition. Only when the function requestSchedule(a,parent,agent,cs,eh,d)

returns a scheduled event, the arc expression 1‘parent++schedule(a,e,d) will produce a par-
ent token and an activity token with updated due date. When the function returns a
scheduleRejected event, the activity token a will not be updated. When the function re-
turns NONE, the transition will not take place.

When the state transition occurs, either a scheduled or a scheduleRejected event is to be
incorporated within the event history. For optimization purposes, it can still be possible
to leave out some of the activities in the event history. These considerations are however,
not relevant to the discussion of the semantics of EM-BrA2CE.

6.2.4 The Assign and Revoke transition

The coordination of activities also requires a coordinating agent to assign the activity to
an agent who will perform the activity. Conversely, when an agent can no longer perform
an activity as planned, the assignment must be withdrawn. This is modeled in the CP-Net
by means of the Assign and, its counterpart, the Revoke transition depicted in Figure 18.
The following aspects are contained:

• the identification of the coordinating agent and the agent who will be assigned to the
activity

• checking whether the assignment or revocation does not violate any business con-
straints or guidelines

• logging the assignment of an activity as an event in the event history

In the remainder of this section these aspects are discussed consecutively.
For an agent to be assigned to an activity, the activity must not yet been assigned.

Conversely, for an assignment to be revoked, the activity must have been assigned to
an agent. This is respectively expressed by the not(assigned(a)) and assigned(a) guard
conditions.

To identify an agent that can coordinate the assignment or revocation of a worker to a
activity, an AGENT token must be bound to the coordinator variable that satisfies the guard
condition canCoordinate(coordinator,a,parent). To identify a worker agent, an AGENT token
must be bound to the worker variable in the assign transition.

To check whether an assignment or revocation does not violate any business constraints
or guidelines, respectively the

requestAssign(a,worker,coordinator,cs,eh)=SOME(e)

6.2 A CP-Net-based Execution Model 55

1`parent++assign(a,e,worker)
1`a++1`parent

log(e,eh)

eh

cs

1`worker++1`coordinator
Assign

[not(assigned(a)),
active(a),
hasParent(a,parent),
canCoordinate(coordinator,a,parent),
requestAssign(a,worker,coordinator,cs,eh)=SOME(e)]

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessconcepts

initFacts()

FACTLIST

(a) the Assign transition

log(e,eh)
1`parent++revoke(a,e)

coordinator

cs

eh

1`parent++1`a

Revoke

[assigned(a),
active(a),
hasParent(a,parent),
canCoordinate(coordinator,a,parent),
requestRevoke(a,coordinator,cs,eh)=SOME(e)]

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

(b) the Revoke transition

Figure 18: A CP-Net model of the Assign and Revoke transition

and

requestRevoke(a,coordinator,cs,eh)=SOME(e)

have been conceived. The variable e is bound to a event of type assign, assignRejected or
a revoked, revokeRejected respectively. In function of the event type, the assign(a,e,worker)

and revoke(a,e) arc expressions update the state of the activity bound to a or make no
activity state update.

6.2.5 The Start transition

Once an activity has been assigned to a worker agent, the activity can finally start. This
start of an activity marks the moment from which a worker can actually perform operations
that affect the environment or that collect information about the environment. Figure 19
represents the logic of the Start transition. As expressed by the not(started(a)) guard
condition, an activity can only start if it has not yet started. Moreover, the worker who
triggers the start transition must be a worker that has been previously assigned to to the
activity, as expressed by the assignedTo(worker,a) guard condition. The guard condition
requestStart(a,worker,cs,eh)=SOME(e) is once again used to check whether the starting of an
activity violates any existing business rules.

6.2.6 The fact manipulation transitions

During the performance of an activity a worker can bring about some changes in the
environment (the physical world) or retrieve some information from the environment. These
changes are reflected in the manipulation (the addition, removal or update) of business
concepts and facts that pertain to the state space of an activity. Business concepts and
facts, however, can be shared among multiple activities that reside within the (information)

6.2 A CP-Net-based Execution Model 56

astart(a,e)

eh

log(e,eh)
cs

worker
Start

[not(started(a)),
active(a),
assignedTo(worker,a),
requestStart(a,worker,cs,eh)=SOME(e)]

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

Figure 19: A CP-Net model of the Start transition

system. Therefore such manipulations can be treated in two different ways: a stateless and a
stateful approach. In a stateless approach each manipulation is immediately proliferated
to the entire system to alter the state of all other concurrent activities. Because the state of
activities does not differ from the state of the information system, this is called a stateless
approach. In a stateful approach manipulations immediately affect the state of the
activity, but manipulations are only carried through (committed) once the activity has
completed. Case handling, for instance, uses a stateless approach (van der Aalst et al.,
2005), whereas BPEL4WS uses a stateful approach (Curbera et al., 2003). Although both
approaches are equally meaningful, only the more complex stateful approach is modeled in
the CP-Net model of the data manipulation transitions.

Many different transaction handling mechanisms can be put in place to guarantee the
integrity of data manipulations, for example expressed in terms of “ACID properties” (how-
ever it is not always clear whether each ACID property is meaningful in a collaborative
environment (Dumas et al., 2005)). A solution based on locking, for instance, is the dis-
tributed Two-Phase Commit (2PC) protocol (Bernstein and Goodman, 1981). Case
handling tools such a FLOWer implement a 2PC transaction handling protocol. However,
the required locking of business facts during the long-running active part of an activity life
cycle is often seen as too restricting, inhibiting the concurrency of activities within business
processes. A solution to the concurrency problem is, for instance, offered by the Tentative
Hold Protocol (Roberts and et al., 2001). This protocol allows for tentative, non-blocking
holds or reservations to be requested when starting an activity. When a worker has manip-
ulated a business concept or fact in the contexts of performing an activity, other workers
that have taken reservations on this business concept are signaled that their reservations
do no longer hold and arisen conflicts are solved. Although transaction handling is a nec-
essary requirement, for reasons of clarity it has been left out of the CP-Net model of the
EM-BrA2CE activity life cycle.

Figure 20 represents a CP-Net model of the AddFact, RemoveFact and UpdateFact state
transitions. The following aspects are contained in the model and are consecutively dis-
cussed in the remaining paragraphs of this section:

• determining a unique concept identifier (statement id) in the case of addition

• identifying the business concept whose property is being manipulated (subject id)

• identifying the concept type of the fact to be manipulated (predicate)

• identifying the new value of the concept to be manipulated (concept value)

• identifying the worker as the worker that is assigned to the activity

• checking whether the manipulation does not violate any business rules

6.2 A CP-Net-based Execution Model 57

• logging the manipulation event and supplementing it to the activity transaction list
(stateful approach)

When a new concept or fact is added during the performance of an activity, this concept
or fact must be asserted to the system using a globally unique identifier identifying the
concept or fact as a reified statement (a statement id). The determination of such a
unique concept identifier is modeled using the “ID Manager” Pattern (Mulyar and van der
Aalst, 2005) and involves place conceptid, that forms a fusion place that shares the same
tokens with the previously discussed businessID place. In principle another globally unique
identifier is required when adding a noun concept. However, without loss of generality, it
can be assumed that a noun concept identifier is equivalent to the identifier of the statement
that asserts its existence.

