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ABSTRACT
Medium access control (MAC) protocols for wireless sensor net-
works face many challenges, including energy-efficient operation
and robust support for varying traffic loads, in spite of effects such
as wireless interference or even possible wireless jamming attacks.
This paper presents the design and evaluation of the EM-MAC (Ef-
ficient Multichannel MAC) protocol, which addresses these chal-
lenges through the introduction of novel mechanisms for adaptive
receiver-initiated multichannel rendezvous and predictive wake-up
scheduling. EM-MAC substantially enhances wireless channel uti-
lization and transmission efficiency while resisting wireless inter-
ference and jamming by enabling every node to dynamically op-
timize the selection of wireless channels it utilizes based on the
channel conditions it senses, without use of any reserved control
channel. EM-MAC achieves high energy efficiency by enabling a
sender to predict the receiver’s wake-up channel and wake-up time
Implemented in TinyOS on MICAz motes, EM-MAC substantially
outperformed other MAC protocols studied. EM-MAC maintained
the lowest sender and receiver duty cycles, the lowest packet deliv-
ery latency, and 100% packet delivery ratio across all experiments.
Our evaluation includes single-hop and multihop flows, as well as
experiments with heavy ZigBee interference, constant ZigBee jam-
ming, and Wi-Fi interference.
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1. INTRODUCTION
Energy efficiency is crucial in wireless sensor networks. To this
end, many energy-efficient wireless MAC protocols (e.g., [3, 6,
20–22]) have been proposed that utilize duty cycling, a technique
in which each sensor node alternates between active and sleeping
states, turning its radio on only periodically; the percentage of time
a node is awake is referred to as the node’s duty cycle. Duty cy-
cling aids in energy efficiency by reducing idle listening and over-
hearing, two of the most significant causes of unnecessary energy
consumption in wireless sensor networks. Idle listening refers to a
node listening to a wireless channel when there is nothing on the
channel to receive, and overhearing refers to a node hearing packets
not intended for this node.

Wireless sensor network MAC protocols must operate under a
number of significant challenges due to the shared nature of the
wireless channel. For example, hidden terminals may cause wire-
less collisions, and heavy wireless usage in one location may cre-
ate substantial contention for channel access by other nearby sen-
sor nodes, degrading performance for these sensor nodes as well.
Many other sources of wireless interference are also possible, in-
cluding external interference from wireless transmissions by other
types of devices, such as Wi-Fi nodes [10]. In some cases, wireless
interference may even be deliberate, such as from a malicious node
performing an active jamming attack, transmitting continuously in
order to block other nodes’ access to the channel [24].

In this paper, we present the design and evaluation of a new
multichannel energy-efficient MAC protocol, called EM-MAC
(Efficient Multichannel MAC), that substantially outperforms other
sensor network MAC protocols studied, particularly in cases with
wireless interference or jamming. EM-MAC is a predictive, asyn-
chronous duty-cycling MAC protocol that utilizes the available
multiple orthogonal radio channels common with many types of
wireless devices, including the IEEE 802.15.4 (ZigBee) radios
widely used on sensor node devices. Unlike existing multichannel
energy efficient MAC protocols, EM-MAC uses no control channel
and enables a node to dynamically select the channels it switches
among for receiving based on the wireless channel conditions it
senses. By effectively utilizing the multiple orthogonal radio chan-
nels, EM-MAC is able to avoid using individual channels that are
currently heavily loaded or are otherwise undesirable such as due
to interference or jamming. Furthermore, by not requiring use of
a control channel, EM-MAC avoids concentrating control commu-
nication on any channel and avoids the performance degradation
that would otherwise result if a control channel itself were heavily
loaded or experiencing interference or jamming.

EM-MAC achieves high energy efficiency by enabling senders
to accurately predict the wake-up channel and wake-up time of a



receiver. In particular, each time a node using EM-MAC wakes
up, it independently selects its own wake-up time and channel ac-
cording to a pseudorandom function, while avoiding undesirable
channels on which it has detected high traffic loads or excessive
wireless interference, including channels being actively jammed.
The independent pseudorandom wake-up scheduling of EM-MAC
aims to spread the traffic load to different channels, reducing wire-
less collisions caused by nodes waking up at the same time on the
same channel. EM-MAC efficiently achieves multichannel ren-
dezvous between a sender and a receiver, even given constraints
such as variable hardware or operating system latencies and clock
drifts: based on the prediction of a receiver’s wake-up channel and
wake-up time, a sender using EM-MAC wakes up on the receiver’s
current wake-up channel right before the receiver does, finishes
the packet transmission, and quickly goes back to sleeping state,
achieving high energy efficiency through minimizing idle listening
and overhearing.

We have implemented EM-MAC under TinyOS on a collection
of MICAz motes and report the results of experiments comparing
the performance of EM-MAC to that of X-MAC [3], WiseMAC [6],
Y-MAC [8], McMAC [17], RI-MAC [21], and PW-MAC [22].
Our evaluation includes single-hop and multihop flows, as well
as experiments with heavy ZigBee wireless interference, constant
ZigBee jamming, and Wi-Fi interference. In these experiments,
EM-MAC substantially outperformed the other MAC protocols
studied. In all experiments, EM-MAC maintained 100% packet
delivery ratio, with the lowest duty cycle and the lowest packet de-
livery latency among all protocols studied.

Section 2 of this paper discusses related work. In Section 3,
we present the design of EM-MAC, including the techniques used
by EM-MAC for dynamic channel selection and precise and quick
multichannel rendezvous. Section 4 presents the results of our eval-
uation of EM-MAC under TinyOS on MICAz motes, including
single-hop and multihop flows, as well as experiments with heavy
ZigBee interference, constant ZigBee jamming, and Wi-Fi interfer-
ence. Finally, in Section 5, we present conclusions.

2. RELATED WORK
Many energy-efficient sensor network MAC protocols have been
proposed that use only a single radio channel for all transmis-
sions; examples include S-MAC [25], B-MAC [13], X-MAC [3],
DW-MAC [20], RI-MAC [21], and PW-MAC [22]. The network
throughput with these protocols is limited, however, to the capac-
ity of a single channel, and their performance may be further sub-
stantially reduced under conditions of wireless interference or jam-
ming. Compared with these protocols, EM-MAC is not only more
robust against such conditions but is also more capable of han-
dling large and dynamic traffic loads by efficiently utilizing mul-
tiple channels.

The opportunities possible by utilizing multiple orthogonal ra-
dio channels in the context of MAC protocols for wireless ad hoc
networks using Wi-Fi radios have long been recognized [12]; ex-
amples include SSCH [1] and McMAC [17]. As these protocols
were designed for a network in which nodes are always-on, how-
ever, energy efficiency was not a major concern in their design.

