
This paper is included in the Proceedings of the

13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’16).

March 16–18, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-29-4

Open access to the Proceedings of the

13th USENIX Symposium on

Networked Systems Design and

Implementation (NSDI ’16)

is sponsored by USENIX.

Embark: Securely Outsourcing
Middleboxes to the Cloud

Chang Lan, Justine Sherry, Raluca Ada Popa, and Sylvia Ratnasamy, University of California,

Berkeley; Zhi Liu, Tsinghua University

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/lan

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 255

Embark: Securely Outsourcing Middleboxes to the Cloud

Chang Lan Justine Sherry Raluca Ada Popa Sylvia Ratnasamy Zhi Liu*

UC Berkeley *Tsinghua University

Abstract

It is increasingly common for enterprises and other

organizations to outsource network processing to the

cloud. For example, enterprises may outsource fire-

walling, caching, and deep packet inspection, just as

they outsource compute and storage. However, this poses

a threat to enterprise confidentiality because the cloud

provider gains access to the organization’s traffic.

We design and build Embark, the first system that en-

ables a cloud provider to support middlebox outsourcing

while maintaining the client’s confidentiality. Embark en-

crypts the traffic that reaches the cloud and enables the

cloud to process the encrypted traffic without decrypting

it. Embark supports a wide-range of middleboxes such as

firewalls, NATs, web proxies, load balancers, and data ex-

filtration systems. Our evaluation shows that Embark sup-

ports these applications with competitive performance.

1 Introduction

Middleboxes such as firewalls, NATs, and proxies,

have grown to be a vital part of modern networks,

but are also widely recognized as bringing significant

problems including high cost, inflexibility, and complex

management. These problems have led both research

and industry to explore an alternate approach: moving

middlebox functionality out of dedicated boxes and into

software applications that run multiplexed on commodity

server hardware [53, 52, 54, 29, 37, 28, 27, 14, 8]. This ap-

proach – termed Network Function Virtualization (NFV)

in industry – promises many advantages including the

cost benefits of commodity infrastructure and outsourced

management, the efficiency of statistical multiplexing,

and the flexibility of software solutions. In a short time,

NFV has gained a significant momentum with over 270

industry participants [27] and a number of emerging

product offerings [1, 7, 6].

Leveraging the above trend, several efforts are explor-

ing a new model for middlebox deployment in which

a third-party offers middlebox processing as a service.

Such a service may be hosted in a public cloud [54, 13, 17]

or in private clouds embedded within an ISP infrastruc-

ture [14, 11]. This service model allows customers such

as enterprises to “outsource” middleboxes from their

networks entirely, and hence promises many of the known

benefits of cloud computing such as decreased costs and

ease of management.

However, outsourcing middleboxes brings a new chal-

lenge: the confidentiality of the traffic. Today, in order to

process an organization’s traffic, the cloud sees the traffic

unencrypted. This means that the cloud now has access

to potentially sensitive packet payloads and headers. This

is worrisome considering the number of documented

data breaches by cloud employees or hackers [23, 60].

Hence, an important question is: can we enable a third

party to process traffic for an enterprise, without seeing

the enterprise’s traffic?

To address this question, we designed and imple-

mented Embark1, the first system to allow an enterprise

to outsource a wide range of enterprise middleboxes

to a cloud provider, while keeping its network traffic

confidential. Middleboxes in Embark operate directly

over encrypted traffic without decrypting it.

In previous work, we designed a system called Blind-

Box to operate on encrypted traffic for a specific class

of middleboxes: Deep Packet Inspection (DPI) [55] –

middleboxes that examine only the payload of packets.

However, BlindBox is far from sufficient for this setting

because (1) it has a restricted functionality that supports

too few of the middleboxes typically outsourced, and (2)

it has prohibitive performance overheads in some cases.

We elaborate on these points in §2.4.

Embark supports a wide range of middleboxes with

practical performance. Table 1 shows the relevant mid-

dleboxes and the functionality Embark provides. Embark

achieves this functionality through a combination of

systems and cryptographic innovations, as follows.