The addition, removal or update of a business concept or fact requires the identification
of the concept type of the fact that is being manipulated. This is modeled with the
concepttype place, from which a CONCEPTTYPE token is taken and bound to the ct variable. In
the EM-BrA2CE Vocabulary concept or facts can only be manipulated by an activity of a
particular activity type in two cases: when either their concept type pertains to a concept
type that has been modeled as an input concept type or when the internal functioning of
the activity can manipulate a derived concept, without it being explicitly provided as an
input by a worker. These concerns are captured by the hasInputType(activityType(a),ct)

and canModifyFactType(activityType(a),ct) guard conditions.
When adding or updating a concept or fact a new value is to be generated. Such a value

of type VALUE can either be a number, a string or an identifier. Two non-business require-
ments can be formulated for concept values. First, both string and number values must
pertain to the domain of the concept type. In addition, values that refer to the business id
(subject id) of other business concepts must guarantee referential integrity. These concerns
are present within the generateFact(businessID:CONCEPTLIST,vcid:CONCEPTid,ct:CONCEPTTYPE)

function.
The manipulation of business concept facts might lead to the violation of hard and soft

business constraints that are specified on these business concept facts. For instance, during
a requestChange activity, a registered customer might remove earlier provided collateral in-
formation involving an open creditApplication. This might trigger a warning message (soft
or hard business constraint) that a creditApplication business concept is incomplete without
collateral information. The requestAddFact(a,worker,cs,eh,c), requestRemoveFact(a,worker,cs,
eh,c) and requestUpdateFact(a,worker,cs,eh,c1,c2) allow for checking compliance to such
business rules.

The arc expression log(e,eh) logs the data manipulations as activity events in the
event history. Nonetheless, data manipulations are not yet forwarded to affect the business
facts and concepts visible in the context of other activities. Instead data manipulations are
only carried through once the involved activity has properly completed (stateful approach).
Meanwhile every data manipulation event e is added to the transaction list of an activity
a by the functions addFact(a,c,e), removeFact(a,c,e) and updateFact(a,c1,c2,e). This trans-
action list is modeled as a list of data manipulation events and is included in the color set
of the ACTIVITY token. Upon completion of the activity, the transaction list is committed to
affect the globally visible business concepts and facts.

6.2.7 The Complete transition

When a worker completes an activity, the work represented by the activity is considered
to be completed and all data manipulations are proliferated to the entire system. After

6.2 A CP-Net-based Execution Model 58

eh

log(e,eh)

vcid

vcid+1
ct

worker
AddFact

[started(a),
active(a),
assignedTo(worker,a),
(hasInputType(activityType(a),ct) orelse
 canModifyFactType(activityType(a),ct)),
generateFact(businessID(a),vcid,ct)=SOME(c),
requestAddFact(a,worker,cs,eh,c)=SOME(e)]

conceptid
ConceptId

100

CONCEPTid

facttype

FACTTYPE.all()

FACTTYPE

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

cs
addFact(a,c,e)

a

(a) the AddFact transition

a
removeConcept(a,c,e)

eh

log(e,eh)

ct

cs

worker
RemoveFact

[started(a),
active(a),
assignedTo(worker,a),
(hasInputType(activityType(a),ct) orelse
 canModifyFactType(activityType(a),ct)),
findFactInActivityState(cs,a,ct)=SOME(c),
requestRemoveFact(a,worker,cs,eh,c)=SOME(e)]facttype

FACTTYPE.all()

FACTTYPE

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initfacts()

FACTLIST

(b) the RemoveFact transition

a
updateFact(a,c1,c2,e)

eh

log(e,eh)

ct

cs

worker
UpdateFact

[started(a),
active(a),
assignedTo(worker,a),
(hasInputType(activityType(a),ct) orelse
 canModifyFactType(activityType(a),ct)),
findFactInActivityState(cs,a,ct)=SOME(c1),
generateFact(businessID(a),#1 c1,ct)=SOME(c2),
requestUpdateFact(a,worker,cs,eh,c1,c2)=SOME(e)]

facttype

FACTTYPE.all()

FACTTYPE

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

(c) the UpdateFact transition

Figure 20: A CP-Net model of the fact manipulation transitions

6.2 A CP-Net-based Execution Model 59

completion, it is no longer possible for a worker to do supplemental business fact or con-
cept manipulations without reopening the activity instance (modeled as a Redo transition).
Figure 21 represents a CP-Net model of the Complete transition. The following aspects are
addressed:

• identifying the worker as the worker that is assigned to the activity

• verifying that the activity has no active child activities

• verifying whether the completion of the activity does not violate any hard or soft
business constraints

• committing the business fact manipulation transaction list to update the system’s
state accordingly

• logging the completion event and removing any activity events from the event history
that are not able to affect the life cycle of other activities (event garbage collection).

An activity can only complete if it has been previously started. This is expressed
with the started(a) guard condition. The worker who decides upon completing an activ-
ity must be a worker that has been previously assigned to to the activity, as expressed by the
assignedTo(worker,a) guard condition. The guard condition requestComplete(a,worker,cs,eh)=

SOME(e) is once again used to check whether the starting of an activity violates any existing
business rules.

The work of coordinating a number of activities within a business process is modeled as
a (composite) parent activity. Consequently, for a child activity to be created, it required
that the coordinating parent activity has already started. Conversely, for an activity to
complete it is required that the coordinating parent activity is still active. The latter
requirement is verified with the noActiveChildren(a,eh) guard condition.

As discussed in the previous section, the CP-Net model contained in this text models
the stateful approach with respect to business fact manipulation. During the execution of
an activity each business fact manipulation is added to a transaction list, modeled as a
list of data manipulation events included in the color set of the ACTIVITY token. Only upon
completion of an activity the transaction list is committed to affect the globally visible
business facts. This operation is modeled with the commit(cs,a,e) arc inscription.

The completion of an activity can trigger the creation or start of subsequent activities
that are temporally dependent upon the activity. In that case the completion of the activity
is a valuable event that needs to be retained in the event history. Other activity events
(such as events of type created or scheduled) are perhaps less valuable, because it is detected
that there exist no business rules that involve these activity events in relationship to life
cycle events of other activity types. As such events are not able to affect the life cycle of
other activities it is possible to remove them from the event history without side effects.
This is called event garbage collection. These concerns are concealed in the log(e,eh)

arc inscription.

6.2.8 The Abort, Skip and Redo transitions

In addition to creating, scheduling and assigning an activity, coordinating an activity could
also involve the canceling, the imperfect (incomplete) termination and reopening of an
activity. The latter activity life cycle events are respectively modeled as Abort, Skip and
Redo transitions, depicted in Figure 22.

