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ABSTRACT

By putting the fundamental equations
in terms of the stream potential of the surface
current density, it is possible to express the
rectangular thin plate problem in a single equation
subject to simple boundary conditions. A finite
difference approximation of this equation reduces
the problem to that of solving a large set of linear
algebric equations. The sclution of these equations
by a modified Gauss-Seidel iterative method yields
the stream potential and thus permits visualization
of the eddy currents circulating inside the plate
conductors, The secondary field calculated from the
stream potential compares well with scale model
measurements provided that the intervals used in the
finite differences are small enough., Using a further
approximation, inductively thick conductors can also

be simulated if they are not also geometrically thick,



INTRODUCT ION

The interpretation of EM prospecting surveys
is chiefly based on knowledge of the theoretical response
of the prospecting system to certain idealized models of
possible geoclogical conductors. In most cases, the theor-
etical responses have been obtained by laboratory measure~
ments., The most notable exceptions are the sphere, the
infinite slab, and the stratified half—-space models for
which a mathematical treatment is simplex than scale
modeling. In the cases of the more realistic models such
as the semi-infinite thin sheet (half-plane), only the
solutions of special problems (e.g. perfect conductivity)
have been found (Wesley, 1958; Wait, 1959; West, 1960).

The thin sheet of finite extent has hardly been studied at
all mathematically.

In order to further a study of the Turam system,
the results of which are given in another paper (Lamontagne
& West, 1971), we have attempted to calculate the response
of a rectangular thin sheet by finite difference techniques.
This method is especially well suited to a fixed transmitter
geometry such as in employed in the Turam method, as there

is only one transmitter-—conductor geometry for all the



measurements of a survey. Thus only one finite difference
solution is required for each case simulated;, whereas a

new solution would have to be calculated for each receiver
position in the case of a moving transmitter system,
Furthermore, the finite thin sheet is an especially usefﬁl
model for Turam interpretation because of the important
effect of conductor size on the Turam response., Nevertheless,
the techniques to be described could be used for any fixed
transmitter configuration for which the primary field is
known over the surface of a thin conductor of finite extent.
in the cases of moving source systems, it is possible to

use the same computational method, but in general the com=-

puting cost would make it impractical.

THE PROBLEM

The problem which will be treated is precisely
stated as the following: = to find, by numerical methods,
the current system induced in a conducting, non-magnetic,
rectangular plate which is subjected to an alternating
magnetic field of known spatial variation (i.e. from a
known source, such as a loop or dipole). The plate is
situated in free space and the electromagnetic phenomena
assumed to be quasistationary, i.e. to involve only induc—

tion, without propagation effects., The thickness of the



plate is assumed negligible compared to either the lateral
dimensions of the plate ox to the distance to the points
where the magnetic field of the induced current system
(secondary field) is calculated. The conductivity of the
plate is assumed large, such that the surface conductivity

is finite.

THEORET ICAL BASIS

The problem must be formulated such that a single
quantity describes the induced current system circulating
inside the thin rectangular plate. We start with Maxwell's
equations in the usual notation and using the rationalized

MKS system of units:

E;X’§~ = .f + gﬂi !

L (0

VxE = -OB . (2)
2t

For inductive problems,; the 2D term of (1) can usually be
ot
neglected (see for example Grant & West, 1965, chapter 16) so

that (1) can be written as:
e el e
VxH = J , (3)
There are also the empirical rxelations:
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Since the divergence of the curl is identically zero, (2)

and (3) yield:

v.l = O, (6)
G&g :OG

To express the problem in terms of the current
density J, let us first substitute E from equation (5) and
B from equation (4) into (2). Thus, for a sinusoidally
varying source field of angular frequency w and assuming

2 uniform medium, one obtains:

- el s

Vxd = *Co'jccw}j,, (7)

Then H in (7) can be eliminated using the integral form of
equation (3) (the Biot-Savart equation). The resulting

equation is:

UxJ(R) = —{omw w&sr? (8)
A [e-E*

where V includes all regions where curxent flows,

The integral in equation (8) has two contributions,
One is that of the transmitter current and the other that
of the induced current. Since the contribution of the trans—

mitter is easily evaluated, let us replace it by the known
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e waly
function P(Pf), The equation obtained is:

Vxdm = cione{ B+ fIGEH, o

where C indicates that the integral is to be evaluated in
the region occupied by the conductor,

WINDUCTIVELY THIN' CONDUCTORS

If a plate conductor is thin enough(l), the current
density can be considered constant across the thickness (con-—
dition A). In this case, one can use the surface current

density defined as:

where x is the direction along which the thickness t is measured

(see Figure 1),

Fig, 1. Coordinate system,

7 The coordinate system is

attached to the conductor,

The thickness t is measured

along the x axis and is

small,

L T A O SN S G T S, o W

(1) See section on inductively thick conductors for a defini-

tion of this condition,



Substituting the surface current density for J

in {9) yields:

VxR(®) = —lopwt [P + (LOLTR40]. (10)
S @

This last equation is obtained by assuming that t is geomet=
rically small so that {(;~€}/§?“ﬁ153 does not vary
appreciably across the thickness (condition B), The conditions
A and B would be perfectly respected only by an infinitely

thin conductor of finite conductivity=—thickness product, but

in practice the approximation is good within fairly broad
limits including a good proportion of geologically occuring

conductors.,

THE STREAM POTENTIAL

The only equations needed to solve for K are equation

(10) and an equation derived from (6):
Ve K Z O, (11)

This divergence equation (1l1) can be eliminated by using a

vector potential U such that

vx U :Qg amel v U = O,

Replacing X by SxU and using the identity TxUx = (V% — v?),

(10) then becomes:



ViU (B = Lopwt{ Py + {ka(g)xg’ﬁ Jor } (12)

in rectangular coordinates. If the coordinates are chosen

as in Figure 1, only the x component of U exists {under the
conditions stated above), U, can be considered as a scalar
function of the two variables v and z, It can be visualized
as the stream potential of the current circulating inside the
plate, and its units are amperes. Thus dropping the subscript,
contours of U are the flow lines of the induced eddy currents.

The scalar form of (12) is:

V' U(gg) = Lopot [Rs + SWC{Z 29

(13)

In terms of the stream potential, the boundary
conditions are easily expressed as U = constant
everywhere on the edge of the plate. Since only the deriva-
tives of U enter the equation (13), this condition can be
stated U=0 on the edge of the plate.

This is the only boundary condition and, together

with (13), it completely defines the problem,

FINITE DIFFERENCE EQUATION

The finite difference formulation is obtained by
laying a rectangular grid over the surface of the plate as

illustrated in Figure 2 and by approximating differentials by
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differences and integrals by summations. Various finite
difference forms are derived depending on the degree of
sophistication used in the approximations. In the case of

a square grid, the simplest form is:
a/ﬁ\aﬂ’n + L(m-l,?? 3 a/m’m.f.[ + a,n\,?‘)"/ "'4" a’ﬂ":” o {;G’)/—Lwté{k,f:m’n
-1 r-l

[(Qi,;’ —Uir,g) (4 + ’/z~7:?3) + ({,Ll,jﬂ U, Xﬁ’f Yo-n)
daftistmfe G2 d (o + Grenf [P

(14)

This form is useful only as an illustration since
the crude approximation of the integral of equation (13') pro=
duces singularities. In the general case, one can express
the Laplacian operator and the integral as linear operations,
Putting:

VU 2 [D} U,

and

b4

vU. (F-T) d%
f——-—-—-—::‘:i‘ﬁ' ~ [C]U
Y
one can express the equation (13) in matrix notation as:

DU = Lonwitk(k.p+[CU), (15)
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In this equation, U and P are two-dimensional matrices whereas
[D] and [C] are four dimensional transformation matrices.