From a cryptographic perspective, Embark provides a

new and fast encryption scheme called PrefixMatch to en-

able the provider to perform prefix matching (e.g., if an IP

address is in the subdomain 56.24.67.0/16) or port range

detection (e.g., if a port is in the range 1000-2000). Prefix-

Match allows matching an encrypted packet field against

an encrypted prefix or range using the same operators as

for unencrypted data: ≥ and prefix equality. At the same

time, the comparison operators do not work when used

between encrypted packet fields. Prior to PrefixMatch,

there was no mechanism that provided the functionality,

performance, and security needed in our setting. The clos-

est practical encryption schemes are Order-Preserving

Encryption (OPE) [21, 48]. However, we show that

these schemes are four orders of magnitude slower than

1This name comes from “mb” plus “ark”, a shortcut for middlebox

and a synonym for protection, respectively.

256 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Middlebox Functionality Support Scheme
L

3
/L

4
H

ea
d
er

IP Firewall [66]
(SIP, DIP, SP, DP, P)∈(SIP[], DIP[], SP[], DP[], P)

⇔Enc(SIP, DIP, SP, DP, P)∈Enc(SIP[], DIP[], SP[], DP[], P)
Yes PrefixMatch

NAT (NAPT) [57]

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇒Enc(SIP1,SP1)=Enc(SIP2,SP2)

Enc(SIP1,SP1)=Enc(SIP2,SP2)⇒(SIP1,SP1)=(SIP2,SP2)

Yes PrefixMatch

L3 LB (ECMP) [58]
(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇔Enc(SIP1,DIP1,SP1,DP1,P1) = Enc(SIP2,DIP2,SP2,DP2,P2)
Yes PrefixMatch

L4 LB [4]
(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇔Enc(SIP1,DIP1,SP1,DP1,P1) = Enc(SIP2,DIP2,SP2,DP2,P2)
Yes PrefixMatch

H
T

T
P

HTTP Proxy

/ Cache [25, 4, 10]

Match(Request-URI, HTTP Header)
=Match�(Enc(Request-URI), Enc(HTTP Header))

Yes KeywordMatch

D
ee

p
P

ac
k
et

In
sp

ec
ti

o
n

(D
P

I) Parental Filter [10]
Match(Request-URI, HTTP Header)
=Match�(Enc(Request-URI), Enc(HTTP Header))

Yes KeywordMatch

Data Exfiltration

/ Watermark

Detection [56]

Match(Watermark, Stream)
=Match�(Enc(Watermark), Enc(Stream))

Yes KeywordMatch

Match(Keyword, Stream)=
Match�(Enc(Keyword), Enc(Stream))

Yes KeywordMatch

Intrusion

Detection [59, 47]

RegExpMatch(RegExp, Stream)
=RegExpMatch�(Enc(RegExp), Enc(Stream))

Partially KeywordMatch

Run scripts,

cross-flow analysis, or other advanced (e.g. statistical) tools
No -

Table 1: Middleboxes supported by Embark. The second column indicates an encryption functionality that is sufficient to support

the core functionality of the middlebox. Appendix §A demonstrates this sufficiency. “Support” indicates whether Embark supports

this functionality and “Scheme” is the encryption scheme Embark uses to support it. Legend: Enc denotes a generic encryption

protocol, SIP = source IP address, DIP = destination IP, SP = source port, DP = destination port, P = protocol, E[] = a range of E,

⇔ denotes “if and only if”, Match(x,s) indicates if x is a substring of s, and Match� is the encrypted equivalent of Match. Thus,

(SIP, DIP, SP, DP, P) denotes the tuple describing a connection.

PrefixMatch making them infeasible for our network

setting. At the same time, PrefixMatch provides stronger

security guarantees than these schemes: PrefixMatch

does not reveal the order of encrypted packet fields, while

OPE reveals the total ordering among all fields. We de-

signed PrefixMatch specifically for Embark’s networking

setting, which enabled such improvements over OPE.