Sometimes it is necessary for a coordinating agent to cancel or abort an active activity
or even an entire group of activities. Such cancelation might be part of natural behavior of

6.2 A CP-Net-based Execution Model 60

commit(cs,a,e)complete(a,e) a
log(e,eh)cs

ehworker
Complete

[started(a),
active(a),
assignedTo(worker,a),
noActiveChildren(a,eh),
allMandatoryInputPresent(cs,a),
requestComplete(a,worker,cs,eh)=SOME(e)]

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

Figure 21: A CP-Net model of the Complete transition

eh

log(e,eh)

1`parent++abort(a,e)
cs

1`parent+1`a

coordinator
Abort

[active(a),
started(a),
hasParent(a,parent),
canCoordinate(coordinator,a,parent),
noActiveChildren(a,eh),
requestAbort(a,coordinator,cs,eh)=SOME(e)]

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

(a) the Abort transition

eh

commit(cs,a,e) log(e,eh)1`parent++skip(a,e)

coordinator

cs1`parent++1`a

Skip

[active(a),
hasParent(a,parent),
canCoordinate(coordinator,a,parent),
noActiveChildren(a,eh),
requestSkip(a,coordinator,cs,eh)=SOME(e)]

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

(b) the Skip transition

eh

log(e,eh)rollback(cs,a,e)1`parent++redo(a,e)

cs1`a++1`parent

coordinator
Redo

[completed(a) orelse skipped(a) orelse aborted(a),
hasParent(a,parent),
canCoordinate(coordinator,a,parent),
noSubsequentActivities(a,eh),
requestRedo(a,coordinator,cs,eh)=SOME(e)]

activity

rootActivity()

ACTIVITY

eventhistory

[]

EVENTLIST

agent

initAgents()

AGENT

businessfacts

initFacts()

FACTLIST

(c) the Redo transition

Figure 22: A CP-Net model of the Abort, Skip and Redo transition

6.2 A CP-Net-based Execution Model 61

activities in other cases it might be required to abort an activity when an unforeseen excep-
tion occurs (Russell et al., 2006). For instance, in a purchase process it might be required
to request a price quote with a minimum number of suppliers. When a required number
of proposals are received from suppliers a purchase decision is made. At that moment any
remaining active request for quote activities can naturally be canceled out. When, on the
other hand, an external event would render the ongoing purchase unwanted, an exception
has occurred and all activities within the purchase process must be aborted. An activity
can only be canceled when it is in an active state, as modeled with the active(a) guard
condition. Furthermore, a parent (composite) activity cannot be canceled when it still has
active children, as modeled with the noActiveChildren(a,eh) guard condition. The seman-
tics of a “cascading abort”, in which all active children of a composite activity are aborted,
cannot be directly modeled within the current CP-Net, as it cannot be foreseen how many
activity tokens (children) need to be consumed from the activity place. However, such a
“cascading abort” can be seen as the occurrence of multiple abort transitions within the
CP-Net. Likewise, the CP-Net does not model so-called compensating activities – Although
present in the EM-BrA2CE Vocabulary. Compensation can be obtained by a combination
of an Abort and Create transition. Unlike the Complete transition, the Abort transition does
not commit the business fact manipulation events that pertain to the activity.

Skipping an activity is a form of imperfect completion of an activity, as it is not re-
quired that all mandatory business facts have been provided when skipping an activity.
Unlike the Abort transition, the Skip transition does commit every business fact manipu-
lation event that has occurred during the life cycle of an activity. This is modeled with
the commit(cs,a,e) arc inscription. The possibility of skipping an activity stems from the
case handling paradigm (van der Aalst et al., 2005) and allows a coordinator to by-pass an
activity when it is no longer deemed required. In the case handling case, however, skipping
means stepping over the entire activity without any case data being manipulated. Here
skipping an activity can still involve the partial manipulation of business facts. Skipping
provides a lot of flexibility as it enables a business process to bypass standard behavior as
required without such a possibility being explicitly defined in the process model. For in-
stance, when a customer requests information and preliminary, non-binding about a credit
rate, it might be useful to perform a makeProposal activity without the customer even having
identified himself. Such functionality could be provided, when a bank clerk can skip over
a number of activities in the credit approval process.

After completing, aborting of skipping an activity, an activity can under some condi-
tions be reactivated by performing a Redo operation. This transition has the effect that any
previously committed business events are undone, this is modeled by the rollback(cs,a,e)

arc expression. All previously committed business fact manipulation event that pertains
to an activity’s transaction list are retained. In this way, a worker can decide which data
manipulation can be retained from previous executions and which require alteration. After
alteration, a new list of business fact manipulation events can be committed upon comple-
tion of the activity. In the case handling paradigm redoing an activity changes the state of
added case data from ‘defined’ to ‘unconfirmed’. Although differently encoded, the seman-
tics of the Redo transition closely resembles redoing an activity within the case handling
paradigm. In addition to business rules constraining the redoing of an activity, an activ-
ity cannot be redone when any subsequent related activities have been using information
that is being retracted from the system via the rollback operation. This is expressed in the
noSubsequentActivities(a,eh) guard condition. When such subsequent activities are present,
all of them need to be redone before the activity in question can be redone.

6.3 Unspecified semantics 62

6.3 Unspecified semantics

Although the proposed CP-Net models a large proportion of the intended semantics of
EM-BrA2CE, not all aspects have been fully specified. For reasons of clarity or due to
inherent limitations of CP-Nets a number of aspects have been consciously omitted. In this
section these omitted aspects are briefly discussed.

6.3.1 Reactive Behavior

A disadvantage of CP-Nets is that it lacks the reactive behavior of an open system
(Eshuis and Dehnert, 2003). In a CP-Net every state transition occurs within the model,
whereas in reality state transitions occur on the initiative of an agent that resides in the
environment of the modeled system. To synchronize state information both system and
environment communicate by means of exchanging events. In reality, it is possible for re-
active systems not being able to respond to their environment in a timely fashion. Since a
Workflow Management Systems (WfMS) is also a reactive system that runs in parallel with
its environment, it also risks to loose synchrony with its environment. Eshuis and Dehnert
comment on the disability of Petri nets to model reactive behavior and contrasts Petri
nets with the semantics of STATEMATE (Harel and Naamad, 1996). To make Petri nets
reactive would require to model the environment in the Petri net as well and to distinguish
between external transitions that represent state changes in the environment and internal
transitions. Enabled internal transitions should always fire (must-fire rule) before enabled
external transitions (may-fire rule). In this way, modeling checking would allow to test for
compliance to the perfect synchrony assumption (Harel and Naamad, 1996), namely that
the modeled system is always able to stay synchronized with the state of its environment.
The consequences of the lacking reactive behavior of CP-Nets should however be put into
the right perspective. First of all the possibility that a WfMS can go out of sync with its
environment is a possibility that can be left out of consideration in specifying a seman-
tics for EM-BrA2CE. In addition Eshuis and Dehnert have shown that when modeling a
system as a closed, active system soundness properties are preserved. Consequently, it is
acceptable to include a number of events that would normally take place in the environ-
ment (such as the actions of external business process participants) within the boundaries
of the CP-Net. Nonetheless, timeout events, an important category of events, cannot
be incorporated within the closed system of a timed CP-Net. The reason is that model
time is exogenous to the CP-Net and it cannot be used to conditionally fire a transition
without provoking undesired side effects. Time-triggered activity life cycle operations such
as deadline escalation can therefore not be explicitly included in the proposed model.

6.3.2 Transaction Handling

Although it is possible to include a transaction handling mechanism such as a Two-Phase
Commit or Tentative Hold protocol within the CP-Net, such a mechanism was not included
in the CP-Net. Transaction handling can be seen as a separate concern that can be added
by keeping track of the locks or reservations that have been requested on particular business
facts. Moreover, additional guard conditions have to be added that control the Complete and
Skip transitions and model the resolution of potential integrity conflicts. This modifications
are rather complex. Moreover choosing for one particular transaction handling mechanism
is incompatible with the intent of the EM-BrA2CE framework of integrating and developing
new forms of declarative business process modeling.