a) Laplacian operator, The Laplacian operator can be approx-

imated by various finite difference expressions depending on
the oxder of the approximation. Since the transformation
matrix [D] is four—dimensional, it is impossible to display it
directly., The simplest representation is by means of "“star
diagrams', 7Two operators are represented by such diagrams in
Figure 3. The first one (A) is precise to the third order and
the second (B) to the fifth order. By centering a star diagram
at a grid point (m,n) (evaluating the Laplacian at (m,n) as
part of equation (m,n)), one obtains the non-zero elements
dm,n,i,j °f [D] by coincidence of the nodes of the star with
the grid points (i,j). The matrix [D] can be considered two-—

dimensional if (m,n) is denoted by s and (i,j) by v according

to the relations:

/4]
0

(n-1)(g-1) + m,

il

v (3-1)(g-1) + 4,

where q and r are the numbers of grid intervals in y and z
respectively. It can then be roughly visualized as having all
zero elements except five diagonals, although this is not true

in details because of boundary effects, In this case, U would

be considered as a vector with elements uy.
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FINITE DIFFERENCE

FIG 3. '"Star diagrams' for two finite difference approxi=-
. 2 2 % '3 . rd . .

mations of (o8°/dy*+ 0 /9z%*). A is a 3 order approximation
and B a 5th order approximation. The diagram is used by
superposing it on the finite difference grid with the centre
(denoted by a square) at the point where the Laplacian is
to be found, The lozenges indicate the non-zero elements
of the operator which act as coefficients of the correspon—

ding grid values of U in the linear combination,



- 14 -

b) Integral. The integral of equation (13) is approximated

by the linear transformation:
S=1[Ku,

where S and U are two-dimensional matrices and [C] a four-—
dimensional matrix. At a point (m,n), the evaluation of the

integral is:

gi Pl

/g’m‘m 222 /Cm,n, 5,4'9 Uig »
Aap 4=/

The ¢y n,i,; elements can be calculated by considering expres-—

sions such as:

(Dgu)/mw/zgm = ("’(%ﬂ - A/‘m:’”)/ﬁ P

(D%a)mmﬁ’é = (Uomnr = “’”*"D/‘é’

from which can be formed the quadrature approximation of UUk

s g-; -}
VUCg,j) %ZZ {(D,}u)m,/zmo'}"(g/h»‘(ffyz,;/k,j)

=t j=t

- ( D} a)«m,”,.%o T(Hh-<53/k -“j'-z'/z)}

where:

&

T(y,3) = (L=1yD(1-130) 5 9 =1, and I3l= 15

T3 = O, Iyl >1, o 131 >4,
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And at a point (m,n), the integral can then be expressed as:

G-] P} bk
Bomn F Z Z i (Ui - ch,j)j S_(t-w/hf}(t~13/at){(h~%~£)h+g} dydx
i g Slk b [(Omm- 03t (o k37T

h _k D ;
— (Usi —u (1=19/0]) (1-13/k]) § =72 ~DR+ 3} dy o3
g ’é):.f :& R {on-0h~g"+ (On--d) k=337

(16)
Since each grid value of uj 4 is involved in 4 terms of the
summation, each Cpm,n,i,n e€lement is an algebraic sum of 4
definite integrals such as those on the right of (16}, which
can be evaluated analytically, This approximation of the
integral (13) is the simplest one which produces no singularity
at m=1 or n=j, and such that the total amount of current is
conserved, Furthermore, it has the advantége that the elements
of matrix [C] are evaluated in the same way everywhere in the
matrix, including those corresponding to points near the
boundarv.

Higher order approximations can be obtained using
truncated polynomials of 3rd degree, 5th degree, etC.... If
these are used, a correspondingly more refined approximatiﬁn
of the Laplacian operator must be used. In the case of 3rd
degree truncated polynomials, for example, each Cp p i 5 is

evaluated as a sum of 16 integrals similar to those of equation
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(16). But such a more refined scheme does not necessarily
yvield a more accurate solution, as will be seen in a later

discussion.

