
Foundations and Trends R© in
Information Retrieval
Vol. 1, No. 4 (2006) 335–455
c© 2008 G. V. Cormack
DOI: 10.1561/1500000006

Email Spam Filtering: A Systematic Review

Gordon V. Cormack

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario, N2L 3G1, Canada, gvcormac@uwaterloo.ca

Abstract

Spam is information crafted to be delivered to a large number of recip-

ients, in spite of their wishes. A spam filter is an automated tool to

recognize spam so as to prevent its delivery. The purposes of spam and

spam filters are diametrically opposed: spam is effective if it evades fil-

ters, while a filter is effective if it recognizes spam. The circular nature

of these definitions, along with their appeal to the intent of sender and

recipient make them difficult to formalize. A typical email user has

a working definition no more formal than “I know it when I see it.”

Yet, current spam filters are remarkably effective, more effective than

might be expected given the level of uncertainty and debate over a

formal definition of spam, more effective than might be expected given

the state-of-the-art information retrieval and machine learning methods

for seemingly similar problems. But are they effective enough? Which

are better? How might they be improved? Will their effectiveness be

compromised by more cleverly crafted spam?

We survey current and proposed spam filtering techniques with par-

ticular emphasis on how well they work. Our primary focus is spam

filtering in email; Similarities and differences with spam filtering in

other communication and storage media — such as instant messaging

and the Web — are addressed peripherally. In doing so we examine the

definition of spam, the user’s information requirements and the role

of the spam filter as one component of a large and complex informa-

tion universe. Well-known methods are detailed sufficiently to make

the exposition self-contained, however, the focus is on considerations

unique to spam. Comparisons, wherever possible, use common evalua-

tion measures, and control for differences in experimental setup. Such

comparisons are not easy, as benchmarks, measures, and methods for

evaluating spam filters are still evolving. We survey these efforts, their

results and their limitations. In spite of recent advances in evaluation

methodology, many uncertainties (including widely held but unsubstan-

tiated beliefs) remain as to the effectiveness of spam filtering techniques

and as to the validity of spam filter evaluation methods. We outline sev-

eral uncertainties and propose experimental methods to address them.

1

Introduction

The Spam Track at the Text Retrieval Conference (TREC) defines

email spam as

“Unsolicited, unwanted email that was sent indiscrimi-

nately, directly or indirectly, by a sender having no cur-

rent relationship with the recipient.” [40]

Although much of the history of spam is folklore, it is apparent that

spam was prevalent in instant messaging (Internet Relay Chat, or

IRC) and bulletin boards (Usenet, commonly dubbed newsgroups)

prior to the widespread use of email. Spam countermeasures are as

old as spam, having progressed from ad hoc intervention by adminis-

trators through simple hand-crafted rules through automatic methods

based on techniques from information retrieval and machine learning,

as well as new methods specific to spam. Spam has evolved so as to

defeat countermeasures; countermeasures have evolved so as to thwart

evasion.

We generalize the TREC definition of spam to capture the essential

adversarial nature of spam and spam abatement.

335

336 Introduction

Spam: unwanted communication intended to be deliv-

ered to an indiscriminate target, directly or indirectly,

notwithstanding measures to prevent its delivery.

Spam filter: an automated technique to identify spam

for the purpose of preventing its delivery.

Applying these definitions requires the adjudication of subjective terms

like intent and purpose. Furthermore, any evaluation of spam filtering

techniques must consider their performance within the context of how

well they fulfill their intended purpose while avoiding undesirable conse-

quences. It is tempting to conclude that scientific spam filter evaluation

is therefore impossible, and that the definition of spam or the choice

of one filter over another is merely a matter of taste. Or to conclude

that the subjective aspects can be “defined away” thus reducing spam

filter evaluation to a simple mechanical process. We believe that both

conclusions are specious, and that sound quantitative evaluation can

and must be applied to the problem of spam filtering.

While this survey confines itself to email spam, we note that the defi-

nitions above apply to any number of communication media, including

text and voice messages [31, 45, 84], social networks [206], and blog

comments [37, 123]. It applies also to web spam, which uses a search

engine as its delivery mechanism [187, 188].

1.1 The Purpose of Spam

The motivation behind spam is to have information delivered to the

recipient that contains a payload such as advertising for a (likely

worthless, illegal, or non-existent) product, bait for a fraud scheme,

promotion of a cause, or computer malware designed to hijack the recip-

ient’s computer. Because it is so cheap to send information, only a very

small fraction of targeted recipients — perhaps one in ten thousand or

fewer — need to receive and respond to the payload for spam to be

profitable to its sender [117].

A decade ago (circa 1997), the mechanism, payload, and purpose of

spam were quite transparent. The majority of spam was sent by “cot-

tage industry” spammers who merely abused social norms to promote

1.1 The Purpose of Spam 337

Fig. 1.1 Marketing spam.

their wares (Figure 1.1). Fraud bait consisted of clumsily written

“Nigerian scams” (Figure 1.2) imploring one to send bank transit infor-

mation so as to receive several MILLION DOLLARS from an aide to

some recently deposed leader. Cause promotion took the form of obvi-

ous chain letters (Figure 1.3), while computer viruses were transmitted

as attached executable files (Figure 1.4). Yet enough people received

and responded to these messages to make them lucrative, while their

volume expanded to become a substantial inconvenience even to those

not gullible enough to respond.

At the same time, spamming has become more specialized and

sophisticated, with better hidden payloads and more nefarious pur-

poses. Today, cottage industry spam has been overwhelmed by spam

sent in support of organized criminal activity, ranging from traffic in

illegal goods and services through stock market fraud, wire fraud, iden-

tity theft, and computer hijacking [140, 178]. Computer viruses are no

longer the work of simple vandals, they are crafted to hijack computers

so as to aid in identity theft and, of course, the perpetration of more

spam!

338 Introduction

Fig. 1.2 Nigerian spam.

Fig. 1.3 Chain letter spam.

1.2 Spam Characteristics 339

Fig. 1.4 Virus spam.

Spam, to meet its purpose, must necessarily have a payload which

is delivered and acted upon1 in the intended manner. Spam abatement

techniques are effective to the extent that they prevent delivery, prevent

action, or substitute some other action that acts as a disincentive.2

Spam filters, by identifying spam, may be used in support of any of

these techniques. At the same time, the necessary existence of a payload

may aid the filter in its purpose of identifying spam.

1.2 Spam Characteristics

Spam in all media commonly share a number of characteristics that

derive from our definition and discussion of the purpose of spam.

1 The target need not be a person; a computer may receive and act upon the spam, serving
its purpose just as well.

2 Such as arresting the spammer.

340 Introduction

1.2.1 Unwanted

It seems obvious that spam messages are unwanted, at least by the vast

majority of recipients. Yet some people respond positively to spam, as

evidenced by the fact that spam campaigns work [71]. Some of these

individuals no doubt come to regret having responded, thus calling

into question whether they indeed wanted to receive the spam in the

first place. Some messages — such as those trafficking in illegal goods

and services — may be wanted by specific individuals, but classed as

unwanted by society at large. For most messages there is broad consen-

sus as to whether or not the message is wanted, for a substantial minor-

ity (perhaps as high as 3% [168, 199]) there is significant disagreement

and therefore some doubt as to whether the message is spam or not.

1.2.2 Indiscriminate

Spam is transmitted outside of any reasonable relationship3 or prospec-

tive relationship between the sender and the receiver. In general, it is

more cost effective for the spammer to send more spam than to be

selective as to its target. An unwanted message targeting a specific

individual, even if it promotes dubious products or causes or contains

fraud bait or a virus, does not meet our definition of spam.

A message that is automatically or semi-automatically tailored to

its target is nonetheless indiscriminate. For example, a spammer may

harvest the name of the person owning a particular email address and

include that name in the salutation of the message. Or a spammer may

do more sophisticated data mining and sign the message with the name

and email address of a colleague or collaborator, and may include in

the text subjects of interest to the target. The purpose of such tailoring

is, of course, to disguise the indiscriminate targeting of the message.

1.2.3 Disingenuous

Because spam is unwanted and indiscriminate, it must disguise itself

to optimize the chance that its payload will be delivered and acted

3 We have dropped the term unsolicited used in TREC and earlier definitions of spam,
because not all unsolicited email is spam, and that which is captured by our notion of
indiscriminate. Solicited email, on the other hand, is clearly not indiscriminate.

1.2 Spam Characteristics 341

upon. The possible methods of disguise are practically unlimited and

cannot be enumerated in this introduction (cf. [27, 67, 75]). Some of

the most straightforward approaches are to use plausible subject and

sender data, as well as subject material that appears to be legitimate.

It is common, for example, to receive a message that appears to be a

comment from a colleague pertaining to a recent news headline. Even

messages with random names; for example a wire transfer from John

to Judy, will appear legitimate to some fraction of its recipients. Mes-

sages purporting to contain the latest security patch from Microsoft

will similarly be mistaken for legitimate by some fraction of recipients.

Spam must also disguise itself to appear legitimate to spam filters.

Word misspelling or obfuscation, embedding messages in noisy images,

and sending messages from newly hijacked computers, are spam charac-

teristics designed to fool spam filters. Yet humans — or filters employ-

ing different techniques — can often spot these characteristics as unique

to spam.

1.2.4 Payload Bearing

The payload of a spam message may be obvious or hidden; in either

case spam abatement may be enhanced by identifying the payload and

the mechanism by which actions triggered by it profit the spammer.

Obvious payloads include product names, political mantras, web links,

telephone numbers, and the like. These may be in plain text, or they

may be obfuscated so as to be readable by the human but appear benign

to the computer. Or they may be obfuscated so as to appear benign to

the human but trigger some malicious computer action.

The payload might consist of an obscure word or phrase like

“gouranga” or “platypus race” in the hope that the recipient will be

curious and perform a web search and be delivered to the spammer’s

web page or, more likely, a paid advertisement for the spammer’s web

page. Another form of indirect payload delivery is backscatter : The

spam message is sent to a non-existent user on a real mail server, with

the (forged) return address of a real user. The mail server sends an

“unable to deliver” message to the (forged) return address, attaching

and thus delivering the spam payload. In this scenario we consider

342 Introduction

both the original message (to the non-existent user) and the “unable

to deliver” message to be spam, even though the latter is transmitted

by a legitimate sender.

The payload might be the message itself. The mere fact that the

message is not rejected by the mail server may provide information

to the spammer as to the validity of the recipient’s address and the

nature of any deployed spam filter. Or if the filter employs a machine

learning technique, the message may be designed to poison the filter

[70, 72, 191], compromising its ability to detect future spam messages.

1.3 Spam Consequences

The transmission of spam — whether or not its payload is delivered

and acted upon — has several negative consequences.

1.3.1 Direct Consequences

Spam provides an unregulated communication channel which can be

used to defraud targets outright, to sell shoddy goods, to install viruses,

and so on. These consequences are largely, but not exclusively, borne by

the victims. For example, the victim’s computer may be used in further

spamming or to launch a cyber attack. Similarly, the victim’s identity

may be stolen and used in criminal activity against other targets.

1.3.2 Network Resource Consumption

The vast majority of email traffic today is spam. This traffic consumes

bandwidth and storage, increasing the risk of untimely delivery or out-

right loss of messages. For example, during the Sobig virus outbreak of

2003, the author’s spam filter correctly identified the infected messages

as spam and placed them in a quarantine folder. However, the total

volume of such messages exceeded 5 GB per day, quickly exhausting

all available disk space resulting in non-delivery of legitimate messages.

1.3.3 Human Resource Consumption

It is an unpleasant experience and a waste of time to sort through

an inbox full of spam. This process necessarily interferes with the

1.4 The Spam Ecosystem 343

timeliness of email because the recipient is otherwise occupied sorting

through spam. Furthermore, the frequent arrival of spam may preclude

the use of email arrival alerts, imposing a regimen of batch rather than

on-arrival email reading, further compromising timeliness.

Over and above the wasted time of routinely sifting through spam,

some spam messages may consume extraordinary time and resources

if they appear legitimate and cannot be dismissed based on the sum-

mary information presented by the mail reader’s user interface. More

importantly, legitimate email messages may be overlooked or dismissed

as spam, with the consequence that the message is missed.

A spam filter may mitigate any or all of the problems associated

with human resource consumption, potentially reducing effort while

also enhancing timeliness and diminishing the chance of failing to read

a legitimate message.

1.3.4 Lost Email

Sections 1.3.2 and 1.3.3 illustrate situations in which spam may cause

legitimate email to be lost or overlooked. Spam abatement techniques

may, of course, also cause legitimate email to be lost. More gener-

ally, spam brings the use of email into disrepute and therefore discour-

ages its use. Users may refuse to divulge their email addresses or may

obfuscate them in ways that inhibit the use of email as a medium to

contact them.

In evaluating the consequences of email loss (or potential loss), one

must consider the probability of loss, the importance and time critical-

ity of the information, and the likelihood of receiving the information,

or noticing its absence, via another medium. These consequences vary

from message to message, and must be considered carefully in evalu-

ating the effectiveness of any approach to spam abatement, including

human sorting.

1.4 The Spam Ecosystem

Spam and spam filters are components of a complex interdependent

system of social and technical structures. Many spam abatement pro-

posals seek to alter the balance within the system so as to render

344 Introduction

spam impractical or unprofitable. Two anonymous whimsical articles

[61, 1] illustrate the difficulties that arise with naive efforts to find

the Final Ultimate Solution to the Spam Problem (FUSSP). Crocker

[43] details the social issues and challenges in effecting infrastructure-

based solutions such as protocol changes and sender authentication.

Legislation, prosecution and civil suits have been directed at spam-

mers [101, 124], however, the international and underground nature of

many spam operations makes them difficult to target. Spammers and

legitimate advertisers have taken action against spam abatement out-

fits [119]. Vigilante actions have been initiated against spammers, and

spammers have reacted in kind with sabotage and extortion [103]. Eco-

nomic and technical measures have been proposed to undermine the

profitability of spam [89, 138].

A detailed critique of system-wide approaches to spam abatement is

beyond the scope of this survey, however, it is apparent that no FUSSP

has yet been found nor, we daresay, is likely to be found in the near

future. And even if the email spam problem were to be solved, it is

not obvious that the solution would apply to spam in other media. The

general problem of adversarial information filtering [44] — of which

spam filtering is the prime example — is likely to be of interest for

some time to come.

We confine our attention to this particular problem — identifying

spam — while taking note of the fact that the deployment of spam

filters will affect the spam ecosystem, depending on the nature of their

deployment. The most obvious impact of spam filtering is the emer-

gence of technical countermeasures in spam; it is commonly held that

filtering methods become obsolete as quickly as they are invented. Legal

retaliation is also a possibility: Spammers or advertisers or recipients

may sue for damages due to the non-delivery of messages. Spam fil-

tering is itself a big business, a tremendous amount of money rests on

our perception of which spam methods work best, so the self-interest

of vendors may be at odds with objective evaluation. And filter market

share will itself influence the design of spam.

In general, we shall consider the marginal or incremental effects of

spam filter deployment, and mention in passing its potential role in

revolutionary change.

1.5 Spam Filter Inputs and Outputs 345

1.5 Spam Filter Inputs and Outputs

We have defined a spam filter to be an automated technique to identify

spam. A spam filter with perfect knowledge might base its decision on

the content of the message, characteristics of the sender and the target,

knowledge as to whether the target or others consider similar messages

to be spam, or the sender to be a spammer, and so on. But perfect

knowledge does not exist and it is therefore necessary to constrain

the filter to use well defined information sources such as the content

of the message itself, hand-crafted rules either embedded in the filter

or acquired from an external source, or statistical information derived

from feedback to the filter or from external repositories compiled by

third parties.

The desired result from a spam filter is some indication of whether

or not a message is spam. The simplest result is a binary categoriza-

tion — spam or non-spam — which may be acted upon in various ways

by the user or by the system. We call a filter that returns such a binary

categorization a hard classifier. More commonly, the filter is required to

give some indication of how likely it considers the message to be spam,

either on a continuous scale (e.g., 1 = sure spam; 0 = sure non-spam)

or on an ordinal categorical scale (e.g., sure spam, likely spam, unsure,

likely non-spam, sure non-spam). We call such a filter a soft classifier.

Many filters are internally soft classifiers, but compare the soft classifi-

cation result to a sensitivity threshold t yielding a hard classifier. Users

may be able to adjust this sensitivity threshold according to the rela-

tive importance they ascribe to correctly classifying spam vs. correctly

classifying non-spam (see Section 1.7).

A filter may also be called upon to justify its decision; for example,

by highlighting the features upon which it bases is classification. The

filter may also classify messages into different genres of spam and good

mail (cf. [42]). For example, spam might be advertising, phishing or a

Nigerian scam, while good email might be a personal correspondence, a

news digest or advertising. These genres may be important in justifying

the spam/non-spam classification of a message, as well in assessing

its impact (e.g., does the user really care much about the distinction

between spam and non-spam advertising?).

346 Introduction

1.5.1 Typical Email Spam Filter Deployment

Figure 1.5 outlines the typical use of an email spam filter from the per-

spective of a single user. Incoming messages are processed by the filter

one at a time and classified as ham (a widely used colloquial term for

non-spam) or spam. Ham is directed to the user’s inbox which is read

regularly. Spam is directed to a quarantine file which is irregularly (or

Incoming Mail

Filter

Inbox Quarantine

SearchTriage

Memory

Read Email

Misclassified

Good Email

Misclassified Spam

Good

Email

External

Resources

Fig. 1.5 Spam filter usage.

1.5 Spam Filter Inputs and Outputs 347

never) read but may be searched in an attempt to find ham messages

which the filter has misclassified. If the user discovers filter errors —

either spam in the inbox or ham in the quarantine — he or she may

report these errors to the filter, particularly if doing so is easy and he

or she feels that doing so will improve filter performance. In classifying

a message, the filter employs the content of the message, its built-in

knowledge and algorithms, and also, perhaps, its memory of previous

messages, feedback from the user, and external resources such as black-

lists [133] or reports from other users, spam filters, or mail servers. The

filter may run on the user’s computer, or may run on a server where it

performs the same service for many users.

1.5.2 Alternative Deployment Scenarios

The filter diagrammed in Figure 1.5 is on-line in that it processes one

message at a time, classifying each in turn before examining the next.

Furthermore, it is passive in that it makes use only of information at

hand when the message is examined. Variants of this deployment are

possible, only some of which have been systematically investigated:

• Batch filtering, in which several messages are presented to the

filter at once for classification. This method of deployment

is atypical in that delivery of messages must necessarily be

delayed to form a batch. Nevertheless, it is conceivable that

filters could make use of information contained in the batch

to classify its members more accurately than on-line.
• Batch training, in which messages may be classified on-

line, but the classifier’s memory is updated only periodically.

Batch training is common for classifiers that involve much

computation, or human intervention, in harnessing new infor-

mation about spam.
• Just-in-time filtering, in which the classification of mes-

sages is driven by client demand. In this deployment a filter

would defer classification until the client opened his or her

mail client, sorting the messages in real-time into inbox and

quarantine.

348 Introduction

• Deferred or tentative classification, in which the classification

of messages by the filter is uncertain, and either delivery of

the message is withheld or the message is tentatively clas-

sified as ham or spam. As new information is gleaned, the

classification of the message may be revised and, if so, it is

delivered or moved to the appropriate file.
• Receiver engagement, in which the filter probes the recipi-

ent (or an administrator representing the recipient) to glean

more information as a basis for classification. Active learn-

ing may occur in real-time (i.e., the information is gathered

during classification) or in conjunction with deferred or ten-

tative classification. An example of real-time active learning

might be a user interface that solicits human adjudication

from the user as part of the mail reading process. A more

passive example is the use of an “unsure” folder into which

messages are placed with the expectation that the user will

adjudicate the messages and communicate the result to the

filter.
• Sender engagement, in which the filter probes the sender

or the sender’s machine for more information. Examples are

challenge–response systems and greylisting. These filters may

have a profound effect on the ecosystem as they, through their

probes, transmit information back to the sender. Further-

more, they introduce delays and risks of non-delivery that

are difficult to assess [106]. It may be argued that these tech-

niques which engage the sender do not fit our notion of “fil-

ter.” Nevertheless, they are commonly deployed in place of,

or in conjunction with, filters and so their effects must be

considered.
• Collaborative filtering, in which the filter’s result is used not

only to classify messages on behalf of the user, but to pro-

vide information to other filters operating on behalf of other

users. The motivation for collaborative filtering is that spam

is sent in bulk, as is much hard-to-classify good email, so

many other users are likely to receive the same or similar

messages. Shared knowledge among the filters promises to

1.6 Spam Filter Evaluation 349

make such spam easier to detect. Potential pitfalls include

risks to privacy and susceptibility to manipulation by mali-

cious participants.
• Social network filtering, in which the sender and recipient’s

communication behavior are examined for evidence that par-

ticular messages might be spam.

1.6 Spam Filter Evaluation

Scientific evaluation, critical to any investigation of spam filters,

addresses fundamental questions:

• Is spam filtering a viable tool for spam abatement?
• What are the risks, costs, and benefits of filter use?
• Which filtering techniques work best?
• How well do they work?
• Why do they work?
• How may they be improved?

The vast breadth of the spam ecosystem and possible abatement tech-

niques render impossible the direct measurement of these quantities;

there are simply too many parameters for any single evaluation or

experiment to measure all their effects at once. Instead, we make var-

ious simplifying assumptions which hold many of the parameters con-

stant, and conduct an experiment to measure a quantity of interest

subject to those assumptions. Such experiments yield valuable insight,

particularly if the assumptions are reasonable and the quantities mea-

sured truly illuminate the question under investigation. The validity of

an experiment may be considered to have two aspects: internal valid-

ity and external validity or generalizability. Internal validity concerns

the veracity of the experimental results under the test conditions and

stated assumptions; external validity concerns the generalizability of

these results to other situations where the stated assumptions, or hid-

den assumptions, may or may not hold. Establishing internal validity

is largely a matter of good experimental design; establishing exter-

nal validity involves analysis and repeated experiments using different

assumptions and designs.

350 Introduction

It is all too easy to fix on one experimental design and set of test

conditions and to lose sight of the overall question being posed. It is

similarly all too easy to dismiss the results a particular experiment due

to the limitations inherent in its assumptions. For example, filters are

commonly evaluated using tenfold cross validation [95], which assumes

that the characteristics of spam are invariant over time. It would be

wrong to conclude, without evidence, that the results of tenfold cross

validation would be the same under a more realistic assumption. It

would be equally wrong to dismiss out of hand the results of experi-

ments using this method, to do so would entail dismissal of all scien-

tific evidence, as there is no experiment without limiting assumptions.

We would be left with only testimonials, or our own uncontrolled and

unrepeatable observations, to judge the efficacy of various techniques.

Instead, it is appropriate to identify assumptions that limit the gener-

alizability of current results, and to conduct experiments to measure

their effect.

The key to evaluation is to conduct experiments that glean the

most informative results possible with reasonable effort, at reasonable

cost, in a reasonable time frame. Simple assumptions — such as the

assumption that the characteristics of spam are time-invariant — yield

simple experiments whose internal validity is easy to establish. Many

such experiments may reasonably be conducted to explore the breadth

of solutions and deployment scenarios. Further experiments, with dif-

ferent simple assumptions, help to establish the external validity of the

results. These experiments serve to identify the parameters and solu-

tions of interest, but are inappropriate for evaluating fine differences.

Experimental designs that more aptly model real filter deployment tend

to be more complex and costly due to challenges in logistics, controlling

confounding factors, and precisely measuring results. Such experiments

are best reserved for methods and parameters established to be of inter-

est by simpler ones.

Among the common assumptions in spam filter evaluation are:

• Batch or on-line filtering.
• Existence of training examples.
• Accurate “true” classification for training messages.

1.7 Evaluation Measures 351

• Accurate “true” classification for test messages.
• Recipient behavior, e.g., reporting errors.
• Sender behavior, e.g., resending dropped messages.
• Availability of information, e.g., whitelists, blacklists, rule

bases, community adjudication, etc.
• Language of messages to be filtered, e.g., English only.
• Format of messages to be filtered, e.g., text, html, ASCII,

Unicode, etc.
• Quantifiable consequences for misclassification or delay [96].
• Time invariance of message characteristics [57].
• Effect (or non-effect) of spam filter on sender.
• Effect (or non-effect) of spam filter on recipient.

Laboratory and field experiments play complementary roles in scien-

tific investigation. Laboratory experiments investigate the fundamental

properties of filters under controlled conditions that facilitate repro-

ducibility, precise measurement, and ongoing evaluation. Such condi-

tions necessitate the adoption of simplifying assumptions such as those

listed above. Field experiments, on the other hand, rely on different

assumptions, are very difficult to control and their results very difficult

to compare. Methods from scientific fields such as epidemiology [139]

may be used to measure the effects of spam filters, however, such meth-

ods are considerably more expensive and less precise than laboratory

experiments.

1.7 Evaluation Measures

An ideal spam filter would autonomously, immediately, and perfectly

identify spam as spam and non-spam as non-spam. To evaluate a spam

filter, we must somehow measure how closely it approximates this ideal.

Furthermore, whatever measurement we use should reflect the suitabil-

ity of the filter for its intended purpose.

Our ideal suggests four dimensions along which filters should be

judged: autonomy, immediacy, spam identification, and non-spam iden-

tification. It is not obvious how to measure any of these dimensions

separately, nor how to combine these measurements into a single one

352 Introduction

for the purpose of comparing filters. Nevertheless, reasonable standard

measures are useful to facilitate comparison, provided that the goal of

optimizing them does not replace that of finding the most suitable filter

for the purpose of spam filtering.

A fully autonomous spam filter would require no configuration, no

updates, no training, and no feedback. Is a filter that receives nightly

signature files from a central source more or less autonomous than one

that requires user feedback on errors? Is the burden collecting a sample

of labeled messages for training more or less onerous than delivering

updates or user feedback? We cannot imagine a quantitative measure

that could capture the differences between filters in this regard. They

must be controlled when evaluating the other dimensions, but the rel-

ative amounts that filters employing these techniques diverge from the

ideal will remain a matter of qualitative, not quantitative, evaluation.