From a systems design perspective, one of the key in-

sights behind Embark is to keep packet formats and header

classification algorithms unchanged. An encrypted IP

packet is structured just as a normal IP packet, with

each field (e.g., source address) containing an encrypted

value of that field. This strategy ensures that encrypted

packets never appear invalid, e.g., to existing network

interfaces, forwarding algorithms, and error checking.

Moreover, due to PrefixMatch’s functionality, header-

based middleboxes can run existing highly-efficient

packet classification algorithms [34] without modifi-

cation, which are among the more expensive tasks in

software middleboxes [52]. Furthermore, even software-

based NFV deployments use some hardware forwarding

components, e.g. NIC multiqueue flow hashing [5],

‘whitebox’ switches [12], and error detection in NICs and

switches [5, 2]; Embark is also compatible with these.

Embark’s unifying strategy was to reduce the core func-

tionality of the relevant middleboxes to two basic opera-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 257

tions over different fields of a packet: prefix and keyword

matching, as listed in Table 1. This results in an encrypted

packet that simultaneously supports these middleboxes.

We implemented and evaluated Embark on EC2.

Embark supports the core functionality of a wide-range

of middleboxes as listed in Table 1, and elaborated in

Appendix A. In our evaluation, we showed that Embark

supports a real example for each middlebox category in

Table 1. Further, Embark imposes negligible throughput

overheads at the service provider: for example, a single-

core firewall operating over encrypted data achieves

9.8Gbps, equal to the same firewall over unencrypted

data. Our enterprise gateway can tunnel traffic at 9.6

Gbps on a single core; a single server can easily support

10Gbps for a small-medium enterprise.

2 Overview

In this section, we present an overview of Embark.

2.1 System Architecture
Embark uses the same architecture as APLOMB [54],

a system which redirects an enterprise’s traffic to the

cloud for middlebox processing. Embark augments this

architecture with confidentiality protection.

In the APLOMB setup, there are two parties: the enter-

prise(s) and the service provider or cloud (SP). The enter-

prise runs a gateway (GW) which sends traffic to middle-

boxes (MB) running in the cloud; in practice, this cloud

may be either a public cloud service (such as EC2), or an

ISP-supported service running at a Central Office (CO).

We illustrate the two redirection setups from APLOMB

in Fig. 1. The first setup, in Fig. 1(a), occurs when the

enterprise communicates with an external site: traffic

goes to the cloud and back before it is sent out to the

Internet. It is worth mentioning that APLOMB allows an

optimization that saves on bandwidth and latency relative

to Fig. 1(a): the traffic from SP can go directly to the exter-

nal site and does not have to go back through the gateway.

Embark does not allow this optimization fundamentally:

the traffic from SP is encrypted and cannot be understood

by an external site. Nonetheless, as we demonstrate in §6,

for ISP-based deployments this overhead is negligible.

For traffic within the same enterprise, where the key is

known by two gateways owned by the same company, we

can support the optimization as shown in Fig. 1(b).

We do not delve further into the details and motivation

of APLOMB’s setup, but instead refer the reader to [54].

2.2 Threat Model
Clients adopt cloud services for decreased cost and ease

of management. Providers are known and trusted to

provide good service. However, while clients trust cloud

providers to perform their services correctly, there is an

increasing concern that cloud providers may access or

leak confidential data in the process of providing service.

Reports in the popular press describe companies selling

customer data to marketers [20], disgruntled employees

snooping or exporting data [16], and hackers gaining

access to data on clouds [60, 23]. This type of threat is

referred to as an ‘honest but curious’ or ‘passive’ [33]

attacker: a party who is trusted to handle the data and

deliver service correctly, but who looks at the data, and

steals or exports it. Embark aims to stop these attackers.

Such an attacker differs from the ‘active’ attacker, who

manipulates data or deviates from the protocol it is sup-

posed to run [33]. We consider that such a passive attacker

has gained access to all the data at SP. This includes any

traffic and communication SP receives from the gateway,

any logged information, cloud state, and so on.

We assume that the gateways are managed by the en-

terprise and hence trusted; they do not leak information.