In the context of sensor networks, researchers have recently also
been exploring techniques at the MAC layer to utilize multiple or-
thogonal radio channels, such as are available in the IEEE 802.15.4
(ZigBee) transceivers widely used in current sensor networks. Ex-
ample protocols in this area include Y-MAC [8], A-MAC [5],
MMAC [18], and CAM-MAC [11]. In these protocols, prior to
each data packet transmission, the sender and receiver node first

tune to a dedicated control channel to negotiate the channel to use
for the data transmission. Negotiating first on a control channel
makes it easier for a sender to rendezvous with a receiver for trans-
mitting a data packet, but since no data packet transmission would
then be possible without a successful negotiation on the control
channel, the available bandwidth of the control channel can become
a packet transmission bottleneck. Furthermore, if the control chan-
nel is subject to heavy interference such as from ZigBee or Wi-Fi
traffic [10] or is jammed by an attacker [24], such protocols would
be unable to deliver any data packets. In addition, the energy ef-
ficiency of these protocols can deteriorate substantially from wait-
ing for the opportunity to negotiate a data channel using the control
channel. In contrast, EM-MAC does not rely on a dedicated control
channel and is adaptive to dynamic channel conditions, contribut-
ing to the high efficiency of EM-MAC and its resilience to wireless
interference and jamming.

Like EM-MAC, the MuChMAC protocol [2] does not use a dedi-
cated control channel; each node in MuChMAC independently de-
cides its channel-switching sequences, which can be deduced by
its neighbors. However, unlike EM-MAC, nodes in MuChMAC
use a fixed set of channels, without adapting to current channel
conditions such as interference or jamming on a channel. In ad-
dition, MuChMAC divides time into slots, assuming loose global
time synchronization and a fixed upper bound on clock drift in at-
tempting to ensure that sender and receiver at least both wake up
within the same slot as each other; MuChMAC does not provide
any mechanism to recover in the case in which the sender and
receiver fail to rendezvous in this way due to larger clock drifts
or variable hardware or operating system latencies. In contrast,
EM-MAC operates entirely asynchronously, with no reliance on
global time synchronization, and provides an efficient mechanism
to quickly rendezvous a sender and a receiver after any rendezvous
failure occurs.

Some protocols have attempted to make use of multiple chan-
nels by assigning different channels to different nodes in a two-
hop neighborhood to avoid potential interference; examples of such
protocols include MMSN [27] and TMMAC [26], in which time
slots are used to coordinate transmissions. To enable such time
slots, these protocols assume precise time synchronization in the
network, which is not needed in EM-MAC. Similarly, TMCP [23]
partitions a network into different trees and assigns a fixed channel
to each tree. This design showed high performance in data col-
lection applications, but the fixed channel assignment to each tree
is inefficient in handling dynamic traffic and makes the traffic on
a tree vulnerable to wireless interference and jamming attacks as
discussed above.

Finally, several other energy-efficient MAC protocols have used
various forms of predictive wake-up based on pseudorandom num-
ber sequences, similar to that used in EM-MAC.

For example, Cao et al. [4] presented an analytical study
of different energy-efficient MAC protocol schemes based on
globally synchronized time slots: time is divided into a sequence
of frames and each frame is divided into a sequence of these slots.
In their “Pseudo-random Staggered On” scheme, each node wakes
up as a receiver independently in each slot with probability ψr
(e.g., ψr = 0.01), where the decision to wake up or not for each
slot is determined by comparing the next number in that node’s
pseudorandom number sequence to this ψr threshold. Through the
use of the pseudorandom number sequence, the slot in which any
node will be awake to receive can be predicted by a sender that
knows and follows the state of that node’s pseudorandom number
generator. Cao et al. also provided a rough sketch of the operation
of a protocol called O-MAC based on this scheme, although in



O-MAC, rather than waking up with an independent probability
in each slot, the wake-up time of a receiver is simply generated
as the slot number within a frame, based on the next number in
the pseudorandom sequence. The MAC protocol of the JAVeLEN
system [14] uses predicable receiver wake-up timing similar to
the “Pseudo-random Staggered On” scheme of Cao et al. [4];
JAVeLEN divides time into globally synchronized slots, and each
node independently wakes up to attempt to receive in each slot
depending on the comparison of the next number in that node’s
pseudorandom sequence against a threshold.

In contrast, nodes in EM-MAC operate asynchronously, with-
out globally synchronized time slots, thus avoiding the complexity
and overhead of global, network-wide time synchronization. Each
node’s pseudorandom number sequence in EM-MAC directly pro-
vides the amount of time between one wake-up by that node and
its next wake-up. In addition, whereas JAVeLEN requires special-
ized hardware with two separate radios, one for sending a “Hail”
to an intended receiver and the other for data packet transmission,
EM-MAC operates with only a single commodity radio per node;
although the specialized radio hardware of JAVeLEN allows it to
operate very efficiently in terms of energy consumption, this design
limits its use on simpler, more generally available hardware such as
the MICAz motes we used in our implementation of EM-MAC.

To our knowledge, EM-MAC is the first multichannel MAC pro-
tocol to use the pseudorandom number sequence to predict both
the receiver wake-up time and the receiver wake-up channel. In
particular, Cao et al. [4] consider only a single radio channel that
is shared by all nodes, and although JAVeLEN uses multiple radio
channels at the physical layer, at the MAC layer it treats this as a
single logical channel and uses its pseudorandom number sequence
only for receiver wake-up time. The wake-up time prediction in
EM-MAC is similar to our own prior work on PW-MAC [22], but
PW-MAC is only a single-channel MAC protocol. EM-MAC also
improves on the wake-up time prediction scheme from PW-MAC
through features such as our exponential chase algorithm for ef-
ficiently resynchronizing a sender and receiver whose clocks may
have drifted apart.

3. EM-MAC PROTOCOL DESIGN
EM-MAC is a multichannel asynchronous duty-cycling MAC pro-
tocol. It does not require nodes to synchronize their clocks, does
not use a common control channel, and does not explicitly ex-
change channel and wake-up schedules. Instead, every node in-
dependently decides its own pseudorandom channel-switching be-
havior and wake-up times. A sender rendezvous with a receiver by
predicting the receiver’s wake-up channel and wake-up time based
on the sender’s knowledge of the state of the receiver’s pseudo-
random function used to generate its wake-up channels and times.

EM-MAC achieves very high energy efficiency by enabling a
sender to precisely and quickly rendezvous with a receiver. A
sender in EM-MAC wakes up shortly before the receiver does on
the predicted receiver wake-up channel, completes the packet trans-
mission, and quickly goes back to sleeping state, minimizing idle
listening and overhearing. EM-MAC does not require special ra-
dio hardware. We have implemented EM-MAC on MICAz motes,
which have a single half-duplex radio tunable to any of the 16 or-
thogonal channels of the IEEE 802.15.4 (ZigBee) protocol.

3.1. Overview
Figure 1 shows an example of the operation of EM-MAC, with time
progressing from left to right. Here, only two nodes, S and R, are
shown, with sender node S sending data packets to receiver node R.

EM-MAC is a receiver-initiated MAC protocol; a node sends
a wake-up beacon to notify potential senders that it is awake and
ready to receive data packets. After receiving a wake-up beacon
from a receiver R, a node S that has a data packet for R sends it to
R. R sends an ACK beacon to S to acknowledge the data packet
receipt and to allow another data packet to be sent to R by this or
another sender; in this example, no other data packet is available, so
S and R quickly go back to sleep. After R wakes up for the second
time shown, no node has a data packet waiting to send to R and R
quickly goes back to sleep. Finally, after R wakes up again, S has
another packet for R and sends it to R in response to this beacon
from R.