An immediate filter would introduce no CPU, disk or network

overhead, and would not defer its decision pending the arrival of new

information. We may measure or analyze the efficiency of the filter;

modeling external delay is more difficult. Reasonable delays may not

matter much, but it is difficult to quantify reasonable. A two second

delay per message may be reasonable for an end user, if the filter runs

continuously. If, however, the filter is launched only when the inbox is

opened, a user with 100 new messages may find him or herself waiting

for several minutes. A mail server supporting 100 clients may also find

a 2 second delay per message acceptable; a server supporting 100,000

clients may not.

Failures to identify non-spam and spam messages have materially

different consequences. Misclassified non-spam messages are likely to

be rejected, discarded or placed in quarantine. Any of these actions

substantially increases the risk that the information contained in the

message will be lost, or at least delayed substantially. Exactly how

much risk and delay are incurred is difficult to quantify, as are the con-

sequences, which depend on the nature of the message. Some messages

are simply more important than others, while others are more likely

to be missed, or delivered by separate channels, if they go astray. For

example, advertising from a frequent flier program is less important

than an electronic ticket receipt, but the latter is certain to be missed

1.7 Evaluation Measures 353

and retrieved, either from quarantine or from a different medium. On

the other hand, failure to deliver immediately a message from one’s

spouse to “come home right away” could have serious consequences.

For these reasons, one must be cautious about characterizing failures

to deliver non-spam in terms of a simple proportion, as such failures are

rare events with causes and consequences that defeat statistical infer-

ence. With this caveat, false positive rate (fpr) — the proportion of

non-spam messages identified as spam (cf. Table 4.1) — is a reasonable

first-order measure of failures to identify non-spam.

Failures to identify spam also vary in importance, but are generally

less important than failures to identify non-spam. Viruses, worms, and

phishing messages may be an exception, as they pose significant risks

to the user. Other spam messages have impact in proportion to their

volume; so false negative rate (fnr) — the proportion of spam identified

as non-spam — is an apt measure.

The overall efficacy of a hard classifier may be characterized by

the pair (fpr, fnr). A classifier with lower fpr and fnr than another

is superior.4 Whether a classifier with a lower fpr and higher fnr is

superior or inferior depends on the user’s sensitivity to each kind of

error.

The efficacy of a soft classifier with an adjustable threshold t may

be characterized by the set of all distinguishable (fpr, fnr) pairs for

different values of t. This set of points defines a receiver operating

characteristic (ROC) curve (cf. [58, 82, 166]). A filter whose ROC curve

is strictly above that of another is superior in all deployment situations,

while a filter whose ROC curve crosses that of another is superior for

some threshold settings and inferior for others.

The area under the ROC curve (AUC) provides an estimate of the

effectiveness of a soft classifier over all threshold settings. AUC also

has a probabilistic interpretation: it is the probability that the classifier

will award a random spam message a higher score than a random ham

message. In the spam filtering domain, typical AUC values are of the

order of 0.999 or greater, for clarity, we often report (1 − AUC)%, the

4 Under the assumption that all messages have equal misclassification cost. See Kolcz et al.
[96]

354 Introduction

area above the ROC curve, as a percentage. So AUC = 0.999 would be

reported instead as (1 − AUC)% = 0.1.

False positive rate, false negative rate, and receiver operating char-

acteristic curves are the standard measures of (e.g., medical) diagnos-

tic test effectiveness [66]. This review uses primarily these measures;

a spam filter is a diagnostic test applied to email for which a positive

result indicates spam, and a negative result indicates non-spam. In Sec-

tion 4.6, we review the diverse set of measures that have been applied to

spam filters, and argue that diagnostic test methods are most suitable

for comparative analysis.

1.8 Systematic Review

Spam filters have evolved quickly — and somewhat separately — in

several milieux with different histories, objectives, evaluation methods,

and measures of success. Practitioners have been concerned primar-

ily with keeping their heads above water, delivering spam filters as

quickly as possible to combat an ever-increasing tide of spam. Aca-

demics have, in large part, studied the problem as an application of

the techniques and methods of information retrieval, machine learning

and computer systems. Commercial product development and product

testing involve yet another set of interests, methods, and measures of

success. These groups have had limited interaction; as a consequence, it

is exceedingly difficult to deduce from the literature or other sources the

relative performance and promise of current and proposed spam filter

methods.

The literature, including the so-called gray literature (dissertations,

technical reports, popular press articles, commercial reports, web pub-

lications, software documentation and cited unpublished works) was

searched for articles describing a spam filter or spam filtering method

and an evaluation of its effectiveness. Articles were characterized by

their methods and assumptions according to the taxonomy presented

here. Where sufficient information was given in the article, quantita-

tive results were recast as (fpr, fnr) or summarized using 1 − AUC

expressed as a percentage, otherwise the results were omitted from this

review. Results derived using incorrect methodology, or results that

1.8 Systematic Review 355

are insufficiently noteworthy because their results are represented bet-

ter elsewhere, were similarly omitted. Several hundred articles were

considered for this review; perhaps one-third of them met our selection

criteria.

Certain aspects of spam filtering are well represented in the litera-

ture, while others are hardly represented or not represented at all. This

review reflects this uneven coverage, reporting some aspects in detail

while leaving others as largely uncharted territory.

2

Spam Classifiers — Hand-Crafted

At the core of every spam filter is a classifier that estimates, based on

available information, whether a given message is spam or not. The

exact nature of the available information depends on the deployment

scenario and the requirements of the classifier, the estimate is either

categorical (hard classification), or ordinal or continuous (soft classifi-

cation).

For the purpose of this review, we separate available information

into two components: the message m itself, and extrinsic information e

gathered from elsewhere. m is defined broadly to include not only the

text of the message, but all information specific to it, such as header

and envelope information, recipient, time of arrival, and so on. e encom-

passes all other information, including the filter’s memory and external

sources (see Figure 1.5) as well as rules encoded in the filter itself.

Nearly all filters in use today employ hand-crafted classifiers, or

machine learning methods (cf. [153]), or both. The overall objective

is the same — to classify messages as spam or non-spam — but the

approaches, and the perspectives of those investigating the approaches,

differ considerably. To reflect this diversity, this discussion is divided

into two sections. The present section defines formally the classification

356

2.1 Definitions 357

problem, and reviews hand-crafted spam classifiers within the context

of this definition. The following section reviews machine learning meth-

ods to construct spam classifiers.

2.1 Definitions

We assume that every message m is either spam or not; the universe of

messages M is partitioned into two sets, spam and non-spam such that

every m ∈ M , where M = spam ∪ non-spam and spam ∩ non-spam =

∅. Membership in spam is specified by our definition in Section 1,

or by a similar subjective definition, which can be neither formalized

nor determined with certainty for all messages. The key challenge for

spam filtering is to build a classifier — a concrete function that answers

accurately, for any m, the question “given m, is m ∈ spam?”

An ideal spam classifier would be a total function

isspam : M → {true, false}

such that isspam(m) = true if and only if m ∈ spam. Due to the defi-

nition of spam, such a classifier cannot be totally realized, instead we

build an approximate classifier c such that c ≈ isspam. Hard and soft

classifiers employ different notions of approximate. A hard classifier

c : M → {true, false}

approximates isspam to the extent that c(m) = isspam(m) for all m ∈

M ′ ⊆ M . A soft classifier

c : M → R

approximates isspam to the extent that c(m) > c(m′) for all (m,m′) ∈

P ⊆ spam × non-spam. A hard classifier ch may be defined in terms

of a soft classifier cs and a fixed threshold t:

ch(m) =

{

true (cs(m) > t)

false (cs(m) ≤ t)
.

A utility measure quantifies the extent to which c approx-

imates the ideal classifier. A naive utility measure for a hard

classifier is accuracy = |M ′|
|M | . Alternatively, a cost measure such as

358 Spam Classifiers — Hand-Crafted

error = 1 − accuracy quantifies the extent to which c departs from

the ideal. Accuracy and error are commonly reported and commonly

optimized in filter construction, notwithstanding their shortcomings

as measures of spam filter effectiveness. As a pair, the cost functions

fpr =
|non-spam ∩ {m|c(m) = true}|

|non-spam|

and

fnr =
|spam ∩ {m|c(m) = false}|

|spam|

distinguish between spam and non-spam error rates. For a soft

classifier, we use the cost function

1 − AUC =
|spam × non-spam ∩ {(m,m′)|c(m) < c(m′)}|

|spam| ∗ |non-spam|
.

It is useful to formalize the process of building the classifier from

available evidence separately from the classifier itself. A classifier con-

structor C takes as input extrinsic information e from domain E and

yields either a hard classifier c : M → {true, false} or a soft classifier

c : M → R; that is C : E → (M → {true, false}) or C : E → (M → R).

Although represented formally as a function that returns a function,

C may be effected by hand, for example, when rules or patterns are

embedded into a program that implements c, the programmer imple-

ments C by hand. On the other hand, C may be an explicit automatic

step in filtering, for example, when a supervised learning algorithm

induces c from a set of labeled training examples. Or C may be implicit,

in effect constructing a new classifier based on new evidence e for every

message m, such is the case with on-line filters that consider all infor-

mation available at the time of classification. Whether the constructor

is manual, explicit or implicit, it is useful to consider a spam filter

f : (E × M) → {true, false} or f : (E × M) → R to be a function on

two inputs defined in terms of applying a classifier constructor to e,

and then the resulting classifier to m; that is, f(e,m) = (C(e))(m).

2.2 The Human Classifier 359

2.2 The Human Classifier

If no automated filter is installed, the role of filtering or spam avoidance

is assumed by the human recipient, that is, c is constructed and applied

in the user’s head. A human can usually identify email spam from

a summary line containing the sender’s name, subject, and time of

delivery, that is, based on a subset of m. Occasionally the user will

mistakenly open a spam message1 thinking it is non-spam, or delete or

overlook a non-spam message thinking it is spam. These occurrences

constitute false negatives and false positives, respectively. The human

classifier c therefore has nonzero fpr and fnr which could be measured

by a suitable experiment.

Studies which assess the costs and benefits of manual filtering are

rare. Commercial studies [2, 60, 59] have estimated categorizing spam

to cost of the order of 10 minutes of productivity per day, based on

self-reporting through surveys or assumptions regarding the number of

spams received and the time required to identify each spam message.

Total spam volume has increased considerably since these studies were

conducted, while filter use has become common. The studies’ assump-

tions imply that, absent filter use, lost productivity would be propor-

tional to the volume of spam and hence considerably higher than 10

minutes per day.

The risk of email loss due to deployment of a spam filter must

be compared with the risk due to human filtering. Yerazunis [194]

carefully adjudicated the same 1900 email messages on two separate

occasions, observing a disagreement on 3 messages. Since Yerazunis

examined the full text of each message and spent considerably more

time than assumed by the aforementioned studies, his disagreement

rate (0.16%) would appear to be a lower bound on that achievable by

humans in the course of reading a mixture of spam and non-spam.2

Yih et al. [199] report a 3% error rate by Hotmail users in manu-

ally classifying a random selection of their incoming messages. Using a

1 A spam message may be able to exploit the user interface to deliver its payload without
any explicit action on the part of the user.

2 Assuming that Yerazunis’ sample and efforts are representative of email and user’s capa-
bilities in general.

360 Spam Classifiers — Hand-Crafted

Web interface, Graham-Cumming [73] collected 357,380 judgments for

92,186 spam and non-spam messages from self-selected participants.

His results show an average disagreement among participants of about

10%, and an average disagreement with the official classification of

about 6.75% [149].

Spam senders employ social engineering to increase the error rate of

human filtering by composing the messages so as to convince the user

to read and respond to the message. Benign subject lines or urgent

subject lines that may appear to be from an acquaintance or authority

are common (cf. Figure 2.1). Spam may be designed to exploit system

insecurities to deliver its payload regardless of whether or not the mes-

sage is selected to be read. Examples include automatically rendered

preview images, automatically transmitted delivery receipts, or short

subject lines that contain the payload itself.

Fig. 2.1 Social engineering.

2.3 Ad Hoc Classifiers 361

2.3 Ad Hoc Classifiers

Ad hoc filtering techniques are devised in response to a particular form

of spam or in response to the particular needs of a single user or

restricted set of users. A user or system administrator may choose to

block or quarantine, for example, messages that

• Contain a particular word or phrase (e.g., teen or

MAKE MONEY) in the subject.
• Contain attached files of a particular type (e.g., scr).
• Are sent in a particular format (e.g., Unicode).
• Appear to be sent from one of a particular set (a black list)

of users, hosts or domains (e.g., .ru).
• Appear not to be sent from one of a trusted set (a white list)

of users, hosts or domains (e.g., gvcormac@uwaterloo.ca).

Most email servers and clients support the definition of simple patterns

to implement these policies. Because the patterns are written and mod-

ified in response to specific threats and needs, it is very difficult to study

their efficacy and generalizability in a systematic way.

Ad hoc rules may have unforeseen consequences. Features that

“obviously” indicate spam may occur, albeit rarely, in important non-

spam messages. In an effort to block a flood of non-delivery messages

resulting from a spam campaign that impersonated the author, an

ad hoc filter was created to block messages quoting a “From:” line

containing his email address, but not his name as would be contained

in any message actually sent by him. This approach was very effec-

tive, except for two unfortunate circumstances that resulted in false

positives:

(1) The filter blocked a response from a foreign embassy to

an inquiry regarding the status of a visa application. The

embassy response quoted the inquiry verbatim, except that

for some reason (possibly security) it removed the sender’s

name from the From: field.

(2) A conference management system, configured to send email

on behalf of the author, did not include his name.

362 Spam Classifiers — Hand-Crafted

The benefits and risks of ad hoc filtering are exceedingly difficult to

measure, such reports appear to be absent from the literature.

2.4 Rule-Based Filtering

While it is difficult to draw a firm distinction between ad hoc and rule-

based systems, we generally distinguish them by the following criteria:

• Rules are specified using a specific formal notation, as

opposed to being embedded in the various tools that imple-

ment them.
• Multiple rules are brought to bear in classifying a message.
• The classifier is itself easily identified as a “black box” with

specific inputs and outputs.
• Rule bases are designed to be more general to facilitate

widespread deployment.

The ubiquitous SpamAssassin [164] open-source spam filter is the lead-

ing example of a rule-based filter.3 While SpamAssassin consists of sev-

eral thousand lines of Perl code, the rules themselves (dubbed “tests”

in SpamAssassin parlance) are encapsulated in a few configuration files.

Each test may be specified as a pattern which is applied to the email

message, or as a query to a built-in routine that performs computation

or data access that cannot be effected by a simple pattern. An example

of the former is the test MILLION_USD, implemented as the pattern

/Million\b.{0,40}\b(?:United States? Dollars?|USD)/i,

which indicates a Nigerian scam. Examples of the latter are

USER_IN_BLACKLIST and USER_IN_WHITELIST. With each test is asso-

ciated a score to indicate whether the test indicates spam or non-spam,

and how strongly so. Overall, the message is classified as spam if the

3 SpamAssassin has now evolved into a hybrid filter, incorporating within its rules the results
of many non-rule-based components, such as whitelists, blacklists, and machine-learning.
Furthermore, combining weights for rules are derived using machine learning. See, for
example, Figure 2.2 which displays the result of applying SpamAssassin to the message in
Figure 2.1.

2.5 Whitelists 363

sum of the scores of the tests that “fire” exceeds some threshold, typi-

cally 5. SpamAssassin is shipped with a default set of about 800 rules,

along with default scores and a default threshold. The user or adminis-

trator may alter the rules and scores, many custom rule-sets are main-

tained by third parties and available for download.

Spam countermeasures against rule-based filters employ the same

general techniques as against ad hoc filters: spam messages are engi-

neered to avoid the rules. To the extent that rules are better formalized

and shared, spammers are better able systematically to test whether or

not their spam avoids triggering the rules. Spammers routinely install

and test against common filters like SpamAssassin.

2.5 Whitelists

A whitelist is a list of senders whose email should be delivered, notwith-

standing the outcome of the spam filter. The address book of the recip-

ient is commonly used as a simple whitelist, under the assumption

that spam would be unlikely to arrive from these email addresses. The

whitelist need not be an address book, and it may contain domain

names or IP addresses instead of email addresses. Then the user

may, using tools provided by his or her email client, maintain his or

her whitelist explicitly, or automated tools may deduce the whitelist

from email traffic (e.g., the auto-whitelist feature of SpamAssassin).

Global whitelists may be maintained by email service providers or other

organizations.

Such whitelists may be compromised if the spammer can determine

or guess an address on the list and “spoof” the spam message so as to

appear to have been sent from that address. One way to guess addresses

likely to be whitelisted is simply to use real email addresses harvested

from the web or elsewhere. Today, almost all spam is sent from such

an address, to maximize the probability, however small, that address is

in the recipient’s whitelist. More sophisticated data mining techniques

cluster email addresses by domain or by their co-occurrence on web

pages. The author, for example, receives a disproportionate number

of spam messages spoofed to appear to be sent by his co-authors for

various published works. Viruses and other malware can easily harvest

364 Spam Classifiers — Hand-Crafted

the address books and other files of compromised machines for email

addresses likely to be found in correspondents’ whitelists.

Spoofing email is all too easy. The internet message format enforces

no authentication at all, the sender’s email address means nothing more

than the return address written on the envelope of conventional mail.

Email messages contain so-called Received: headers, akin to post-

marks, which provide some evidence of the veracity of the sender, but

they are not easy to parse and it is not easy to verify that they them-

selves are not forged [111].

2.6 Blacklists

A blacklist is a list of senders, domains or IP addresses messages from

which are deemed to be spam. While whitelists and blacklists are, in

a sense, complementary, they are not symmetric. Unlike a whitelist,

which must be used in conjunction with another filter, a blacklist acts

as a filter in its own right. However, a single user cannot compile a

large enough list of possible spam senders for a personal blacklist to

be of much use as a general spam filter. Instead, organizations compile

large databases of IP addresses or domain names known to or likely to

send spam, and spam filters query these databases in real-time.

The first major example of such a list was the Real-time Black-

hole List (RBL) for the Mail Abuse Prevention System (MAPS) [116].

RBL and similar databases, collectively known as Domain Name Server

Blacklists (DNSBL) use the internet Domain Name Server (DNS) as

an efficient mechanism to query the blacklists [15].

Populating and maintaining comprehensive, accurate blacklists

presents substantial challenge. Spam is sent from a vast number of

sources, and the blacklist’s effectiveness depends on being able to iden-

tify the source of most messages. One method is to examine a large

number of spam messages and to add the source of spam messages

to the blacklist. This approach dictates that a very large number of

messages be examined, few organizations have the resources to do so

themselves. One approach is to rely on the community at large to

report spam senders, another is to use spam traps or honeypots —

email addresses which have no legitimate purpose — and assume that

2.7 Collaborative Spam Filtering 365

all email sent to such addresses is spam [130]. Technical aspects of the

IP address, such as the fact that it is allocated by the Dynamic Host

Control Protocol (DHCP) may be used to populate a blacklist. Such

a dial-up blacklist is effective because a large fraction of spam is sent

by compromised machines or by unscrupulous clients of retail internet

service providers, these machines typically have dynamic IP addresses.

The effectiveness of a blacklist depends on its completeness, its accu-

racy, and the inability of spam to spoof non-blacklisted addresses.

2.7 Collaborative Spam Filtering

The nature of spam is such that each message is typically sent to a

vast number of recipients. Chances are that a particular recipient is

not the first to receive any particular message; it is likely to have not

only been received but also recognized as spam by somebody else (or

somebody else’s spam filter or honeypot). Collaborative spam filtering

is the process of capturing, recording, and querying these early judg-

ments [46, 50, 157]. The false positive and false negative rates of this

approach depend on both human and technical factors which limit the

timeliness, completeness, and accuracy of these three steps. Ideally, col-

laborative filtering could approach, in the aggregate, a false negative

rate of 1
n
, where n is the number of copies of each message sent by the

spammer, and a false positive rate of 0.

The completeness of the approach is limited by the number of users

who participate in the system, the effective value of n, therefore, is not

the number of messages sent by the spammer, but the number of mes-

sages sent by the spammer to a participant in the collaborative filtering

system. Participants may fail to recognize a message as spam, or, they

may not bother to record their judgments. Spammers may send out

thousands of spam messages in a few minutes in an effort to capitalize

on the time it takes participants to recognize and report spam. Partic-

ipants may inadvertently mark non-spam messages as spam, malicious

users — perhaps the spammers themselves — may do so deliberately

to increase the false positive rate and therefore compromise the system.

An essential component of a collaborative spam filtering system is a

real-time database of known-spam messages that can be updated and

366 Spam Classifiers — Hand-Crafted

queried by diverse users. Practical considerations render it impossible to

store entire messages in this database: it would be too large; query and

update times would be excessive; privacy of messages might be compro-

mised. A cryptographic hash function preserves privacy and allows for

efficient query and update, but works only if the spam messages sent by

a spammer are identical. In fact, they will differ somewhat due to their

headers and other artifacts of delivery. And in an effort to defeat collab-

orative spam filters, spammers commonly generate messages that are

trivially different. The crux of collaborative spam filtering is to record

messages in such a way that nearly identical messages will be matched,

while ones that differ more substantially will not [99, 97].

2.8 Challenge–Response

A challenge–response system [177] demands that a sender take special

action in order to have his or her message delivered to and added to the

whitelist of a particular recipient. The special action may be as simple

as clicking a link or resending, or may involve supplying credentials,

solving a puzzle [26], making a payment [171, 135], or performing a

time-consuming computation [55]. The task is designed to as to be easy

enough for a legitimate sender to accomplish, but too difficult, time

consuming or expensive for a spammer sending thousands or millions

of messages.

Challenge–response systems differ in the mechanisms used to com-

municate the challenge–response. A “classical” challenge–response,

implemented by the recipient’s email server, holds the message and

issues a challenge message to the (purported) sender with instructions

on how to respond. Since the vast majority of spam sender addresses

are forged, these challenges themselves may be considered spam. It is

apparent that if every user employed such a spam filter, no email would

ever be delivered. Furthermore, some legitimate mail messages — for

example, mailing lists and responses to web transactions — are sent by

automated servers that would be unlikely to respond to challenges. For

these reasons, their use is widely disfavored [76].

Pre-challenge systems [137] embed the challenge–response process

into the sender’s interface, evidence of a successful response is either

2.9 Greylisting 367

embedded in the message or transmitted by a separate interface. One

of the commonest pre-challenge tasks is the human interactive proof

[23, 25, 26, 159].

2.9 Greylisting

Greylisting is a form of challenge–response that engages the sender’s

mail delivery software rather than the sender [77, 106]. Messages are

summarily rejected with a “soft” error code that invites retransmission.

Under the assumption that non-spam is more likely to be re-sent than

spam, this method acts as a spam filter.

Greylisting, like challenge–response, imposes delay and may result

in lost legitimate messages, as it depends on the sender to retrans-

mit and on the filter’s ability to recognize the retransmission as such.

Furthermore, lost messages are nearly impossible to detect or recover.

Greylisting is trivial to defeat, all the spammer must do is to implement

the invited retransmission. Presently, many spammers find it more cost

effective not to, estimates range as high as 80%. The rate of lost legit-

imate email is difficult to measure, it is certainly nonzero [106].

2.10 Technical Measures

As noted above, many spam filtering techniques rely on being able to

verify the identity of the sender or the sender’s domain. Several pro-

posals have been made to enhance the internet mail protocol to provide

secure authentication of messages. These include Sender Policy Frame-

work (SPF) [193], Sender-ID [115], and Domain Keys Identified Mail

(DKIM) [110] which have been deployed by several major email service

providers. To date, they are far from ubiquitous, and their impact is

yet to be determined.

2.11 Combined Methods

Ad hoc and rule-based spam filters employ a “cocktail” of methods [11],

composing separate classifiers to form one overall classifier. The com-

position itself is typically done in an ad hoc manner; in a pipeline, for

example, filters sequentially examine the message until it is summarily

368 Spam Classifiers — Hand-Crafted

Content analysis details: (10.2 points, 5.0 required)

pts rule name description

---- ---------------------- --

1.0 NO_REAL_NAME From: does not include a real name

2.0 BIZ_TLD URI: Contains an URL in the BIZ top-level domain

0.0 BAYES_50 BODY: Bayesian spam probability is 40 to 60%

[score: 0.5249]

4.1 URIBL_JP_SURBL Contains an URL listed in the JP SURBL blocklist

[URIs: vvesternunion.biz]

3.0 URIBL_OB_SURBL Contains an URL listed in the OB SURBL blocklist

[URIs: vvesternunion.biz]

0.1 TO_CC_NONE No To: or Cc: header

Fig. 2.2 Virus spa.

blocked (or delivered) by one of them. SpamAssassin is a prototyp-

ical example in which many filters and tests are instead applied in

parallel, and the results combined using a formula; the result of apply-

ing SpamAssassin to the message in Figure 2.1 is shown in Figure 2.2.

More systematic methods of stacking autonomous filters using machine

learning techniques [114, 154] are discussed in the next section.

3

Spam Classifiers — Machine-Learning

A classifier constructor C takes extrinsic information e as input and

generates a classifier c as output. The methods reviewed in the pre-

vious section rely on hand-crafted implementations of C. The meth-

ods reviewed in the present section seek to replace much of the hand

crafting by automatic machine learning methods. It is impossible to

eliminate the hand-crafted component altogether, as in general e is a

member of a huge amorphous universe E. e may be characterized as

“any data drawn from all possible sources.” E is therefore unsuitable

as the domain for an automated constructor.

Instead we define a learning-based constructor to have two com-

ponents: an abstractor A : E → D and a learner L : D → (M →

{true,false}) or L : D → (M → R) such that C = L · A. We refer to

D, the range of A and domain of L, as the learner domain D, and a

concrete representation for each d ∈ D, are defined formally to facil-

itate the implementation of L by some machine learning algorithm.

The hand-crafted definition of D and implementation of A are essen-

tial aspects of any machine-learning classifier; only L is automated.

The problem of designing an amenable learner domain is open-

ended. Most designs can be characterized as having one of several

369

370 Spam Classifiers — Machine-Learning

established learning modes and some particular feature representation.

We consider the commonest examples in the following subsections,

followed by specific techniques for abstraction and learning.

3.1 Learning Modes

3.1.1 Supervised Learning

Supervised learning [102] is a common mode for machine-learning clas-

sifiers. The learner’s input (T, label) consists of a set T ⊆ M of training

examples and a function label : T → {true, false} that approximates

isspam over the sub-domain T . label is typically hand-crafted using

a human classifier. Under the assumptions that T is an independent

and identically distributed (i.i.d.) sample of M and that label(m) =

isspam(m) for all m ∈ T , the learner induces the parameters of a model

for m ∈ spam and uses this model to construct c that optimizes some

utility function, typically accuracy.