Declarative Process Modeling: A Vocabulary and Execution Model 63

application

layer

service and

component

layer

business

process and

rule layer

ERP

MCSLDAP
DWH

sales

production

purchase

rule

enforcement Call For
Proposals

Figure 23: Activity Coordination Service and Concept Service

6.3.3 Composite State Transitions

Another part of intended semantics that has been left unspecified in the CP-Net is the
presence of composite state transitions. Composite state transitions are state transi-
tions that occur for a particular group of activities at the same time. “cascaded abort” and
“cascaded redo” transition, for instance, are composite state transitions that represent the
automatic aborting or redoing of all child activities when a composite activity is is being
aborted or redone. A “delegate” transition, for instance, is the combination of a revoke
and assign transition and represent the coordinating activity of a worker assigning an ac-
tivity to another worker (Li et al., 2003; Zhang et al., 2003; Wainer et al., 2007). These
transitions, however, can be omitted from the CP-Net without loss of meaning as they can
be simulated by performing a number of subsequent atomic state transitions at the same
model time.

7 Towards a Declarative Service-Oriented Architecture

Data, processes and logic are essential resources of any information system and can con-
sequently be identified at any level of abstraction. For the purpose of declarative based
process enactment, it is useful to consider these resources at the highest level of a service-
oriented enterprise architecture (SOA) stack. Such an architecture stack, as displayed in
figure 23, commonly consists of a number of layers. Applications and databases of one layer
are concealed by the components and services of a higher layer. Services can be combined
forming long-running business processes, which make up the highest layer.

‘Service’ is an overloaded concept that has several meanings. For the purpose of rule-
based process enactment it is instructive to make a distinction between business services and
software services. Business services belong to an Enterprise Model and can be modelled in
terms of activity types (or service capability), agents (or service providers) and activities (or
service instances). Software services are software artefacts that to some extent automate or
support business services. It is useful to make a distinction between three kinds of software
services that are represented as a UML component diagram in Figure 24:

• Service providers are software services that can perform activities or support the
performance of activities. To each service provider an EM-BrA2CE agent can be
mapped. A service provider is a recursive structure: it can represent an entire orga-
nization as well as a particular department or individual worker. Service providers
are notified of events to which they have event subscriptions. For instance, when an

Declarative Process Modeling: A Vocabulary and Execution Model 64

Activity Coordination

create(aid, at, bid, pid, coordinatorid)
schedule(aid, duedate, coordinatorid)
assign(aid, workerid, coordinatorid)
revoke(aid, workerid, coordinatorid)
start(aid, workerid)
addFact(aid, f, workerid)
removeFact(aid, f, workerid)
updateFact(aid, f1, f2, workerid)
complete(aid, workerid)
skip(aid, coordinatorid)
abort(aid, coordinatorid)
redo(aid, coordinatorid)
readFact(aid, factType, cids, agentid)

<<component>>

Activity Coordination Service

Concept Manipulation

addFact(f, agentid)
removeFact(f, agentid)
updateFact(f1, f2, agentid)
readFact(factType, cids, agentid)

Event Notification

notify(event)

<<component>>

Service Provider

<<component>>

Concept Service

<<use>>

<<use>>

Figure 24: Activity Coordination Service and Concept Service

activity is assigned to an agent, the agent is notified of this event. Another example is
the occurrence of an event to which an external business partner is subscribed. In ad-
dition, service providers can perform activities or can directly manipulate facts about
(business) concepts. For instance, when an agent perceives or is notified of a relevant
event that is not yet included in the fact base, the agent might add information about
this event as facts to the fact base.

• Activity coordination services are stateless services that manage the state transi-
tions of activities of given activity types. To each activity coordination service an
EM-BrA2CE activity type can be mapped. Each activity service has twelve generic
operations that implement the twelve above-described state transitions. Activity
coordination services manage the state and state transitions for the activities of a
particular activity type and enforce the applicable business rules indicated in Table
1. Service providers can invoke activity coordination services to bring about an activ-
ity state change. Likewise, activity coordination services can invoke service providers
to notify them of events to which they are subscribed.

• Concept services manage the state of the information system by providing access to
facts about concepts (agents, activities, business concepts and events) and derive facts
from concepts. To each concept service a (group of) EM-BrA2CE concepts can be
mapped. Concept services are used by service providers to request information about
business concepts or to assert external events. For instance, a service provider might
consult a concept service to learn about an activity to which it has been assigned.
Concept services are also used by activity coordination services to query and to update
the state of the activities that they manage. Concepts services enforce data visibility
constraints and event subscription constraints that range over the concepts (agents,
activities, business concepts and historic events) that it manages.

Figure 25 is a UML communication diagram that represents a simplified version of the
interaction between several services that enact the payment-after-shipment business process
of Figure 6(a). There are two service providers, aBuyer and aSeller, that represent two

Declarative Process Modeling: A Vocabulary and Execution Model 65

Accept Order : Activity Coordination ServicePlace Order : Activity Coordination Service

Sales Order : Concept ServicePurchase Order : Concept Service

aBuyer : Service Provider aSeller : Service Provider
notify3: notify7:

addConcept4:

create, schedule, assign, start, addFact, complete1: create, schedule, assign, start, addFact, complete5:

addFact (multiple)6: addFact (multiple)2:

Figure 25: Example: a communication diagram

organizations. The place order and accept order activity coordination services manage the
state transitions of the activities for the buyer and the seller organizations respectively. The
purchase order and sales order concept services manage the fact data about the concepts
(agents, activities, business concepts and events) that are relevant to the order process for
the buyer and seller organization respectively. When the aBuyer service provider places
an order (1) an activity of type place order is created, scheduled, assigned, started and
completed. Synchronously, the purchase order concept service adds facts about related
concepts (such as a place order activity, a purchase order business concept and related
activity events) to the fact base (2). Because aSeller is subscribed to completed events
in the context of the place order activity, aSeller is notified of the event (3). Facts about
the place order completed event are added to the event history of aSeller (4). In reaction
to the event, aSeller has de permission to accept the order. A new activity accept order
is coordinated and enacted (5). Synchronously, the sales order concept service adds facts
about related concepts (such as an accept order activity, a sales order business concept and
related activity events) to the fact base (6). Because aBuyer is subscribed to the completed
event in the context of the accept order activity, aBuyer is notified of the event (7). From
this point, the process continues in a similar fashion.

There are several advantages to this service-based execution model:

1. The execution maintains the advantages of declarative modeling as it allows to enforce
business rules without requiring a specification of when and how to check for rule
violations.

2. Because activity services retrieve their state from concept services, the same state
information can be used in the context of different process instances (activities). This
is advantageous as it renders state synchronization between process instances obsolete
(Haesen et al., 2007). Nonetheless such concurrency would still require transaction
handling mechanisms to guarantee transaction consistency. For instance, when the
same business concepts are manipulated in the context of two different activities,
transaction-handling mechanisms are still required.