In order to reduce wireless collisions caused by nodes waking up
at the same time and on the same channel and to distribute the traffic
among the available channels, a node in EM-MAC switches among
the channels it selects based on its pseudorandom channel schedul-
ing. In addition, each node in EM-MAC pseudorandomly decides
its own wake-up times; a wake-up time of a node is determined
from the node’s previous wake-up time plus its current pseudoran-
domly chosen wake-up interval. In particular, for each wake-up, a
node invokes its pseudorandom number generator twice: once to
compute its next wake-up channel and again to compute its next
wake-up interval. In our experiments, node pseudorandom wake-
up intervals range between 500 ms and 1500 ms.

In Figure 1, S has previously learned the time and pseudorandom
number generator information of R and is able to predict the wake-
up channels and wake-up times of R. When S has a data packet to
send to R, S wakes up on the predicted wake-up channel of R right
before the predicted wake-up time of R, thereby achieving high
energy efficiency by minimizing the idle listening and overhearing.

To avoid using congested channels and to be robust against wire-
less interference and jamming, a node dynamically modifies the set
of channels among which it switches, based on the channel con-
ditions it senses; the details of this mechanism are described in
Section 3.2.

For energy-efficient resolution of wireless collisions, EM-MAC
extends the collision resolution mechanism of RI-MAC [21], in
which a receiver notifies potential senders to retransmit their pack-
ets using an increased backoff window via a new beacon once a
collision is detected. Different from RI-MAC, EM-MAC puts the
senders into sleeping state as long as possible during retransmis-
sions. If the collision resolution mechanism does not resolve the
collision before the receiver goes to sleep, a sender in EM-MAC
goes to sleep and wakes up again to retransmit at the receiver’s
next predicted wake-up time, if a pre-defined retry limit has not
been reached.

EM-MAC can use any pseudorandom function to generate the
channel and wake-up schedule for a node. For example, in our
implementation on MICAz motes, we chose to use a linear con-
gruential generator (LCG), since LCGs are efficient in computa-
tion and storage. LCG generates a pseudorandom number Xn+1
as Xn+1 = (aXn + c) mod m, where m > 0 is the modulus, a is
the multiplier, c is the increment, and Xn is the current seed; the
generated Xn+1 becomes the next seed. In our implementation,
m = 65536; each node’s a and c are independently chosen follow-
ing the principles suggested by Knuth [9], such that the LCG will
have a full period (i.e., full cycle) for all seed values. The gener-
ation of wake-up channels for a node thus generates all possible
channel numbers (in a different pseudorandom order each time)
before any channel number is repeated. This design contributes
to spreading network traffic to different channels. Each node also
uses a different initial seed value X0, based for example on the
node’s MAC address. With such design, if two nodes happen to
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R wakes up on pseudorandomly chosen (channel, time) and sends beacon
R sends another beacon, which also serves as ACK

S sends DATA packet in response to beacon
S wakes up shortly before predicted time on predicted channel
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k

j
i

k

Node activeReceiveTransmit

Figure 1: Sender S sends data packets to receiver R using EM-
MAC. Only three of the channels are shown here, labeled i, j,
and k. At the time of R’s second beacon, no node has a packet
waiting to send to R.

wake up at the same time and on the same channel, it is unlikely
they will do so next time, thus avoiding persistent collisions. The
pseudorandom generator used for EM-MAC by a node is private
to EM-MAC wake-up scheduling operation so that the sequence of
pseudorandom numbers generated is not disturbed by other opera-
tions of the node.

A sender predicts the wake-up times and channels of a receiver
based on its knowledge of the prediction state of the receiver. The
prediction state obtained by S for R consists of the multiplier a
and increment c of R’s pseudorandom number generator, a previous
wake-up time and corresponding random seed of R, the channel
selection information of R (described in Section 3.2.2), and S’s time
model for R (enabling S to compute the time of R based on the
current time of S; the details of the time modeling used in EM-
MAC are described in Section 3.3.1).

If a sender has a packet to send to a receiver but does not have
the receiver’s prediction state, the sender waits at the first chan-
nel. After receiving the wake-up beacon from the receiver, the
sender sets a flag in the header of the data packet sent to the re-
ceiver, requesting the receiver to embed its prediction state in the
ACK packet for the data packet. For a sender unaware of the pre-
diction state of a receiver, its waiting time on a channel for the
receiver wake-up beacon should be sufficient to ensure that the re-
ceiver will visit the channel at least once during this time. Let Nch
and TmaxInterval denote the number of channels available and the
maximum node wake-up interval, respectively. For MICAz motes,
Nch = 16. TmaxInterval is 1500 ms in our experiments. If the sender
does not receive a wake-up beacon from the receiver after waiting
Tblack + 2×Nch × TmaxInterval (Tblack denotes the longest time for
which a receiver can skip visiting a channel due to bad channel
condition based on the channel blacklist mechanism described in
Section 3.2), the sender switches to the next channel and repeats
the waiting procedure. If the sender is unable to rendezvous with
the receiver after waiting on all channels, the sender concludes that
the receiver is “unreachable” (e.g., currently powered off or out of
wireless transmission range).

After obtaining the prediction state of a receiver, a sender can
predict the receiver’s future wake-up channels and times. The com-
plete algorithm used by a sender S to predict the wake-up time and
channel of a receiver R is given in Section 3.3, but the basic opera-
tion of the algorithm is as follows: based on the prediction state of
R, S computes every wake-up time and channel of R until it finds
a wake-up time of R that is larger than the current time of R plus a
small wake-up advance time.

EM-MAC can support broadcast operation by sending a broad-
cast packet to neighboring nodes one-by-one, at each neighbor’s
individual wake-up time. One method for discovering the neigh-
boring nodes of a node is to let this node periodically stay awake
on a channel for Tblack +2×Nch ×TmaxInterval and record the nodes
from which it hears a beacon.

3.2. Dynamic Channel Selection
Supplementing the pseudorandom selection of channels described
in Section 3.1, each node in EM-MAC uses a dynamic mecha-
nism, based on the channel conditions it senses, to optimize the
set of channels over which it switches. With this mechanism, a
node avoids choosing channels that are congested or are degraded
by interference such as from Wi-Fi devices [10] or from jamming
attacks [24]. This dynamic channel selection mechanism spreads
the traffic to the available channels and enhances communication
robustness, sensor node energy efficiency, and packet delivery ef-
ficiency. Our dynamic channel selection algorithm is implemented
on MICAz motes, which use a ZigBee radio.

3.2.1. Detecting Channel Conditions
A node in EM-MAC independently collects the channel condi-
tion information, as a byproduct of regular transceiving operations,
without extra energy consumption. EM-MAC does not send prob-
ing packets to determine the channel condition because such proac-
tive channel condition measurement approach increases the node
energy consumption and network traffic.

A node maintains for each channel a non-negative “badness”
metric. When a node in EM-MAC wakes up on a channel to send a
wake-up beacon or a data packet, it conducts a CCA (Clear Channel
Assessment) check to ensure the channel is idle before beginning
the transmission. If the channel is idle, the node sends the packet
and decreases that channel’s badness metric by 1 (the metric is not
allowed to become less than 0). Otherwise, the node conducts a
CCA check again after a short random backoff. If the channel
is still busy after three such CCA checks, the node increases that
channel’s badness metric by 2 and goes to sleep. In addition, af-
ter a node sends a wake-up beacon, if the CCA check indicates the
channel is busy but the node does not receive a valid packet, the
node assumes a packet collision may have occurred and resolves
the collision by informing the senders to retransmit the packets us-
ing an increased backoff window. If collision resolution fails, the
node increases its badness metric for this channel by 2. Likewise,
if the node sends a data packet but does not receive an ACK for
it, the node increases the badness metric of this channel by 2. By
updating the channel badness metric in this way, if a channel is
congested or many failed transmissions occurred on it, the badness
metric of this channel increases; Otherwise, the channel’s badness
metric decreases.