Some middleboxes (such as intrusion or exfiltration

detection) have a threat model of their own about the two

endpoints communicating. For example, intrusion detec-

tion assumes that one of the endpoints could misbehave,

but at most one of them misbehaves [47]. We preserve

these threat models unchanged. These applications rely

on the middlebox to detect attacks in these threat models.

Since we assume the middlebox executes its functions

correctly and Embark preserves the functionality of these

middleboxes, these threat models are irrelevant to the

protocols in Embark, and we will not discuss them again.

2.3 Encryption Overview

To protect privacy, Embark encrypts the traffic passing

through the service provider (SP). Embark encrypts both

the header and the payload of each packet, so that SP does

not see this information. We encrypt headers because

they contain information about the endpoints.

Embark also provides the cloud provider with a set of

encrypted rules. Typically, header policies like firewall

rules are generated by a local network administrator.

Hence, the gateway knows these rules, and these rules

may or may not be hidden from the cloud. DPI and

filtering policies, on the other hand, may be private to

the enterprise (as in exfiltration policies), known by both

parties (as in public blacklists), or known only by the

cloud provider (as in proprietary malware signatures).

We discuss how rules are encrypted, generated and

distributed given these different trust settings in §4.2.

As in Fig. 1, the gateway has a secret key k; in the setup

with two gateways, they share the same secret key. At

setup time, the gateway generates the set of encrypted

rules using k and provides them to SP. Afterwards, the

gateway encrypts all traffic going to the service provider

using Embark’s encryption schemes. The middleboxes at

SP process encrypted traffic, comparing the traffic against

the encrypted rules. After the processing, the middleboxes

will produce encrypted traffic which SP sends back to the

258 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Enterprise

client

External site

gateway

Service
provider

middleboxes

(a) Enterprise to external site communication

Enterprise 1

client
gateway 1

Enterprise 2

server
gateway 2

middleboxes

Service provider

(b) Enterprise to enterprise communication

Figure 1: System architecture. APLOMB and NFV system setup with Embark encryption at the gateway. The arrows indicate traffic

from the client to the server; the response traffic follows the reverse direction.

gateway. The gateway decrypts the traffic using the key k.

Throughout this process, middleboxes at SP handle

only encrypted traffic and never access the decryption

key. On top of Embark’s encryption, the gateway can

use a secure tunneling protocol, such as SSL or IPSec to

secure the communication to SP.

Packet encryption. A key idea is to encrypt packets

field-by-field. For example, an encrypted packet will

contain a source address that is an encryption of the

original packet’s source address. We ensure that the

encryption has the same size as the original data, and

place any additional encrypted information or metadata

in the options field of a packet. Embark uses three encryp-

tion schemes to protect the privacy of each field while

allowing comparison against encrypted rules at the cloud:

• Traditional AES: provides strong security and no

computational capabilities.

• KeywordMatch: allows the provider to detect if an

encrypted value in the packet is equal to an encrypted

rule; does not allow two encrypted values to be

compared to each other.

• PrefixMatch: allows the provider to detect whether or

not an encrypted value lies in a range of rule values –

e.g. addresses in 128.0.0.0/24 or ports between 80-96.

We discuss these cryptographic algorithms in §3.

For example, we encrypt IP addresses using Prefix-

Match. This allows, e.g., a firewall to check whether the

packet’s source IP belongs to a prefix known to be con-

trolled by a botnet – but without learning what the actual

source IP address is. We choose which encryption scheme

is appropriate for each field based on a classification of

middlebox capabilities as in Table 1. In the same table,

we classify middleboxes as operating only over L3/L4

headers, operating only over L3/L4 headers and HTTP

headers, or operating over the entire packet including

arbitrary fields in the connection bytestream (DPI). We

revisit each category in detail in §5.

All encrypted packets are IPv6 because PrefixMatch

requires more than 32 bits to encode an encrypted IP

address and because we expect more and more service

providers to be moving to IPv6 by default in the future.