Supervised learning — along with its associated assumptions —

is so common that it is often assumed without question. But it can

be exceedingly difficult to obtain a sample — especially an i.i.d. sam-

ple — of messages to be classified. Indeed, many members of M (the

very ones we are interested in classifying) exist only in the future, and

are therefore simply impossible to sample. Constructing label is suffi-

ciently onerous and error-prone that the assumption of its existence is

questionable. One should not assume that optimizing accuracy yields

the classifier most suitable for its intended purpose: detecting spam.

3.1.2 Semi-Supervised Learning

Semi-supervised learning [204] assumes input (T, S, label), where

T ⊆ M , S ⊂ T and label : S → {true, false}, that is, label is defined

for only a subset of the training examples. Semi-supervised learning

accommodates the fact that obtaining sample messages may be con-

siderably easier than labeling them, as is often the case with email

spam. Semi-supervised learning assumes, like supervised learning, that

T is an i.i.d. sample of M . This assumption may allow the learner to

learn more about the distribution of M from the unlabeled examples

3.1 Learning Modes 371

in T\S. A vacuous semi-supervised learner is simply the supervised

learner with input (S, label), this learning provides a convenient base-

line against which semi-supervised learners may be compared.

3.1.3 Transductive Learning

Transductive learning [91] is a special case of semi-supervised learning

with input (T, S, label) as before. The difference is that the output is a

partial classifier c : T → {true, false} or c : T → R defined only on the

sub-domain T . Transductive learning methods may be used when clas-

sifier construction is implicit: the messages to be classified are known

at the time of classifier construction, and the classifier is reconstructed

for future messages.

3.1.4 Unsupervised Learning

Unsupervised learning [65] assumes no label function at all, that is, the

input is simply a set T ⊆ M , and is rarely used directly to construct a

classifier. Unsupervised learning methods may nevertheless be used in

conjunction with others; for example, clustering methods may be used

to find groups of similar messages under the assumption that each

member of a group belongs to the same class.

3.1.5 Active Learning

Active learning [147] allows the classifier to request labels for some

subset of the unlabeled training data. A spam filter may, for exam-

ple, ask the user to mark several messages each as ham or spam, and

classify the rest based on these examples. The prototypical method for

active learning is uncertainty sampling [107], in which a soft classifier is

applied to each unlabeled example, and labels are requested for those

whose classifier result is closest to the threshold t.

3.1.6 On-line Learning

The modes discussed so far assume that M is a static set, that T is a

sample of that set, and that (except for transductive learning) a classi-

fier is to be constructed whose domain is all of M . On-line learning [36]

372 Spam Classifiers — Machine-Learning

assumes that the messages in M are ordered chronologically, or, more

generally, by some relation <. The semi-supervised on-line learner’s

input is (T,<,m′,S, label), where T ⊆ {m|m ≤ m′} for some m′ ∈ M ,

S ⊆ T , and label : S → {true,false}. The supervised learner assumes

S = T . The domain of the constructed classifier c : U → {true,false}

or c : U → R is the set of later messages U = {m|m > m′}.

An on-line learner may be constructed trivially from the correspond-

ing supervised or semi-supervised batch learner by ignoring the order-

ing relation, however,

• The training examples are certainly not an i.i.d. sample of

the examples to be classified, as they are separated by the

ordering. Therefore the assumptions of the batch learner are

not met.
• Typical deployment of an on-line learner involves classify-

ing a sequence of messages m1 < m2 < · · · < mn, each in

turn. The maximum information is available to the learner

if a new classifier ci is defined for every mi (1 ≤ i ≤ n) with

T = {mj<i}. If the construction of ci examines every training

example in Ti, the time required will be at least proportional

to i, that is, the time to classify the sequence of messages will

be quadratic in n, effectively precluding on-line deployment.

Incremental learning may be used to reduce the overall cost of classify-

ing a sequence. An incremental learner efficiently constructs ci+1 from

the data structures representing ci and mi without necessarily examin-

ing all of the examples in Ti. The amenability of the learner to efficient

incremental construction is an important criterion in the choice of a

method for on-line filtering.

Incremental learning may be approximated using a non-incremental

learner, batching, and a sliding window. Batching is predicated on the

assumption that ci+∆ may be approximated by ci provided ∆ is not

large. Thus a new ci is constructed whenever i ≡ 0(mod∆), otherwise

ci = c∆⌊ i
∆⌋, for some fixed not-too-large ∆. The overall effect is to

improve learner efficiency by a factor of ∆. A sliding window con-

siders only the most recent ω messages as the training set, that is,

3.2 Feature Engineering 373

Ti = {mj |i − ω ≤ j < i}. The use of a sliding window renders overall

learning time proportional to n.

Training example selection may yield better results than a sliding

window. In general, we may select any Ti ⊆ {mj<i} such that |Ti| ≤ ω,

and provided the selection is done without consulting any mk /∈ Ti. The

sliding window is a special case of training example selection.

3.2 Feature Engineering

To construct a classifier c : M → {true,false} or c : M → R it is nec-

essary to define a concrete representation for every m ∈ M . This

representation may be, but is typically not, simply the textual rep-

resentation of the message. In general, a message is represented as a

collection of features derived from the message, or from extrinsic infor-

mation related to the message. The process of defining and extracting

features likely to be useful to the classifier — feature engineering —

has a profound impact on overall spam filter effectiveness. The reader

should be skeptical regarding claims (positive or negative) for any par-

ticular learning method that fails to note the method of feature repre-

sentation or the mode of learning.

The classical methods of feature engineering for spam filtering are

largely derived from established methods for information retrieval and

supervised machine learning. We present them first due to their histor-

ical weight, notwithstanding recent results suggesting the superiority

of simpler methods for spam filtering.

3.2.1 Feature Vectors

A message m is typically represented a vector of n features x =

(x1x2 · · ·xn), where each xi is a number or categorical value quanti-

fying some evidence pertaining to the message that might be useful

to the classifier. A feature extractor Z : M → X computes for a given

message m ∈ M the corresponding feature vector x ∈ X, where X is an

n-dimensional space.

A simple and common example is the bag of words model. The

distinct words contained in the training set are enumerated, assigning

to each a unique dimension in X. For each message m, we might define

374 Spam Classifiers — Machine-Learning

Z(m)i to be the number of times that the ith word occurs in m (the

term-frequency model, cf. [53]). Or, we might divide that number by

some function that increases with the total number of documents that

contain the word (the tf-idf model, cf. [53]).

Some learners perform poorly, either in terms of efficiency or clas-

sification performance, for large n. Feature selection is commonly used

to reduce n and hence the dimensionality of the feature space X. More

generally, dimensionality reduction techniques may be used to trans-

form and or project X to a space of smaller dimension.

Stop word elimination is a simple example of feature selection in

the bag-of-words model, common words are simply not enumerated.

Many statistical techniques have been proposed and used to identify

the most important features, the rest are eliminated. Stemming is a

simple example of dimensionality reduction: all morphological variants

of the same word are mapped to the same dimension. More sophisti-

cated methods, such as latent semantic indexing [63, 64], transform the

entire space to one of smaller dimension.

Some feature engineering choices may interfere with incremental

classifier construction, and hence efficient on-line deployment. The set

of features or the set of values for a particular feature may grow as new

messages are learned, amenable algorithms and data structures must

be chosen. Global statistics like tf-idf must be recomputed when used,

as the addition of a single document changes every tf-idf term.

Most importantly, feature selection or dimensionality reduction is

problematic in an on-line environment. If the method uses statistics

over the training set, these statistics will change with every new mes-

sage, possibly occasioning the complete reconstruction of the classifier.

3.2.2 Tokenization

The bag of words model arose from early information retrieval research

indicating that it worked as well for full text retrieval as more complex

models that take, for example, word position, into account. Much of

the spam filtering literature simply assumes this model.

Many variants of this model exist, depending on what one considers

to constitute a word. In English text one may reasonably identify

3.2 Feature Engineering 375

words as strings of consecutive letters separated by punctuation or

spaces. Some minor details, such as whether words may contain

apostrophes or digits, have been found to be of little consequence.

Much attention has been paid to the use of stemming, which seeks to

treat all morphological variants of a common root word as the same.

Stemming methods are necessarily approximate and heavily language

dependent, and have shown indeterminate results in information

retrieval and filtering. Similarly, the consideration of case — whether

or upper case and lower case representations of the same letter are

considered distinct — has shown indeterminate results. The overall

consensus appears to be that these variants — and also those that

identify synonyms — do not matter much [53].

The common assumption that email consists of English text, or

even Roman text, is difficult to justify. Email is an international

medium, containing messages in a vast number of languages using

non-Roman alphabets, many of which have, like Chinese, no natural

concept of “words.” The bag-of-words model demands that we iden-

tify the language and devise language-specific tools to recognize words

and word variants. Even an email message composed in English is not

strictly English text. Email includes structured information which is

not “English text” such as the header fields and MIME meta data.

The character set may be encoded in many different ways. The text

itself may be embedded in documents with a variety of formats, such

as plain text, html, word-processor format, pdf, images, and so on.

A substantial part of the message may involve non-textual media

such as photographs, audio, and video. It is not obvious how to map

these diverse data formats to the bag of words model, the alternatives

range from complex format-specific interpretation to simply ignoring

them.

Spammers have employed many obfuscation methods in an attempt

to defeat spam filter tokenization [75, 81, 131] which in turn have given

rise to deobfuscation techniques that aim to recover the original tokens

[104, 105].

Recently, spammers have used distorted and noisy images to convey

text messages, much attention has been paid to the specific problem

of extracting features from these images [8, 14, 22, 52, 62, 186],

376 Spam Classifiers — Machine-Learning

however, the overall impact of image-specific techniques has yet to be

established [74].

3.2.3 Synthetic Words

The bag-of-words model may be extended, by the introduction of syn-

thetic words, to capture additional information beyond which words

appear somewhere in the message. Synthetic words are commonly

denoted using a representation that would not actually be recognized

as a word in the text, for example, by including a punctuation symbol.

An effective use of synthetic words is to indicate the particular mes-

sage field in which a word occurs [69]. subject:money might indicate

the occurrence of the word “money” in the subject field of the mes-

sage, whereas body:money would indicate its presence in the text of

the message, and money would indicate its appearance anywhere in the

message.

Virtually any feature may be inserted into the bag of words model

by the use of synthetic words. The results of applying SpamAssassin’s

entire rule-set might be represented by 800 synthetic words. At some

point, however, the use of synthetic words departs from the assumptions

implied by the “bag of words” label, and loses the essence of the bag-

of-words model. We have, for example, used Bogofilter — a bag-of-

words based filter — to classify arbitrary feature vectors by rendering

the vectors as a sequence of nonsense words, with each distinct word

representing a particular feature [36].

3.2.4 Word Bigrams and Trigrams

Names and idioms often consist of several juxtaposed words. For

example, the term “information retrieval” conveys a much more

specific meaning than the words “information” and “retrieval”

taken separately. Bigrams — pairs of consecutive words taken

together as individual features — reflect the difference in mean-

ing when words are taken together. A text is split into bigrams

by taking every pair of adjacent words to form a synthetic word.

For example, the text to be or not to be contains five bigrams:

to+be, be+or, or+not, not+to, to+be. While the bigram model

3.2 Feature Engineering 377

captures information that is not captured by the bag-of-words model, it

involves quadratically more features: each word may potentially appear

in a bigram with each other word. This large number of features may

be undesirable for two reasons: first, a learning methods may simply be

unable to cope with such a large number; second, particular features

may occur so rarely that they fail to provide meaningful input to the

filter. For this reason, bigrams may be used in in addition to simple

words (unigrams), and feature selection may be used to eliminate rare

bigrams.

Trigrams (three adjacent words) and N -grams (N adjacent words)

for N > 3 generate an exponential number of features, and appear

to yield no substantive improvement over bigrams, even in iden-

tifying phrases consisting of more than two words. It turns out

that messages containing “Hubble space” and “space telescope” but

not “Hubble space telescope” are exceedingly rare, so the feature

hubble+space+telescope contributes little.

3.2.5 Sparse Bigrams

Interactions among nearby (but not adjacent) words may be captured

as sparse bigrams. A sparse bigram is simply a pair of words separated

by no more than k words. k = 0 yields ordinary bigrams, while k = 3

is typical. A text with n words will generate n(k + 1) sparse bigrams,

and the interaction among words decreases rapidly with separation.

For k = 2, the text to be or not to be generates the sparse bigrams

to+be, to+or, to+not, be+or, be+not, be+to, or+not, or+to, or+be,

not+to, not+be, to+be.

Orthogonal sparse bigrams (OSB) [158] further classify sparse

bigrams by the number of intervening words, each of which we denote

by “?”: to be or not to be generates the sparse bigrams to+be,

to+?+or, to+?+?+not, be+or, be+?+not, be+?+?+to, or+not, or+?+to,

or+?+?+be, not+to, not+?+be, to+be. OSB derives from and simplifies

earlier work on sparse binary polynomial hashing (SBPH), (cf. [158])

which treats as features all sub-sequences of length 2 or more contained

in an interval of k + 2 words.

378 Spam Classifiers — Machine-Learning

3.2.6 Character N-Grams

N -gram techniques may be applied to characters instead of words. Our

running example could, for example, be represented as the character

trigrams to_, o_b, _be, be_, e_o, and so on, where _ represents a space

in the input. Because the number of distinct characters is much smaller

than the number of distinct words, larger values of N are useful and

practical; N = 3 and N = 4 are typical. Although character n-grams

make fewer linguistic assumptions than their word counterparts, evi-

dence suggests that they capture inter-word as well as intra-word inter-

actions, and are reasonably robust to spelling errors and morphological

variants.

3.2.7 Meta Features

Meta features represent the results of other filters — perhaps based on

other machine learning algorithms — applied to the message. Simple

meta features might include message length, the proportion of upper

case letters, the number of addressees, the results of ad hoc rules or

other filtering techniques, and so on. The choice of information to rep-

resent is limited only by our imagination and the learning method’s

ability to harness it.

3.2.8 Feature Selection

Feature engineering techniques yield a potentially large number of fea-

tures, a number which may be unwieldy or compromise the efficiency

or efficacy of evidence combination. The bag-of-words approach yields

one feature per word that occurs in any message, overall an unbounded

number that commonly exceeds 10,000 and may approach 1 million

over a large set of messages. Bigram and n-gram models potentially

yield quadratically or exponentially more. The process of feature selec-

tion identifies those features likely to yield the most evidence to the

classifier, discarding the rest.

It should be noted that the vectors representing these features are

sparse, with the net effect that the overall number of non-vacuous ele-

ments |{E(mi)j = 0}| representing any set of messages is proportional

3.2 Feature Engineering 379

to the overall size of the messages in the set. So long as the algorithms

and data structures consume time and space nearly proportional to this

size, the full feature set may be used. These time and space constraints

are likely occasioned in any event by the application-specific require-

ments outlined in the introduction to this section. This observation has

three consequences:

(1) Feature selection may not be justified by efficiency

considerations.

(2) Application constraints may preclude selection methods with

super-linear time and space requirements.

(3) Methods that require statistics over an entire set of messages,

such as frequency counts, are not adaptive and may preclude

on-line learning.

At the time of writing it is not obvious that any feature selection

method is desirable within the context of spam filtering, or that

it is meaningful to study feature selection separately from classi-

fier construction (cf. [54]). This view appears to be unique to the

spam filtering domain, stop-word and rare word elimination are stan-

dard approaches in IR, while statistical feature selection methods are

the subject of much attention in general text classification research

(cf. [153]).

In abstract terms, the feature selection problem may be character-

ized as that of finding the best subset of n features, for some definition

of best. Primary considerations in defining best include the number

n′ < n of features, the effectiveness of the classifier c(x′), where x′ is

the feature vector with dimensions corresponding only to the selected

features, and the tractability of an algorithm to effect the selection.

If best is characterized by a formula or test outcome, a straightfor-

ward but prohibitively inefficient approach is to examine all 2n subsets

and pick the best. More commonly, greedy heuristics are applied that

identify features in decreasing order of some characterization of their

value, stopping at some suitable value of n′. Sebastiani [153] details

several heuristics relying on statistics like term frequency and informa-

tion gain. Regardless of the particular statistic, selecting the best over

380 Spam Classifiers — Machine-Learning

a set is a challenge when the set is dynamic, as in adaptive and on-

line filtering. Trivial approaches to feature selection, such as stop-word

elimination, rely on fixed rules and are hence easy to apply in an on-line

situation.

3.3 Probabilistic Classifiers

A probabilistic classifier computes an estimate Prob(m ∈ spam|Z(m) =

x) of the probability that a given message m, represented by x, is spam.

This estimate may be used to define a soft classifier c(m) = Prob(m ∈

spam|Z(m) = x) or a hard classifier c(m) = Prob(m ∈ spam|Z(m) =

x) > t for some fixed threshold 0 < t < 1.

Z(m) is typically a vector of features x = x1x2 · · ·xn. For each xi,

a separate estimate pi may be computed for the probability that m is

spam, considering only xi as evidence. These estimates are then com-

bined into an overall estimate that best reflects the evidence afforded

by x as a whole.

When estimating and combining probabilities, it is often convenient

to recast them as odds or log-odds:

Odds(z) =
Prob(z)

1 − Prob(z)

Prob(z) =
1

1 + Odds(z)

LogOdds(z) = logit(Prob(z))

logit(p) = log

(

p

1 − p

)

logit−1(q) =
1

1 + e−q
.

In the following discussion, we abbreviate Z(m) as x[m] (or simply

x when m is understood) and Z(mi) as x[i].

3.3.1 Probability Estimates from Categorical Features

While the values of a binary feature xi : {0,1}, have no intrinsic mean-

ing, xi = 1 typically represents the presence of some lexical feature (e.g.,

3.3 Probabilistic Classifiers 381

a word) in m while xi = 0 indicates its absence. The probability that

m is spam given xi = k is easily estimated as the fraction of messages

with xi = k in the training set T :

Prob(m ∈ spam|xi = k) =
|{m ∈ T |x

[m]
i = k} ∩ spam|

|{m ∈ T |x
[m]
i = k}|

,

it is convenient to recapitulate this estimate in terms of odds:

Odds(m ∈ spam|xi = k) =
|{m ∈ T |x

[m]
i = k} ∩ spam|

|{m ∈ T |x
[m]
i = k} ∩ non-spam|

.

For example, if the word “money” occurs in 100 spam messages and 5

non-spam messages, the odds that a particular message m containing

“money” is spam may be estimated to be Odds(m ∈ spam|xi = 1) =
100
5 = 20

1 . The same estimate, expressed as a probability is Prob(m ∈

spam|xi = 1) = 20
1+20 = 0.952. The value k = 1 is not particularly spe-

cial, assuming T consists of, say, 1000 spam and 1000 non-spam

messages, we may deduce that 900 spam messages and 995 non-

spam messages have the xi = 0, so the odds of message not contain-

ing “money” being spam are Odds(m ∈ spam|xi = 0) = 900
995 = 0.9

1 , i.e.,

nearly even odds. Intuitively, the non-occurrence of “money” con-

tributes little to solving the filtering problem, for this reason spam

filters often ignore this information.

The ratio a
b

of the number of spam to non-spam messages a good

odds estimate if these numbers, a and b, are sufficiently large. If they

are small, the estimates will be unreliable due to chance, and if either

or both is zero, the resulting odds are 0
1 , 1

0 or 0
0 , none of which is a

sensible estimate. A simple approach to mitigate this problem is to

add small positive constants α and β to the numerator and denom-

inator, respectively, that is, to use a+α
b+β

as the odds estimate. In the

case of a = b = 0 this yields an estimate of α
β

while for large a and b

being indistinguishable from a
b
. Typically, α = β = 1, this choice will be

revisited when we consider the combination of estimates from various

features.

382 Spam Classifiers — Machine-Learning

3.3.2 Probability Estimates from Continuous Features

A direct way to estimate spam probability from a real-valued feature

xi : R is to transform its value to a binary value bi : {0,1} by comparing

to a threshold

bi =

{

1 xi > t

0 xi ≤ t

and to estimate Odds(m ∈ spam|bi = k) as described in the previous

section. While a real value, like a discrete value, has no intrinsic mean-

ing, features may be engineered so that a larger value of xi indicates

higher odds that m ∈ spam. In other words, that xi is itself a soft clas-

sifier. And bi is the corresponding hard classifier. An n-ary categorical

value di : {0,1, . . . ,n − 1} may be computed using n bins delimited by

n − 1 threshold values

di =

n − 1 tn−2 < xi

· · · · · ·

1 t0 < xi ≤ t1
0 xi ≤ t0

,

thus effecting a piecewise approximation of the odds implied by the

continuous value xi.

The principal drawback to this approach is that as n increases, the

number of messages with di = k for any particular k decreases, and

the odds estimates become less reliable. An alternative approach is to

define a transformation f : R → [0,1] such that Prob(m ∈ spam|xi =

k) ≈ f(xi). If xi is, in effect, the result of a probabilistic classifier, f is

trivial.

Parametric models may be used instead of simple counting to model

the distributions of x
[m∈spam]
i and x

[m∈non-spam]
i . For example, if a

Gaussian distribution is assumed, the four parameters µi,s, σi,s, µi,n,

σi,n, the mean and standard deviation for x
[m∈spam]
i for m ∈ spam

and m /∈ spam, respectively, fully characterize the distributions. Given

these parameters,

Odds(m ∈ spam|xi = k) ≈
Ns · g(µi,s,σi,s,k)

Nn · g(µi,n,σi,n,k)
,

3.3 Probabilistic Classifiers 383

where Ns and Nn are the number of spam and non-spam in T , and g

is the instantaneous Gaussian (normal) distribution at k [92].

An alternative approach [114] assumes that xi is the result of a soft

classifier and uses the tail of the cumulative empirical distribution to

estimate

Odds(m ∈ spam|xi = k) =
|{m|x[m] ≤ k}|

|{m|x
[m]
i ≥ k}|

.

3.3.3 An Example

We illustrate the processes using two features derived from the TREC

2005 Public Spam Corpus [40]. Our features are chosen to harness the

knowledge that all the messages in the corpus were delivered to individ-

uals at one particular organization and that the organization’s name —

Enron in this instance — might have different prevalence in spam

and non-spam messages. Our two features simply count the number of

occurrences of the character sequence enron in the header and in the

body, respectively, after converting all letters to lower case. Table 3.1

Table 3.1 Example from TREC 2005 Corpus.

Message tag true class head:enron body:enron

016/201 spam 12 0
033/101 spam 11 0
050/001 spam 10 0
066/186 non-spam 7 24
083/101 non-spam 21 0
083/101 non-spam 21 0
100/001 non-spam 27 4
133/101 spam 12 17
148/013 non-spam 22 5
166/201 non-spam 13 23
183/101 spam 11 0
200/001 spam 14 4
216/201 non-spam 25 2
233/101 spam 13 20
250/001 non-spam 5 0
266/201 spam 12 0
283/101 spam 13 0
300/001 spam 11 22

384 Spam Classifiers — Machine-Learning

presents these attributes for 18 messages selected from the corpus, 10

of which are spam and 8 of which are non-spam.

As discrete values indicating the presence of enron in the respective

message components, these features are of limited use. enron occurs in

every header, and therefore its presence yields no information beyond

the ratio of spam to non-spam in the sample. enron occurs in the bodies

of 4 spam and 5 non-spam messages yielding a 4:5 estimate of the odds

that a message whose body contains enron is spam. Similarly it does

not occur in the bodies of 6 spam and 3 non-spam message, yielding

a 2:1 odds estimate for such messages. These estimates are compared

with our best estimate of the true values — the gold standard computed

over the entire corpus — in Table 3.2.

Table 3.3 shows the result of splitting the values of head:enron

into three discrete ranges: [0–9], [10–19], [20–30], and the effect of two

choices of α and β. Values in the center range clearly predict spam,

while extreme values predict non-spam. Table 3.4 shows the predictions

made for each possible value of head:enron assuming a Gaussian distri-

bution with parameters computed from the sample: µs = 11.9, σs = 1.2,

µn = 17.6, σn = 8.3. The model aptly estimates Prob(m ∈ spam|head :

enron = k) for small values of k, but dramatically underestimates it for

larger values. These larger values are fairly rare, mitigating the effect

of the underestimate, and even the underestimates will yield a correct

Table 3.2 Sample vs. gold standard spam estimates.

Training Gold standard

Feature Freq. Prob Freq. Prob

head:enron > 0, 1 0.56 0.9999 0.57
head:enron = 0, 0 0.5 0.0001 0
body:enron > 0, 0.5 0.44 0.62 0.45
body:enron = 0, 0.5 0.67 0.38 0.77

No feature (all messages) 1 0.56 1 0.57

Table 3.3 Discrete range feature estimates.

Training Gold standard

Feature Freq. α = β → 0 α = β = 1 Freq. Prob

0 ≤ head:enron< 10 0.11 0 0.25 0.18 0.05
10 ≤ head:enron< 20 0.61 0.91 0.85 0.74 0.75
20 ≤ head:enron< 30 0.28 0 0.14 0.05 0.19

3.3 Probabilistic Classifiers 385

Table 3.4 Sample vs. gold standard spam estimates, Gaussian model.

Training Gold standard

head:enron Freq. Prob Freq. Prob

5 0.06 0.0000 0.00 0.0000
6 0 0.0000 0.01 0.0705
7 0.06 0.0017 0.08 0.0000
8 0 0.0311 0.05 0.0409
9 0 0.2315 0.03 0.1767

10 0.06 0.5880 0.07 0.6191
11 0.17 0.7735 0.28 0.8366
12 0.17 0.8049 0.19 0.7343
13 0.17 0.7158 0.09 0.7838
14 0.06 0.4371 0.04 0.7269
15 0 0.1079 0.02 0.6321
16 0 0.0094 0.01 0.4687
17 0 0.0004 0.01 0.4162
18 0 0.0000 0.01 0.4838
19 0 0.0000 0.01 0.3539
20 0 0.0000 0.01 0.5745
21 0.11 0.0000 0.01 0.4236
22 0.06 0.0000 0.01 0.4008
23 0 0.0000 0.00 0.5281
24 0 0.0000 0.00 0.1026
25 0.06 0.0000 0.02 0.0114
26 0 0.0000 0.00 0.0629
27 0.06 0.0000 0.00 0.0026

classification more often than not. Nevertheless, there is plenty of room

to improve the model.