3.2.2. Multichannel Rendezvous with Blacklisted
Channels

Based on the channel badness metrics, a node in EM-MAC selects
the set of channels it switches among. Every node maintains its
own channel blacklist that identifies the channels the node regards
as “bad” channels. When the badness metric of a channel is above
a threshold Cbad , the channel will be added to the node’s blacklist.

A node switches among channels based on its pseudorandom
channel schedule, except that, if the next pseudorandomly chosen
channel is on the node’s channel blacklist, the node stays on its
current channel (used for its wake-up previous to this one).

The maximum number of channels allowed on a node’s blacklist
is the total number of available channels minus 1. If all channels



have a badness metric beyond Cbad , the “least bad” channel is re-
moved from the blacklist. This limits communication attempts to
using this single channel, until other channels are determined to no
longer be bad and are removed from the blacklist.

To enable potential senders to learn its blacklisted channels, a
node R represents its blacklisted channels using a bitmap and em-
beds it in its wake-up beacons. Since in our implementation there
are 16 channels, the size of the blacklist bitmap is 2 bytes. In other
contexts, other protocols have successfully likewise characterized
the current status of a channel using a single bit [16].

If R changes its channel blacklist, a sender S learns the updated
blacklist of R after receiving a wake-up beacon from R. Before
receiving the updated blacklist of R, S may miss a wake-up of R
if S waits for R on a channel that R has just added to its channel
blacklist. Even in this case, the duty cycle of S should only be
slightly increased, as EM-MAC limits the waiting time of S on each
channel and puts S into sleep state if it does not receive a wake-up
beacon from R at the expected time. The limited waiting time is
described in detail in Section 3.3.2.

A node R expires and removes from its channel blacklist the
channels that have been on the blacklist for more than Tblack time
and resets the badness metric of such channel to 0. Similarly, a
sender S to R also updates its stored channel blacklist from R by
expiring and removing channels that have (to S’s knowledge) been
on the blacklist of R for more than Tblack time. Once a channel has
been removed from the blacklist, a node uses the channel normally.
Removing a channel from the blacklist gives a node the opportu-
nity to re-sample the condition of this channel. If this channel is
still bad, the badness metric mechanism will cause it to be placed
again onto the blacklist.

3.3. Precise and Quick Multichannel
Rendezvous

Precise and quick multichannel rendezvous is crucial to high en-
ergy efficiency and low delivery latency. EM-MAC achieves this
through a comprehensive set of techniques, including an adap-
tive time modeling technique, the exponential chase algorithm,
the bounded prediction computation mechanism, and the limited
sender waiting mechanism. This section presents the details of
these techniques.

3.3.1. Adaptive Time Modeling

Existing work either assumes that the sensor nodes have synchro-
nized clocks or uses a preconfigured clock drift ratio to model the
clock rate difference between nodes; however, such mechanisms
can lead to senders missing receivers, to a degradation of energy
efficiency, and to an increase in packet delivery latency in real sen-
sor networks, as real sensor nodes can have different clock rates
that are affected by the environment [7]. For example, WiseMAC
models the clock difference between sensor nodes based on an a
priori preconfigured clock drift ratio. If the preconfigured clock
drift ratio is less than the actual clock rate difference between a
sender and a receiver, the sender will miss the receiver’s wake-ups.
If the preconfigured clock drift ratio is much larger than the actual
clock rate difference, then the sender will wake up much earlier
than the receiver does, unnecessarily increasing the sender’s duty
cycle and energy consumption.

The adaptive time modeling technique of EM-MAC enables a
node S to accurately predict the time of another node R by analyz-
ing observed time information from R and modeling the develop-
ment of their time difference. A node in EM-MAC does not syn-
chronize its time with other nodes. Instead, a node S models the

time of a node R as y = kx + b, where x denotes the current time
of S, and y denotes the current time of R computed by S. The val-
ues k and b denote the clock rate difference and the initial clock
difference between the two nodes, respectively. For example, if
k = 1, we have y = x+b, meaning S and R have the same clock rate
but have a time difference of b. The time modeling technique of
EM-MAC adds no extra energy overhead and does not require spe-
cial time-synchronization packets, only exploiting the timestamps
embedded in prediction states. This technique is simpler, for exam-
ple, than the wireless sensor network synchronization algorithms
reviewed by Sadler and Swami [15], which synchronize the clocks
of all nodes in the network based on the time samples containing
highly-variable end-to-end packet transmission delays.

When S receives the prediction state from R for the first time, it
assumes k = 1 and models the time of R using the equation y = x+
b. If the clocks of S and R run at the same rate, then S does not need
to request future prediction state updates from R. If, instead, the
clocks of S and R run at different rates, S can detect, when sending
a data packet to R, that the actual wake-up time of R differs from its
predicted wake-up time. Once this difference approaches S’s wake-
up advance time, S requests an on-demand prediction state update
from R by setting a flag in the data packet header; upon receiving
the prediction state update from R in the ACK for this data packet,
S not only regains its ability to precisely predict R’s next wake-up
channel and wake-up time but also now has two time samples from
R: y1 = kx1 +b and y2 = kx2 +b, in which y1 denotes the previously
received time sample of R and y2 denotes the newly received time
sample of R. Based on these time samples, S is able to compute the
value of the parameters k and b, thereby determining how fast the
time of R develops relative to the time of S.

Ideally, when S receives the prediction state from R, the time
sample in the received prediction state (i.e., y value) is exactly the
current time of R. However, hardware latency, operating system
latency, carrier sensing, radio backoff, and packet propagation time
can cause a gap between when R added its time sample to the pre-
diction state in the packet and when the prediction state is received
by S.

To accurately compute the parameters k and b on real sensor
hardware, it is important to minimize this gap. We implemented
a method on MICAz motes to obtain precise time samples by
directly accessing the radio hardware packet transmission RAM
buffer and adding the time sample only when the packet is actu-
ally being transmitted by the radio. This method removes the error
caused by carrier sensing, radio backoff, and operating system la-
tency. Specifically, the hardware interrupt from transmitting the
Start Frame Delimiter (SFD) of a packet containing the prediction
state indicates that the packet stored in the hardware packet trans-
mission RAM buffer is now being transmitted by the radio. Upon
receiving this hardware interrupt, the transmitting node accesses
the hardware packet transmission RAM buffer to add its current
time to the packet being sent.

3.3.2. Sender Wake-up Time Details
To send a data packet to a receiver, a sender in EM-MAC wakes up
before the predicted receiver wake-up time by an amount of time
referred to as the wake-up advance time, and stays awake at most
twice the wake-up advance time (thus centered on the predicted
wake-up time). If the sender has not begun to receive the receiver’s
beacon by this time, the sender goes back to sleep and wakes up
at the next predicted wake-up time of the receiver to send the data
packet. If the sender is still unable to rendezvous with the receiver
in next cycle, it invokes exponential chase algorithm described in
Section 3.3.3 to rendezvous with the receiver.