This is a trivial requirement because it is easy to convert

from IPv4 to IPv6 (and back) [42] at the gateway. Clients

may continue using IPv4 and the tunnel connecting the

gateway to the provider may be either v4 or v6.

Example. Fig. 2 shows the end-to-end flow of a packet

through three example middleboxes in the cloud, each

middlebox operating over an encrypted field. Suppose the

initial packet was IPv4. First, the gateway converts the

packet from IPv4 to IPv6 and encrypts it. The options field

now contains some auxiliary information which will help

the gateway decrypt the packet later. The packet passes

through the firewall which tries to match the encrypted

information from the header against its encrypted rule,

and decides to allow the packet. Next, the exfiltration

device checks for any suspicious (encrypted) strings in

data encrypted for DPI and not finding any, it allows the

packet to continue to the NAT. The NAT maps the source

IP address to a different IP address. Back at the enterprise,

the gateway decrypts the packet, except for the source IP

written by the NAT. It converts the packet back to IPv4.

2.4 Architectural Implications and Com-

parison to BlindBox
When compared to BlindBox, Embark provides broader

functionality and better performance. Regarding

functionality, BlindBox [55] enables equality-based

operations on encrypted payloads of packets, which

supports certain DPI devices. However, this excludes

middleboxes such as firewalls, proxies, load balancers,

NAT, and those DPI devices that also examine packet

headers, because these need an encryption that is com-

patible with packet headers and/or need to perform range

queries or prefix matching.

The performance improvement comes from the differ-

ent architectural setting of Embark, which provides a set

of interesting opportunities. In BlindBox, two arbitrary

user endpoints communicate over a modified version of

HTTPS. BlindBox requires 97 seconds to perform the

initial handshake, which must be performed for every

new connection. However, in the Embark context, this

exchange can be performed just once at the gateway

because the connection between the gateway and the

cloud provider is long-lived. Consequently, there is no

per-user-connection overhead.

The second benefit is increased deployability. In Em-

bark, the gateway encrypts traffic whereas in BlindBox

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 259

gateway

rewall

block from
19::*/8

exltration

detection
match

0xE932CB?

NAT
client

sourceIP: 128.0...
destIP: 28.1...
payload: password

sourceIP: 8:9::

destIP: 199:2::

options: x78d1

payload: x582A

sourceIP: 8:9::

destIP: 199:2::

options: x78d1

payload: x582A

sourceIP: 0::ffff:8.8.8.8

destIP: 199:2::

options: x78d1

payload: x582A

gateway
sourceIP: 8.8.8.8
destIP: 28.1...
payload: password

server

no!allow!

from: 8:9::

to: 0:ffff:8.8.8.8

Figure 2: Example of packet flow through a few middleboxes. Red in bold indicates encrypted data.

the end hosts do. Hence, deployability improves because

the end hosts do not need to be modified.

Finally, security improves in the following way. Blind-

Box has two security models: a stronger one to detect

rules that are ‘exact match’ substrings, and a weaker one

to detect rules that are regular expressions. The more

rules there are, the higher the per-connection setup cost is.

Since there is no per-connection overhead in Embark, we

can afford having more rules. Hence, we convert many

regular expressions to a set of exact-match strings. For

example /hello[1-3]/ is equivalent to exact matches on

"hello1", "hello2", "hello3". Nonetheless, many regular

expressions remain too complex to do so – if the set of

potential exact matches is too large, we leave it as a reg-

ular expression. As we show in §6, this approach halves

the number of rules that require using the weaker security

model, enabling more rules in the stronger security model.

In the rest of the paper, we do not revisit these archi-

tectural benefits, but focus on Embark’s new capabilities

that allow us to outsource a complete set of middleboxes.

2.5 Security guarantees

We formalize and prove the overall guarantees of Embark

in our extended paper. In this version, we provide only a

high-level description. Embark hides the values of header

and payload data, but reveals some information desired

for middlebox processing. The information revealed is

the union of the information revealed by PrefixMatch

and KeywordMatch, as detailed in §3. Embark reveals

more than is strictly necessary for the functionality, but it

comes close to this necessary functionality. For example,

a firewall learns if an encrypted IP address matches an

encrypted prefix, without learning the value of the IP

address or the prefix. A DPI middlebox learns whether a

certain byte offset matches any string in a DPI ruleset.