3.3.4 Combining Probability Estimates

We consider the problem of constructing the estimate Prob(m ∈

spam|x = k) given pi = Prob(m ∈ spam|xi = ki) for all 1 ≤ i ≤ n,

where k = (k0k1 · · ·kn). We consider the special cases n = 0, n = 1, and

n = 2, and their generalization to n > 2.

n = 0 denotes the empty vector, so the estimate, which we denote

p(), reduces to Prob(m ∈ spam|x = ()); that is, Prob(m ∈ spam) since

x = () is a tautology. x may be considered a discrete feature with only

one possible value, the empty vector. Using the method described in

Section 3.3.1, we compute Odds(m ∈ spam|x = ()) = |T ∩spam|
|T ∩non-spam| , the

ratio of spam to non-spam in the training set.

386 Spam Classifiers — Machine-Learning

n = 1 is also trivial; we have Prob(m ∈ spam|x = (k1)) = Prob(m ∈

spam|x0 = k0) = p1.

n = 2 is more problematic; there is no general method of combining

p1 and p2 into a common estimate without considering the evidence

x1 and x2 and T from which they are derived. Under the assumption

that x0 and x1 occur independently in both spam and non-spam, we

may combine p(), p1 and p2 using Bayes rule to compute a combined

estimate p, thus forming a naive Bayes classifier, which is conveniently

expressed using the logistic transform:

logit(p) = logit(p1) + logit(p2) − logit(p0),

i.e. logOdds(m ∈ spam|x) = logOdds(m ∈ spam|x0)

+ logOdds(m ∈ spam|x1)

− logOdds(m ∈ spam).

The naive Bayes assumption seldom holds in practice, the word

“sildenafil,” for example, is far more likely to be found in email mes-

sages — spam and non-spam alike — that also contain the word “Via-

gra.” Invalid assumptions aside, naive Bayes classifiers are commonly

used because they are simple and perform adequately as hard classifiers

with a threshold t = 0.5, even if their probability estimates are far from

accurate [51].

A contrasting assumption is that x1 and x2 are dependent, for

example, that the presence of “sildenafil” or “Viagra” are both indi-

cators of spam, but whether one, or the other, or both occur in a

particular message is of no consequence. In short, a message contain-

ing “sildenafil” and “Viagra” is no more or less likely to be spam

than a message containing either term alone. Under this assumption

p1 and p2 may be averaged, as they are both estimates of the same

quantity and differ only in estimation error. Arguably the most apt

form of average is a weighted average under the logistic transforma-

tion: logit(p) = β1logit(p1) + β2logit(p2) for some β1 + β2 = 1, chosen

to reflect the relative estimation error inherent in p1 and p2. Absent

such an estimate, the choice β1 = β2 = 1
2 yields an unweighted aver-

age, reflecting the (reasonably robust) assumption that the estimation

errors are equal.

3.3 Probabilistic Classifiers 387

Table 3.5 Combining estimates.

Prob

Feature combination Logit avg. Naive Bayes Gold std.

0 ≤ head:enron< 10 0.45 0.36 0.14
body:enron= 0
0 ≤ head:enron< 10 0.33 0.16 0.03
body:enron> 0
10 ≤ head:enron< 20 0.77 0.90 0.86
body:enron= 0
10 ≤ head:enron< 20 0.66 0.76 0.65
body:enron> 0
20 ≤ head:enron< 30 0.36 0.21 0.40
body:enron= 0
20 ≤ head:enron< 30 0.25 0.08 0.12
body:enron> 0

Table 3.5 compares the two methods using all combinations of val-

ues for the two discrete features in our running example. We see that

averaging tends to yield conservative results, closer to p() = 0.55, while

those due to naive Bayes are more extreme. For some examples, aver-

aging appears to yield the better estimate, for others, naive Bayes.

Reality1 lies somewhere between these two assumptions. A common

model — the logistic model — subsumes both:

logit(p) = β0logit(p()) + β1logit(p1) + β2logit(p2).

The naive Bayes assumption is modeled by β0 = −1, β1 = β2 = 1,

the dependent evidence assumption by β0 = 0, β1 + β2 = 1. More gen-

erally, one may choose β0,β1,β2 so as to optimize some utility or cost

measure for the resulting classifier. The most common utility measure

is the likelihood of the training data, which may be optimized using

logistic regression. This method of deriving a classifier is known as

maximum entropy or logistic regression.

Logistic regression generalizes to any n ≥ 0:

logOdds(m ∈ spam|x) = β0logit(p()) +

n
∑

i=1

βilogit(pi).

1 Or, at least, a closer approximation of reality.

388 Spam Classifiers — Machine-Learning

The naive Bayes assumption is modeled by β0 = 1 − n, βi = 1(1 ≤

i ≤ n) while the dependent evidence assumption is modeled by β0 = 0,
∑n

i=1 βi = 1.

It is unnecessary to transform discrete-valued features to probability

estimates for the purpose of logistic regression. Instead, a feature xi :

{k1,k2, . . . ,kl} may be interpreted as l distinct binary features

xi,1,xi,2, . . . ,xi,l, where xi,j =

{

1 (xi = kj)

0 (xi = kj)
.

In this case, each coefficient βi,j = βiProb(m ∈ spam|xi = kj) in the

model. Commonly, xi is binary-valued and xi,0 is discarded for the

reasons stated in Section 3.3.1, so xi is effectively replaced by xi,1.

3.3.5 Practical Considerations

The choice of feature representation and combining method may have a

dramatic effect on the simplicity and efficiency of the resulting spam fil-

ter, particularly in on-line deployment. We have previously mentioned

that feature transformations such as tf-idf and statistical feature selec-

tion are difficult to reconcile with adaptive classifiers, probability-based

interpretations that model global distributions entail similar difficul-

ties. For this reason, discrete features that may be derived from indi-

vidual messages, independent of others in the training set, are more

amenable to on-line settings. In general, the literature shows that these

simple feature representations work for spam filtering as well as, or

better than, more complex and less adaptive ones based on global

statistics.

Naive Bayes filters for discrete-valued features are easily imple-

mented. Each message is converted to its feature representation, and a

dictionary is used to count the number of spam and non-spam messages

containing each feature value. A message may be classified by retrieving

the counts for the feature values it contains and applying the formula

to yield a hard or soft classification. New messages may be added to

the training set by updating the relevant counts. Previously unseen

features or feature values pose no problem to an on-line naive Bayes

filter; they may simply be inserted into the dictionary, with associated

counts of 0.

3.3 Probabilistic Classifiers 389

Self-training — a simple but effective method of semi-supervised

learning — may be effected by classifying a message, and then adding

the message and inferred classification to the training data. Assuming

the filter is accurate, it will be much more likely to self-train correctly

than not, generally increasing the accuracy of the filter. But there is

also the risk that incorrect self-training, albeit rare, might cause the

filter to go astray, thus “blessing” a particular kind of spam as non-

spam, or vice versa. Should the user report a misclassification error

to the filter, the effect of incorrect self-training is easily reversed by

subtracting from the relevant counts.

Provided the coefficients are fixed, a filter using a logistic model is

as easy to implement and update as a naive Bayes filter. Many filters

labeled “Bayesian” are in fact not Bayesian at all, but derived from

a technique dubbed χ2 by Robinson [136] which combines estimates

using geometric means of separate (but not necessarily independent)

estimates for Prob(m ∈ spam) and Prob(m ∈ non-spam) — equivalent

to the logit average of the presented here.

Logistic regression is traditionally viewed as a batch algorithm.

Indeed, computing the βi so as to maximize the likelihood of the train-

ing examples requires that the entire training set be examined. Logistic

regression is a standard tool for statistical analysis [87], and sophisti-

cated implementations are found in all major statistical software pack-

ages like SPSS, SAS, Stata, S and R, as well as the data mining toolkit

Weka [192]. Stand-alone versions are available as well, notably LR-

TRIRLS [100] which was designed specifically for building classifiers for

large feature spaces. It is possible to use these tools in conjunction with

batching and a sliding window, but effectiveness is compromised [36].

Goodman and Yih [68] describe a very simple iterative descent

method for performing logistic regression, paraphrased in Figure 3.1.

While this method converges more slowly than the sophisticated meth-

ods mentioned above, its simplicity makes it particularly attractive

for both batch and on-line filtering. In the case of batch filtering, the

algorithm may be applied to huge datasets (the author has found it

effective on a dataset with 100 million 5-valued features). In the case of

on-line filtering, it is attractive because the optimal solution for train-

ing set T is very nearly optimal when T is augmented by one message:

390 Spam Classifiers — Machine-Learning

Input:

Set T : M of training examples

m ∈ T represented by x[m] = (1x
[m]
1 x

[m]
2 . . .x

[m]
n)

Labeling label : T → {0,1}

Rate parameter δ

Output:

β · x[m] is the maximum likelihood estimate of

Prob(label(m) = 1) over m ∈ T

Method:

β ← (0 · · ·0)

repeat until convergence:

for m ∈ T

let p = 1

1+e−β·x[m]

β ← β + (label(m) − p) · δ · x[m]

Fig. 3.1 Gradient descent logistic regression.

T ← T ∪ {m}. For practical purposes, note Goodman and Yih, it suf-

fices to apply the gradient descent step only to the new message m.

Under this assumption it is unnecessary to retain the messages in T ,

the only persistent state required by the classifier is the coefficient vec-

tor (β0β1 · · ·βn).

Self-training is easily effected using gradient descent, however, the

effects of incorrect self-training are more difficult to undo. Training

the classifier again with the same message and the corrected label is

the only efficient correction method of which we are aware.

3.4 Linear Classifiers

A linear classifier views the feature vector x[m] for a message m

as a point in n-dimensional space, where n is the number of fea-

tures. The classifier consists of a vector of coefficients β = (β1β2 · · ·βn)

and a threshold t. The equation β · x = t defines a hyperplane that

divides the space into half-spaces. All points on one side of the hyper-

plane (β · x[m] > t) are classified as spam while the ones on the other

side (β · x[m] ≤ t) are classified as non-spam. β · x = t is a separating

3.4 Linear Classifiers 391

hyperplane if ∀m∈spamβ · x[m] > t and ∀m∈non-spamβ · x[m] ≤ t. A set of

messages is said to be linearly separable if there exists a separating

hyperplane for the set. The logit transform renders the probabilistic

classifier developed in the previous section an example of a linear clas-

sifier. In this section, we describe a geometric interpretation and several

construction methods.

For convenience, we limit our illustrations to the case of n = 2; it

should be kept in mind that typical spam filtering applications involve

many more features, and hence dimensions. Figure 3.2 shows the vec-

tor space representation for the 18 messages in our running exam-

ple. The x-axis corresponds to the head:enron feature transformed

using the Gaussian model (cf. Table 3.4). The y-axis corresponds to

the body:enron feature represented as a simple count. The diagonal

line is a separating hyperplane because all spam messages fall to one

side and all non-spam to the other. As such, it is a perfect classifier —

at least for the sample data! Figure 3.3 shows that the same line is

0

5

 10

 15

 20

 25

 30

0 0.2 0.4 0.6 0.8 1

b
o
d
y
:e

n
ro

n
 (

N
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s
)

head:enron (Gaussian model)

Non-spam

Spam

Fig. 3.2 Separating hyperplane.

392 Spam Classifiers — Machine-Learning

0

5

 10

 15

 20

 25

 30

0 0.2 0.4 0.6 0.8 1

b
o
d
y
:e

n
ro

n
 (

N
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s
)

head:enron (Gaussian model)

Non-spam

Spam

Fig. 3.3 Linearly inseparable sample.

not a separating hyperplane for a larger sample from the same source,

indeed, none exists. Still, most spam lies on the spam side of the line

while most non-spam lies on the other side. So the line is a reasonable

classifier. But is it the best linear classifier within this vector space?

And how may it be chosen using only the training data? The answer

depends on the definition of best.2

If the points are linearly separable, there are, in general, an infi-

nite number of separating hyperplanes. Any linear combination of the

extreme curves shown in Figure 3.4, provided it has positive coeffi-

cients, will itself separate spam from non-spam. It is not apparent that

the best classifier is a separating hyperplane, even if one exists. If one

were to assume that the non-spam (0.72,23) were an outlier — per-

haps a mistake in the training data — one might reasonably choose

the vertical separator in Figure 3.5, which reflects the assumption that

2 At this point, we adopt the definitions of best inherent in the classification algorithms of
interest, their appropriateness within the context of spam filtering is addressed in Section 4.

3.4 Linear Classifiers 393

0

5

 10

 15

 20

 25

 30

0 0.2 0.4 0.6 0.8 1

b
o
d
y
:e

n
ro

n
 (

N
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s
)

head:enron (Gaussian model)

Non-spam

Spam

Fig. 3.4 Best separating hyperplane?

the second feature has no real effect. Hindsight (i.e., Figure 3.2) tells us

intuitively that our original separator was more appropriate, however,

we are concerned here with justifying the choice based on the training

data alone.

Figures 3.2 and 3.5 represent two competing views of what consti-

tutes the best classifier:

• One which correctly classifies all examples while maximizing

the distance from the nearest example to the hyperplane.
• One which allows one or more examples to be misclassified

while increasing the distance to the rest.

3.4.1 Perceptron Algorithm

The perceptron algorithm iteratively finds a separating hyperplane —

any separating hyperplane, if one exists — by incrementing or decre-

menting the weights for every example on the wrong side (see

394 Spam Classifiers — Machine-Learning

0

5

 10

 15

 20

 25

 30

0 0.2 0.4 0.6 0.8 1

b
o
d
y
:e

n
ro

n
 (

N
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s
)

head:enron (Gaussian model)

Non-spam

Spam

Fig. 3.5 Ignoring one point.

Figure 3.6). The algorithm ignores correctly classified examples. If the

examples are linearly separable, the perceptron converges in a finite

number of steps, otherwise it fails to terminate. For practical purposes

it is sufficient to stop training after some time, under the assumption

that a good, if not optimal in any sense, classifier has been found. The

perceptron is attractive for spam filtering because it is simple, incre-

mental, and adaptive.

The margin perceptron algorithm (Figure 3.7, cf. [152]) adds margin

and rate parameters τ and δ which effect training on near-misses as well

as errors, so as to bias the method to prefer higher margin separators,

where the margin is defined to be the distance from the hyperplane to

the nearest example.

3.4.2 Winnow Algorithm

The Winnow algorithm (cf. [158]) applies only to binary attribute vec-

tors and considers only positive evidence, that is, it computes a weight

3.4 Linear Classifiers 395

Input:

Set T : M of training examples

m ∈ T represented by x[m] = (1x
[m]
1 x

[m]
2 · · ·x

[m]
n)

Labeling label : T → {−1,1}

Output:

If linearly separable, β such that

β · x[m] > 0 iff label(m) = 1

else fails to terminate

Method:

β ← (0 · · ·0)

while ∃m∈T β · x[m] · label(m) < 0

β ← β + x · label(m)

Fig. 3.6 Perceptron learning algorithm.

Input:

Set T : M of training examples

m ∈ T represented by x[m] = (1x
[m]
1 x

[m]
2 · · ·x

[m]
n)

Labeling label : T → {−1,1}

Margin and rate parameters τ and δ

Output:

If linearly separable, β such that

β · x[m] > 0 iff label(m) = 1

else fails to terminate

Method:

β ← (0 · · ·0)

while ∃m∈T β · x[m] · label(m) < τ

β ← β + x · ρ · label(m)

Fig. 3.7 Perceptron with margins.

vector β with strictly positive elements. If the data are linearly sep-

arable, it will find β such that β · x[m] > 1 iff label(m) = 1. Like per-

ceptron, Winnow trains on errors, and can also be adapted to train

on near misses. Winnow uses multiplicative, in contrast to percep-

tron’s additive, reinforcement for β. More specifically, elements of β

corresponding to features present in the training sample are multiplied

396 Spam Classifiers — Machine-Learning

by a promotion factor α > 1 when β · x[m] > 1 and label(m) = 0, and

by a demotion factor 0 < β < 1 when β · xm ≤ 1 and label(m) = 1.

Since Winnow is asymmetric, it is common to combine the results of

two Winnow methods — each trained independently, one predicting

label(m) = 1 and the other predicting label(m) = 0 — into an overall

prediction.

Siefkes et al. [158] report that it is useful to normalize the result

by substituting β·xm

n
for β · xm, where n is the number of nonzero

features.

3.4.3 Support Vector Machines

A support vector machine (SVM) directly computes the separating

hyperplane that maximizes the margin or distance to the nearest exam-

ple points. Several points will be at the same distance, these points are

known as the support vectors as the classifier is a linear combination of

them — all other points may be ignored. Thus the SVM would prefer

the solution in Figure 3.2 over the ones in Figure 3.4, with support

vectors of (0,0), (0.72,23) on the non-spam side and (0.72,20) on the

spam side.

In the case of non-separable data, or separable data in which a

few points dramatically affect the solution (e.g., Figure 3.5 or point

(0.72,23) in our training data), it may be desirable to relax the

requirement that all training data be correctly classified. Contem-

porary SVM formulations implement a tradeoff between maximizing

the margin and minimizing the magnitude of training errors. The

tradeoff parameter C determines the relative weight of the second

objective to the first. C = 0 specifies the pure SVM detailed in the

previous paragraph, C = 1 gives the objectives balanced weight, and

is a typical default value, C = 100 gives the second objective substan-

tial weight, and has been found to be appropriate for spam filtering

[54, 152].

Sculley [150] describes a gradient method for efficient incremental

on-line spam filtering using SVMs. Efficient implementations for batch

SVM computation are available (see Figure 3.8).

3.5 Rocchio Method 397

0

5

 10

 15

 20

 25

 30

0 5 10 15 20 25 30

b
o
d
y
:e

n
ro

n
 (

N
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s
)

head:enron (Gaussian model)

Fig. 3.8 Untransformed features.

3.5 Rocchio Method

The Rocchio classifier derives from Rocchio’s method to harness rele-

vance feedback in information retrieval, for which the objective is to

rank documents by the estimated probability that they are relevant to

a particular topic. Like Winnow, Rocchio’s method takes into account

only positive evidence; a classifier is formed by comparing the weighted

results of two instances of the Rocchio feedback method: one consider-

ing spam to be the positive class, and one considering non-spam to be

the positive class.

Rocchio’s method typically uses the tf-idf-weighted bag-of-words

model, and cosine as a similarity measure, i.e., similarity(x,y) = x·y
|x|·|y|

or, if x and y are always normalized, simply similarity(x,y) = x · y. Let

Cs be the centroid of all x[m] such that label(m) = 1, and Cn be the cen-

troid for all x[m] such that label(m) = 0. Similarity(x,Cs) represents

the Similarity of x to spam while similarity(x,Cn) represents the

398 Spam Classifiers — Machine-Learning

similarity of x. A hard classifier for m is effected by comparing

the weighted difference between these measures to a threshold t:

similarity(x,Cs) − α · similarity(x,Cn) > t. That is, β · x > t, where

β = Cs − α · Cn. Joachims [90] argues that Rocchio classifiers are

uncompetitive for general text classification, and we are unaware of

any results that contradict this conclusion within the context of spam.

Sebastiani [153] provides further details.

3.6 Nearest Neighbor Methods

A nearest neighbor or memory-based classifier [156] computes the dis-

tance between the feature vector x[m] and several examples x[m′∈T] for

which label(m′) is known. In the simplest case, the class of m is esti-

mated to be that of the nearest example, i.e., label(m) = label(m′),

where m′ = argmaxm′ xm · xm′
. A simple variant is k-nearest neighbor

(kNN) in which, for some fixed k, the k most similar examples are

identified, and the majority class among these examples is assigned

to x. Or some threshold 0 ≤ t < k may be chosen, and x deemed to

be spam if n > t, where n is the number of among the k that repre-

sent spam. Weighted nearest neighbor weights each of the k nearest

examples by its similarity to x and compares the sum of the weights

to a threshold. Several authors consider the use of clustering and

kNN methods for spam filtering, but none report strong performance

[6, 47, 143, 144, 197].

Duplicate or near duplicate detection [97, 98] is a special case of

nearest neighbor in which similarity(x,y) yields a binary result rather

than a distance. Fingerprinting and signature files are names given

to methods in which a database D of known spam messages is main-

tained and queried to determine, for a message to be classified, whether

similarity(x[m],x[m′]) = true for some m′ ∈ D. The motivation for this

approach is that spammers often send vast numbers of similar messages

which may, after the first few, be recognized as spam. The challenges

include efficient implementations of D and defining similarity so that

it cannot easily be defeated by spam messages that are continuously

perturbed so as to defeat duplicate detection.

3.7 Logic-Based Methods 399

3.7 Logic-Based Methods

Decision rules use logic to express the interactions among features.

Decision rule inference systems like RIPPER [30] compete with decision

trees in terms of efficiency and effectiveness.

Decision trees like C4.5 [132] successively split the training data

(and, hopefully, the data to be classified) according to the value of one

feature at a time, eventually arriving at a subspace populated exclu-

sively by members of one class: spam or non-spam. In the worst case,

such a tree may be of exponential size. The trick is to choose the order

in which to examine the features and to prune the tree so as to par-

tition the data with many fewer nodes. Decision stumps, consisting of

just one node, represent the extreme case. Heuristics to do this typically

make similar assumptions to those used in feature selection, ordering

the dimensions by some measure of the degree of evidence afforded.

Typically, these pruned decision tree classifiers are rather weak clas-

sifiers, they may be improved substantially by ensemble methods like

bagging and boosting which combine the results of a large number of

randomly generated classifiers [24, 54, 179].

As for feature selection, incremental and adaptive methods for rule

inference and tree construction remain elusive, particularly in combi-

nation with bagging or boosting.

3.8 Data Compression Models

A data compression model D estimates the information content of a

sequence s = s1s2 · · ·sn of symbols from a finite alphabet Σ. I(s[m]) =

−log2(Prob(s = s[m])) is the information content of the sequence s[m]

representing a particular message m, a lower bound on the number of

bits required to represent m. ProbD(s = s[m]) is the likelihood of s[m]

under D, and ID(s[m]) = −log2(ProbD(s = s[m])) estimates I(s[m]). D1

models s[m] better than D2 if ID1(s
[m]) < ID2(s

[m]). For data compres-

sion, the objective is to find the best possible model so as to minimize

the encoded length over all s of interest.

For classification, we construct two models: Dspam and Dnon-spam

which model spam and non-spam, respectively. The classifier is

400 Spam Classifiers — Machine-Learning

predicated on the assumption that Dspam will model s[m∈spam] bet-

ter than Dnon-spam and that Dnon-spam will model s[m∈non-spam] better

than Dspam. The hard classifier

c(m) =

{

true (IDspam(s[m]) < iDnon-spam
(s[m]))

false otherwise

follows from this definition, as does a soft classifier

c(m) = IDnon-spam
(s[m]) − IDspam(s[m]).

The soft classifier is amenable to probabilistic interpretation. Define

the correct model for m to be

D[m] =

{

Dspam (m ∈ spam)

Dnon-spam (m ∈ non-spam)
.

IDspam(s[m]) = − log(Prob(s = s[m]|D[m] = Dspam))

ID
non-spam (s[m]) = − log(Prob(s = s[m]|D[m] = Dnon-spam))

c(m) = log

(

Prob(s = s[m]|D[m] = Dspam)

Prob(s = s[m]|D[m] = Dnon-spam)

)

= log

(

Prob(s = s[m]|m ∈ spam)

Prob(s = s[m]|m ∈ non-spam)

)

= log

(

Odds(m ∈ spam|s = s[m])

Odds(m ∈ spam)

)

,

logOdds(m ∈ spam|s = s[m]) = logOdds(m ∈ spam) + c(m).

That is, given an estimate of the prior probability p that m ∈ spam,

data compression models estimate the probability of m being spam to

be logit−1(logit(p) + c(m)).

3.8.1 Sequential Models

Sequential compression models like prediction by partial matching

(PPM) [29], dynamic Markov compression (DMC) [38], and context-

tree weighting (CTW) [190], process a message sequentially, in effect

3.8 Data Compression Models 401

constructing a separate model Dk for each prefix s1s2 · · ·sk of its input

to compute IDk
(sk+1). The information content of the message is

ID(s) =

n
∑

i=1

IDi−1(si).

For spam filtering [16], we form two sequences S and N by concate-

nating all the spam messages in T and all the non-spam messages in

T , respectively. Using the same method, two models DS and DN are

constructed yielding ID(S) and ID(N), respectively. A message m to

be classified is concatenated to S and to N and new models DSm and

DNm are constructed yielding ID(Sm) and ID(Nm). Using Bayes’ rule,

we deduce

IDspam(m) = ID(Sm) − ID(S)

IDnon-spam
(m) = ID(Nm) − ID(N)

c(m) = IDnon-spam
− IDspam .

In practice it is unnecessary to compute DSm and DNm from

scratch. Sequential compression models efficiently construct DSm and

DNm from stored representations of DS and DN . Incremental training

is easily effected by replacing DS by DSm when m ∈ spam and DN by

DNm when m ∈ non-spam. Incorrect self-training is not easily reversed.

Figure 3.9 illustrates DMC applied to the To: fields3 of the 18 mes-

sages in our running example, in their natural order (cf. Table 3.1). The

first column of Figure 3.9 shows the true class of the message, the second

c(m), the third shows the To: field of the message. Each character xi is

colored to indicate its “spamminess” within the string: bold indicates

spam (ci−1(xi) ≫ 0), while italic indicates non-spam (ci−1(xi) ≪ 0) and

normal indicates neither (ci−1(xi) ≈ 0). DMC colors the first message

Grey, as there are no previous messages so the spam and non-spam

models are identical. The next two messages are classified (correctly) as

spam, which is perhaps not surprising as there are no non-spam exam-

ples with which to compare. Indeed the fourth message — the first

3 For brevity of illustration, the method has been applied only to the To: field extracted
from the message. Superior results are achieved if the method is applied to the whole
message, or to a fixed-length prefix of the message.

402 Spam Classifiers — Machine-Learning

Fig. 3.9 DMC results on training set.

non-spam — is incorrectly classified. As more examples are learned,

the models are better able to distinguish spam from non-spam. The

last seven messages are correctly classified. The colors of individual

characters reveal that some key indicators of non-spam are:

• quotation marks,
• ENRON in upper case,
• specific names like Adams and pete.davis.