EM-MAC limits the sender waiting time to twice the wake-up
advance time in order to maintain a small sender duty cycle even
when the sender misses a receiver wake-up. The reason for set-
ting the sender waiting time to twice the wake-up advance time is
that the predicted receiver wake-up time can be ahead of or behind
the actual receiver wake-up time. The wake-up advance time is
a hardware-dependent variable that accounts for the hardware and
operating system latency for radio power-up operation, and the time
difference between a sender and a receiver. The configuration of the
initial wake-up advance time of a sender waiting for a receiver is
given in the Section 4.

3.3.3. Exponential Chase Algorithm
The adaptive time modeling technique described in Section 3.3.1
enables a sender to make precise predictions for rendezvousing
with a receiver. However, it does not guarantee that a sender can
model a receiver time perfectly accurately; the actual receiver clock
rate and the receiver clock rate modeled by the sender may still be
slightly different. If a sender and receiver have not communicated
for a long time, the sender may miss a wake-up of the receiver,
as even a very small clock rate difference multiplied over a long
time can result in a prediction error larger than the normal sender
wake-up advance time; if the actual sender or receiver clock rate
has changed significantly, for example due to environmental fac-
tors, such a prediction error also becomes possible. If a sender
misses a receiver wake-up, quickly re-rendezvousing with this re-
ceiver is crucial to maintaining a small sender duty cycle and packet
delivery latency. EM-MAC introduces the exponential chase algo-
rithm to quickly re-rendezvous a sender and a receiver.

After a sender misses a receiver for the second time, the sender
invokes the exponential chase algorithm by doubling its current
wake-up advance time for this receiver (and thus also the time
to wait for the receiver’s wake-up beacon after the expected re-
ceiver wake-up time). Then the sender computes the receiver’s
future wake-up channels and wake-up times until finding a wake-
up time of the receiver that is at least this wake-up advance time
after the receiver’s current time. Lastly, the sender wakes up the
wake-up advance time before this predicted receiver wake-up time
on the corresponding wake-up channel of the receiver, to attempt
to rendezvous with the receiver. The sender repeats iterations of
this exponential chase algorithm until receiving a wake-up beacon
from the receiver. Once the sender successfully rendezvous with
this receiver, it resets its wake-up advance time for this receiver to
its initial value for future data packets to be sent to this same re-
ceiver. Figure 2 shows an example of the operation of exponential
chase.

The exponential chase algorithm ensures that a sender is able
to rendezvous with a receiver after a finite number of iterations of
the algorithm, as the time difference between the sender and the
receiver must be finite. Meanwhile, a sender S gives up attempting
to send to a receiver R and discards the prediction state of R if S has
not been able to rendezvous with R after the wake-up advance time
for R in the current exponential chase iteration surpasses Tgiveup
(Tgiveup > Tblack + 2×Nch ×TmaxInterval). The reason to limit the
sender in this way in the exponential chase algorithm is because
the receiver node may have been powered off or be out of wireless
transmission range. If, instead, the sender is able to rendezvous
with the receiver, after receiving the receiver wake-up beacon, the
sender sets a flag in the header of the data packet that it sends to this
receiver, requesting the receiver to return its current prediction state
in the ACK beacon; the sender thus regains its ability to precisely
predict the wake-up times and wake-up channels of this receiver
once receiving this prediction state.

R:

S:

S misses receiving R’s beacon
S’s prediction of R’s wake-up time (based on S’s clock)

time

S remains awakeS doubles again
S doubles its wake-up advance time

j
i

k

j
i

k

Node activeReceiveTransmit

Figure 2: Sender S and receiver R have a large time difference.
To rendezvous with R, S exponentially increases its wake-up ad-
vance time and the waiting time around the predicted receiver
wake-up time, which quickly makes up for the time difference
between S and R. Each wake-up time of R predicted by S is
marked by a vertical bar during each active time of S.

In EM-MAC, it is not possible for a node S, endlessly, to switch
to R’s predicted wake-up channel to send a data packet to R, while
on each such attempt, at the same time R switches to S’s predicted
wake-up channel to send a data packet to S. In EM-MAC, two
nodes will not wake up at the same time consecutively. In partic-
ular, with the limited sender waiting time mechanism described in
Section 3.3.2, if S and R fail to rendezvous since they are trying to
send to each other, they will switch to sleeping state and at least one
of them will wake up before the other on the next attempt, thereby
avoiding such endless repeated attempts.

In addition, EM-MAC guarantees that a sender S is able to ren-
dezvous with a receiver R even if they have a large time difference
and inconsistent channel blacklist information. A rendezvous here
means that R sends a wake-up beacon on the channel on which S is
awake and waiting, assuming R will send a wake-up beacon after it
wakes up. Let BlackCH(R,R) denote the actual channel blacklist
of R, and let BlackCH(R,S) denote the channel blacklist of R as
known by S.

Case 1: BlackCH(R,R) = BlackCH(R,S) during the period over
which S attempts to rendezvous with R. If the time difference be-
tween S and R is no larger than Tgiveup, S will rendezvous with R on
a non-blacklisted channel of R after a finite number of iterations of
exponential chase algorithm, as illustrated in the example of Fig-
ure 2. If the time difference between S and R is larger than Tgiveup,
S is still able to rendezvous with R because Tgiveup is larger than
the time over which R will have visited all non-blacklisted chan-
nels. That is to say, during Tgiveup, R will visit at least once some
channel on which S is awake and waiting.

Case 2: BlackCH(R,R) is not always the same as BlackCH(R,S)
during the period over which S attempts to rendezvous with R. Be-
cause R removes any channel from its blacklist after Tblack, and
since Tgiveup is larger than Tblack by 2×Nch ×TmaxInterval , R will
visit at least once, before the expiration of Tgiveup, some channel
on which S is awake and waiting, even if that channel was initially
blacklisted by R. Hence, S will still rendezvous with R.

3.3.4. Bounding Prediction Computation

For existing predictive-wakeup MAC protocols using forms of pre-
diction based on a pseudorandom number sequence (e.g., [2, 17,
22]), if a sender S has not sent a packet to some receiver R for
a long time, it can be quite expensive for S to compute the next
wake-up time of R. Since values in a pseudorandom sequence must



Algorithm PREDICT-WAKEUP(R):

Output: int ch; {predicted next wake-up channel of R}
Output: int wakeTime; {predicted next wake-up time of R}
if S does not have prediction state of R then

return (ch=RANDOM_CHANNEL(), wakeTime=0); {S wakes up
now to request the prediction state of R}

end if

curTime[R] = CURRENT_TIME(R);{S computes the current time of R}

if nextWakeupTime[R] > (curTime[R]+wakeAdvance[R]) then
{if S has computed next wake-up channel and wake-up time of R be-
fore}
return (ch=nextWakeupCh[R], wakeTime=nextWakeupTime[R]);

end if

while (1) do
if it is time for R to reset its random number states then

RESET(randState[R], IDR);
continue;

end if
randState[R]=RAND_Num(randState[R],IDR );
nextWakeupCh[R] = GET_WAKEUP_CHANNEL(randState[R]);
if nextWakeupCh[R] is a blacklisted channel of R then

nextWakeupCh[R] = CURRENT_CHANNEL(R);
end if
randState[R]=RAND_Num(randState[R],IDR );
nextWakeupTime[R]+ = randState[R];
if nextWakeupTime[R] > (curTime[R]+wakeAdvance[R]) then

break;
end if

end while
return (ch=nextWakeupCh[R], wakeTime=nextWakeupTime[R]);

Figure 3: A node S computes the predicted wake-up channel
and wake-up time of another node R.

be generated in-order, all wake-up times and channels of R over
this period since S last sent a packet to R must be computed by S.