3 Cryptographic Building Blocks

In this section, we present the building blocks Embark

relies on. Symmetric-key encryption (based on AES)

is well known, and we do not discuss it here. Instead,

we briefly discuss KeywordMatch (introduced by [55],

to which we refer the reader for details) and more

extensively discuss PrefixMatch, a new cryptographic

scheme we designed for this setting. When describing

these schemes, we refer to the encryptor as the gateway

whose secret key is k and to the entity computing on the

encrypted data as the service provider (SP).

3.1 KeywordMatch
KeywordMatch is an encryption scheme using which SP

can check if an encrypted rule (the “keyword”) matches

by equality an encrypted string. For example, given an

encryption of the rule “malicious”, and a list of encrypted

strings [Enc(“alice”), Enc(“malicious”), Enc(“alice”)],

SP can detect that the rule matches the second string, but

it does not learn anything about the first and third strings,

not even that they are equal to each other. KeywordMatch

provides typical searchable security guarantees, which

are well studied: at a high level, given a list of encrypted

strings, and an encrypted keyword, SP does not learn

anything about the encrypted strings, other than which

strings match the keyword. The encryption of the strings

is randomized, so it does not leak whether two encrypted

strings are equal to each other, unless, of course, they

both match the encrypted keyword. We use the scheme

from [55] and hence do not elaborate on it.

3.2 PrefixMatch
Many middleboxes perform detection over prefixes or

ranges of IP addresses or port numbers (i.e. packet clas-

sification). To illustrate PrefixMatch, we use IP addresses

(IPv6), but the scheme works with ports and other value

domains too. For example, a network administrator

might wish to block access to all servers hosted by MIT,

in which case the administrator would block access to

the prefix 0::ffff:18.0.0.0/104, i.e., 0::ffff:18.0.0.0/104–

0::ffff:18.255.255.255/104. PrefixMatch enables a mid-

dlebox to tell whether an encrypted IP address v lies in an

encrypted range [s1, e1], where s1 = 0::ffff:18.0.0.0/104

and e1 = 0::ffff:18.255.255.255/104. At the same time,

the middlebox does not learn the values of v, s1, or e1.

One might ask whether PrefixMatch is necessary,

or one can instead employ KeywordMatch using the

same expansion technique we used for some (but not

all) regexps in §2.4. To detect whether an IP address

is in a range, one could enumerate all IP addresses in

that range and perform an equality check. However, the

overhead of using this technique for common network

ranges such as firewall rules is prohibitive. For our own

department network, doing so would convert our IPv6

and IPv4 firewall rule set of only 97 range-based rules to

260 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

2238 exact-match rules; looking only at IPv4 rules would

still lead to 38M exact-match rules. Hence, for efficiency,

we need a new scheme for matching ranges.

Requirements. Supporting the middleboxes from

Table 1 and meeting our system security and performance

requirements entail the following requirements in design-

ing PrefixMatch. First, PrefixMatch must allow for direct

order comparison (i.e., using ≤/≥) between an encrypted

value Enc(v) and the encrypted endpoints s1 and e1 of a

range, [s1,e1]. This allows existing packet classification

algorithms, such as tries, area-based quadtrees, FIS-trees,

or hardware-based algorithms [34], to run unchanged.

Second, to support the functionality of NAT as in

Table 1, Enc(v) must be deterministic within a flow.

Recall that a flow is a 5-tuple of source IP and port,

destination IP and port, and protocol. Moreover, the

encryption corresponding to two pairs (IP1, port1) and

(IP2, port2) must be injective: if the pairs are different,

their encryption should be different.

Third, for security, we require that nothing leaks about

the value v other than what is needed by the functionality

above. Note that Embark’s middleboxes do not need to

know the order between two encrypted values Enc(v1)
and Enc(v2), but only comparison to endpoints; hence,

PrefixMatch does not leak such order information.