3. Process models expressed using the EM-BrA2CE Vocabulary can be the basis for
model-driven design of software services. Notice however that SOA design can never
occur in an entirely top-down fashion, because non-functional business concerns, or-
ganizational politics, legacy applications, quality-of-service requirements and the like
must be taken into account. These concerns are outside the scope of this paper.

4. The execution model allows for a trade-off between expressiveness and performance.
For instance, by including the event history into the state space of an activity, the
state space becomes very large, threatening performance of high-volume processes.

Declarative Process Modeling: A Vocabulary and Execution Model 66

However, should the event history be irrelevant to the process model, it can be omitted
from consideration.

8 Evaluation of the EM-BrA2CE Framework

In section 2 a number of declarative process modeling languages have identified from the
literature. The EM-BrA2CE Framework unifies the aspects of declarative process modeling
that are present in these languages. It has the comparative advantage of expressiveness and
formality. The framework is expressive in that it addresses control flow, data and resource
aspects in business process modeling. This is realized by the vocabulary and by sixteen
business rule types. As a consequence, the framework incorporates business concerns such
as time, costs and security into business process modeling.

By defining its vocabulary in SBVR and by providing an execution semantics in terms
of CP-Nets, the framework benefits from formality. Few languages for process modeling
have a formal semantics.

Few languages for declarative process modeling include the event history into its state
space. For instance, WMSO (Roman et al., 2005) does not consider events to indicate state.
The inclusion of events nonetheless allows for expressing many new types of business rule.

OWL-S (The OWL Services Coalition, 2006) and WSMO (Roman et al., 2005) implic-
itly make assumptions regarding the role of humans. In general Semantic Web Services
allow human users to formulate a goal and let a web service agent (orchestration service)
realize that goal in a fully automated way. Current Semantic Web Service standards do not
recognize the need for a far going human-machine interaction. In reality, every-day pro-
cesses often require human intervention in the coordination work (service orchestration).
For instance, for reasons outside the information space a particular process instance might
require an extra activity. Another example, is the skipping of certain planned activities
because they are not relevant to the current process instance.

To make a point, this paper has contrasted procedural and declarative modeling. The
difference between procedural and declarative process modeling is out there, but no di-
chotomy is implied. Many of the design-time advantages of declarative process modeling
can already be realized by a careful methodology of documenting the underlying business
concerns. The run-time advantages of increased flexibility and user-involvement nonethe-
less require a formal declarative modeling language and execution model. The choice for
modeling language then depends on the application domain. Dynamic, human-centric,
non-standardized business process are most likely to require the run-time flexibility offered
by of declarative process modeling. Examples are for instance order processing, calling
center-mediated handling of distress calls, claim handling or the coordination of the medi-
cal process involving surgical procedures. At runtime static, machine-centric, standardized
business processes are most likely only to require a procedural representation of the coordi-
nation work. Examples are for instance the online booking of flight tickets or the automatic
scheduling of production orders.

Declarative process modeling allows to include a lot of functional and non-function
aspects of business processes that is missing in procedural process models. However, a
declarative process model in the form of a state description and a set of business rules
can also be more difficult to understand than the graphically appealing process notations
of UML Activity Diagrams and the BPMN. However, by enumerating (a relevant part) of
the state space of a declarative process model it is possible to generate a graphical repre-
sentation. This has, for instance, been shown for the PENELOPE language (Goedertier
and Vanthienen, 2006b). The opposite direction is not true in general. Procedural process

Declarative Process Modeling: A Vocabulary and Execution Model 67

models contain a pre-computation of activity control flows that are an explicit enumeration
of all possible execution scenarios. It is not generally possible to automatically extract the
underlying business concerns from a procedural business process model.

The vocabulary and execution model of the EM-BrA2CE Framework have been val-
idated experimentally. In a design-enact-analyze business process management life cycle
three automated reasoning tasks are likely to be required: deduction, abduction and in-
duction. Deduction is required for determining whether a particular state transition can
occur at runtime. Abduction is needed when an execution plan is to be automatically
constructed to achieve a particular goal state using a backward planning strategy. Finally,
induction is required to analyze the execution logs of services to detect whether all business
directives have been observed and whether the portrayed behavior in a business process
corresponds to the modeled behavior. In (Goedertier et al., 2007a,b) we have used the
vocabulary and execution semantics of the EM-BrA2CE framework to generate simulation
event logs from process models (deduction) and to learn the business rules that constrain
the state transitions in the process model from these event logs supplemented with noise
by applying rule-induction techniques. These simulation and model learning experiments
indicate the suitability of the EM-BrA2CE Framework throughout the design-enactment-
analyze phases of the BPM life cycle.

9 Conclusion

A declarative process model represents a business process as a description of its state
space and a set of business rules that constrain the valid movements in that state space.
Declarative process modeling allows including a lot of useful information that otherwise
would remain implicit in procedural process models. The advantages manifest themselves
during the design, enactment and analyze phases of the BPM life cycle. By documenting
the governing business concerns, organizations can more easily keep track of changes in
the BPM design phase. Moreover, declarative process models are not overburdened with
procedural information about how and when business rules are to be enforced or how and
when events are communicated to external agents. Declarative process models can be used
in the model-driven design of service-oriented architectures (SOAs). Because the state of a
business process has real business meaning and is not maintained within the context of an
explicit process engine, services can be deployed, maintained and removed as required by
the business. Moreover, the proposed way of representing business processes as a history of
activity life cycle events has been shown to be suitable for business process mining during
the analysis phase.

Recently, a number of declarative process modeling languages have appeared that all
deal with a particular aspect in business process modeling. In this paper we have indicated
how declarative business process modeling can benefit from the upcoming SBVR stan-
dard. In particular, an SBVR vocabulary for process modeling was defined that allows to
declaratively refer to the state of a business process when specifying process-related busi-
ness rules. The sixteen business rule types identified by the framework allow to consider a
broad range of control flow, data and organizational modeling aspects. In addition a formal
execution model has been provided that covers a broad range of human-machine-mediated
coordination, performance and exception handling activity life cycle events.

The EM-BrA2CE Framework is intended to be a foundation in integrating and devel-
oping existing and new forms of declarative business process modeling. However, with the
framework do not claim to have solved all the important issues. In particular, much research
is still required regarding the parsing, visualization, verification of declarative process mod-

REFERENCES 68

els and the model-driven design of service-oriented architectures; hence the attributed 0.1
version number.

References

Andrews, T. and et al. (2003). Business process execution language for web ser-
vices (bpel4ws) version 1.1. http://www.ibm.com/developerworks/library/

ws-bpel/.

Antoniou, G., Billington, D., Governatori, G., and Maher, M. J. (2001). Representation
results for defeasible logic. ACM Trans. Comput. Log., 2(2):255–287.

Atkinson, C. and Kühne, T. (2003). Model-driven development: A metamodeling founda-
tion. IEEE Software, 20(5):36–41.

Bacchus, F. and Kabanza, F. (2000). Using temporal logics to express search control
knowledge for planning. Artif. Intell., 116(1-2):123–191.

Bailey, J., Bry, F., and Patranjan, P.-L. (2005). Composite event queries for reactivity on
the web. In Ellis, A. and Hagino, T., editors, WWW (Special interest tracks and posters),
pages 1082–1083. ACM.