SOLUTION OF THE LINEAR SYSTEM

Rearranging equation (15) in the form:

[D- (opwtRClU = {opwtkP
or:

[NU =B,
it is realized that the problem is now reduced to that of
solving the (p-1)(g~l) linear algebraic equations to obtain
the values of the stream potential U at the grid points,
Figure 4 is a visualization of one such finite difference
equation applied at one of the (p-1)(g-~l) points. By applying
a similar equation at every grid point (except those on the
boundary), the matrix A is formed. It can be seen that it
is a full matrix (i.e. having no zero element). This is an
uncommon result in finite difference problems, and constitutes
the main difficulty of the linear problem., In the case of
a 11 by 11 grid for example, there are 100 unknowns and the
matrix [A] contains 10,000 complex elements. Subdividing
the grid by two produces a matrix of 160,000 complex elements,

too large for the core storage available on most computers.
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POINT WHERE THE EQUATION IS APPLIED: (m,n)

O POINTS CONTRIBUTING TO THE INTEGRAL PART

POINTS OF THE LAPLACIAN OPERATOR

2 2(Impnijuij) = Pmp = O
i

FIG 4, Diagrammatic representation of how the stream po-

tential values u at the differxent grid points contribute

i3
to the finite difference equation (17). The coefficients
of the integral part are imaginary; those of the Laplacian

are real,



Thus only the problems of relatively small size (i.e,.
coarse grid) can be solved by standard complex linear equation
solvers. The limitations are of many kinds: 1) the required
computing time grows as the cube of the number of unknowns;

2) the whole array A must be stored in high speed core

storage because it is constantly operated upon; 3) the large
number of accumulated truncation errors adversely affects the
precision of the solution unless double precision arithmetic

is extensively used (a further expense in computing time).

On the IBM 360/65, this sets the practical limit at roughly

150 grid points, which corresponds to a grid of 11 by 16
intervals., Since a finer grid was judged necessary for most
cases, a successive approximation method was devised to solve
the simultaneous equations. It is a modification of the Gauss~—
Seidel method (see for example Isaacson & Keller, 1966, p.66ff)
and requires that the matrix [A] be diagonally dominant. The
modification was necessary because of the slow convergence

of the direct process, a consequence of the fact that the matrix
is diagonally dominant only in a marginal way.

The technique used consisted in assuming initial grid

point values for U and calculating the residuals(2);

taa et b;wzﬂflmmmo
k4

{(2) In the following, Dﬂ is considered a two-~dimensional matrix

and R, B, U are vectors,
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The next trial value of ug is then calculated as:
e +(ger)/oiis

g being a coefficient adjusted to optimize the convergence
to the true solution., The next trial value calculated is that
of uj,;, the latest values of the other u_'s being used to
evaluate ri43. In each iteration, all the grid values of U
are replaced by better approximations and the process is
repeated until all the normalized residuals (rj/a; ;) are
smaller than a specified fraction of the average u value,
When this fraction is set to 10“5, the true solution of the
linear equation problem is normally attained within a relative
error of less than 1074 (with normal convergence),

The matrix [A] is not modified by the iterative process.
In consequence, it does not have toc be stored explicity, It
is easily reconstituted from‘two separate tables of much

smaller size since:

Dom,n, b, = ﬂ/m..zg,gq.g’g—r 4 €pn-ti,in-{l»

where F has only 5 non—zero elements and E is a real, tabulated
function of (g—1){r-1) elements instead of the {;qwl)(rmli}z

complex elements of the matrix A, This is true only for the



low order approximations described above, A few more similar
tables are required for approximations including higher order
terms, but the saving of storage is still very substantial.

The convergence of the iterative process is affected
by the parameters of the problem solved, For problems with
the same number of grid points, the convergence increases
when the G}Aa)ﬁh product 1is larger. On the other band;
as will be seen later, the finite difference solution usually
deviates more from the true solution when this product is
larger. Thus in practice, a compromise must be made between
a fast convergence and a good ACCUuracy.