Indicators of spam are:

• enron in lower case,
• upper case sequences other than ENRON,
• variants of the name kholst.

The data compression models used for spam filtering harness the cor-

relation between adjacent symbols in the message. DMC (Dynamic

Markov Compression) uses a bit-wise dynamic Markov model that

incrementally adapts to model longer sequences which occur frequently.

Prediction by Partial Matching (PPM), in contrast, tacitly uses an

n-gram character model (4 ≤ n ≤ 8 is typical) for which a suffix tree

representation is more amenable than a feature vector, because it con-

sumes linear space. Context-tree weighting is asymptotically optimal

3.9 Meta Classifiers 403

under certain theoretical assumptions, but is more complex and does

not appear to yield better results than DMC or PPM.

Methods that employ suffix trees [127], n-gram [28], or language

models [120] rely on similar evidence to that of compression models.

3.9 Meta Classifiers

The methods outlined in this section all estimate the same quantity:

the truth value of the proposition that a message is spam. For the

reasons stated in Section 3.3.4 an average of the estimates is likely to

yield better precision than any single one. The synthesis of classifier

results — which goes by a plethora of names like voting, stacking,

fusion, ensemble, committee, cocktail, and pipeline — finds common

use in spam filtering.

SpamAssassin, for example, combines the results of its 800 tests,

many of which are classifiers in their own right, using a linear classifier

originally constructed by hand, and later using a genetic algorithm,

a perceptron and logistic regression. SpamAssassin’s meta classifier is

constructed off-line using training messages collected by volunteers, and

the resulting weight vector β is distributed periodically. In contrast, on-

line meta classifiers [114, 154] employ incremental and adaptive meth-

ods to synthesize the results of other on-line methods.

Bagging [19] and boosting [145] combine several weak classifiers

generated by applying the same construction method to randomly per-

turbed data.

4

Evaluation Methods and Measures

Although email is ubiquitous, privacy issues limit our ability to use

it for comparative study. Email from public sources like mailing lists

may not adequately represent personal or corporate email, either in its

spam or non-spam content. Removing or obfuscating sensitive content

is a formidable challenge, and may dramatically compromise spam filter

effectiveness. Real-time or meta information may be difficult to capture;

its absence may also compromise filter effectiveness. The true labels for

messages — essential to precise evaluation — are difficult to determine,

especially in real-time. In spite of these challenges, more realistic test

collections, along with more realistic laboratory and field test methods

are being developed on an ongoing basis. This section outlines the issues

that might arise and the approaches that might be brought to bear on

the problem of spam filter evaluation. Section 5 describes the major

efforts and results to date.

4.1 Test Corpora

A test corpus is a collection of email messages with an associated gold

standard closely approximating the true classification for some or all of

404

4.1 Test Corpora 405

the messages. In addition, the corpus may be chronologically sequenced.

For the purpose of comparative evaluation, splits may be defined that

separate the email messages into one or more pairs of test and training

sets, or the messages may be used in sequence for on-line evaluation.

Technically, it is a simple matter to capture all the email deliv-

ered to a recipient or a set of recipients. Publishing this email as a

corpus, or using it for field testing, is not so simple. Few individuals

are willing to publish their email, because doing so would compromise

their privacy and the privacy of their correspondents. A choice must be

made between using a somewhat artificial published collection of mes-

sages and using a more realistic collection that must be kept private.

Published collections facilitate comparative evaluation because diverse

methods may be tested under exactly the same circumstances, private

collections facilitate comparison only through experiments run by the

proprietors of the data.

The gold standard represents, as accurately as is practicable,

the result of adjudicating each message in the collection according to

the definition of spam. The gold standard plays two distinct roles in

the evaluation framework. The gold standard is assumed to be truth in

measuring the filter’s error rates. The gold standard is also a source of

training labels. It may be appropriate to bifurcate the gold standard

for these two purposes, while errors are never desirable in evaluating

the filter’s error rates, they may aptly reflect the training data available

to the filter in real-world deployment.

Human adjudication is a necessary component of gold standard cre-

ation. One approach is to ask the email recipient to sort his or her

email, a tedious and error-prone process. Another approach is to have

the recipient use a spam filter, and to report only the errors made by

the filter, assuming that unreported messages were correctly classified

by the filter. This method also has a substantial error rate [42]. A third

party adjudicator — other than the recipient — may also perform the

task.

A bootstrap method can improve both efficiency and accuracy [42].

An initial gold standard G0 is created using the method above. One or

more filters is run, using G0 for training and evaluation. Each message

for which the filter and G0 disagree is re-adjudicated and, where G0 is

406 Evaluation Methods and Measures

found to be wrong, it is corrected. The result of all corrections is a new

standard G1. This process is repeated, using different filters, to form

G2, and so on, to Gn. The final gold standard, Gn, may be expected

to have a much lower error rate than that of the adjudicator or any

of the filters alone. Segal [155] investigates the use of uncertainty sam-

pling [107] as a method for efficiently generating gold standard labels.

Graham-Cumming [73] investigates the use of exhaustive volunteer-

based adjudication.

Corpus testing is valuable in that it allows a vast number of filters

and methods to be tested under identical circumstances. It is limited

to the extent that the messages in the corpus are a realistic, timely

sample of real email. It is further limited in that the interaction with

the user and with external resources such as blacklists are difficult to

emulate.

4.2 Real-Time Aspects

The most direct way to capture the real-time features that a filter might

use is to operate the filter in real-time, perhaps using a standard interface

so that a number of filters may be plugged in and tested — either

sequentially or in parallel for the same user (a crossover study design)

or for different users (a randomized controlled trial design). Another

approach is to find existing installations of particular techniques, and to

measure their effect (a case-control design). Practitioners generally rely

on ad hoc methods of evaluation that resemble crossover or case-control

studies, but lack the controls normally associated with scientific

evaluation. To our knowledge no such studies have yet been reported in

the literature; however, CEAS 2007 has launched a live spam challenge

[170], which is a real-time parallel crossover study. In addition, the email

stream and gold standard are captured as a corpus so that the real-time

results may be compared with post-hoc laboratory experiments.

An alternate approach is to collect pertinent real-time information

as part of a test collection, and to reproduce it in a later simulation.

Some of this information, like the time of delivery and message enve-

lope information is easy to capture. Its inclusion in corpora marks

the best practice in simulating real-time aspects after the fact. Other

4.3 User Interaction 407

information, like the state of external servers (DNS, blacklists, and

the like) is more problematic. If the exact information that might be

queried is known, it might also be collected and stored with the cor-

pus. However, this information that is queried is filter-specific, with

the upshot that a historical trace of the entire server content would be

needed. As vast amounts of disk storage are cheaply available, it may

be feasible to capture all the updates to a server so as to be able to

reproduce its state at any particular moment.

A hybrid approach is to collect the information as for a corpus,

but to do so and conduct the experiments within a short time interval,

so that time-dependent factors will not have changed much between

collection and experiment (e.g., [160]).

4.3 User Interaction

The most direct way to capture user interaction effects is through the

user’s actual interaction with the filter, using one of the designs for live

real-time evaluation.1 The main difference is that the user’s behavior is

affected by the filter’s behavior, and the filter’s is in turn affected by the

user’s. Blind — even double blind — experiments may be conducted

provided all interaction is through a standard interface, and the filter

itself plugs in through a standard protocol so that neither the user nor

the tester is aware of the filter being tested.

User studies might also be conducted using simulated real-time

message delivery based on a corpus, and a randomized controlled

design. However, the messages would not be specifically addressed to

the subject users, so the validity of their interactions would be question-

able. The complementary approach is to use either actual or simulated

real-time data, and to simulate the user’s behavior. TREC 2005 [40]

simulates an idealized user, who notices and immediately corrects any

filter errors. Any number of other user interactions may be modeled as

simulated within the TREC design. TREC 2006 [33] simulated delayed

feedback so as to model the user’s reading mail only occasionally. Fur-

ther experiments may be designed to model incomplete and inaccurate

1 However, the most powerful design — the parallel crossover study — would not be
amenable because the user could interact with only one filter at a time.

408 Evaluation Methods and Measures

feedback, with model parameters estimated so as to approximate a

range of human behaviors. Separate experiments may be designed to

validate these models.

The CEAS design, being real-time, requires real-time construction

of a gold standard for the purpose of simulating user feedback. It is only

necessary for the real-time gold standard to be accurate enough and

timely enough to reasonably simulate user behavior. This affords ample

time for a panel of adjudicators to employ several iterations of the batch

or uncertainty sampling techniques. Further post-hoc adjudication may

be effected for the purpose of evaluation.

4.4 Sender Interaction

Evaluation of filters involving sender interaction encounter an addi-

tional challenge over and above those arising from user interaction.

The potential that interaction may alter the sender’s behavior is more

acute, as the sender is likely to be uncooperative or even adversarial.

Furthermore, it is possible to observe the sender’s behavior only from

the perspective of the recipient.

The tradeoffs in experimental design between live testing and simu-

lation are affected in the following ways. First, a user typically interacts

with many different senders, whose behavior must be modeled for eval-

uation. Even a reasonably large study would lack sufficient data from

which to estimate the parameters to model each of the senders.

Estimates of false negative rates are reasonably easy to achieve, as

messages classified as non-spam are delivered to the user and may be

adjudicated using any of the techniques we have outlined previously.

Estimates of false positive rates are much more difficult to achieve, as

messages classified as spam are often never delivered. Without adjudi-

cation of these non-delivered messages, false positive rates cannot be

measured at all.2 Arguments that legitimate senders would necessarily

behave so as to ensure delivery (fpr = 0), without empirical evidence,

are unavailing.

2 Furthermore, the value of these techniques cannot be directly compared with others —
even those that do not rely on sender interaction — unless the entire set of sent messages
is available.

4.4 Sender Interaction 409

One approach to adjudication is to have the filter capture all

messages for later adjudication. Some filters do so in the course of

their interaction, while others do not. Challenge–response systems, for

example, typically accept and hold the transmitted message pending

response to the challenge. Greylisting systems may also capture the

entire message before returning a soft error to the sender, however,

many do not and modifying them to do so materially changes their

behavior as observed by the sender. Tarpitting, in contrast, is pred-

icated on a strategy of inducing the sender to abort transmission, a

strategy whose effect cannot possibly be measured (at least from the

receiver’s perspective) while capturing the entire message.

It may be possible to adjudicate undelivered messages based on

partial information, such as the IP or email address of the sender. Such

adjudication would likely be more difficult and error prone than were

it based on full messages.

Even the ability to capture all attempted transmissions does not

completely capture the effect of sender interaction. Mailing list soft-

ware, for example, commonly deletes or suspends the subscriptions for

users whose messages it fails to deliver. Many senders — this author

included — refuse to respond to challenges and, when challenged, never

again attempt communication. Hardware or network failure may occur

during the interaction process,3 thwarting or materially delaying deliv-

ery. Future messages may therefore be left unsent as a direct result of

the filter’s action. While one may argue whether future unsent mes-

sages fit the narrow definition of false positives, their non-transmission

is caused by the filter, and our overarching principle of measuring the

suitability of the filter for its intended purpose comes to bear: pre-

empting message transmission has similar consequences to losing trans-

mitted messages, so, in the absence of a explicit measurement of this

effect, including it in fpr seems more apt than ignoring it. If it can be

measured, that is.

3 Indeed, failure or delay may be wholly or partially caused by the interaction pro-
cess because of general load increases, or due to the potential of runaway interactions.
Imagine, for example, the situation in which both sender and receiver both use naive
challenge–response systems. Arguments that more sophisticated challenge–response pro-
tocols entirely prevent such situations are, without supporting evidence, unavailing.

410 Evaluation Methods and Measures

4.5 Community Interactions

To the extent that a filter is a passive consumer of information collected

from a global community of friendly and adversarial users, its efficacy

may be evaluated using designs already elaborated for capturing real-

time effects. If the information changes slowly it might be appropriate

to capture an evaluation corpus and to evaluate filters using global

information available at a later time — the time of experiment.

An alternative approach is to capture a snapshot, or partial snap-

shot, of available community information, and to reproduce this

information at the time of evaluation. This approach is limited by the

feasibility of capturing the information, and the representativeness of

any particular subset of the global information space.

The fundamental property that distinguishes community-based fil-

ters from others is that they are active, not passive, participants,

influencing as well as consuming global information. For a small-scale

deployment, this influence may be inconsequential, however, if a filter

is widely deployed the overall influence may be substantial, not only

for users of the filter, but for other community members, friend and

foe alike. Economic or biological models [167, 200] attempt to predict

such influences, using techniques such as game theory [5, 161, 49]. Val-

idation of such models presents a considerable challenge, as common

study designs are generally infeasible.

4.6 Summary Measures

The purpose of a summary measure is to estimate the effectiveness

of a spam filter, given the filter’s result and the gold standard for a

collection of messages. As discussed previously, the effectiveness of a

hard classifier may be characterized as the two-dimensional quantity

(fnr, fpr), and the effectiveness of a soft classifier may be characterized

a set of such pairs — an ROC curve. These measures evaluate the filter

itself, and are insensitive to deployment-specific parameters such as the

proportions of ham and spam to be classified, and the consequences of

errors. These parameters may be combined with fnr and fpr to yield

an overall cost and benefit estimate for any particular deployment.

4.6 Summary Measures 411

While these measures are standard in the diagnostic testing literature

[66], they are far from ubiquitous in the spam filtering literature (see

Table 4.1). A large number of studies report precision and recall or

F1 from information retrieval [180], others report accuracy, weighted

accuracy or total cost ratio [4] (see Tables 4.2 and 4.3).

4.6.1 Diagnostic Testing Measures

The filter’s result and the gold standard for a particular collection

of messages may be represented by a contingency table as shown in

Table 4.4. In Table 4.4, tn, tp, fn, fp represent the number of messages

correctly classified as ham, correctly classified as spam, incorrectly clas-

sified as ham, and incorrectly classified as spam. n = tn + tp + fn + fp

is the total number of messages; tn + fp is the number of ham mes-

sages, tp + fn is the number of spam messages, tn + fn is the number

of messages classified as ham, tp + fp is the number of messages clas-

sified as spam. Table 4.5 shows the contingency table for the results in

Figure 3.9.

Table 4.1 Signal detection and diagnostic test measures.

Label Description

fpr false positive rate. The fraction of non-spam that is misclassified. Identical
to fallout in IR evaluation.

fnr false negative rate. The fraction of spam that is misclassified.
prev prior probability, a.k.a. prevalence. The fraction of all email that is spam.
lr+ positive likelihood ratio. The relative likelihood of a positive filter result,

under the pair of assumptions that the message is spam and non-spam.
lr− negative likelihood ratio. The relative likelihood of a negative filter result,

under the pair of assumptions that the message is spam and non-spam.
ppv positive predictive value. The probability that a message is spam, given a

positive filter result. Identical to precision in IR.
npv negative predictive value. The probability that a message is non-spam, given

a negative filter result.
ROC receiver operating characteristic curve. The curve representing tpr (1-fnr) as

a function of fpr (1-tnr) for all possible threshold values.
AUC area under the ROC curve. The area under the ROC curve; alternatively,

Prob(c(m1) > c(m2)|m1 ∈ spam,m2 ∈ non-spam)
(1−AUC)% percent area above the ROC curve. 100 · (1 − AUC).

DOR diagnostic odds ratio.
lr+

lr
−

lam logistic average misclassification. lam = logit−1(
logit(fpr)+logit(fnr)

2
).

d′ discrimination. The number of standard deviations separating the spam and
non-spam score distributions, assuming both are Gaussian.

412 Evaluation Methods and Measures

Table 4.2 IR measures.

Precision = ppv. From an information retrieval perspective, the fraction of results
returned from a search that are relevant to the request. Unavailing as a measure of
spam filter effectiveness, especially if spam is considered, as it commonly is, the
positive class: the fraction of all quarantined messages that are spam. Proportional
to prevalence if fpr and fnr are invariant.

Recall = tpr = 1 − fnr. The fraction of all relevant documents that are returned from
a search. The fraction of spam correctly identified.

Fallout = fpr. The fraction of all irrelevant documents that are retrieved. The fraction
of non-spam that is misclassified.

Recall-fallout curve. The curve representing recall as a function of fallout depending on
the number of documents retrieved. Equivalent to ROC curve.

Recall-precision curve. The curve representing precision and a function of recall
depending on the number of documents retrieved. Akin to ROC curve, with ppv
substituted for (1 − fpr).

Average precision. The area under the recall-precision curve.

Fβ =
(1+β)·precision·recall

β·precision+recall
The weighted harmonic mean of recall and precision.

Commonly, β = 1.

Table 4.3 Accuracy based measures.

Accuracy = prevalence · tpr + (1 − prevalence) · tnr. The fraction of all documents
that are correctly identified. Poorly regarded for evaluating diagnostic tests, as, like
precision, it depends on prevalence [3].

Error = 1 − accuracy.
Weightedaccuracy = λ · prevalence · tpr + (1 − λ) · (1 − prevalence) · tnr,

(0 < λ < 1). The fraction of all documents correctly identified, assuming each spam
to appear λ times [6].

Totalcostratio. The ratio between the weighted accuracy of a filter and the weighted
accuracy of the trivial rejecter with tnr = 0, tpr = 1 [6].

Diluted false positive rate. dfpr = fpr

prevalence
. The fraction of all messages that are both

non-spam and misclassified as spam. Inflates fpr by a factor of 1
prevalence

[160].

Table 4.4 Contingency table.

Gold standard

Filter ham spam
ham tn fn
spam fp tp

fnr and fpr are defined as fnr = fn
tp+fn

and fpr = fp
tn+fp

. Note

that fpr = Prob(c(m) = spam|m /∈ spam) is the likelihood that the

filter will misclassify a ham message. Similarly, fnr = Prob(c(m) =

spam|m ∈ spam) is the likelihood that the filter will misclassify a spam

message. Table 4.6 shows the values of fpr, fnr and the measures

defined below for the contingency table in Table 4.5.

4.6 Summary Measures 413

Table 4.5 Contingency table for results in Table 3.9.

Gold standard

Filter ham spam total
ham 6 2 8
spam 2 8 10
total 8 10 18

Table 4.6 Measures derived from Table 4.5.

fpr fnr prev lr+ lr− ppv npv dor lam 1 − AUC(%)

0.25 0.2 0.56 3.2 0.27 0.8 0.75 12 0.22 15.0

The predictive value of a test is the probability that the out-

come of the test is correct, more specifically, the positive predictive

value ppv = Prob(m ∈ spam|c(m) = spam) and the negative predic-

tive value npv = Prob(m /∈ spam|c(m) = spam). For the test deploy-

ment denoted in the table, these values may be estimated directly:

ppv = tp
tp+fp

, npv = tn
tn+fn

. Using Bayes’ rule, it is possible to com-

pute predictive value for other deployment scenarios in which the pro-

portion or prevalence of spam is different from the test deployment,

using only fnr and fpr from the test results. We have Odds(m ∈

spam) = prev
1−prev

. Define the positive likelihood ratio lr+ = 1−fnr
fpr

and

negative likelihood ratio lr− = fnr
1−fpr

. Then Odds(m ∈ spam|c(m) =

spam) = Odds(m ∈ spam) · lr+ and Odds(m ∈ spam|c(m) = spam) =

Odds(m ∈ spam) · lr− (cf. Table 4.6).

Figure 4.1 shows the ROC curve for the same test results. The

ROC curve traditionally plots true positive rate (otherwise referred to

as sensitivity or 1 − fnr) as a function of fpr (also referred to as 1-

specificity). The ROC curve for a good filter will approach the point

(fpr = 0, fnr = 0), that is, the top-left corner of the plot. AUC, the

area under the curve, summarizes the proximity of the curve to this

ideal point, for this example, AUC = 0.85, that is, (1 − AUC)% = 15.0.

4.6.2 Threshold Independent Measures

While AUC gives a reasonable summary measure for soft classifier per-

formance independent of threshold setting, it does not directly indicate

the (fpr,fnr) result that might be achieved for a particular threshold

414 Evaluation Methods and Measures

0

 0.2

 0.4

 0.6

 0.8

1

0 0.2 0.4 0.6 0.8 1

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

False Positive Rate

Fig. 4.1 Receiver operating characteristic curve for Table 4.5.

setting. Similarly, the (fpr,fnr) pair for a hard classifier gives no direct

indication how the classifier would behave at different thresholds set-

tings and hence what AUC result it might achieve. In both cases we

might wish, for example, to estimate the value of fnr that would result

if the threshold were adjusted to achieve fpr = 0.1%.

It has been observed [66] that the diagnostic odds ratio, dor = lr+

lr−
=

tp·tn
fp·fn

is, for many diagnostic tests, effectively invariant over a large

number of threshold settings. Intuitively, a change in threshold setting

that increases lr+ by some multiplicative factor tends to decrease lr−

by the same factor. Therefore dor is a useful summary measure largely

uninfluenced by threshold setting. The same effect has been observed

at TREC [40], giving rise to the measure logistic average misclassifica-

tion rate, lam = logit−1(logit(fpr)+logit(fnr)
2) = logit−1(log(dor−0.5)). In

Table 4.6, dor = 12, lam = 0.22. Note that the value lam is necessarily

between fpr and fnr; for small values it is indistinguishable from their

geometric mean.

4.6 Summary Measures 415

Under the assumption that dor is invariant, it is possible to estimate

(fpr′,fnr′) from (fpr,fnr) by solving the equation

(1 − fpr) · (1 − fnr)

fpr · fnr
≈

(1 − fpr′) · (1 − fnr′)

fpr′ · fnr′
.

It is further possible to estimate AUC ≈
∫ 1
0 (fnr) d(fpr). Using

fpr = 0.25 and fnr = 0.2 from Table 4.6, the dor invariance

assumption yields a remarkably accurate estimate of (1 − AUC)%

≈ 15.6.

4.6.3 Other Signal Detection Measures

An alternative summary measure is the discrimination factor d′ which is

the standardized difference between the mean classifier results for spam

and ham messages, that is, d′ is the number of standard deviations that

separate the two, under the assumption that the two sets of results is

normally distributed with equal variance.

Two alternative representations for ROC curves better illustrate the

differences among classifiers with very high AUC values. The TREC

spam track plots the curves on the logit scale which, under the same

assumptions as those that underlie the diagnostic odds ratio, tends

to show each filter’s performance as a horizontal line with slope 1.

As for conventional ROC plots, curves closer to the top-left corner

indicate superior effectiveness. DET curves [118] use the normal deviate

(probit) scale which, under the same assumptions as those that underlie

the discrimination factor, tends to show each filter’s performance as a

horizontal line with slope 1. The logit and probit functions yield similar

results except for extreme values.

Table 4.2 summarizes the measures based on signal detection and

diagnostic test theory.

4.6.4 IR Measures

Although signal detection measures have been proposed and used

in classical information retrieval, they have been supplanted in this

domain by recall and precision and summary measures based on them

[166, 180, 185]. The task of classical information retrieval is to identify,

416 Evaluation Methods and Measures

from a large collection of documents, as many relevant documents as

possible while identifying as few irrelevant documents as possible. To

apply the metaphor to spam filtering, one must either deem the spam

messages to be relevant and the ham messages to be irrelevant, or

the ham messages to be relevant and the spam messages to be irrel-

evant. The commonest, although not particularly apt, interpretation

is the former. In this presentation, the unqualified terms precision and

recall assume this “spam is relevant” interpretation, the qualified terms

ham-precision and ham-recall assume the alternate “ham is relevant”

interpretation.

Recall (or ham-recall) is identical to true positive rate: recall =

tpr = 1 − fnr = tp
tp+fn

. Precision is identical to positive predictive

value: precision = ppv = tp
tp+fp

. In terms of the metaphor, recall is the

fraction of spam correctly identified by the spam filter, while precision

is the fraction of quarantined messages that are spam. This measure

is not particularly relevant to the intended purpose of a spam filter,

and it says nothing whatsoever about fpr — the fraction of all ham

messages that are quarantined. Furthermore, it is impossible to com-

pute fpr from recall and precision alone. This fact may be demon-

strated by the fact that neither definition incorporates the value tn

on which fpr relies. The net result is that precision and recall may

be used to compare the performance of filters on a particular test,

but they yield little insight as to the effectiveness of the filter for its

intended purpose, and none as to the relative performance on a dif-

ferent test with different spam prevalence. On the other hand, if the

prevalence of spam in the test is known, or if ham recall is known, it

is possible to deduce tn and hence fpr and the other diagnostic test

measures.

The harmonic mean of recall and precision, F1 = 2·recall·precision
recall+precision

, is

a one-dimensional measure commonly used to rank spam filters [180],

more generally, Fβ = (1+β)·recall·precision
recall+β·precision

. Recall-precision curves and

average precision [185] are direct analogues of ROC and AUC, sub-

stituting precision and recall for fpr and fnr. The utility of these

precision-based measures (Table 4.2) for spam filter comparison is

questionable [42].

4.6 Summary Measures 417

4.6.5 Cost-Sensitive Measures

Perhaps the simplest evaluation measures are accuracy = fn+fp
fn+fp+tn+tp

and error = 1 − accuracy. Although accuracy and error are poor mea-

sures [153, 42] they are commonly optimized and reported. Weighted

accuracy, WAcc = fn+λ·fp
fn+tp+λ·fp+λ·tn for some λ ≥ 1 models the assump-

tion that false positives are more important than false negatives,

weighting them accordingly [7]. It is not obvious how to choose an

appropriate value of λ [83], values of λ ∈ {1,9,99,999} are typically

reported, though the larger values have been found to be less useful [7].

One issue with accuracy, and weighted accuracy in particular, is that a

vacuous filter — one that always yields the same classification — can

receive a high score. For example, a filter that labels all messages as

spam would yield accuracy = 0.95 if the prevalence of spam processed

by the filter was 0.95. For this reason, total cost ratio — the ratio of

the filter’s accuracy to that of the vacuous filter — is often reported

instead.

Weighted accuracy, like accuracy, depends on threshold setting as

well as the prevalence of spam. While these parameters may be learned

[108], there is substantial risk that evaluations based on accuracy or

weighted accuracy will be confounded by arbitrary parameter settings

that happen to work well (or poorly) for the data.