PrefixMatch also provides protection for the endpoints of

ranges: SP should not learn their values, and SP should not

learn the ordering of the intervals. Further, note that the

NAT does not require that Enc(v) be deterministic across

flows; hence, PrefixMatch hides whether two IP addresses

encrypted as part of different flows are equal or not. In

other words, PrefixMatch is randomized across flows.

Finally, both encryption (performed at the gateway)

and detection (performed at the middlebox) should be

practical for typical middlebox line rates. Our Prefix-

Match encrypts in < 0.5µs per value (as we discuss in

§6), and the detection is the same as regular middleboxes

based on the ≤/≥ operators.

Functionality. PrefixMatch encrypts a set of ranges

or prefixes P1, ... , Pn into a set of encrypted prefixes.

The encryption of a prefix Pi consists of one or more

encrypted prefixes: Pi,1...,Pi,ni
. Additionally, PrefixMatch

encrypts a value v into an encrypted value Enc(v). These

encryptions have the property that, for all i,

v∈Pi⇔Enc(v)∈Pi,1∪···∪Pi,ni
.

In other words, the encryption preserves prefix matching.

For example, suppose that encrypting P =

0::ffff:18.0.0.0/104 results in one encrypted prefix

P = 1234::/16, encrypting v1 = 0::ffff:18.0.0.2 re-

sults in v1 = 1234:db80:85a3:0:0:8a2e:37a0:7334,

and encrypting v2 = 0::ffff:19.0.0.1 results in v2 =

dc2a:108f:1e16:992e:a53b:43a3:00bb:d2c2. We can see

that v1∈P and v2 /∈P.

0:…:0 ffff:...:ffff

P1

I1 I2 I3 I4I0

P0

P2

Figure 3: Example of prefix encryption with PrefixMatch.

3.2.1 Scheme

PrefixMatch consists of two algorithms: EncryptPrefixes

to encrypt prefixes/ranges and EncryptValue to encrypt a

value v.

Prefixes’ Encryption. PrefixMatch takes as input a set

of prefixes or ranges P1 = [s1,e1],...,Pn = [sn,en], whose

endpoints have size len bits. PrefixMatch encrypts each

prefix into a set of encrypted prefixes: these prefixes are

prefix_len bits long. As we discuss below, the choice of

prefix_len depends on the maximum number of prefixes

to be encrypted. For example, prefix_len=16 suffices for

a typical firewall rule set.

Consider all the endpoints si and ei laid out on an

axis in increasing order as in Fig. 3. Add on this axis the

endpoints of P0, the smallest and largest possible values,

0 and 2len−1. Consider all the non-overlapping intervals

formed by each consecutive pair of such endpoints. Each

interval has the property that all points in that interval

belong to the same set of prefixes. For example, in Fig. 3,

there are two prefixes to encrypt: P1 and P2. PrefixMatch

computes the intervals I0, ... , I4. Two or more prefix-

es/ranges that overlap in exactly one endpoint define a

one-element interval. For example, consider encrypting

these two ranges [13::/16, 25::/16] and [25::/16, 27::/16];

they define three intervals: [13::/16, 25::/16-1], [25::/16,

25::/16], [25::/16+1, 27::/16].

Each interval belongs to a set of prefixes. Let

prefixes(I) denote the prefixes of interval I. For example,

prefixes(I2)={P0,P1,P2}.

PrefixMatch now assigns an encrypted prefix to each

interval. The encrypted prefix is simply a random number

of size prefix_len. Each interval gets a different random

value, except for intervals that belong to the same pre-

fixes. For example, in Fig. 3, intervals I0 and I4 receive the

same random number because prefixes(I0)=prefixes(I4).

When a prefix overlaps partially with another prefix,

it will have more than one encrypted prefix because it is

broken into intervals. For example, I1 was assigned a ran-

dom number of 0x123c and I2 of 0xabcc. The encryption

of P1 in Fig. 3 will be the pair (123c ::/16, abcc ::/16).