Baisley, D. (2005). OMG and Business Rules. Presentation available at http://www.
omg.org/docs/omg/05-04-09.pdf.

Baisley, D. E., Hall, J., and Chapin, D. (2005). Semantic Formulations in SBVR. In Hawke
et al. (2005).

Bernstein, P. A. and Goodman, N. (1981). Concurrency control in distributed database
systems. ACM Comput. Surv., 13(2):185–221.

Bider, I., Khomyakov, M., and Pushchinsky, E. (2000). Logic of change: Semantics of
object systems with active relations. Autom. Softw. Eng., 7(1):9–37.

Bons, R. W. H., Lee, R. M., Wagenaar, R. W., and Wrigley, C. D. (1995). Modelling
inter-organizational trade using documentary petri nets. In HICSS (3), pages 189–198.

Brachman, R. and Levesque, H. (2004). Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Bussler, C. (2001). The role of b2b protocols in inter-enterprise process execution. In TES
’01: Proceedings of the Second International Workshop on Technologies for E-Services,
pages 16–29, London, UK. Springer-Verlag.

Chakravarthy, S. and Mishra, D. (1994). Snoop: An expressive event specification language
for active databases. Data Knowledge Engineering, 14(1):1–26.

Chapin, D. (2005). Semantics of Business Vocabulary & Business Rules (SBVR). In Hawke
et al. (2005).

Chomicki, J. (1995). Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst., 20(2):149–186.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weerawarana, S. (2003). The next step in
web services. Commun. ACM, 46(10):29–34.

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.omg.org/docs/omg/05-04-09.pdf
http://www.omg.org/docs/omg/05-04-09.pdf

REFERENCES 69

Davenport, T. H. (1993). Process innovation: reengineering work through information
technology. Harvard Business School Press, Boston, MA, USA.

Debevoise, T. (2005). Business Process Management With a Business Rules Approach:
Implementing the Service Oriented Architecture. Business Knowledge Architects.

Digital Business Ecosystem (DBE) (2007). Sbeaver. http://sbeaver.sourceforge.
net.

Dumas, M., van der Aalst, W. M., and ter Hofstede, A. H. (2005). Process-aware infor-
mation systems: bridging people and software through process technology. John Wiley &
Sons, Inc., New York, NY, USA.

Dustdar, S., Fiadeiro, J. L., and Sheth, A. P., editors (2006). Business Process Manage-
ment, 4th International Conference, BPM 2006, Vienna, Austria, September 5-7, 2006,
Proceedings, volume 4102 of Lecture Notes in Computer Science. Springer.

Eder, J. and Dustdar, S., editors (2006). BPM 2006 International Workshops, volume 4103
of Lecture Notes in Computer Science. Springer.

Ehrlich, B. H. (2002). Transactional Six Sigma and Lean Servicing: Leveraging Manufac-
turing Concepts to Achieve World-Class Service. CRC.

Eshghi, K. (1988). Abductive planning with event calculus. In ICLP/SLP, pages 562–579.

Eshuis, R. and Dehnert, J. (2003). Reactive Petri Nets for Workflow Modeling. In van der
Aalst, W. M. P. and Best, E., editors, ICATPN, volume 2679 of Lecture Notes in Com-
puter Science, pages 296–315. Springer.

Ferraiolo, D. F., Sandhu, R. S., Gavrila, S. I., Kuhn, D. R., and Chandramouli, R. (2001).
Proposed nist standard for role-based access control. ACM Trans. Inf. Syst. Secur.,
4(3):224–274.

Fikes, R. (1971). Monitored execution of robot plans producted by trips. In IFIP Congress
(1), pages 189–194.

Føllesdal, D. and Hilpinen, R. (1971). Deontic logic: An introduction. In Hilpinen, R.,
editor, Deontic Logic: Introductory and Systematic Readings, pages 1–35. D. Reidel Pub-
lishing Company, Dordrecht.

Galton, A. and Augusto, J. C. (2002). Two approaches to event definition. In Hameurlain,
A., Cicchetti, R., and Traunmüller, R., editors, DEXA, volume 2453 of Lecture Notes in
Computer Science, pages 547–556. Springer.

Gatziu, S. and Dittrich, K. (1993). Events in an Active Object-Oriented Database System.
In Paton, N. and Williams, H., editors, Proc. 1st Intl. Workshop on Rules in Database
Systems (RIDS), Edinburgh, UK. Springer-Verlag, Workshops in Computing.

Goedertier, S., Martens, D., Baesens, B., Haesen, R., and Vanthienen, J. (2007a). A new
approach for discovering business process models from event logs. FETEW Research
Report KBI 0716, K.U.Leuven.

Goedertier, S., Martens, D., Baesens, B., Haesen, R., and Vanthienen, J. (2007b). Pro-
cess Mining as First-Order Classification Learning on Logs with Negative Events, 3rd
Workshop on Business Processes Intelligence (BPI’07), Proceedings. (forthcoming).

http://sbeaver.sourceforge.net
http://sbeaver.sourceforge.net

REFERENCES 70

Goedertier, S. and Vanthienen, J. (2005). Rule-based business process modeling and ex-
ecution. In Proceedings of the IEEE EDOC Workshop on Vocabularies Ontologies and
Rules for The Enterprise (VORTE 2005). CTIT Workshop Proceeding Series (ISSN
0929-0672), Enschede.

Goedertier, S. and Vanthienen, J. (2006a). Compliant and Flexible Business Processes
with Business Rules. In Regev, G., Soffer, P., and Schmidt, R., editors, 7th Workshop on
Business Process Modeling, Development and Support (BPMDS’06) at CAiSE’06, pages
94–104. Presses Universitaires de Namur.

Goedertier, S. and Vanthienen, J. (2006b). Designing compliant business processes with
obligations and permissions. In Eder and Dustdar (2006), pages 5–14.

Governatori, G. (2005). Representing business contracts in RuleML. Int. J. Cooperative
Inf. Syst., 14(2-3):181–216.

Governatori, G. and Rotolo, A. (2002). A gentzen system for reasoning with contrary-to-
duty obligations. a preliminary study. In Jones, A. J. and Horty, J., editors, ∆eon’02,
pages 97–116, London. Imperial College.

Grosof, B. N., Labrou, Y., and Chan, H. Y. (1999). A declarative approach to business
rules in contracts: courteous logic programs in XML. In ACM Conference on Electronic
Commerce, pages 68–77.

Guenther, C. W. and van der Aalst, W. M. P. (2005). Modeling the case handling principles
with colored petri nets. In Jensen, K., editor, Proceedings of the Sixth Workshop on the
Practical Use of Coloured Petri Nets and CPN Tools (CPN 2005), volume 576 of DAIMI,
pages 211–230, Aarhus, Denmark.

Guizzardi, G. and Wagner, G. (2005). Some Applications of a Unified Foundational On-
tology in Business Modeling, chapter in: Ontologies and Business Systems Analysis, ed.
M. Rosemann and P. Green, pages 345–367. IDEA Publisher.

Gupta, A., Sagiv, Y., Ullman, J. D., and Widom, J. (1994). Efficient and complete tests
for database integrity constraint checking. In Borning, A., editor, PPCP, volume 874 of
Lecture Notes in Computer Science, pages 173–180. Springer.