Accuracy and weighted accuracy are linear utility measures, defined

more generally as utility =
wtn·tn+wtp·tp+wfn·fn+wfp·fp

tn+tp+fn+fp
, where wtn, wtp,

wfn, wfp are real-valued coefficients that reflect the utility and costs

of correctly and incorrectly classifying messages of each class. General

utility measures have been reported for text classification (cf. [153])

but not, to date, for spam filtering.

It is possible that, even within a particular class, messages have

different importance and hence different utility and cost associated with

their correct and incorrect classification. Estimating the cost for every

message presents a considerable challenge, and the literature reports

such an effort only for limited experiments on a private collection [96].

It is possible, but labor intensive, to classify the messages into several

genres, and to compute an evaluation measure on each genre separately

[40, 42, 168].

418 Evaluation Methods and Measures

4.6.6 Precision of Measurement

The purpose of measuring the effectiveness of a filter in a particular

experiment is to predict its effectiveness in different situations. The

accuracy of this prediction depends on two factors: the degree to which

the circumstances of the experiment model those of the situations to

be predicted, and the degree of chance error in the measurements. The

first issue has been addressed in the preceding sections. The role of

chance in measurement is addressed by the techniques of statistical

inference.

Associated with any measurement is the notion — either tacit

or explicit — of precision: the extent to which the measurement is

free from chance variation. If we were told that a person’s height is

173 cm, we would not be surprised to learn that person’s true height

was 172.6 cm, or 173.3 cm, because the notation used implies that the

measurement was taken to the nearest cm. If we are told that another

person’s height is 5′8′′, any true height between about 5′71
2

′′
and 5′81

2

′′

would be unsurprising. Suppose we were asked, “who is taller?” An

appropriate answer might be that it is impossible to tell because the

given measurements lack the precision necessary to answer the question.

Or that, for practical purposes, they are the same height because the

difference is too small to matter. Yet the specious answer — that the

first person is taller because 173cm > 5′8′′ = 172.72cm — is common.

The measures used to evaluate spam filters, while more abstract,

are subject to the same considerations regarding precision of measure-

ment.4 Whenever a measure is stated, consideration must be given to

the precision of the estimate. Whenever measured results are compared,

consideration must be given not simply to which is bigger, but to the

magnitude of the difference, and whether or not the difference matters.

For any statistical measure, best practice is to state the measured value

along with a confidence interval consisting of a lower confidence limit

and an upper confidence limit as well as a degree of confidence (cf. [41]).

In comparing two measurements x and y, the most useful information

is conveyed by reporting the value of the difference d = x − y along

4 Note that “precision” of measurement is unrelated to the IR measure of the same name.

4.6 Summary Measures 419

with a confidence interval for d. Significance tests convey strictly less

information than confidence intervals; “significant” means that the con-

fidence interval for d does not include 0, “not significant” means that

it does. Significance tests are often mistakenly interpreted as being

properties of the difference rather than of the measurement, “not sig-

nificant” is misconstrued as “no difference” or “unimportant differ-

ence” while “significant” is misconstrued as “important.” In our height

example, the difference in measurements tells us nothing about which

individual is taller, yet we know that no two individuals have exactly

the same height. A more precise measurement (perhaps a back-to-back

differential measurement) might answer the question — at one partic-

ular moment in time — but that does not mean that the difference in

height would be of any consequence. While significance tests are com-

mon, many methodologists advocate that they be supplanted by the

measurement of differences [139].

Until recently, the majority of experiments in spam filtering and

related fields have reported neither confidence intervals nor significance

results, substantially compromising the value of those results. Diet-

terich [48] discusses the use of significance tests for cross-validation

results. Cormack and Lynam discuss confidence intervals and signifi-

cance tests for the measures presented here, and estimate confidence

intervals for published studies that originally lacked them [42]. The

TREC spam filter evaluation toolkit contains software to compute the

major test-based measures with 95% confidence intervals.

5

Results and Benchmarks

A systematic comparison of evaluation efforts must reconcile their

diverse objectives, methods, datasets, and measures. The following sec-

tions first review the major laboratory evaluations to date, followed by

field evaluations. We report results only when they may be recast as

(fpr,fnr) or AUC. Where AUC is not reported directly, it is estimated

under the assumption that lam is constant (Section 4.6.2). Where the

results of several methods are reported using the same data, methods

and measures, they give some indication of the relative performance of

the filters. Where the results of the same methods are reported using

different data, they give some indication of the “difficulty” of the data

which can facilitate indirect comparisons between methods tested on

only one or the other.

To facilitate intuitive comparison, Table 5.1 illustrates summary

measures estimated from typical values of lam:

• fnr(%) at fpr = 0.1% is the false negative rate when

the threshold is adjusted so as to yield a false positive

rate of 0.1%, that is, one good email per thousand is

misclassified,

420

5.1 Prototypical Studies 421

Table 5.1 Equivalent measures for fixed lam.

lam fnr(%) at fpr = 0.1% fnr(%) at fpr = 1.0% (1 − AUC)(%)

0.3 1.0 0.1 0.01
0.6 3.0 0.3 0.03
1.0 10.0 1.0 0.08
2.0 30.0 4.0 0.3
6.0 80.0 30.0 2.0

10.0 92.0 55.0 4.0

• fnr(%) at fpr = 1.0% is the false negative rate when the

threshold is adjusted so as to yield a false positive rate of

1%, one good email per hundred is misclassified,
• (1 − AUC)(%) is the area above the ROC curve.

5.1 Prototypical Studies

Sahami et al. [141] report early experiments on the use of Naive Bayes

spam filters, using email collected from a user’s inbox. Sahami et al.

use a total of 1789 messages — 1578 spam and 211 non-spam — split

chronologically into training and test sets with 1538 and 251 messages,

respectively. Three feature engineering methods are evaluated: words

alone, words plus 35 hand-crafted phrases, words plus phrases plus 20

hand-crafted non-textual patterns thought to indicate spam. Feature

selection is effected using mutual information, resulting in 500 features.

Recall and precision are reported, considering both spam and non-

spam to be the positive class, from these statistics we may deduce

fpr, fnr, and lam, summarized in Table 5.2. To test generalizability of

the result, the same method was trained on all the email received by

an individual over an interval of time, and tested on email received

by the same interval in the subsequent week. These results, shown in

Table 5.2, are substantially worse than those achieved on the collected

messages.

Table 5.2 Results by Sahami et al.

Data fpr (%) fnr (%) (1−AUC)(%) [est.]

collected 0 1.7 0.1
live 1.7 20 2.0

422 Results and Benchmarks

The general approach — selecting a small set of available messages

for evaluation — is common to many studies. It assumes that the mes-

sages are representative of those that might be filtered, an assumption

that was tested, and found not to hold, by comparison with a more real-

istic sample. The small test set size yields large confidence intervals,

and results might not be indicative of those that would be achieved

with a larger one. The results suggest that a spam filter employing this

method would have too high an error rate to be useful for its intended

purpose.

Drucker et al. [53] consider the use of support vector machine,

boosted C4.5 decision tree, RIPPER and Rocchio classifiers for spam

filtering. A dataset of 850 spam and 2150 non-spam messages collected

from a single user, and a second dataset of 314 spam and 303 nonspam

collected from colleagues were used in tenfold cross validation. The

effects of many parameters were investigated, with results reported as

the fpr achieved with the threshold adjusted so as to achieve a specific

value of fnr (1% or 5%).

This study is one of the first and most comprehensive studies of

spam filtering techniques, considering a vast number of feature engi-

neering methods, learning methods, and tuning parameters. While the

precision of measurement is inadequate to yield final definitive answers,

the Drucker and Vapnik offer the following observations which have yet

to be contradicted:

• SVM and boosted trees have comparable accuracy, but SVM

is better able to achieve low false positive rates,
• RIPPER and Rocchio are not competitive,
• boosted trees require inordinately long training time,
• large values of C work better for SVM, reaching a plateau at

C ≥ 50,
• binary features work better for SVM than term frequencies;

term frequencies work better for boosted trees,
• feature selection causes undesirable overhead and is best con-

sidered part of the learning algorithm,
• stop words should not be excluded,
• SVM does not benefit from term selection.

5.2 The Spambase Public Dataset 423

Table 5.3 Drucker et al. Results (1−AUC)(%) [est.].

Method Stopwords No stopwords

SVM (TF) 0.81 0.56
SVM (binary) 0.93 0.50
Boosting (TF) 0.60 0.42
Ripper 2.15 2.00
Rocchio (TF-IDF) 2.32 1.29

Table 5.3 summarizes the primary results.

5.2 The Spambase Public Dataset

Spambase [165] was the first public spam test collection. As part of the

UCI Repository of Machine Learning Databases, it has been used as an

example in studies of a vast number of general machine learning algo-

rithms and classifiers (e.g., [126, 128, 169]). Feature-vector representa-

tions for each of 1813 spam and 2788 nonspam messages, but not the

messages themselves, are included in the dataset. Each vector contains

57 real-valued attributes indicating the frequencies of certain words

and characters, as well as lexical characteristics such as the average

length of same-character runs and the number of capital letters in the

message. Due to privacy concerns, no further information concerning

the messages is available. This terse vector representation removes in

large part the information that contemporary spam filters use to clas-

sify messages, calling into question the validity of Spambase-derived

results [85, 202] as a measure of spam filter effectiveness.

5.3 The Ling Spam Corpus

The Ling Spam corpus [4, 112] consists of several abstracted versions

of 841 spam email messages combined with 2412 non-spam messages

sent to a mailing list. Except for the subject line, header information is

removed. Markup was eliminated and all words were converted to lower

case. In variants of the corpus stop words were removed or words were

replaced by their roots. Duplicate messages were removed. Standard

splits are identified so as to facilitate comparable evaluations using

tenfold cross validation.

424 Results and Benchmarks

Although spam and nonspam messages are drawn from disparate

sources, and information useful to some filters is removed, Ling Spam

represented a much more realistic evaluation suite than any available

at the time of its release, and a large number of studies have used it

for evaluation. The results of these studies are typically expressed in

terms of precision and recall without statistical confidence intervals. It

is possible, using these statistics and the number of spam and nonspam

messages in the corpus, to deduce the contingency table so as to com-

pute (fpr, fnr) and estimate AUC. Some studies report only accuracy,

weighted accuracy, or total cost ratio alone (e.g., [201]), from which it

is impossible to recover fpr and fnr, the results of studies are excluded

from presentation. Other studies report ROC curves which represent a

range of possible (fpr, fnr) pairs.

Figure 5.1 plots the results for studies from which it is possible to

derive one or more (fpr, fnr) pairs or an ROC curve. Results reported

as ROC curves appear as curves. Table 5.4 relates the labels on the

points and curves to particular studies and methods.

0

 20

 40

 60

 80

 100

 120

 140

 160

 180
0 2 4 6 8 10 12

M
is

c
la

s
s
if
ie

d
 s

p
a
m

 m
e
s
s
a
g
e
s
 (

o
f
4
8
1
)

Misclassified legitimate messages (of 2412)

DMC
PPM

Bogofilter
Perceptron

SVM
a-Bayes

s-kNN

gh-SVM

p-Su x
ks-Bayes

s-Stack

b-Stack

gh-Bayes

Fig. 5.1 Ling Spam results.

5.3 The Ling Spam Corpus 425

Table 5.4 Caption key for Ling Spam and PU results.

Label Description

a-Bayes Naive Bayes, multi-variate Bernoulli model on binary features [4].
a-FlexBayes Flexible naive Bayes — uses kernel density estimation for estimating

classconditional probabilities of continuous valued attributes [7].
a-LogitBoost LogitBoost (variant of boosting) with decision stumps as base classifiers

[7].
a-SVM Linear kernel support vector machines [7].
b-Stack Stacking of linear support vector machine classifiers built from different

message fields [18].
Bogofilter Version 0.94.0, default parameters [134].
c-AdaBoost Boosted decision trees with real-valued predictions [24].
DMC Dynamic Markov Compression [16].
gh-Bayes Naive Bayes (exact model unknown) with weighting of training instances

according to misclassification cost ratio [83].
gh-SVM Linear support vector machine with weighting of training instances

according to misclassification cost ratio [83].
h-Bayes Multinomial naive Bayes [88].
ks-Bayes Multinomial naive Bayes [146].
p-Suffix Pattern matching of character sequences based on suffix tree data

structure and heuristic scoring functions [127].
m-Filtron Support vector machines with linear kernels [122].
s-kNN k-nearest neighbors with attribute and distance weighting [143].
s-Stack Stacking of naive Bayes and k-nearest neighbors [142].
SVM Support vector machine, linear kernel with C = 1 [175].
Perceptron Perceptron algorithm [175].
PPM Prediction by Partial Matching [16].

The format of the messages in Ling Spam renders them unsuit-

able as input for many spam filters. Cormack and Lynam applied three

popular filters directly to the Ling Spam messages, observing patholog-

ically poor performance (Table 5.5). However, with suitably reformat-

ted messages, one of these filters (Bogofilter [134]) shows competitive

performance [36].

Table 5.5 Real filter results on Ling Spam corpus.

Filter fpr(%) fnr(%) (1−AUC)(%)

SpamAssassin [164] 0 95.4 n/a
Bogofilter [134] 0 59.5 n/a
SpamProbe [21] 0 31.3 n/a
CRM114 [195] 54.9 11.2 22.0

426 Results and Benchmarks

5.4 PU1, PU2, PU3, and PUA Corpora

The PU1, PU2, PU3, and PUA corpora [122] differ from Ling Spam in

two substantial ways, but are otherwise similar:

• they are derived from real email messages sent to individuals,
• to obfuscate the content of these private messages, they are

abstracted further by replacing each distinct word by an arbi-

trarily chosen integer.

Headers (except for the subject) and duplicate messages were removed

as per Ling Spam, variants employing stop words and stemming are

available for the PU1 corpus only.

The corpora themselves, as well as tools to do the abstraction, are

available on the internet [112]. PU1 was created first, and is used in a

number of studies. PU3 is substantially larger than PU1; PU2 and PUA

are small and seldom cited. Figures 5.2 and 5.3 give the results of studies

using PU1 and PU3 for which spam and nonspam misclassification error

counts may be deduced.

It is perhaps interesting to note that filters based on sequential com-

pression models show superior performance on these corpora, although

one might expect them to be disadvantaged by obfuscation. Bogofil-

ter also shows reasonably good performance [36] when the numbers

representing words are transliterated to an alphabetic representation.

5.5 The Enron-Spam Corpus

The Enron-spam corpus [112] (not to be confused with the Enron email

dataset [94] or the trec05p-1 corpus) is a successor to the Ling Spam

and PU corpora that contains chronological splits of email messages

received by six Enron employees combined with spam from various

sources. The corpus consists of a suite of six pairs of training sets and

test sets, in which the messages in each training set predate those in

the corresponding test set. Two versions of the corpus are provided, one

preprocessed in the same manner as Ling Spam, the other containing

raw messages. The corpus has been used by its creators to study feature

representation for Bayesian spam filters [121].

5.5 The Enron-Spam Corpus 427

0

5

 10

 15

 20

 25

 30

 35
0 5 10 15 20 25 30

M
is

c
la

s
s
if
ie

d
 s

p
a
m

 m
e
s
s
a
g
e
s
 (

o
f
4
8
0
)

Misclassified legitimate messages (of 610)

DMC
PPM

Bogofilter
Perceptron

SVM
a-FlexBayes

a-LogitBoost
a-SVM

c-AdaBoost
h-Bayes

ks-Bayes

Fig. 5.2 PU1 results.

0

 50

 100

 150

 200

 250

 300

 350

 400

0 10 20 30 40 50 60 70

M
is

c
la

s
s
if
ie

d
 S

p
a
m

 m
e
s
s
a
g
e
s
 (

o
f
1
8
2
0
)

Misclassified legitimate messages (of 2310)

DMC
PPM

Bogofilter
Perceptron

SVM
a-FlexBayes

m-Filtron
a-LogitBoost

a-SVM
h-Bayes

Fig. 5.3 PU3 results.

428 Results and Benchmarks

5.6 SpamAssassin Corpus

The SpamAssassin corpus [163] consists of 4147 real email messages,

31% spam, with complete headers. The messages come from several

sources, including mailing lists and messages sent to and by SpamAs-

sassin developers. Some host names are altered for privacy, in most

cases the messages appear exactly as received. The corpus has been

used, for the most part, for the development of SpamAssassin and other

practical spam filters. A standard evaluation method using the corpus

has not evolved; studies have reported different measures derived from

tenfold cross validation [86, 201] (see Cormack and Lynam [42] for com-

parison). On-line evaluation has been investigated using random [196]

and chronological [114] sequences of email. A chronologically ordered

version of the SpamAssassin corpus suitable for on-line evaluation using

the TREC method is a toolkit.

5.7 TREC Spam Track

The TREC Spam Track is the largest and most realistic laboratory

evaluation to date. In the three years it ran, ten test corpora with

a total of 721,461 messages were used to test filters submitted by 35

participants. Each participant submitted up to four different filters, and

these filters were the subject of various experiments using the corpora.

The results of more than one thousand experimental runs may be found

in the summaries and appendices of the TREC proceedings [40, 33, 34].

Four of the ten corpora are available on the web for free download,

subject to a click-through usage agreement [172, 173, 174].

The core task at TREC — the immediate feedback task — simulates

the on-line deployment of a spam filter with idealized user feedback.

Variants of the task, including delayed feedback, partial feedback, and

active learning explore the impact of imperfect or limited user feedback.

The core task, along with methods and evaluation measures embod-

ied in an open-source toolkit [113], was developed by Cormack and

Lynam [42] prior to TREC 2005, and run on a corpus consisting of

49,086 email messages captured for the purpose. This corpus, which

came to be known as the Mr X corpus, was also used for TREC 2005,

5.7 TREC Spam Track 429

along with three new corpora: tm, sb, and trec05p-1. tm and sb were,

like Mr X, private corpora formed by capturing and labeling all the

email sent to an individual during an interval of many months.

5.7.1 TREC Corpora

trec05p-1, the TREC 2005 Public 5.6 Corpus, contains the stored email

of 150 Enron executives, collected and released to the public domain

as a result of the US Federal investigation of Enron’s collapse. These

messages were labeled and augmented by additional spam messages

from a public source [78], altered to appear to have been delivered to

Enron during the same period [40].

TREC 2005 established that private and public corpora could yield

reasonably consistent results, although some of the corpora were more

“difficult” than others, the results and especially the relative results

were not dramatically different — well within differences that could be

explained by chance.

TREC 2006 saw the creation of two new private corpora — Mr X2

and sb2, captured later from the same sources as Mr X and sb, as well

as English and Chinese public corpora — trec06p and trec06c. trec06p

was captured from the Web and augmented with public spam, while

trec06c was captured from a mailing list and augmented with spam

from a honeypot at the same site.

TREC 2007 used one private corpus — Mr X3 — and one public

corpus — trec07p. The Mr X3 corpus contains 161,975 messages, as

opposed to Mr X’s 49,086. The difference is due entirely to an increase

in the proportion of spam received from 82% to 95% over the inter-

val 2004–2007. trec07p contains exactly the messages delivered to a

particular server over three months.

5.7.2 TREC Variants

Four variants — ham25, ham50, spam25, and spam50 — are included

with the trec05p-1 distribution. Each specifies a random sub-sample

of either spam or non-spam, so as to measure the sensitivity of filter

performance to the proportion of spam.

430 Results and Benchmarks

TREC 2006 introduced the delayed feedback task which entailed

extensions to the toolkit [39] to specify exactly the interleaving of clas-

sify and train operations. A standard delayed interleaving for trec05p-1

is available with the revised toolkit, the trec06p and trec06c distri-

butions specify the interleaving used in the delayed feedback task at

TREC 2006.

TREC 2006 also introduced a (batch) active learning task in which

filters were presented with an unlabeled training set and were permitted

to use the results of k queries of the form label(m), for some quota k.

Tools to implement (batch) active learning are included in the toolkit.

Cormack and Bratko [36] use the delayed feedback extensions to

specify standard splits for tenfold cross validation using trec05p-1, and

also a single 9:1 chronological split suitable for testing non-adaptive

filtering methods.

Sculley [147] proposed the TREC 2007 on-line active learning task

and extended the toolkit to implement it. TREC 2007 also incorporated

two variants of delayed feedback: (extreme) delayed feedback in which

feedback is given immediately for the first few thousand messages and

never given for the rest, partial feedback in which feedback is given

only for messages addressed to a subset of the recipients. Standard

interleavings for (extreme) delayed feedback and for partial feedback

are distributed with the trec07p corpus.

The 2007 CEAS Live Spam Challenge [170] altered the TREC

methodology in several ways:

(1) A stream of email was captured and distributed to partici-

pants in real-time.

(2) The stream was communicated to filters using SMTP instead

of a command-line interface.

(3) Filters were required to return only a hard classification.

(4) Filters were permitted unrestricted access to external

resources such as name servers and blacklists.

Except for these differences, the Live Spam Challenge paralleled the

TREC delayed feedback task. The messages came from the same source

as trec07p, and were preserved so as to support direct comparison with

5.7 TREC Spam Track 431

laboratory filters using the TREC toolkit. Due to technical difficulties

with the SMTP interface, the test was abbreviated and some filters were

unable to operate properly. At the time of writing, neither the corpus

nor the results have officially been released, but plans are underway to

resolve the technical difficulties and reprise the Live Spam Challenge

in 2008.

5.7.3 TREC and Associated Results

Results related to the TREC corpora and methodologies are discussed

below. AUC measures derived from the three TREC public corpora,

conducted at TREC and elsewhere, are summarized in Table 5.6; results

derived from the three Mr X corpora are summarized in Table 5.7.

Cormack and Lynam [42] describe and justify the on-line evalua-

tion methods used at TREC, the creation of the Mr X corpus and

the results of testing several popular spam filters, including Bogofil-

ter, SpamProbe, SpamBayes, and SpamAssassin, all of which include

a “Bayesian” classifier implementing Robinson’s χ2 learning method.

SpamAssassin also incorporates a hand-crafted component, whose effec-

tiveness was measured separately and in conjunction with the learning

component. All the learning filters demonstrated similar performance.

Table 5.6 1−AUC (%) — TREC public corpora.

Method/Features Refs. trec05p-1 trec06p trec07p

Fusion [33, 114] 0.007 0.020
SVM/4-gram [150] 0.008 0.023
ROSVM/4-gram [150, 151] 0.009 0.024 0.009
DMC+LR/4-gram [35] 0.006
LR/4-gram [35] 0.012 0.006
DMC [16, 35] 0.013 0.033 0.008
Perceptron/string [152] 0.017 0.041
PPM [16] 0.019 0.061 0.011
Clustering/string [125] 0.011
OSBF-Lua [10] 0.019 0.054 0.028
LR/words [68] 0.022
Bogofilter [40] 0.048
SpamAssassin “Bayes” [40] 0.059
LR/words [36] 0.068
SVM/words [36] 0.075
SpamAssasin Rules+Bayes [40] 0.345

432 Results and Benchmarks

Table 5.7 1−AUC (%) — Mr X corpora.

Method/Features Refs. Mr X Mr X2 Mr X3

ROSVM/4-gram [150, 151] 0.004
DMC+LR/4-gram [35] 0.008
LR/4-gram [35] 0.03 0.010
Clustering/string [125] 0.015
DMC [16, 35] 0.04 0.05 0.022
Perceptron/string [152] 0.04 0.06
LR/words [68] 0.05
Bogofilter [40] 0.05 0.09
OSBF-Lua [10] 0.07 0.05 0.028
SpamAssassin Rules+Bayes [42] 0.06
PPM [16] 0.08 0.08 0.023
SpamProbe [42] 0.09
SpamBayes [42] 0.16
SpamAssassin “Bayes” [42] 0.15
SpamAssassin Rules [42] 0.80
Human + filter [42] 0.88
DSPAM [42] 1.03
CRM114 [42] 1.10

SpamAssassin’s hand-crafted component showed inferior performance

to the learning component, while the combination of learning and hand-

crafted was marginally superior. Two other learning filters — CRM114

and DSPAM — were included in the study, showing inferior perfor-

mance. Cormack and Lynam show ROC curves for all results and report

1 − AUC as well as fpr and fnr with 95% confidence limits. In addition,

misclassified spam and non-spam are categorized into genres indicating

the general nature of the messages.

The full TREC results occupy nearly one hundred pages of appen-

dices in each year’s proceedings [182, 183, 184]. We summarize notewor-

thy results, in particular those that are particularly strong and those

that provide baselines for comparison. Perhaps the most notable and

surprising result from TREC 2005 was the commanding performance

of the PPM-based filter due to Bratko and Filipic [17]. Bogofilter and

the learning component of SpamAssassin performed well, but some-

what more poorly than PPM. SpamAssassin’s combined learning and

hand-crafted components gave insubstantially different results from the

learning component alone, superior on two corpora and inferior on two.

Based on these results, we chose PPM and Bogofilter as standards for

comparison.

5.7 TREC Spam Track 433

Following TREC 2005, the PPM results were independently repro-

duced and bettered using the Dynamic Markov Compression method

[16, 38]. The authors observe that using a 2500 byte prefix of each mes-

sage, as opposed to the entire message, yields both increased efficiency

and increased effectiveness.

It is notable that all the well-performing methods at TREC 2005

were based on what are considered fairly weak methods in the machine

learning community. In response, Goodman and Yih [68] devised a very

simple on-line logistic regression method that showed strong perfor-

mance on the trec05p-1 and Mr X corpora, bettering the TREC results

for all but PPM.

At the same time, Cormack and Bratko [36] investigated the thesis

that sophisticated learning methods were not represented at TREC

due to the challenges of feature engineering and on-line deployment.

They found:

(1) Substantially different results were obtained using on-line

evaluation, tenfold cross validation and a chronological split

of the same data (the trec05p-1 corpus).

(2) Under tenfold cross-validation, Bogofilter’s performance

about equaled logistic regression and a support vector

machine (linear kernel, C = 1) using binary bag-of-words fea-

tures. Compression methods were superior.

(3) Using a chronological split with the first 90% of the cor-

pus as training examples and the last 10% as test examples,

the compression methods strongly outperformed Bogofilter,

logistic regression and the support vector machine.

(4) Compression methods showed dramatically superior per-

formance to that of on-line versions of logistic regression

and SVM constructed using batching and a sliding window.

Bogofilter’s performance was in between.

(5) Compression methods compared favorably with any reported

in the literature, when compared using tenfold cross valida-

tion on the Ling Spam, PU1, PU2, and PU3 corpora (cf.