Since the computational capability of sensor nodes are usually
quite limited, EM-MAC introduces a prediction state resetting
mechanism to bound such potentially expensive prediction com-
putations. With this mechanism, a node resets its pseudorandom
number generator state every P seconds. The value P determines
the length of a reset period. The index of the period corresponding
to the time t, denoted as PI(t), is t/P.

Let Tprevious(S,R) be the last time sender S computed the wake-
up channel and wake-up time of a receiver R. With the random
number generator resetting mechanism, if Tprevious(S,R) is before
the beginning of the current reset period of R, then instead of
computing the next wake-up channel and wake-up time of R from
Tprevious(S,R), S need only compute the random numbers generated
by R since the beginning of R’s current reset period. This method
greatly reduces the prediction computational overhead and bounds
the maximum computational overhead to be computing all random
numbers generated in a period. S is able to compute all random
numbers generated by R in the period PI(t) since S has the pre-
diction state of R and the first random number used for R’s wake-
up scheduling in the period PI(t) is the PI(t)th number generated
by R’s pseudorandom number generator, with the multiplier of R’s
pseudorandom number generator being the first seed.

Figure 3 shows the algorithm of computing the wake-up channel
and wake-up time of a receiver R.

4. EVALUATION ON MICAz MOTES
To evaluate the realistic performance of EM-MAC, we imple-
mented it on MICAz motes running TinyOS. Each wake-up in-

terval for a node using EM-MAC in our experiments was pseudo-
randomly chosen between 500 ms and 1500 ms. On average, a
sender generates one new data packet every second. The param-
eter Cbad is configured as 15. Tblack is set to 100 s and Tgiveup is
set to 150 s. The sender wake-up advance time here is configured
as 20 ms, and the random number generator resetting interval is
configured as 300 s.

The duty cycle metric reported in our evaluation is the percentage
of time a node is awake; sender duty cycle is the duty cycle of a data
packet sender or forwarder, and destination duty cycle is the duty
cycle of the destination node of a traffic flow. Packet delivery ratio
(PDR) is the ratio of the number of packets successfully delivered
to the destinations to the total number of packets originated by the
traffic sources. Packet delivery latency is the period between the
time a packet is generated by the packet’s source node and the time
the packet is delivered to the corresponding destination node.

4.1. Performance of Multichannel Rendezvous
To evaluate the multichannel rendezvous performance of EM-
MAC, we first studied the time modeling accuracy of the proto-
col on real hardware. For these experiments, we chose two arbi-
trary MICAz motes, one as the sender and one as the receiver. For
each attempted rendezvous, the sender woke up 20 ms before the
predicted receiver wake-up time, on the predicted receiver wake-
up channel. The experiments measured the number of times the
sender missed the receiver over a period of 6000 seconds. In one
of the three experiments, the receiver used the unmodified MICAz
clock. In the other two experiments, to create challenging test sce-
narios, the receiver node’s clock was accelerated by 100 ppm and
by 200 ppm (parts per million), respectively; it has been reported
that clock drift rates for common sensor nodes can normally be be-
tween 30 and 100 ppm [19].

Across all three of these experiments, the sender did not miss any
of the total of 18,000 receiver wake-ups. Even when the receiver
clock was accelerated, the sender was able to accurately predict the
receiver time, using the time modeling mechanism in EM-MAC,
and to rendezvous with the receiver.

However, the clock rate of a sensor can vary significantly over
time, being influenced by environmental factors such as tempera-
ture and humidity [7]. For instance, a sensor could be deployed in
a location that is hot during the daytime and cold at night. In this
case, even with the receiver time modeling technique in EM-MAC,
it is possible for the sender to miss the receiver. To address this
possibility, upon missing a receiver, the sender in EM-MAC uses
the exponential chase algorithm, as described in Section 3.3.3, to
re-rendezvous with the receiver.

In order to evaluate the effectiveness of the exponential chase
algorithm, in the following set of experiments, we repeatedly in-
creased the receiver clock rate until the sender failed to rendezvous
with the receiver when sending a data packet, and then measured
how quickly the sender re-rendezvoused with the receiver using ex-
ponential chase; in these measurements, EM-MAC’s on-demand
prediction state update mechanism described in Section 3.3.1 was
disabled, in order to ensure that a rendezvous failure and the need
for exponential chase would eventually occur. Since existing work
does not have a mechanism to re-rendezvous a sender and a receiver
efficiently on multiple channels after the sender misses the receiver,
we implemented two other possible multichannel rendezvous meth-
ods and compared them with the exponential chase algorithm of
EM-MAC. In one method, which we refer to as waiting-at-one-
channel, the sender stays awake on its current channel until it
again rendezvous with the receiver. In the other method, which
we refer to as rotating-different-channel, the sender stays awake on



Table 1: Performance of Rendezvous Alternatives

Rendezvous Method
Rendezvous Sender Duty
Latency (ms) Cycle

EM-MAC Exponential Chase 902 6.7%
Waiting-at-one-channel 9095 100.0%
Rotating-different-channel 8153 100.0%

each channel in turn, beginning with its current channel, remain-
ing awake on each channel for a time equal to the average node
wake-up interval (1 s, in these experiments) and then switching
to the next channel, until the node again rendezvous with the re-
ceiver. In these experiments, all three methods use the same 20 ms
sender wake-up advance time. Each experiment was conducted 30
times.

The average result for each multichannel rendezvous method in
these experiments is presented in Table 1. The right two columns
of Table 1 show, respectively, the time it took for the sender to
re-rendezvous with the receiver and the sender duty cycle during
the process of rendezvousing with the receiver. Compared with the
other two multichannel rendezvous methods, the EM-MAC expo-
nential chase algorithm enabled the sender to quickly re-rendezvous
with the receiver while maintaining a high energy efficiency.

To further confirm the performance of our exponential chase al-
gorithm, we also conducted another set of experiments in which
we deliberately created a range of different amounts of error in the
sender’s prediction of the receiver’s wake-up time, up to 160 ms
of prediction error. As the initial sender wake-up advance time
is configured as 20 ms, for all sender prediction errors less than
this amount, no iterations of the exponential chase algorithm were
required for the sender and receiver to rendezvous. Above this
amount, each time the amount of error was doubled, one additional
iteration of the algorithm was used by our EM-MAC implemen-
tation: for errors above 20 ms but below 40 ms, only 1 iteration
of the exponential chase algorithm was used; up to 80 ms, only
2 iterations were used; and up to 160 ms, only 3 iterations were
used.