Haesen, R., De Rore, L., Goedertier, S., Snoeck, M., Lemahieu, W., and Poelmans, S.
(2007). Stateless process enactment. Accepted for Pattern Languages of Programming
(PLoP 2007).

Halpin, T. A. (1991). A fact-oriented approach to schema transformation. In Thalheim
et al. (1991), pages 342–356.

Halpin, T. A. (2000). A fact-oriented approach to business rules. In ER, pages 582–583.

Halpin, T. A. (2004). Information modeling and higher-order types. In Grundspenkis, J.
and Kirikova, M., editors, CAiSE Workshops (1), pages 233–248. Faculty of Computer
Science and Information Technology, Riga Technical University, Riga, Latvia.

Hammer, M. and Champy, J. (1993). Reengineering the corporation. Harper Collins, New
York, NY.

Harel, D. and Naamad, A. (1996). The STATEMATE Semantics of Statecharts. ACM
Trans. Softw. Eng. Methodol., 5(4):293–333.

REFERENCES 71

Hawke, S., de Sainte Marie, C., and Tabet, S., editors (2005). W3C Workshop on Rule
Languages for Interoperability, 27-28 April 2005, Washington, DC, USA. W3C.

Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., and Teschke, M. (1999). A compre-
hensive approach to flexibility in workflow management systems. SIGSOFT Softw. Eng.
Notes, 24(2):79–88.

Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic,
(15):8191.

InterNational Committee for Information Technology Standards (INCITS) (2004). Role-
Based Access Control. http://csrc.nist.gov/rbac. American National Standard
ANSI/INCITS 359-2004.

Jablonski, S. and Bussler, C. (1996). Workflow Management. Modeling Concepts, Archi-
tecture and Implementation. International Thomson Computer Press, London.

Jensen, K. (1993). An introduction to the theoretical aspects of coloured petri nets. In
de Bakker, J. W., de Roever, W. P., and Rozenberg, G., editors, REX School/Symposium,
volume 803 of Lecture Notes in Computer Science, pages 230–272. Springer.

Jensen, K. (1996). Coloured Petri nets (2nd ed.): basic concepts, analysis methods and
practical use: volume 1. Springer-Verlag, London, UK.

Kaplan, R. (1998). One cost system isnt enough. Harvard Business Review, January-
February:61–66.

Kardasis, P. and Loucopoulos, P. (2005). A roadmap for the elicitation of business rules in
information systems projects. Business Process Management Journal, 11(4):316–348.

Knottenbelt, J. and Clark, K. (2004). An architecture for contract-based communicating
agents. In Proceedings of the Second European Workshop on Multi-Agent Systems.

Kowalski, R. and Sergot, M. (1986). A logic-based calculus of events. New Gen. Comput.,
4(1):67–95.

Leung, C. M. R. and Nijssen, G. M. (1988). Relational database design using the niam
conceptual schema. Inf. Syst., 13(2):219–227.

Li, N., Grosof, B. N., and Feigenbaum, J. (2003). Delegation logic: A logic-based approach
to distributed authorization. ACM Trans. Inf. Syst. Secur., 6(1):128–171.

M. Zaremba, C. B. (2005). Towards dynamic execution semantics in semantic web ser-
vices. In In Proceedings of the Workshop on Web Service Semantics: Towards Dynamic
Business Integration, International Conference on the World Wide Web (WWW2005),
Chiba, Japan.

Maŕın, R. H. and Sartor, G. (1999). Time and norms: a formalisation in the event-calculus.
In ICAIL ’99: Proceedings of the 7th international conference on Artificial intelligence
and law, pages 90–99, New York, NY, USA. ACM Press.

Milner, R., Tofte, M., and Harper, R. (1990). The definition of Standard ML. MIT Press,
Cambridge, MA, USA.

Motorola Inc. (1986). Motorola University, Six Sigma in Action. http://www.

motorola.com/motorolauniversity, consulted on Januari 18, 2007.

http://csrc.nist.gov/rbac
http://www.motorola.com/motorolauniversity
http://www.motorola.com/motorolauniversity

REFERENCES 72

Mulyar, N. and van der Aalst, W. M. (2005). Patterns in Colored Petri Nets. BETA
Working Paper Series WP 139, Eindhoven University of Technology, Eindhoven.

Nute, D. (1994). Handbook of Logic in Artificial Intelligence and Logic Programming,
chapter Defeasible Logic, page 353395. Oxford University Press.

Object Management Group (2005). UML 2.0 Superstructure Specification. OMG Document
– formal/05-07-04.

Object Management Group (2006a). Business Process Modeling Notation (BPMN) – final
adopted specification. OMG Document – dtc/06-02-01.

Object Management Group (2006b). Semantics of Business Vocabulary and Business Rules
(SBVR) – Interim Specification. OMG Document – dtc/06-03-02.

Object Management Group (2006c). UML 2.0 Infrastructure Specification. OMG Document
– formal/05-07-05.

O’Sullivan, J., Edmond, D., and ter Hofstede, A. H. M. (2002). What’s in a service?
towards accurate description of non-functional service properties. Distributed and Parallel
Databases, 12(2/3):117–133.

Paschke, A. and Bichler, M. (2005). SLA Representation, Management and Enforcement.
In EEE ’05: Proceedings of the 2005 IEEE International Conference on e-Technology,
e-Commerce and e-Service (EEE’05), pages 158–163, Washington, DC, USA. IEEE Com-
puter Society.

Pesic, M. and van der Aalst, W. M. P. (2006). A declarative approach for flexible business
processes management. In Eder and Dustdar (2006), pages 169–180.

Porter, M. (1985). Competitive Advantage. Free Press, New York.

Reichert, M. and Dadam, P. (1998). Adeptflex-supporting dynamic changes of workflows
without losing control. J. Intell. Inf. Syst., 10(2):93–129.

Roberts, J. and et al. (2001). Tentative hold protocol part 2: Technical specification. W3c
note, World Wide Web Consortium. http://www.w3.org/TR/tenthold-2/.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., and Fensel, D. (2005). Web service modeling ontology. Applied
Ontology, 1(1):77–106.

Ross, R. G. (2003). Principles of the Business Rule Approach. Addison-Wesley Professional.

Russell, N., van der Aalst, W. M. P., and ter Hofstede, A. H. M. (2006). Workflow exception
patterns. In Dubois, E. and Pohl, K., editors, CAiSE, volume 4001 of Lecture Notes in
Computer Science, pages 288–302. Springer.

Sadiq, S. W., Orlowska, M. E., and Sadiq, W. (2005). Specification and validation of
process constraints for flexible workflows. Inf. Syst., 30(5):349–378.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-based access
control models. IEEE Computer, 29(2):38–47.

Schmidt, K. (1999). Of maps and scripts: The status of formal constructs in cooperative
work. Information & Software Technology, 41(6):319–329.

http://www.w3.org/TR/tenthold-2/

REFERENCES 73

Schmidt, K. and Simone, C. (1996). Coordination mechanisms: Towards a conceptual
foundation of cscw systems design. Computer Supported Cooperative Work, 5(2/3):155–
200.

Segerberg, K. (1982). A deontic logic of action. Studia Logica, 10:269–282.

Shanahan, M. (1997). Solving the frame problem: a mathematical investigation of the
common sense law of inertia. MIT Press, Cambridge, MA, USA.