Sections 5.3, 5.4). Bogofilter, logistic regression and support

434 Results and Benchmarks

vector machine showed competitive performance, generally

inferior to that of the compression methods.

Sculley and Brodley [148] point out that data compression classifica-

tion methods may be viewed as learning methods with a feature space

consisting of all substrings of the message.

Lynam and Cormack [114] used several on-line meta-classifiers to

combine the results of all 51 filters evaluated at TREC 2005. Even the

simplest method — voting — produced a substantial improvement over

the best filter. The most sophisticated method — logistic regression

on the log-odds-transformed soft results of the individual classifiers —

produced the best results reported to date for trec05p-1.

TREC 2006 saw a general improvement in filter effectiveness, with

several approaches equaling or bettering that of PPM. OSBF-Lua [9]

due to Assis [10] is perhaps the best overall performer in the core task.

OSBF-Lua uses orthogonal sparse binomial word features [158], iter-

ative threshold training, and a weighted average scheme for combin-

ing frequency estimates. Sculley et al. [152] show strong performance

combining inexact string matching for tokenization with the margin

perceptron learning algorithm.

Filter performance was generally worse for the delayed learning task,

no participant investigated a technique to mitigate this effect. Notable

results in the active learning task were achieved by Bruckner et al. [20]

using orthogonal sparse bigrams, Winnow, pre-training, and thresh-

old training to achieve strong initial performance in the (batch) active

learning task. Bratko et al. [16] addresses the active learning problem by

using only the most recent training data. The rationale for this choice

is the observation that on-line classifiers work much better on chrono-

logically ordered data, hence more recent training examples should be

more apt.

Sculley et al. [150] investigate the use of a relaxed on-line support-

vector machine (ROSVM) for spam filtering using TREC and other

spam corpora. The best performance is yielded by a configuration using

binary features derived from character 4-grams and an adaptive on-line

SVM implementation with a linear kernel and C = 100. Effectiveness

on the trec05p-1 and trec06p corpora was nearly as good as that of

5.8 ECML/PKDD Discovery Challenge 435

the fusion methods due to Lynam and Cormack — much better than

any single spam filter to date. A linear-time variant, using a sliding

window and relaxed optimization criteria, reduces execution time on

the 92,000-message trec05p-1 corpus by an order of magnitude — to a

fraction of a second per message.

At TREC 2007, ROSVM [151] showed the best results on Mr X3

and second best results on trec07p in the core (immediate feedback)

task. Insubstantially different results were shown by Cormack’s method

fusing DMC with on-line logistic regression using 4-gram features [35],

which was second-best on Mr X3 and best on trec07p. In isolation,

the logistic regression component fared better than DMC and nearly

as well as the combination. Strong results were obtained by Niu et al.

[125] using clustering and and on-line character-based linear classifier.

Yerazunis [198] achieved similar effectiveness using OSB features and

iterative threshold training.

The delayed feedback and partial feedback tasks showed decreased

filter performance — the partial feedback task remarkably so (see Scul-

ley et al. [151] for discussion). The on-line active learning task was dom-

inated by versions of ROSVM and on-line logistic regression adapted to

use uncertainty sampling: filters requested the label for any soft classifi-

cation result falling within some fixed distance of the hard classification

threshold t.

5.8 ECML/PKDD Discovery Challenge

The TREC partial feedback task is an on-line adaptation of the 2006

ECML/PKDD Discovery Challenge which had previously addressed

similar issues in a batch context. The purpose of the Challenge was

to model spam filter deployment in which neither feedback nor user-

specific training data is available. Task A and Task B both involved

training on one or more labeled mixtures of spam and non-spam from

distinct sources, and then classifying several mixtures of spam and non-

spam from different distinct sources. Task A used a single training set

with 4000 messages, and three test sets with 2500 messages each. Task

B used three training sets with 100 messages each, and 15 test sets

with 400 messages each. Messages were represented as term frequency

436 Results and Benchmarks

Table 5.8 1−AUC(%) — ECML/PKDD Discovery Challenge Task A.

Method Refs. Task A

SVM (unofficial) [205] 3.28
Bayesian [93] 4.93
Graph [129] 5.09
Bayesian [80] 5.13
Positive only [176] 6.35

Table 5.9 1−AUC (%) — ECML/PKDD Discovery Challenge Task B.

Method Refs. Task B

DMC [32] 5.35
SVM (unofficial) [205] 6.16
Positive only [176] 8.18
Bayesian [80] 9.26

vectors, absent terms occurring in fewer than four messages. Neither

the words themselves nor the text of the messages were available to

filters. The test corpora are available for free download [56].

Participants were evaluated in terms AUC (see Tables 5.8 and 5.9

for results whose methods are described in the literature). A number

of semi-supervised and transductive methods have been applied to the

problem, both within the context of the Challenge and after. The joint

winners (because their scores were not separated with 95% confidence)

of Task A were:

• A two-pass supervised and semi-supervised Bayesian classi-

fier by Junejo et al. [93].
• An efficient adaptation due to Pharinger [129] of the graph-

based method of Zhou et al. [203].
• A Bayesian method by Gupta et al. [79].

The sole winner of Task B iteratively applied DMC with self-training

to a string representation of the feature vectors [32]. Runner-up in both

tasks was a method of training only on positive examples by Trogkanis

and Paliouras [176]. Zien, and unofficial participant, achieved strong

results with a semi-supervised support vector machine [205].

Bickel and Scheffer [13] describe the foundations of the biased

sample problem underlying the Challenge and a hierarchical Bayesian

model to address it. Bickel et al. [12] present a discriminative approach

5.9 Gen Spam 437

to the problem. It remains to be seen how well these methods may be

applied to the problem of on-line spam filtering.

5.9 Gen Spam

Gen Spam is a newer corpus [120] consisting of two sets of real email,

with header information reformatted in XML and identifying infor-

mation like email addresses and hostnames obfuscated. Otherwise, the

content of the messages is preserved. One set of email is from a differ-

ent source than the other. The first, consisting of 38,246 messages, is

used as a training set. The second is split into an adaptation set with

600 messages and a test set with 1551 messages. The intended use is

to model spam filter deployment in which a large amount of generic

data (the training set) is available for training, and a smaller amount

of recipient-specific data (the adaptation set). Table 5.10 compares the

results of several filters on the Gen Spam corpus.

5.10 Product Evaluation Reports

Product evaluation reports are typically the subject of analyst reports,

magazine articles, and advertising. Although they are not subject to

scientific peer review, they may have considerable influence, this section

reviews the most visible product evaluation efforts.

5.10.1 Network World Test

Snyder [160] conducted a parallel test of 41 commercial spam filters.

Over a two-week period the message traffic to a server was captured,

screened for viruses and backscatter, and passed on to the spam filters

under test. 11,000 passed the screening process and were then passed

to each of the filters for classification.

Table 5.10 Gen Spam corpus results.

Method (1 − AUC)(%)

Bogofilter 0.44
DMC 0.03
Medlock [120] 0.48
PPM 0.05

438 Results and Benchmarks

During the test, filters were connected to the internet and allowed

to interact with external resources, for example, to receive updates. No

user feedback was provided.

Later, the messages were adjudicated and 8027 spam and 2386 non-

spam messages were selected as an evaluation set, 600 (5.5%) were

discarded for the following reasons:

• Messages with viruses, not caught in screening.
• Backscatter not caught in screening.
• Messages with duplicate message identifiers.
• Messages for which the adjudicators were unable to deter-

mine the correct classification.

Snyder incorrectly reports “diluted” fpr = |non-spam∩{m|c(m)=true}|
|non-spam|+|spam| ,

which we correct to fpr = |non-spam∩{m|c(m)=true}|
|non-spam| in Table 5.11.

Strengths. This study approximates many aspects of the actual deploy-

ment of spam filters more closely than laboratory investigations. Among

field investigations it stands out in measuring appropriate statistics in a

controlled environment. The methodology has been adopted by others

[162].

Limitations. Commercial filters are tested as black boxes, so it is diffi-

cult to generalize beyond the particular versions tested. Filters requir-

ing user feedback were excluded. The environment is not reproducible

and therefore not amenable to further testing. The screening process

introduces delay that may affect filter performance. The screening and

Table 5.11 Network world results.

Vendor fpr (%) fnr (%) 1−AUC (%) [est.]

BorderWare 0.12 1 0.01
Postini 0.24 3 0.06
CipherTrust 0.36 3 0.09
Symantec 0.48 3 0.12
Advascan 0.57 3 0.14
NetCleanse 0.46 5 0.17
Proofpoint 0.87 3 0.18
Barracuda 0.9 5 0.32
Cloudmark 1.05 5 0.36
Spamfighter 1.02 14 0.91

5.10 Product Evaluation Reports 439

selection processes introduce substantial selection bias, as the propor-

tion of discarded messages substantially exceeds measured error rates

and these messages might be more likely to cause difficulties to filters.

Internet connectivity during the course of the test may be a source of

interaction among filters, or between filters and vendors whose actions

may confound the test. Sample size yields insufficient precision to differ-

entiate the better filters. Mischaracterization of fpr in reported results

may encourage invalid comparison with other work.

5.10.2 Veritest Anti-Spam Benchmark Service

Veritest [181] is a commercial test service that evaluates filters by

installing them in a test environment and sending them a stream

of spam mixed with simulated non-spam messages, reporting tpr

and diluted fpr (labeled false positive percentage or false positive

rate, see Table 5.12 for corrected results). Filters are tested four

times per year, concurrently, over a 13 day period. Spam messages

are captured from long-standing spam traps: accounts and domains

that were created for the purpose or have been abandoned and no

longer receive legitimate email. Non-spam messages come from two

sources: legitimate subscription-based sources like mailing lists and

news services, and messages sampled from real business and personal

correspondence.

Messages are forwarded to particular filters under test by repeatedly

altering the DNS (dynamic name server) entries that map hostnames

(e.g., xxx.yyy.com) to IP addresses (e.g., 111.222.000.123). Thus, mail

addressed to a particular host is sent to one IP address — the IP address

corresponding to a particular filter — for some parts of the test and to

others at other times. Each message is sent to exactly one filter, but

Table 5.12 Veritest Results — Autumn 2005.

Vendor fpr (%) fnr (%) 1−AUC (%) [est.]

Message Labs 0.3 0.4 0.01
Solution A 0.1 1.9 0.02
Solution B 1.3 4.5 0.40
Sophos 1.0 1.4 0.11
Tumbleweed 0.3 0.5 0.02

440 Results and Benchmarks

the assignment of hostnames to filters is rotated so each filter receives

overall a set of messages with comparable characteristics.

Filters typically receive about 10,000 messages each — 6,000 spam

and 4,000 non-spam — during the course of the test. Each filter sorts

messages into its own spam and non-spam folders, which are adjudi-

cated. Messages which cannot be adjudicated as spam or non-spam are

excluded from the results.

Opus One use the same methodology for ongoing commercial spam

filter evaluation.

Strengths. Filters are tested live in a real-time environment. Spam is

delivered directly from spam sources without delay or forwarding. Fil-

ters may employ sender interaction methods like greylisting and tarpit-

ting [109].

Limitations. Spam sources may not adequately cover the range typical

sources. Generated and subscription-sourced messages may not ade-

quately represent the non-spam typically delivered to a user or set

of users. User feedback is difficult to incorporate or simulate, as the

message stream (and hence user) is artificial, and no gold standard is

available for simulation. DNS updates, and delay in DNS propagation

may introduce bias or artefacts in the streams of spam and non-spam

delivered to filters. While sender interaction with spam senders is aptly

captured, interaction with non-spam senders may not be, because the

sender is simulated. In particular, false positives are likely to be under-

estimated. Sample sizes yield insufficient precision for fine comparison,

especially since different filters are tested on different samples. Number

of samples needed rises in proportion to number of filters tested. Exclu-

sion of messages which cannot be adjudicated results in selection bias,

non-blind evaluation of messages (i.e., previously sorted by a particular

filter) may yield adjudication bias.

5.10.3 West Coast Labs Anti-Spam Test Methodology

West Coast Labs [189] performs comparative tests between pairs of

spam filters inserted into a stream of email (see Table 5.13). The spam

messages are those delivered to an established spam-trap domain, while

the non-spam messages are manually created and sent from various

5.10 Product Evaluation Reports 441

Table 5.13 West Coast Lab Results — January 2007.

Vendor fpr (%) fnr (%) 1−AUC (%) [est.]

BitDefender 0 3 n/a
Email Systems 0 1 n/a
Kaspersky Labs 0 3 n/a
MXSweep 0 1 n/a
SoftScan 0 3 n/a
Sophos 0 3 n/a
SurfControl 0 1 n/a

sources so as to resemble real email. The incoming mail stream is routed

periodically to one filter or the other using NAT (Network Address

Translation). Thus each filter receives messages in the stream about

half the time, and no messages other times. A particular test runs for

10 days, with about 500 messages delivered to each filter per day. tpr

and tnr, but not the prevalence of spam, were reported.

Strengths. The method intercepts a single stream of email, and NAT

rerouting is immediate.

Limitations. The sources of spam may not be representative. A sam-

ple of 500 messages is too small to yield a nonzero fpr estimate. Hand-

created non-spam may not be representative and is but one genre of

legitimate message that is likely to occur in a real email stream. User

feedback would be difficult to simulate. Filters see temporal gaps in

message transmission. The method would be difficult to scale to test

many filters, as the incoming stream must be multiplexed among them.

6

Discussion

By information retrieval standards, spam filters yield outstanding

results. Laboratory testing shows that a content-based learning fil-

ter can correctly classify all but a few spam messages per hun-

dred and all but a few thousand non-spam messages per thousand

(fpr ≈ 0.2%, fnr ≈ 2%, (1 − AUC) ≈ 0.03%). There is some evidence

that similar results may be achieved in practice either by machine learn-

ing methods or by other methods like blacklisting, greylisting, and col-

laborative filtering. The controlled studies necessary to measure the

effectiveness of all types of filters — and combinations of filters — have

yet to be conducted. We argue that understanding and improvement

of the effectiveness of spam filters is best achieved by a combination

of laboratory and field studies, using common measures and statistical

methods. To this end, we have reviewed existing results with respect

to common criteria and have outlined designs for future studies.

The TREC Spam Track offers standard methodologies, tools and

datasets for large-scale spam filter evaluation. Each of the three years of

the Spam Track saw substantial improvement in overall filter effective-

ness. Bayesian filters using words as features were eclipsed by sequential

compression models using no explicit features, and by on-line versions of

442

443

logistic regression and support vector machines using character 4-grams

as features. Methods based on orthogonal sparse bigrams showed excel-

lent results. The best known method for the TREC datasets is achieved

by combining all other methods using logistic regression.

The Spam Track is a laboratory evaluation whose baseline task

simulates on-line filter deployment with user feedback. Tests of com-

mon filters on public and private email collections indicate that results

achieved on the public datasets predict well those on private ones

representing real sequences of email. This observation suggests that

the use of public corpora is an effective approach to identifying those

approaches worthy of more costly testing on “real” data. Variants of

the baseline task have shown that delayed, incomplete or incorrect feed-

back degrade filter performance somewhat. The TREC methods apply

equally well to batch or real-time deployment. The extent to which

these variants better model actual spam filter use remains a subject of

future research.

The methods evaluated at TREC may be used as references for

comparison in different evaluation contexts. The best methods compare

favorably to all previously reported methods when evaluated using the

Ling Spam, PU1 and PU3 corpora. We suggest that any future eval-

uation, whether laboratory or field experiment, should include one or

more filters tested at TREC as a control.

The role of user feedback in spam filtering is the subject of some

controversy. One point of view is that spam filters must operate with-

out any feedback from the user, the opposing point of view is that

user feedback is the most useful information from which to construct a

classifier. Each approach involves tradeoffs that merit further evalua-

tion. Can filters, without user feedback, achieve acceptable error rates?

What are the hidden infrastructure costs of constructing and training

filters that use no feedback? Can filters be designed to achieve good

error rates with minimal feedback?

Legislative or technical measures may some day substantially abate

email spam, but are unlikely to eliminate it. The creativity and efforts

of those choose to violate laws and social norms to deliver their message

will provide a continuing challenge to filter designers.

References

[1] “You might be an anti-spam kook if...,” http://www.rhyolite.com/anti-
spam/you-might-be.html.

[2] 2004 National Technology Readiness Survey: Summary report,
http://www.smith.umd.edu/ntrs/NTRS 2004.pdf, 2005.

[3] A. J. Alberg, J. W. Park, B. W. Hager, M. V. Brock, and M. Diener-West,
“The use of overall accuracy to evaluate the validity of screening or diagnostic
tests,” Journal of General Internal Medicine, vol. 19, no. 1, 2004.

[4] I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras, and C. D.
Spyropoulos, “An evaluation of Naive Bayesian anti-spam filtering,” CoRR,
vol. cs.CL/0006013, Informal Publication, 2000.

[5] I. Androutsopoulos, E. F. Magirou, and D. K. Vassilakis, “A game theoretic
model of spam e-mailing,” in CEAS 2005 — The Second Conference on Email
and Anti-Spam, 2005.

[6] I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C. Spyropoulos,
and P. Stamatopoulos, “Learning to filter spam E-mail: A comparison of a
naive bayesian and a memory-based approach,” in Proceedings of the Work-
shop on Machine Learning and Textual Information Access, 4th European
Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD 200), pp. 1–13, 2000.

[7] I. Androutsopoulos, G. Paliouras, and E. Michelakis, “Learning to filter unso-
licited commercial E-Mail,” Tech. Rep. 2004/2, NCSR “Demokritos”, October
2004.

[8] H. B. Aradhye, G. K. Myers, and J. A. Herson, “Image analysis for efficient cat-
egorization of image-based spam e-mail,” in Proceedings of the Eighth Interna-
tional Conference on Document Analysis and Recognition (ICDAR’05), 2005.

444

References 445

[9] F. Assis, “OSBF-Lua,” http://osbf-lua.luaforge.net/.
[10] F. Assis, “OSBF-Lua — A text classification module for Lua the importance of

the training method,” in Fifteenth Text REtrieval Conference (TREC-2006),
Gaithersburg, MD: NIST, 2006.

[11] A. Berg, “Creating an antispam cocktail: Best spam detection and fil-
tering techniques,” http://searchsecurity.techtarget.com/tip/1,289483,sid14
gci1116643,00.html, 2005.

[12] S. Bickel, M. Bruckner, and T. Scheffer, “Discriminative learning for differing
training and test distributions,” International Conference on Machine Learn-
ing (ICML), 2007.

[13] S. Bickel and T. Scheffer, “Dirichlet-Enhanced spam filtering based on biased
samples,” Neural Information Processing Systems (NIPS), 2007.

[14] B. Biggio, G. Fumera, I. Pillai, and F. Roli, “Image spam filtering by content
obscuring detection,” in CEAS 2007 — The Third Conference on Email and
Anti-Spam, 2007.

[15] Blacklists compared, http://www.sdsc.edu/ jeff/spam/Blacklists Compared.
html.

[16] A. Bratko, G. V. Cormack, B. Filipič, T. R. Lynam, and B. Zupan, “Spam fil-
tering using statistical data compression models,” Journal of Machine Learn-
ing Research, vol. 7, pp. 2673–2698, December 2006.

[17] A. Bratko and B. Filipič, “Spam filtering using character-level markov models:
Experiments for the TREC 2005 Spam Track,” in Proceedings of 14th Text
REtrieval Conference (TREC 2005), Gaithersburg, MD, November 2005.

[18] A. Bratko and B. Filipič, “Exploiting structural information for semi-
structured document categorization,” Information Processing and Manage-
ment, vol. 42, no. 3, pp. 679–694, 2006.

[19] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–
140, 1996.

[20] M. Bruckner, P. Haider, and T. Scheffer, “Highly scalable discriminative spam
filtering,” in Proceedings of 15th Text REtrieval Conference (TREC 2006),
Gaithersburg, MD, November 2006.

[21] B. Burton, SpamProbe — A Fast Bayesian Spam Filter. 2002. http:// spam-
probe.sourceforge.net.

[22] B. Byun, C.-H. Lee, S. Webb, and C. Pu, “A discriminative classifier learning
approach to image modeling and spam image identification,” in CEAS 2007
— The Third Conference on Email and Anti-Spam, 2007.

[23] CAPTCHA: Telling humans and computers apart automatically,
http://www.captcha.net/.

[24] X. Carreras and L. Márquez, “Boosting trees for anti-spam email filter-
ing,” in Proceedings of RANLP-2001, 4th International Conference on Recent
Advances in Natural Language Processing, 2001.

[25] K. Chellapilla, K. Larson, K. Simard, and M. Czerwinski, “Designing human
friendly human interactive proofs (HIPS),” in CHI ’05: SIGCHI Conference
on Human Factors in Computing Systems, pp. 711–720, 2005.

[26] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, “Computers beat
humans at single character recognition in reading based human interaction

446 References

proofs,” in CEAS 2005 — The Second Conference on Email and Anti-Spam,
2005.

[27] S. Chhabra, Fighting Spam, Phishing and Email Fraud. University of Califor-
nia, Riverside, 2005.

[28] A. Ciltik and T. Gungor, “Time-efficient spam e-mail filtering using n-gram
models,” Pattern Recognition Letters, vol. 29, pp. 19–33, 2008.

[29] J. G. Cleary and I. H. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Transactions on Communications, vol. 32,
pp. 396–402, April 1984.

[30] W. W. Cohen, “Fast effective rule induction,” in Proceedings of the 12th Inter-
national Conference on Machine Learning, (A. Prieditis and S. Russell, eds.),
pp. 115–123, Tahoe City, CA: Morgan Kaufmann, July 9–12 1995.

[31] G. Cormack, J. M. G. Hidalgo, and E. P. Sánz, “Feature engineering for
mobile (SMS) spam filtering,” in 30th ACM SIGIR Conference on Research
and Development on Information Retrieval, Amsterdam, 2007.

[32] G. V. Cormack, “Harnessing unlabeled examples through iterative application
of Dynamic Markov Modeling,” in Proceedings of the ECML/PKDD Discovery
Challenge Workshop, Berlin, 2006.

[33] G. V. Cormack, “TREC 2006 Spam Track Overview,” in Fifteenth Text
REtrieval Conference (TREC-2006), Gaithersburg, MD: NIST, 2006.

[34] G. V. Cormack, “TREC 2007 Spam Track Overview,” in Sixteenth Text
REtrieval Conference (TREC-2007), Gaithersburg, MD: NIST, 2007.

[35] G. V. Cormack, “University of waterloo participation in the TREC 2007 spam
track,” in Sixteenth Text REtrieval Conference (TREC-2007), Gaithersburg,
MD: NIST, 2007.

[36] G. V. Cormack and A. Bratko, “Batch and on-line spam filter evaluation,” in
CEAS 2006: The Third Conference on Email and Anti-Spam, Mountain View,
CA, 2006.

[37] G. V. Cormack, J. M. G. Hidalgo, and E. P. Sánz, “Spam filtering for short
messages,” in CIKM ’07: Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Management, pp. 313–320, USA,
New York, NY: ACM Press, 2007.

[38] G. V. Cormack and R. N. S. Horspool, “Data compression using dynamic
Markov modelling,” The Computer Journal, vol. 30, no. 6, pp. 541–550, 1987.

[39] G. V. Cormack and T. R. Lynam, TREC Spam Filter Evaluation Toolkit.
http://plg.uwaterloo.ca/˜gvcormac/jig/.

[40] G. V. Cormack and T. R. Lynam, “TREC 2005 Spam Track Overview,”
http://plg.uwaterloo.ca/˜gvcormac/trecspamtrack05, 2005.

[41] G. V. Cormack and T. R. Lynam, “Statistical precision of information retrieval
evaluation,” in SIGIR ’06: Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pp. 533–540, USA, New York, NY: ACM Press, 2006.

[42] G. V. Cormack and T. R. Lynam, “On-line supervised spam filter evaluation,”
ACM Transactions on Information Systems, vol. 25, no. 3, 2007.

[43] D. Crocker, “Challenges in Anti-spam Efforts,” The Internet Proto-
col Journal, vol. 8, no. 4, http://www.cisco.com/web/about/ac123/ac147/
archived issues/ipj 8-4/anti-spam efforts.html, 2006.

References 447

[44] N. N. Dalvi, P. M. Domingos, S. K. Sanghai, and D. Verma, “Adversarial
classification,” in KDD, (W. Klm, R. Kohavi, J. Gehrke, and W. DuMouchel,
eds.), pp. 99–108, 2004.

[45] R. Dantu and P. Kolan, “Detecting spam in VoIP networks,” in SRUTI’05:
Proceedings of the Steps to Reducing Unwanted Traffic on the Internet on
Steps to Reducing Unwanted Traffic on the Internet Workshop, pp. 5–5, USA,
Berkeley, CA: USENIX Association, 2005.

[46] J. Deguerre, “The mechanics of Vipul’s Razor,” Network Security, pp. 15–17,
September 2007.

[47] S. J. Delany, P. Cunningham, and L. Coyle, “Case-based reasoning for spam
filtering,” Artificial Intelligence Review, vol. 24, no. 3–4, pp. 359–378, 2005.

[48] T. Dietterich, Statistical Tests for Comparing Supervised Classification Learn-
ing Algorithms. Oregon State University, 1996.

[49] V. Dimitrios and E. M. Ion Androutsopoulos, “A game-theoretic investigation
of the effect of human interactive proofs on spam e-mail,” in CEAS 2007 —
The Fourth Conference on Email and Anti-Spam, 2007.

[50] N. Dimmock and I. Maddison, “Peer-to-peer Collaborative Spam Detection,”
ACM Crossroads, vol. 11, no. 2, 2004.

[51] P. Domingos and M. J. Pazzani, “On the optimality of the simple bayesian
classifier under zero-one loss,” Machine Learning, vol. 29, no. 2–3, pp. 103–130,
1997.

[52] M. Dredze, R. Gevaryahu, and A. Elias-Bachrach, “Learning fast classifiers
for image spam,” in CEAS 2007 — The Third Conference on Email and Anti-
Spam, 2007.

[53] H. Drucker, D. Wu, and V. Vapnik, “Support vector machines for spam cate-
gorization,” IEEE-NN, vol. 10, no. 5, pp. 1048–1054, 1999.

[54] H. Drucker, D. Wu, and V. N. Vapnik, “Support vector machines for spam cat-
egorization,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1048–
1054, 1999.

[55] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in
CRYPTO ’92, 1992.