Finally, in evaluating the performance of multichannel ren-
dezvous, we compared the performance of EM-MAC, Y-MAC, and
PW-MAC in sensor networks with a larger clock rate difference be-
tween nodes. In these experiments, one MICAz node is used as the
sender and one as the receiver. The clock rate of the receiver node
was accelerated by 3000 ppm, which creates a challenging test sce-
nario for these protocols since this clock rate acceleration is signif-
icantly higher than the reported clock drift rates of 30 to 100 ppm
for common sensor nodes [19].

EM-MAC substantially outperformed both Y-MAC and PW-
MAC in these experiments. The duty cycle of both Y-MAC and
PW-MAC was more than 3 times greater than that of EM-MAC.
The delivery latency of Y-MAC was more than 8 times larger than
that of EM-MAC. Compared with their performance without such
large clock rate differences (shown later in Table 3 in the “No In-
terference” column), the performance of Y-MAC and PW-MAC is
substantially worse in these experiments, since the large clock rate
difference between the sender and the receiver caused the sender
with these two protocols to miss the receiver wake-ups and stay
awake longer to retransmit the packets, enlarging the delivery la-
tency and sender duty cycle. In contrast, the time modeling tech-
nique of EM-MAC enables the sender to accurately compute the
receiver clock rate based on the time samples from the receiver,
contributing to the small sender duty cycle and delivery latency of
EM-MAC, even in such challenging conditions.

Table 2: Performance With Large Clock Rate Difference

Protocol
Sender Delivery

PDRDuty Cycle Latency (ms)

EM-MAC 5.3% 611 100.0%
Y-MAC 32.8% 5130 100.0%
PW-MAC 19.8% 762 100.0%

4.2. Performance in Multihop Networks
We next compare the performance of EM-MAC with that of two
multichannel MAC protocols (McMAC and Y-MAC) and four sin-
gle channel MAC protocols (PW-MAC, WiseMAC, RI-MAC, and
X-MAC) in multihop networks. The experiments were conducted
on a testbed of 15 MICAz motes, arranged as 3 rows of 5 nodes
each, with all nodes within transmission range of each other so that
different traffic flows interfere with one another. Each row of nodes
could be operated as a separate traffic flow of up to 4 hops (5 nodes,
including the source node); in our experiments, we evaluated each
protocol’s performance using from 1 to 3 of these traffic flows.

The source of each traffic flow generated one 28-byte data packet
every second on average. Each experiment lasted 500 seconds and
was conduct three times; the results presented are the average of
the three runs. The number of slots in a frame of Y-MAC is 8,
the same configuration as that previously published for Y-MAC [8].
The Pdeviate parameter of McMAC is configured as 1 since McMAC
performed best under this configuration in the experiments. The big
slot length of McMAC is configured as 1 s.

Figure 4 shows the results of these experiments. On the left of
each graph are shown the results for a single flow, ranging from 1
hop to 4 hops in length, and on the right of each graph are shown
the results for 2 and 3 simultaneous flows, respectively, each of 4
hops in length.

Figure 4(a) shows the sender duty cycle. Other than the destina-
tion, every node on a traffic flow is a sender since it either generates
data packets or forwards data packets. The energy efficiency of a
multihop traffic flow is determined mainly by the sender duty cycle
rather than by the destination duty cycle since there are multiple
senders but only one destination on a multihop traffic flow. The
sender duty cycle of McMAC was 100% since nodes in McMAC
are always on. EM-MAC achieved the smallest sender duty cycle
under all traffic conditions. PW-MAC (a single-channel protocol)
ranks second in terms of sender duty cycle, since it also attempts to
predict the receiver wake-up time.

As the hop-length of a traffic flow and the number of traffic flows
increase, so does the sender duty cycle performance advantage of
EM-MAC over the other protocols. When there are three 4-hop
flows, the sender duty cycle of EM-MAC was only 58% of that of
the second-best-performer, PW-MAC. RI-MAC had a large sender
duty cycle because, with RI-MAC, a sender wakes up whenever it
has a data packet to send and only switches to sleeping state after
the data packet transmission completes. Similarly, X-MAC had a
large sender duty cycle. The sender duty cycle of WiseMAC grows
as the hop-length and the number of traffic flows increase, since
the sender-initiated preambles of WiseMAC lead to wireless colli-
sions and WiseMAC does not have an energy-efficient mechanism
to conduct retransmissions. Y-MAC had a larger sender duty cy-
cle than did EM-MAC, since in Y-MAC multiple nodes contend
for the same control channel to send their first packet, which often
leads to more collisions than EM-MAC, which tries to spread out
the contention among different channels. In addition, when colli-
sions occur, Y-MAC does not have an energy-efficient mechanism
to retransmit packets.
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Figure 4: Performance of EM-MAC, PW-MAC, McMAC, WiseMAC, RI-MAC, X-MAC and Y-MAC on a multihop MICAz testbed.
The hop-length of the traffic flow varies from 1 to 4 and the number of 4-hop traffic flows ranges from 1 to 3.

Figure 4(b) shows the destination duty cycle. The destination
duty cycle of McMAC was 100% since McMAC is an always-on
MAC protocol. The destination duty cycle of the other protocols
was small (about 5%) because the traffic destination nodes in these
protocols only periodically wake up to receive data packets without
sending any data packets. When the number of senders increases,
the destination duty cycle of X-MAC and WiseMAC decrease and
become smaller than that of the other protocols, as packet trans-
missions from multiple senders cause substantial packet collisions
in both protocols and the destination nodes go to sleep when no
valid packets are received.

Figure 4(c) shows the packet delivery ratio and Figure 4(d)
shows the packet delivery latency in these experiments. EM-MAC
achieved the smallest packet delivery latency and 100% packet de-
livery ratio in all experiments. PW-MAC achieved 100% packet
delivery ratio and the second best packet delivery latency. Y-MAC
had a larger delivery latency than EM-MAC and PW-MAC. In
Y-MAC, once a data packet collision occurs, the sender has to wait
until next cycle to retransmit the packet, causing the larger deliv-
ery latency. The delivery latency of McMAC is correlated to the
Pdeviate parameter. In these experiments, Pdeviate is configured as 1;
when Pdeviate was configured between 0.2 and 0.8 as suggested by
the authors of McMAC [17], the delivery latency of McMAC was

larger. As the number of concurrent transmitters increases, the de-
livery latency of X-MAC and WiseMAC grow quickly since the
sender-initiated preambles generated by these protocols tend to col-
lide under high traffic loads.

EM-MAC and PW-MAC outperformed the other protocols in the
experiments shown in Figure 4. The sender duty cycle of EM-MAC
is 40% less than that of PW-MAC. The performance advantage of
EM-MAC over PW-MAC becomes even larger as the traffic load
increases. For example, when the traffic load was doubled and
there were three 4-hop traffic flows in the network, both protocols
delivered all packets successfully, but the sender duty cycle of EM-
MAC was only 33% of that of PW-MAC, and the delivery latency
of EM-MAC was only 39% of that of PW-MAC.