Another factor having an important effect on the con=
vergence is the acceleration coefficient g, In the cases of
large problems, this coefficient can be made self-adjusting
by means of an algorithm which examines the successive varia—
tions of the residuals and determines amplitude and phase
corrections to be applied to it (it has a complex value),

The resulting program are particularly efficient for
solving sequences of EM configurations where the parameters vary
in gradual steps. This is ideal for simulating a series of
conductors of varying conductivities, dips, depths, etC.s.

In these cases, it is possible to use the previous solution
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and acceleration coefficient as a starting point for the
next problem of the sequence, When only one situation is
simulated, a similar increase in efficiency can be achieved
by using a larger gumew? value for the first few iterations
and gradually decreasing it to the actual value of the
problem, This brings about a faster convergence to the true
solution and a fast adjustment to the optimum acceleration
coefficient.

Several computer programs were written using variations

of the basic algeorithm, Later versions incorporated the various
improvements just described, plus other modificatiopsaﬁmed at
at liquidating the residuals faster by altering the order and
frequency with which the different grid points are relaxed,
The method is so flexible that there is still a virtually un=-
limited number of improvements which can be added to the basic
scheme without endancering the accuracy and soundness of the
process. The reason for this adaptability is that any method
that helps to decrease the residuals cannot be in error, since
the right solution must be obtained when the residuals are
reduced to zero. This presupposes that the [A] matrix is well

conditioned, but this in indicated by the fact that it is

diagonally dominant., Another test of the generality of the
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matrix is the good stability in the sclutions obtained with
slightly different [A] matrices (e.g. when different approx-—
imation schemes are used),

There are some cases when the iterative process may
become divergent. These cases occur when higher order approx—
imations are used (such as the 9 point star of figure 3B
together with the 3rd order quadrature approximation for the
inte gral)., This behavior arises only for certain values of
the cyuafﬁé parameter. It is possible that the polynomial
representation implied is too strict and is unsuitable for
the fgncticnal variation of the stream potential. It is
suspected that the difficulty lies with the high order “star"
rather than with the approximation of the integral since these
star diagrams correspond to matrices which are not diagonally
dominant in the strict sense,(3)

The best performance is generally attained using the
simpler approximation described above (including the 5 point
"start of figure 3A, except with a rectangular non-square grid).
As an example, a problem of 400 unknowns can be solved in an
average time of less than 5 minutes on the IBM 360/65 computer

whereas the time required by a standard complex linear solver

(3) When the modulus of a diagonal element is not larger or
equal to the sum of moduli of the other row or column

elements.
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would be approximately 30 minutesa(4) Symmetrical problems
of 884 points have been solved in a comparable time (6 minutes)
by a version of the same algorithm using the mirror image

symmetry to reduce the number of independant unknowns,

EXAMPLES OF CALCULATED RESPONSES

Stream potential maps

The stream potential U can be used directly to display
the eddy current in a plate conductor, This is done by con=
touring the real and imaginary parts of U in the yz domain
(i.e, the plane containing the conducting plate)., Figures 5
and 6 show such stream potential maps, The rectangular outlines
are the edges of the plates. The geometries of the cases
calculated are sketched on the right of Figures 7 and 8 respect-
ively: these are fairly common situations encountered in Turam
surveys, as suggested by the list of parameters which would lead
to these responses.

The example of Figure 6 displays an unexpected quad-
rature current pattern. The rxesponse is that of a good conductor,
as will be seen in Figure 8, The pattern can be explained as

due to an over=cancellation of the primary field by the secondary

(4) Provided that the 320,000 words of fast core storage were
available and a precise solution could be obtained in single

precision arithmetic,
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IN PHASE COMPONENT — INTERVAL= 0.025 AMP.

EDDY CURRENT PATTERN
FOR LOW Q RESPONSE: Q= 1.08

QUADRATURE COMPONENT — INT = 0.025 AMP

8,128

S———

FIG 5. BEddy current pattern for the conductor shown on the

right side of Figure 7. The response is that of a relati-
vely poor conductor as indicated by the low Q (ratio of max-
imum in phase to quadrature amplitudes of the surface anoma-

ly). The number of grid points in y and z is 15 by 15,



IN PHASE COMPONENT INTERVAL = 0.025 AMP,

EDDY CURRENT PATTERN
FOR HIGH Q RESPONSE:. Q = 5.64

QUADRATURE COMPONENT INTERVAL = 0.005 AMP.