Störrle, H. and Hausmann, J. H. (2005). Towards a formal semantics of uml 2.0 activities.
In Liggesmeyer, P., Pohl, K., and Goedicke, M., editors, Software Engineering, volume 64
of LNI, pages 117–128. GI.

Strembeck, M. and Neumann, G. (2004). An integrated approach to engineer and enforce
context constraints in rbac environments. ACM Trans. Inf. Syst. Secur., 7(3):392–427.

Suchman, L. A. (1987). Plans and situated actions: the problem of human-machine com-
munication. Cambridge University Press, New York, NY, USA.

Suchman, L. A. (1995). Making work visible. Commun. ACM, 38(9):56–64.

Thalheim, B., Demetrovics, J., and Gerhardt, H.-D., editors (1991). MFDBS 91, 3rd
Symposium on Mathematical Fundamentals of Database and Knowledge Bases Systems,
Rostock, Germany, May 6-9, 1991, Proceedings, volume 495 of Lecture Notes in Computer
Science. Springer.

The OWL Services Coalition (2006). OWL-S 1.2 Pre-Release. Available from http:

//www.ai.sri.com/daml/services/owl-s/1.2/.

Unisys (2005). Unisys rules modeler. www.unisys.com/eprise/main/admin/

corporate/doc/Unisys_Rules_Modeler_Insert.pdf [10-11-2005].

van der Aalst, W. M., Rosemann, M., and Dumas, M. (2007). Deadline-based escalation
in process-aware information systems. Decision Support Systems, 43(2):492–511.

van der Aalst, W. M. P. (1997). Verification of workflow nets. In Azéma, P. and Balbo, G.,
editors, ICATPN, volume 1248 of Lecture Notes in Computer Science, pages 407–426.
Springer.

van der Aalst, W. M. P. (1998). The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66.

van der Aalst, W. M. P. and ter Hofstede, A. H. M. (2002). Workflow patterns: On the
expressive power of (petri-net-based) workflow languages. In Proc. of the Fourth Inter-
national Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus,
Denmark, August 28-30, 2002 / Kurt Jensen (Ed.), pages 1–20. Technical Report DAIMI
PB-560.

van der Aalst, W. M. P., Weske, M., and Grünbauer, D. (2005). Case handling: a new
paradigm for business process support. Data Knowl. Eng., 53(2):129–162.

van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., and Voorhoeve, M. (2006a). Modelling
history-dependent business processes. In MSVVEIS, pages 76–85.

http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.ai.sri.com/daml/services/owl-s/1.2/
www.unisys.com/eprise/main/admin/corporate/doc/Unisys_Rules_Modeler_Insert.pdf
www.unisys.com/eprise/main/admin/corporate/doc/Unisys_Rules_Modeler_Insert.pdf

REFERENCES 74

van Hee, K. M., Oanea, O., Serebrenik, A., Sidorova, N., and Voorhoeve, M. (2006b).
History-based joins: Semantics, soundness and implementation. In Dustdar et al. (2006),
pages 225–240.

Van Nuffelen, B. and Kakas, A. C. (2001). A-system: Declarative programming with
abduction. In Eiter, T., Faber, W., and Truszczynski, M., editors, LPNMR, volume 2173
of Lecture Notes in Computer Science, pages 393–396. Springer.

W3C (2004). Resource Description Framework (RDF): Concepts and Abstract Syntax.
Technical report, W3C Recommendation 10 February 2004.

Wagner, G. (1991). A database needs two kinds of negation. In Thalheim et al. (1991),
pages 357–371.

Wagner, G. (2003). The agent-object-relationship metamodel: towards a unified view of
state and behavior. Inf. Syst., 28(5):475–504.

Wainer, J., Kumar, A., and Barthelmess, P. (2007). DW-RBAC: A formal security model
of delegation and revocation in workflow systems. Inf. Syst., 32(3):365–384.

Wohed, P., van der Aalst, W. M. P., Dumas, M., ter Hofstede, A. H. M., and Russell, N.
(2006). On the suitability of bpmn for business process modelling. In Dustdar et al.
(2006), pages 161–176.

Woolridge, M. and Wooldridge, M. J. (2001). Introduction to Multiagent Systems. John
Wiley & Sons, Inc., New York, NY, USA.

Yolum, P. and Singh, M. P. (2004). Reasoning about commitments in the event calculus: An
approach for specifying and executing protocols. Annals of Mathematics and Artificial
Intelligence, 42(1-3):227–253.

Zhang, L., Ahn, G.-J., and tseng Chu, B. (2003). A rule-based framework for role-based
delegation and revocation. ACM Trans. Inf. Syst. Secur., 6(3):404–441.

zur Muehlen, M. (2004). Workflow-based Process Controlling. Foundation, Design, and
Implementation of Workflow-driven Process Information Systems., volume 6 of Advances
in Information Systems and Management Science. Logos, Berlin.

	OR-EM-BrAACE.pdf
	OR-EM-BrAACE.pdf
	Introduction
	Related work
	Procedural versus Declarative Process Modeling
	Business Concerns Made Explicit
	Declarative Business Rule Enforcement
	Declarative Communication Logic
	Dynamic Execution Scenarios
	Activity-level Granularity
	Model Differentiation by Modality
	Assumption bias
	Runtime Alteration
	No Human-Machine Distinction
	Coordination Work is Work
	Multi-state Activities
	Third-person perspective
	Meaning is Separate from Expression

	An Introduction to Declarative Process Modeling
	Process Model = State Space + Transition Constraints
	History-dependent behavior
	Running example: payment-after-shipment

	A Vocabulary for Declarative Process Modeling
	Candidate Ontology Language
	An Introduction to SBVR
	The EM-BrA2CE Vocabulary
	Business concept -- business concept type
	Activity -- activity type
	State -- state space
	Agent -- Role
	Event -- event type
	Deontic assignment
	Non-functional, quality-of-service concerns
	Cost and time concerns

	Business Rules in the EM-BrA2CE Framework
	Providing Logical Foundations for Temporal Rules
	Semantic Formulation of Temporal Rules
	Control-flow: temporal deontic rule
	Control-flow: activity precondition
	Control-flow: activity postcondition
	Control-flow: reaction rule
	Control-flow aspect: dynamic integrity constraint
	Control-flow aspect: activity cardinality constraint
	Control-flow aspect: serial activity constraint
	Control-flow aspect: activity order constraint
	Control-flow aspect: activity exclusion constraint
	Control-flow aspect: activity inclusion constraint
	Data aspect: Static integrity constraint
	Data aspect: derivation rule
	Organization aspect: activity authorization constraint
	Organization aspect: activity allocation rule
	Organization aspect: visibility constraint
	Organization aspect: event subscription constraint

	An Execution Model for Declarative Process Modeling
	Business Rules in the Activity Life Cycle
	A CP-Net-based Execution Model
	Places and Color Sets
	The Create transition
	The Schedule transition
	The Assign and Revoke transition
	The Start transition
	The fact manipulation transitions
	The Complete transition
	The Abort, Skip and Redo transitions

	Unspecified semantics
	Reactive Behavior
	Transaction Handling
	Composite State Transitions

	Towards a Declarative Service-Oriented Architecture
	Evaluation of the EM-BrA2CE Framework
	Conclusion