[56] ECML/PKDD Discovery Challenge, http://www.ecmlpkdd2006.org/
challenge.htm, 2006.

[57] T. Fawcett, “‘In vivo’ spam filtering: A challenge problem for data mining,”
KDD Explorations, vol. 5, no. 2, December 2003.

[58] T. Fawcett, ROC Graphs: Notes and Practical Considerations for Researchers.
HP Laboratories, 2004. http://home.comcast.net/˜tom.fawcett/public html/
papers/ROC101.pdf.

[59] D. Ferris and R. Jennings, “Calculating the Cost of Spam for Your Organiza-
tion,” http://http://www.ferris.com/?p=310061, 2005.

[60] D. Ferris, R. Jennings, and C. Williams, The Global Economic Impact of Spam.
Ferris Research, http://www.ferris.com/?p=309942, 2005.

[61] Final ultimate solution to the spam problem, http://craphound.com/
spamsolutions.txt.

[62] G. Fumera, I. Pillai, and F. Roli, “Spam filtering based on the analysis of text
information embedded into images,” Journal of Machine Learning Research

448 References

(special issue on Machine Learning in Computer Security), vol. 7, pp. 2699–
2720, 12/2006 2006.

[63] W. Gansterer, A. Janecek, and R. Neumayer, “Spam filtering based on latent
semantic indexing,” in SIAM Conference on Data Mining, 2007.

[64] K. R. Gee, “Using latent semantic indexing to filter spam,” in SAC ’03: Pro-
ceedings of the 2003 ACM symposium on Applied Computing, pp. 460–464,
USA, New York, NY: ACM Press, 2003.

[65] Z. Ghahramani, “Unsupervised learning,” in Advanced Lectures in Machine
Learning, pp. 72–112, Lecture Notes in Computer Science, vol. 3176, 2004.

[66] A. S. Glas, J. G. Lijmer, M. H. Prins, G. J. Bonsel, and P. M. M. Bossuyt,
“The diagnostic odds ratio: A single indicator of test performance,” Journal
of Clinical Epidemiology, vol. 56, no. 11, pp. 1129–1135, 2003.

[67] J. Goodman, D. Heckerman, and R. Rounthwaite, “Stopping spam,” Scientific
American, vol. 292, pp. 42–88, April 2005.

[68] J. Goodman and W.-T. Yih, “Online discriminative spam filter training,” in
The Third Conference on Email and Anti-Spam, Mountain View, CA, 2006.

[69] P. Graham, Better Bayesian Filtering. http://www.paulgraham.com/better.
html, 2004.

[70] J. Graham-Cumming, “How to beat an adaptive spam filter,” in The Spam
Conference, 2004.

[71] J. Graham-Cumming, “People and spam,” in The Spam Conference, 2005.
[72] J. Graham-Cumming, “Does Bayesian poisining exist?,” Virus Bulletin,

February 2006.
[73] J. Graham-Cumming, “SpamOrHam,” Virus Bulletin, 2006-06-01.
[74] J. Graham-Cumming, “The rise and fall of image-based spam,” Virus Bulletin,

2006-11-01.
[75] J. Graham-Cumming, “The spammer’s compendium: Five yars on,” Virus

Bulletin, 2007-09-20.
[76] J. Graham-Cumming, “Why I hate challenge-response,” JGC’s Anti-Spam

Newsletter, February 28, 2005.
[77] Greylisting: The next step in the spam control war, http://projects.

puremagic.com/greylisting/, 2003.
[78] B. Guenter, Spam Archive. http://www.untroubled.org/spam/.
[79] K. Gupta, V. Chaudhary, N. Marwah, and C. Taneja, ECML-PKDD Discovery

Challenge Entry. Inductis India Pvt Ltd, 2006.
[80] K. Gupta, V. Chaudhary, N. Marwah, and C. Taneja, “Using positive-only

learning to deal with the heterogeneity of labeled and unlabeled data,” in
Proceedings of ECML/PKDD Discovery Challenge Workshop, Berlin, 2006.

[81] B. Hayes, “How many ways can you spell Viagra?,” American Scientist,
vol. 95, 2007.

[82] J. M. G. Hidalgo, “Evaluating cost-sensitive unsolicited bulk email categoriza-
tion,” in Proceedings of SAC-02, 17th ACM Symposium on Applied Comput-
ing, pp. 615–620, Madrid, ES, 2002.

[83] J. M. G. Hidalgo, “Evaluating cost-sensitive unsolicited bulk email catego-
rization,” in SAC ’02: Proceedings of the 2002 ACM Symposium on Applied
Computing, pp. 615–620, Madrid: ACM Press, March 2002.

References 449

[84] J. M. G. Hidalgo, G. C. Bringas, E. P. Sanz, and F. C. Garcia, “Content based
SMS spam filtering,” in DocEng ’06: Proceedings of the 2006 ACM Symposium
on Document Engineering, pp. 107–114, USA, New York, NY: ACM Press,
2006.

[85] J. M. G. Hidalgo, M. M. López, and E. P. Sanz, “Combining text and heuris-
tics for cost-sensitive spam filtering,” in Proceedings of the 2nd Workshop on
Learning Language in Logic and the 4th Conference on Computational Nat-
ural Language Learning, pp. 99–102, USA, Morristown, NJ: Association for
Computational Linguistics, 2000.

[86] S. Holden, “Spam Filtering II,” Hakin9, 02/2004, pp. 68–77, 2004.
[87] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression. New York:

Wiley, 2000.
[88] J. Hovold, “Naive bayes spam filtering using word-position-based attributes,”

in Proceedings of the 2nd Conference on Email and Anti-Spam (CEAS 2005),
Palo Alto, CA, July 2005.

[89] M. Ilger, J. Strauss, W. Gansterer, and C. Proschinger, The Economy of
Spam. Vol. FA384018-6, Instituted of Distributed and Multimedia Systems,
Univeristy of Vienna, 2006.

[90] T. Joachims, “A probabilistic analysis of the Rocchio algorithm with TFIDF
for text categorization,” in Proceedings of ICML-97, 14th International Con-
ference on Machine Learning, (D. H. Fisher, ed.), pp. 143–151, US, Nashville,
San Francisco: Morgan Kaufmann Publishers, 1997.

[91] T. Joachims, Transductive Inference for Text Classification Using Support Vec-
tor Machines. 1999.

[92] G. H. John and P. Langley, “Estimating continuous distributions in Bayesian
classifiers,” in Eleventh Conference on Uncertainty in Artificial Integelligence,
pp. 338–345, 1995.

[93] Y. Junejo and A. Karim, “A two-pass statistical approach for automatic per-
sonalized spam filtering,” in Proceedings of ECML/PKDD Discovery Chal-
lenge Workshop, Berlin, 2006.

[94] B. Klimt and Y. Yang, “Introducing the Enron corpus,” in CEAS 2004 —
The Conference on Email and Anti-Spam, 2004.

[95] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation
and model selection,” in IJCAI, pp. 1137–1145, 1995.

[96] A. Kolcz and J. Alspector, “SVM-based filtering of E-mail spam with content-
specific misclassification costs,” TextDM 2001 (IEEE ICDM-2001 Workshop
on Text Mining), 2001.

[97] A. Kolcz and A. Chowdhury, “Hardening fingerprints by context,” in CEAS
2007 — The Third Conference on Email and Anti-Spam, 2007.

[98] A. Kolcz and A. Chowdhury, “Lexicon randomization for near-duplicate detec-
tion with I-match,” Journal of Supercomputing, vol. DOI 10.1007/s11227-007-
0171-z, 2007.

[99] A. Kolcz, A. Chowdhury, and J. Alspector, “The impact of feature selection
on signature-driven spam detection,” in CEAS 2004 — The Conference on
Email and Anti-Spam, 2004.

450 References

[100] P. Komarek and A. Moore, “Fast robust logistic regression for large sparse
datasets with binary outputs,” in Artificial Intelligence and Statistics, 2003.

[101] A. Kornblum, “Searching for John Doe: Finding spammers and phishers,” in
CEAS 2004 — The Conference on Email and Anti-Spam, 2004.

[102] S. Kotsiantis, “Supervised learning: A review of classification techniques,”
Informatica, vol. 31, pp. 249–268, 2007.

[103] B. Krebs, “In the fight agains spam E-mail, Goliath wins again,” Washington
Post, May 17 2006.

[104] H. Lee and A. Y. Ng, “Spam deobfuscation using a hidden Markov model,”
in CEAS 2005 – The Second Conference on Email and Anti-Spam, 2005.

[105] S. Lee, I. Jeong, and S. Choi, “Dyamically weighted hidden Markov model for
spam deobfuscation,” in IJCAI 07, pp. 2523–2529, 2007.

[106] J. R. Levine, “Experiences with greylisting,” in CEAS 2005: Second Confer-
ence on Email and Anti-Spam, 2005.

[107] D. D. Lewis and J. Catlett, “Heterogeneous uncertainty sampling for super-
vised learning,” in Proceedings of ICML-94, 11th International Conference on
Machine Learning, (W. W. Cohen and H. Hirsh, eds.), pp. 148–156, US, New
Brunswick, San Francisco: Morgan Kaufmann Publishers, 1994.

[108] D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka, “Training algorithms
for linear text classifiers,” in Proceedings of SIGIR-96, 19th ACM Interna-
tional Conference on Research and Development in Information Retrieval,
(H.-P. Frei, D. Harman, P. Schäuble, and R. Wilkinson, eds.), (Zürich, CH),
pp. 298–306, New York, US: ACM Press, 1996.

[109] K. Li, C. Pu, and M. Ahamad, “Resisting SPAM delivery by TCP damping,”
in CEAS 2004 — The Conference on Email and Anti-Spam, 2004.

[110] B. Lieba and J. Fenton, “DomainKeys identified email (DKIM): Using digital
signatures for domain verification,” in CEAS 2007: The Third Conference on
Email and Anti-Spam, 2007.

[111] B. Lieba, J. Ossher, V. T. Rajan, R. Segal, and M. Wegman, “SMTP path
analysis,” in 2nd Conference on Email and Anti-spam, 2005.

[112] Ling-Spam, PU and Enron Corpora, http://www.iit.demokritos.gr/skel/i-
config/downloads/.

[113] T. Lynam and G. Cormack, TREC Spam Filter Evaluation Took Kit.
http://plg.uwaterloo.ca/˜trlynam/spamjig.

[114] T. R. Lynam and G. V. Cormack, “On-line spam filter fusion,” in 29th ACM
SIGIR Conference on Research and Development on Information Retrieval,
Seattle, 2006.

[115] J. Lyon and M. Wong, Sender-ID: Authenticating E-mail RFC 4406. Internet
Engineering Task Force, 2006.

[116] Mail abuse prevention system, http://www.mail-abuse.com/, 2005.
[117] M. Mangalindan, “For bulk E-mailer, pestering millions offers path to profit,”

Wall Street Journal, November 13, 2002.
[118] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, “The

DET curve in assessment of detection task performance,” in Proceedings of
Eurospeech ’97, pp. 1895–1898, Rhodes, Greece, 1997.

References 451

[119] R. McMillan, “US Court threatens Spamhaus with shut down,” InfoWorld,
October 09 2006.

[120] B. Medlock, “An adaptive, semi-structured language model approach to spam
filtering on a new corpus,” in Proceeding of CEAS 2006 — Third Conference
on Email and Anti-Spam, Mountain View, CA, 2006.

[121] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Naive Bayes — Which
Naive Bayes?,” in Proceedings of CEAS 2006 — Third Conference on Email
and Anti-Spam, Mountain View, CA, 2006.

[122] E. Michelakis, I. Androutsopoulos, G. Paliouras, G. Sakkis, and P. Stam-
atopoulos, “Filtron: A learning-based anti-spam filter,” in Proceedings of the
1st Conference on Email and Anti-Spam (CEAS 2004), Mountain View, CA,
July 2004.

[123] G. Mishne and D. Carmel, Blocking Blog Spam with Language Model Disagree-
ment. 2005.

[124] E. Moustakas, C. Ranganathan, and P. Duquenoy, “Chunk-Kwei: A pattern-
discovery-based System for the automatic identificaton of unsolicited email
messages (spam),” in CEAS 2004 — The Conference on Email and Anti-
Spam, 2004.

[125] J. Niu, J. Xu, J. Yao, J. Zheng, and Q. Sun, “WIM at TREC 2007,” in
Sixteenth Text REtrieval Conference (TREC-2007), Gaithersburg, MD: NIST,
2007.

[126] C. S. Oliveira, F. G. Cozman, and I. Cohen, “Splitting the unsupervised and
supervised components of semi-supervised learning,” in ICML 2005 LPCTD
Workshop, 2005.

[127] R. M. Pampapathi, B. Mirkin, and M. Levene, “A suffix tree approach to
email filtering,” Tech. Rep., Birkbeck University of London, 2005.

[128] C. Perlich, F. Provost, and J. S. Simonoff, “Tree induction vs. logistic regres-
sion: A learning-curve analysis,” Journal of Machanic Learning and Research,
vol. 4, pp. 211–255, 2003.

[129] B. Pfahringer, “A semi-supervised spam mail detector,” in Proceedings of
ECML/PKDD Discovery Challenge Workshop, Berlin, 2006.

[130] Project Honeypot, http://www.projecthoneypot.org/.
[131] C. Pu and S. Webb, “Observed trends in spam construction techniques,” in

Proceedings of CEAS 2006 — Third Conference on Email and Anti-Spam,
Mountain View, CA, 2006.

[132] J. R. Quinlan, C4.5: Programs for Machine Learning. USA, San Francisco,
CA: Morgan Kaufmann Publishers Inc., 1993.

[133] A. Ramachandran, D. Dagon, and N. Feamster, “Can DNS-based blacklists
keep up with bots?,” in CEAS 2006 — The Second Conference on Email and
Anti-Spam, 2006.

[134] E. S. Raymond, D. Relson, M. Andree, and G. Louis, “BogoFilter,”
http://bogofilter.sourceforge.net/, 2004.

[135] F. R. Rideau, Stamps vs. Spam: Postage as a Method to Eliminate Unsolicited
Email. http://fare.tunes.org/articles/stamps vs spam.html, 2002.

[136] G. Robinson, “A statistical approach to the spam problem,” Linux Journal,
vol. 107, no. 3, March 2003.

452 References

[137] R. Roman, J. Zhou, and J. Lopez, “An anti-spam scheme using pre-
challenges,” Computer Communications, vol. 29, no. 15, pp. 2739–2749, 2006.

[138] C. Rossow, “Anti-Spam measures of European ISPs/ESPs: A survey based
analysis of state-of-the-art technologies, current spam trends and recommen-
dations for future-oriented anti-spam concepts,” Institute for Internet Secu-
rity, August 2007.

[139] K. J. Rothman and S. Greenland, Modern epidemiology. Lippinscott Williams
and Wilkins, 1998.

[140] R. Rowland, Spam, Spam, Spam: The Cyberspace Wars. CBC,
http://www.cbc.ca/news/background/spam/, 2004.

[141] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A Bayesian approach
to filtering junk e-mail,” in Learning for Text Categorization: Papers from
the 1998 Workshop, Madison, Wisconsin, AAAI Technical Report WS-98-05,
1998.

[142] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. D. Spy-
ropoulos, and P. Stamatopoulos, “Stacking classifiers for anti-spam filtering
of e-mail,” in Empirical Methods in Natural Language Processing (EMNLP
2001), pp. 44–50, 2001.

[143] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. D. Spyropou-
los, and P. Stamatopoulos, “A memory-based approach to anti-spam filtering
for mailing lists,” Information Retrieval, vol. 6, no. 1, pp. 49–73, 2003.

[144] M. Sasaki and H. Shinnou, “Spam detection using text clustering,” in CW ’05:
Proceedings of the 2005 International Conference on Cyberworlds, pp. 316–319,
USA, Washington, DC: IEEE Computer Society, 2005.

[145] R. E. Schapire and Y. Singer, “Improved boosting using confidence-rated pre-
dictions,” Machine Learning, vol. 37, no. 3, pp. 297–336, 1999.

[146] K. M. Schneider, “A comparison of event models for naive bayes anti-spam e-
mail filtering,” in Proceedings of the 10th Conference of the European Chapter
of the Association for Computational Linguistics, 2003.

[147] D. Sculley, “Online active learning methods for fast label-efficient spam fil-
tering,” in Proceeding of the CEAS 2007 — Fourth Conference on Email and
Anti-Spam, Mountain View, CA, 2007.

[148] D. Sculley and C. E. Brodley, “Compression and machine learning: A new
perspective on feature space vectors,” in Data Compression Conference (DCC
06), pp. 332–341, Snowbird, 2006.

[149] D. Sculley and G. V. Cormack, Filtering Spam in the Presence of Noisy User
Feedback. Tufts University, 2008.

[150] D. Sculley and G. M. Wachman, “Relaxed online support vector machines for
spam filtering,” in 30th ACM SIGIR Conference on Research and Development
on Information Retrieval, Amsterdam, 2007.

[151] D. Sculley and G. M. Wachman, “Relaxed online SVMs in the TREC Spam fil-
tering track,” in Sixteenth Text REtrieval Conference (TREC-2007), Gaithers-
burg, MD: NIST, 2007.

[152] D. Sculley, G. M. Wachman, and C. E. Brodley, “Spam classification with
on-line linear classifiers and inexact string matching features,” in Proceedings

References 453

of the 15th Text REtrieval Conference (TREC 2006), Gaithersburg, MD,
November 2006.

[153] F. Sebastiani, “Machine learning in automated text categorization,” ACM
Computing Surveys, vol. 34, no. 1, pp. 1–47, 2002.

[154] R. Segal, J. Crawford, J. Kephart, and B. Leiba, “SpamGuru: An enterprise
anti-spam filtering system,” in First Conference on Email and Anti-Spam
(CEAS), 2004.

[155] R. Segal, T. Markowitz, and W. Arnold, “Fast uncertainty sampling for label-
ing large e-mail corpora,” in Proceedings of the CEAS 2006 — Third Confer-
ence on Email and Anti-Spam, Mountain View, CA, 2006.

[156] Shakhnarovish, Darrell, and Indyk, Nearest-Neighbor Methods in Learning and
Vision, (Shakhnarovish, ed.), MIT Press, 2005.

[157] V. Sharma and A. O’Donnell, “Fighting spam with reputation systems,” ACM
Queue, November 2005.

[158] C. Siefkes, F. Assis, S. Chhabra, and W. S. Yerazunis, “Combining winnow and
orthogonal sparse bigrams for incremental spam filtering,” in PKDD ’04: Pro-
ceedings of the 8th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases, pp. 410–421, USA, New York, NY: Springer-
Verlag, New York, Inc., 2004.

[159] P. Y. Simard, R. Szeliski, J. Benaloh, J. Couvreur, and I. Calinov, “Using char-
acter recognition and segmentation to tell computer from humans,” in ICDAR
’03: Seventh International Conference on Document Analysis and Recognition,
2003.

[160] J. Snyder, “Spam in the wild, the sequel,” Network World 12/20/04, 2004.
[161] E. Solan and E. Reshef, “The effects of anti-spam methods on spam mail,” in

CEAS 2006 — The Third Conference on Email and Anti-Spam, 2006.
[162] Spam testing methodology, http://www.opus1.com/www/whitepapers/

spamtestmethodology.pdf, 2007.
[163] spamassassin.org, The Spamassassin Public Mail Corpus. http:// spamassas-

sin.apache.org/publiccorpus, 2003.
[164] spamassassin.org, Welcome to SpamAssassin. http://spamassassin.apache.

org, 2005.
[165] Spambase, http://mlearn.ics.uci.edu/databases/spambase/.
[166] J. A. Swets, “Effectiveness of information retrieval systems,” American Doc-

umentation, vol. 20, pp. 72–89, 1969.
[167] T. Takemura and H. Ebara, “Spam mail reduces economic effects,” in Second

International Conference on the Digital Society, pp. 20–24, 2008.
[168] W. Tau Yih, R. McCann, and A. Kolcz, “Improving spam filtering by detecting

gray mail,” in Proceedings of CEAS 2007 — Fourth Conference on Email and
Anti-Spam, Mountain View, CA, 2007.

[169] D. M. J. Tax and C. Veenman, “Tuning the hyperparameter of an AUC-
optimized classifier,” in Seventeenth Belgium-Netherlands Conference on Arti-
ficial Intelligence, pp. 224–231, 2005.

[170] The CEAS 2007 Live Spam Challenge, http://www.ceas.cc/2007/
challenge/challenge.html, 2007.

454 References

[171] The penny black project, http://research.microsoft.com/research/sv/Penny
Black/.

[172] TREC 2005 Spam Corpus, http://plg.uwaterloo.ca/˜gvcormac/treccorpus,
2005.

[173] TREC 2006 Spam Corpora, http://plg.uwaterloo.ca/˜gvcormac/treccorpus,
2006.

[174] TREC 2007 Spam Corpus, http://plg.uwaterloo.ca/˜gvcormac/treccorpus,
2007.

[175] K. Tretyakov, “Machine learning techniques in spam filtering,” Tech. Rep.,
Institute of Computer Science, University of Tartu, 2004.

[176] N. Trogkanis and G. Paliouras, “Using positive-only learning to deal with the
heterogeneity of labeled and unlabeled data,” in Proceedings of ECML/PKDD
Discovery Challenge Workshop, Berlin, 2006.

[177] H. Tschabitscher, What you Need to Know about Challenge-Response Spam
Filters. http://email.about.com/cs/spamgeneral/a/challenge resp.htm.

[178] D. Turner, M. Fossi, E. Johnson, T. Mack, J. Blackbird, S. Entwisle,
M. K. Low, D. McKinney, and C. Wueest, Symantec Global Inter-
net Security Threat Report: Trends for July-December 07. Symantec,
http://eval.symantec.com/mktginfo/enterprise/white papers/b-whitepaper
internet security threat report xiii 04-2008.en-us.pdf, 2007.

[179] A. Tuttle, E. Milios, and N. Kalyaniwalla, “An evaluation of machine learning
techniques for enterprise spam filters,” Technical Report CS-2004-03, Halifax,
NS: Dalhousie University, 2004.

[180] C. J. Van Rijsbergen, Information Retrieval. Department of Computer Sci-
ence, University of Glasgow, Second ed., 1979.

[181] Veritest Anti-Spam Benchmark Service Autumn 2005 Report http://
www.tumbleweed.com/pdfs/VeriTest Anti-Spam Report Vol4 all c.pdf, 2005.

[182] E. Voorhees, Fourteenth Text REtrieval Conference (TREC-2005). Gaithers-
burg, MD: NIST, 2005.

[183] E. Voorhees, Fifteenth Text REtrieval Conference (TREC-2005). Gaithers-
burg, MD: NIST, 2006.

[184] E. Voorhees, Sixteenth Text REtrieval Conference (TREC-2005). Gaithers-
burg, MD: NIST, 2007.

[185] E. M. Voorhees and D. K. Harman, eds., TREC — Experiment and Evaluation
in Information Retrieval. Boston: MIT Press, 2005.

[186] Z. Wang, W. Josephson, Q. LV, M. Charikar, and K. Li, “Filtering image
spam with near-duplicate detection,” in CEAS 2007 — The Third Conference
on Email and Anti-Spam, 2007.

[187] Web Spam Challenge, 2008.
[188] S. Webb, J. Caverloo, and C. Pu, “Introducing the webb spam corpus: Using

email spam to identify web spam automatically,” in Proceedings of CEAS 2006
— Third Conference on Email and Anti-Spam, Mountain View, CA, 2006.

[189] West Coast Labs, http://www.westcoastlabs.com.
[190] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree

weighting method: Basic properties,” IEEE Transactions on Information The-
ory, vol. 41, no. 3, pp. 653–664, 1995.

References 455

[191] G. L. Wittel and S. F. Wu, “On attacking statistical spam filters,” in CEAS
2004 — The Conference on Email and Anti-Spam, 2004.

[192] I. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. Cunningham, Weka:
Practical Machine Learning Tools and Techniques with Java Implementations.
1999.

[193] M. Wong and W. Schlitt, Sender Policy Framework (SPF) for Authorizing
Use of Domains in E-mail. Vol. RFC 4408, 2006.

[194] W. Yerazunis, Correspondence with Paul Graham. http://www. paulgra-
ham.com/wsy.html, 16 October 2002.

[195] W. S. Yerazunis, CRM114 — the Controllable Regex Mutilator.
http://crm114.sourceforge.net/, 2004.

[196] W. S. Yerazunis, “The spam-filtering accuracy plateau at 99.9% accuracy and
how to get past it,” in 2004 MIT Spam Conference, January 2004.

[197] W. S. Yerazunis, “Seven hypothesis about spam filtering,” in Proceedings 15th
Text REtrieval Conference (TREC 2006), NIST, Gaithersburg, MD, Novem-
ber 2006.

[198] W. S. Yerazunis, “Seven Hypothesis about Spam,” in Sixteenth Text REtrieval
Conference (TREC-2007), Gaithersburg, MD: NIST, 2007.

[199] W. Yih, J. Goodman, and G. Hulten, “Learning at low false positive rates,”
in Proceedings of the 3rd Conference on Email and Anti-Spam, 2006.

[200] X. Yue, A. Abraham, Z.-X. Chi, Y.-Y. Hao, and H. Mo, “Artificial immune
system inspired behavior-based anti-spam filter,” Soft Computing, vol. 11,
pp. 729–740, 2007.

[201] L. Zhang, J. Zhu, and T. Yao, “An evaluation of statistical spam filtering
techniques,” ACM Transactions on Asian Language Information Processing
(TALIP), vol. 3, no. 4, pp. 243–269, 2004.

[202] W. Zhao and Z. Zhang, “An email classification model based on rough set
theory,” in Active Media Technology, 2005. (AMT 2005), 2005.

[203] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf, “Learning with
local and global consistency,” in 18th Annual Conference on Neural Informa-
tion Processing Systems, 2003.

[204] X. Zhu, Semi-supervised Learning Literature Survey. Vol. TR 1530, University
of Wisconsin, 2007.

[205] A. Zien, “Semi-supervised support vector machines and application to spam
filtering,” in Oral Presentation, ECML/PKDD Discovery Challenge Work-
shop, Berlin, 2006.

[206] A. Zinman and J. Donath, “Is Britney Spears spam?,” in Proceedings of CEAS
2007 — Fourth Conference on Email and Anti-Spam, Mountain View, CA,
2007.