EM-MAC achieves a very high energy and packet delivery effi-
ciency mainly due to the following two reasons. First, EM-MAC
dynamically optimizes node channel selections, greatly reducing
wireless collisions and the energy spent on packet retransmissions.
Second, EM-MAC achieves quick and accurate multichannel ren-
dezvous, thereby minimizing sender idle listening and overhearing.
In contrast, the other protocols are not as efficient in utilizing the
channel resources. With these protocols, when there were many
concurrent packet transmissions, a significant amount of wireless
collisions occurred, enlarging the delivery latency and sender duty



Table 3: Performance With Wireless Interference and Jamming

No Interference ZigBee Interference ZigBee Jamming Wi-Fi Interference

Protocol Sender Delivery
PDR

Sender Delivery
PDR

Sender Delivery
PDR

Sender Delivery
PDRDuty Cycle Latency (ms) Duty Cycle Latency (ms) Duty Cycle Latency (ms) Duty Cycle Latency (ms)

EM-MAC 5.7% 573 100.0% 6.3% 625 100.0% 6.4% 675 100.0% 6.4% 670 100.0%
Y-MAC 12.1% 695 100.0% 25.8% 57283 100.0% 100.0% ∞ 0.0% 91.0% 252506 35.2%
PW-MAC 6.1% 568 100.0% 39.2% 1506 100.0% 100.0% ∞ 0.0% 76.0% 309197 12.0%

cycle since senders had to stay awake to conduct retransmissions.
Furthermore, compared with EM-MAC, these protocols are not as
accurate in rendezvousing sender and receiver, resulting in a larger
idling listening and overhearing.

4.3. Performance with Wireless Interference
Sensor communications are subject to wireless interference, includ-
ing possible various wireless jamming attacks [24]. In this section,
we compare the performance of EM-MAC, Y-MAC, and PW-MAC
under ZigBee interference, under ZigBee jamming, and under Wi-
Fi interference. Although PW-MAC is a single-channel MAC pro-
tocol, it performed the best among the single-channel protocols
evaluated in multihop networks in Section 4.2, so we include it as
well in our evaluation in this section.

In these experiments, there is one MICAz mote sender and one
MICAz mote receiver. We compare the duty cycle and packet deliv-
ery ratio of these two nodes in four cases: with no interference, with
ZigBee interference, with ZigBee jamming, and with Wi-Fi inter-
ference. In the ZigBee interference case, there are four additional
MICAz transmitting nodes, each independently transmitting a 100-
byte packet of random content every 20 ms; each of these packets
is sent without carrier sensing, equivalent, for example, to the case
of a busy channel with hidden transmitters. In the ZigBee jamming
case, a single MICAz node transmits back-to-back packets, with-
out carrier sensing, in an attempt to monopolize the wireless chan-
nel. In the Wi-Fi interference case, one laptop sends Wi-Fi traffic
to another laptop connected to a Wi-Fi router. This Wi-Fi traffic
flow is generated by the iperf network testing tool, which sends
TCP traffic as fast as possible between the two laptops; the aver-
age TCP throughput achieved by iperf between these two laptops
was about 3.6 Mbps. The two MICAz mote sender and receiver
being measured were placed 1 meter from the laptop that trans-
mits Wi-Fi traffic; the distance from the Wi-Fi router to the motes
was 3 meters, and the Wi-Fi channel overlapped with the ZigBee
channel used by the sender and receiver motes. The laptops and
the motes were in an open network with background traffic. Each
experiment in these four cases lasted 500 seconds and was con-
ducted three times. Table 3 shows the average performance results
of EM-MAC, PW-MAC, and Y-MAC in these experiments.

Under Wi-Fi interference, compared with their performance
with no interference, the performance of Y-MAC and PW-MAC
degraded significantly, because Wi-Fi packets are transmitted with
a much higher power level than the power level used for transmit-
ting ZigBee packets and because Wi-Fi transceivers do not recog-
nize ZigBee packets, creating a heavy interference to the nearby
ZigBee traffic. PW-MAC uses only one channel. In Y-MAC,
a sender does not dynamically choose channels to avoid inter-
fered channels and only has one time slot in each cycle to send
to a receiver. Hence, Y-MAC and PW-MAC suffered from a long
packet delivery latency under the interference, as the interference
often caused a packet to be transmitted many times before it was
delivered successfully to the receiver. The substantial increase
of the sender duty cycle of these two protocols is because the

sender stayed awake for a long time to conduct packet retransmis-
sions.

Under the ZigBee jamming, the packet delivery ratio of Y-MAC
was 0, because the jammer monopolized the control channel, leav-
ing the control channel to be busy all the time and causing the
sender to be unable to send any packet on the jammed control chan-
nel. Y-MAC suffered a high sender duty cycle when ZigBee jam-
ming was present since the sender stayed awake to wait for the
opportunity to send the data packets and receive the time synchro-
nization information from the receiver. For similar reasons, the
delivery ratio and the sender duty cycle of PW-MAC under ZigBee
jamming was 0 and 100%, respectively.

Under ZigBee interference, Wi-Fi interference, and ZigBee jam-
ming, EM-MAC delivered all packets successfully with high en-
ergy efficiency and small delivery latency. Compared with the
sender duty cycle of Y-MAC and PW-MAC, the sender duty cy-
cle of EM-MAC (at 6.4%) was quite low. The delivery latency of
EM-MAC under Wi-Fi interference and ZigBee jamming was less
than 1% of that of the other two protocols.

EM-MAC significantly outperformed the other protocols under
wireless interference and jamming because its dynamic channel se-
lection mechanism enables a node to detect and avoid using the
channels that were very busy or were having a large number of oc-
currences of packet collisions and transmission failures.

5. CONCLUSION
In this paper, we have presented EM-MAC, an energy-efficient dy-
namic multichannel MAC protocol for wireless sensor networks.
EM-MAC achieves high energy efficiency by enabling senders to
accurately predict the wake-up channel and wake-up time of re-
ceivers. EM-MAC uses no control channel and enables a node to
dynamically select the channels it switches among based on the
channel conditions it senses. By effectively utilizing multiple or-
thogonal radio channels, EM-MAC is able to avoid using channels
that are currently heavily loaded or are otherwise undesirable such
as due to interference or jamming. Furthermore, by not requiring
use of a control channel, EM-MAC avoids concentrating control
communication on any channel and avoids the performance degra-
dation that would otherwise result if a control channel itself were
heavily loaded or experiencing interference or jamming. EM-MAC
provides precise and quick multichannel rendezvous, even given
challenges such as changing clock drift rates between nodes and
variable hardware or operating system latencies.

We have implemented EM-MAC in TinyOS and evaluated its
performance in single-hop and multihop networks of MICAz
motes. Compared with other representative energy efficient MAC
protocols, EM-MAC achieved the lowest duty cycle and smallest
packet delivery latency, while maintaining 100% delivery ratios in
all experiments. In addition, the higher the network traffic loads,
the larger the performance margin of EM-MAC over other proto-
cols was observed. For example, when there were 3 concurrent
4-hop traffic flows, EM-MAC at packet sources and all forward-
ing nodes achieved a low duty cycle that was only 33% of that of



the second-best-performer PW-MAC. At the same time, EM-MAC
achieved a very low packet delivery latency, only 39% of that of
PW-MAC. We have also evaluated the performance of EM-MAC
under Wi-Fi interference and ZigBee jamming. The experimental
results show that EM-MAC reduces duty cycle and delivery latency
by more than a factor of 10 over other protocols while maintaining a
100% packet delivery ratio. In the experiments where sensors have
different degrees of clock drift rates, EM-MAC substantially out-
performed other protocols in energy efficiency and packet delivery
latency.
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