= ﬁmwwwwwmwwww

FIG 6, Calculated in phase and quadrature eddy currents
for a relatively good conductor (high Q response)., The geo-=
metry and parameters are shown on the right side of Figure 8,

The number of grid intervals is 25 in y and 33 in =z,
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field in the central portion of the conductor where the
stream potential has a concave surface,

Calculated anomalies

Once the stream potential of the current is known,
it is a simple matter to calculate the secondary field produced
in the surroundings of a conductor. This is done by digital
integration of the induced currents using Biot=Savart equation.
But some care must be taken to use a proper quadrature approx-—
imation if a part of the conductor is close to the points of
evaluation. This corresponds to cases where the depth of
the conductor is small relative to the grid intervals (e.g.
only 3 times the grid interval in z), The method used to
obviate these difficulties was to refine the grid by a suitable
interpolation formula (such as is used for contouring) and
integrate on a smaller grid. 1In all cases, this should be done
at least for the top portion of the conductor which is closest
to the z=0 plane where the secondary field is evaluated (the
plane of the transmitter loop in the case of Turam).

By setting up appropriate tables, the secondary field
can be computed along a set of traverses without much more
computing time then for a single central traverse., Thus a

complete representation of the anomaly on the xy plane can be



o A

casily obtained. It would be just as simple to compute the
secondary field at any other location around the conductor,
such as may be required for simulation of airborne measurements.

Figures 7 and 8 show the surface anomalies obtained in
the cases of the conductors of Figures 5 and 6 respectively,
Figure 7 shows the anomaly due to a poor conductor of fairly
large size and vertical dip whereas the anomaly of Figure 8 is
that of a smaller, dipping, good conductor. The profiles
superposed on the central traverseswere obtained for the same
situations by laboratory model measurements,

The match of the computed and measured anomalies is
very good for most curves of Figures 7, 8, and 10, The only
exception is the quadrature anomaly of figure 10 (note the
e xpanded scale), The larger relative error in this case is
due to the fact that the finite difference approximation does
not hold exactly, because the contorted quadrature pattern of
Figure 9 would require a smaller grid interval for a proper
representation. This is the nature of the poorer accuracy
which was discussed above in the cases where the guwik product
is large. The condition used for a reasonably good accuracy

(iS% of the % anomaly magnitude) is:

cuwl k = 6, (18)
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IN PHASE COMPONENT INTERVAL = 0.02 AMP

EDDY CURRENT PATTERN
COARSE GRID. ouwta =59 Q=10.28

QUADRATURE COMPONENT  INTERVAL = 0.004 AMP

0054

FIG 9., Calculated in phase and quadrature eddy currxents in-
side the conductor shown on the right side of Figure 10,

This example illustrates the case when the ouwtk product be=
comes large (i.e. when the grid size is too large). The qua-

drature is more affected because of its more abrupt variations,
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In the example of Figures 9 and 10, the qp¢dté product
is 5.9, which means that Figure 10 illustrates about the
largest deviation under condition (18), In the product @u&)fé,
the g¢grid interval k is that 6f z because it is more critical,
In fact, in spite of the larger y dimension of the conductor
(2:1), it is possible to use as few as half the number of
intervals in vy as in z before the stream potential map deter-
iorates appreciably. Even then, the resulting anomalies show
very minor changes and only in the end traverses,

When the condition (18) is respected; the calculated
anomalies show a very good accuracy when compared to laboratory
measured anomalies, This is illustrated by Figure 11, where
the ratios of inphase to quadrature amplitudes () ratios) of
calculated anomalies have been plotted against the induction
number &(3) and compared with the experimentally obtained
curve, All cases (calculated and measured) correspond to
the geometry shown in Figures 7 and 10, and respect the condi-
tions of inductively thin response, For the solutions of best
precision (low qnwfk values), there is a consistent deviation
of 5% in © which seems to be due to a systematic errxor in the
determination of the conductivities of the plates used as

models, The comparison between the calculated and measured

(5) The induction number is defined as Guw?Ll, L being a
length characteristic of the system and depending mostly on
the relative and absolute sizes of the conductor and the trans=—

mitter (Lamontagne & West, 1971).
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FIG 11. Comparison between the experimental Q vs 8 relation-
ship (solid line) and the Q's of calculated anomalies (dots)
for the standard geometry of Figures 7 and 10. The solid line
is a polynomial fit of 65 measurements. The dotted lines in-
dicate the belt of 95% confidence on the estimate of (Q given 8,
All the anomalies used for this diagram were of inductively
thin cases, Superposed on a consistent difference of =5% at
low guwtk values (best precision), there is a positive devia-
tion in calculated Q's which becomes perceptible at gm@wtk

values larger than 2 and which is of +5% at OpWwtk=6,
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FIG 12. Comparison of the experimental curves of inphase
and quadrature amplitudes vs 8 with calculated amplitudes
(bases on the same data as Figure 11). The same systema-—
tic error in © (due to an error in conductivity determina-—
tion?) shows at low cuwtk values. At high cmwtk (large
grid size), the most important deviation occurs on the qua-

drature component,
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amplitudes (Figure 12) indicates the same systematic error
and an additional negative deviation due to large grid size
(spwtk = 2 ) mostly affecting the quadrature component, as
previously indicated by Figures 9 and 10, Thus the positive
Q deviation is due to a negative quadrature deviation (R =

(IN PHASE ampl.)/(QUADR. ampl.).

INDUCTIVELY THICK CONDUCTORS

The finite difference method just outlined can be used
only for thin conductors where the currxent density is uniform
across the thickness., This is not always the case, as the
classical skin effect may crowd the current towards the surface
of the plate. If the current density is non—-uniform, a difference
in response will be observed.

Let us use the one~dimensional infinite slab model to
get an approximate idea of this effect of diffusion., Consider
the normal component of the magnetic field Hy. By substituting

equation (3) into (7) one obtains,; in this simplified case:

az H‘x — *‘i G‘}Lw Hx
ox?

for a sinusoidal time dependence., In a case where H, has the

value Hp at both of the boundaries of the slab, the solution



inside the conducting slab is

He = Ho s,

t being the thickness., In order to get an idea of the effective

H, value, one can find the average of HX over the thickness:

_ 173 . : o .
= dx — [5tn2bt Somh 26] 44 (27 2 —simh 2]
Hs{ T S.‘.z,‘/sz{x} x = HE { 2b[ars 2b— ek 28]

where b= %@— - //@zﬁgf'

REAL Fig. 13. Diffusion of Hy
bz.z
%

through an infinite slab of

Hyr thickness t (one=dimensional
o case)., When the parameter b
(=1 (%= ) is large, the Hy
X =-1/2 X= t/2 alternating field is attenuated
IMAGINARY
0 — = and shifted in phase inside the
2.
A slab, Hy is assumed to have a
Hui b=1
o value Hy of 1.0 at the two
-L .

boundaries,

As can be seen in Figure 13, when b becomes larxger than 0,25,
there is an appreciable attenuation of the H, component. A

similar attenuation should occur in the case of a finite tabular
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conductor, The equation (13), valid for inductively thin

conductors only, can be written
2U . s .é- H
V U(y,3) = Aopw u(4:3)s

where Hp is the x component of the total alternating magnetic
field at the boundary (and inside the conductor in the 'thin"
case),

One way of obtaining an approximation of equation (20)
for the case of an inductively thick conductor is to use the
Qxﬂ4b ratio obtained from (19) as a multiplicative correction
factor on the Hy(y,z) evaluated on the right side of equation
(13). The variation of this ratio as a function of b is displayed

in Figure 1l4. This correction method is justified as long as the

Fig, 14. The average complex
attenuation of Hy due to

diffusion, The ratio is

REAL

obtained by integrating Hy

over the thickness and divi=-

ding by the thickness and the

value of Hy at the boundaries,

IMAGINARY Hpe
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important y and z variations of Hy in the conductor occur over
much longer lengths than the thickness (i.e. than the length
of x variations).

It is possible to obtain approximate solutions of
inductively thick problems by including the correction factor
in the finite difference equations. BRut there still remains
the condition that the conductors simulated should be geometri-—
cally thin. The solutions obtained showed stream potential
variations similar to those of inductively thin conductors,
except for larger amplitudes and lower Q ratios at equal q@wﬁ
product, This is the gualitative effect that model studies lead
us to expect (Bosschart, 1964; Lamontagne & West, 1971). Figure
15 when compared with Figure 6, shows the phenomenon. Both cases
have the same gﬁwﬁ product and geometry, but Figure 15 corresponds
to a thickness 16 times larger than Figure 6 and to b=0,65, a
value that is well above the limit for inductively thin conductors
(0.25).

In Figure 16, the calculated anomaly of the case of
Figure 15 is compared with the anomaly obtained by scale model
measurements. It must be noted that the conductor used in the
laboratory model was laminated in order to avoid horizontal current

loops near the top edge, which affect the quadrature anomaly



IN PHASE COMPONENT INTERVAL = 0.025 AMP

EDDY CURRENT PATTERN
"THICK" RESPONSE: Q=455 (THIN' Q=5.64)

QUADRATURE COMPONENT — INTERVAL = 0.005 AMP,

FIG 15. Calculated eddy currents inside the inductively
thick conductor shown on the right of Figure 16. The geo-
metry is the same as for the solution of Figure 6, except
that the virtual thickness is larger and the conductivity-
frequency product is smaller, such as to keep 8 (=0MwtlL)
constant. This '"thick" conductor has larger amplitudes and

higher quadrature than the thin conductor of Figure 6.
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seriously. When compared to Figure 8, it is seen that the
calculated anomaly shows qualitatively the right variation

in response, i.e. larger amplitude and lower 3. However, the
match with the measured profile indicates that the amplitude
effect is not quite large enough. On the other hand, the
phase response (i.e. the Q ratio) is well reproduced.

Most calculated anomalies of inductively thick conductors,
wﬁen checked by measurements, compare as well as the above
example, Normally the amplitude difference becomes less
important when the absolute thickness is smaller. This suggests
that a good part of the measured amplitude effect is geometrical,
and thus cannot be reproduced in the calculated anomalies in
view of the assumption that the conductor is geometrically
thin., When the thickness becomes very large (say more than half
of the depth), perceptible differences in the Q's of model and

calculated anomalies appear as well,

CONCLUSIONS

The numerical solution described permits calculation
of the response of thin plates of finite extent, a very useful
model in fixed source EM work., For such cases, it can often
replace scale model measurements advantageously, since the rela-

tive accuracy can be specified by using an appropriatesyg& value,



For every solution, the eddy current pattern can be exhibited,
thus helping to separate the different effects superposed in
measured anomalies.

Without going to an unreasonable number of grid points,
and by respecting the condition Gjbufﬁtz:é.O , anomalies with
Q values up to 20 can be calculated with good accuracy. In the
cages of inductively thick conductors, there is an additional
approximation involved, but if spwtlz b and 0=20, and if
one can assume that the sheet is geometrically thin (thickness <
0,3 depth), the calculated anomalies of inductively fhick con=-
ductors show at most only a small amplitude variation from the
measured responses (~8% maximumrelative error).

The method can be modified to calculate the induction
in more complex plate models, for instance by using a smoothly
varying conductivity specified at the grid points. Alternatively,
the virtual thickness could be made variable in a similar fashion.
This would make it possible to vary the outline of the plate
(within a rectangular limit) by specifying a conductivity or
thickness of zero at those grid points which are outside the
desired boundary. These modifications would involve only some
more computing complications and a small decrease in efficiency,
and might be useful in calculating the response of a known

geological conductor.
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