Since the encryption is a random prefix, the encryption

does not reveal the original prefix. Moreover, the fact that

intervals pertaining to the same set of prefixes receive the

same encrypted number hides where an encrypted value

matches, as we discuss below. For example, for an IP

address v that does not match either P1 or P2, the cloud

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 261

provider will not learn whether it matches to the left or

to the right of P1 ∪P2 because I0 and I4 receive the same

encryption. The only information it learns about v is that

v does not match either P1 or P2.

We now present the EncryptPrefixes procedure, which

works the same for prefixes or ranges.

EncryptPrefixes (P1, ..., Pn, prefix_len, len):

1: Let si and ei be the endpoints of Pi. // Pi =[si,ei]

2: Assign P0← [0,2len−1]

3: Sort all endpoints in ∪iPi in increasing order

4: Construct non-overlapping intervals I0, ... , Im

from the endpoints as explained above. For each

interval Ii, compute prefixes(Ii), the list of prefixes

Pi1 ,...,Pim that contain Ii.

5: Let I0, ... , Im each be a distinct random value of

size prefix_len.

6: For all i, j with i < j if prefixes(Ii) = prefixes(I j),
set I j ← Ii

7: The encryption of Pi is Pi =
{I j/prefix_len, for all j s.t. Pi ∈ prefixes(I j)}.

The encrypted prefixes are output sorted by value

(as a means of randomization).

8: Output P1,..., Pn and the interval map [Ii→ Ii]

Value Encryption. To encrypt a value v, PrefixMatch

locates the one interval I such that v ∈ I. It then looks up

I in the interval map computed by EncryptPrefixes and

sets I to be the prefix of the encryption of v. This ensures

that the encrypted v, v, matches I/prefix_len. The suffix

of v is chosen at random. The only requirement is that

it is deterministic. Hence, the suffix is chosen based on

a pseudorandom function [32], prfsuffix_len, seeded in a

given seed seed, where suffix_len = len− prefix_len. As

we discuss below, the seed used by the gateway depends

on the 5-tuple of a connection (SIP, SP, DIP, DP, P).

For example, if v is 0::ffff:127.0.0.1, and the assigned

prefix for the matched interval is abcd :: /16, a possible

encryption given the ranges encrypted above is Enc(v)=
abcd : e f 01 : 2345 : 6789 : abcd : e f 01 : 2345 : 6789. Note

that the encryption does not retain any information about

v other than the interval it matches in because the suffix

is chosen (pseudo)randomly. In particular, given two

values v1 and v2 that match the same interval, the order of

their encryptions is arbitrary. Thus, PrefixMatch does not

reveal order.

EncryptValue (seed, v, suffix_len, interval map):

1: Run binary search on interval map to locate the

interval I such that v∈ I.

2: Lookup I in the interval map.

3: Output

Enc(v)= I�prfsuffix_len
seed

(v) (1)

Rule Encryption

Data Encryption

Data Decryption

Service
Provider

Encryption requests: rules and state
Encrypted rules and state

Encrypted data packets
Encrypted payload metadata

Encrypted data packetsPlaintext
packets

Plaintext
packets

Gateway

Figure 4: Communication between the cloud and gateway

services: rule encryption, data encryption, and data decryption.

Comparing encrypted values against rules. Determin-

ing if an encrypted value matches an encrypted prefix is

straightforward: the encryption preserves the prefix and

a middlebox can use the regular ≤/≥ operators. Hence, a

regular packet classification can be run at the firewall with

no modification. Comparing different encrypted values

that match the same prefix is meaningless, and returns a

random value.

3.2.2 Security Guarantees

PrefixMatch hides the prefixes and values encrypted with

EncryptPrefixes and EncryptValue. PrefixMatch reveals

matching information desired to enable functionality at

the cloud provider. Concretely, the cloud provider learns

the number of intervals and which prefixes overlap in

each interval, but no additional information on the size,

order or endpoints of these intervals. Moreover, for every

encrypted value v, it learns the indexes of the prefixes

that contain v (which is the functionality desired of the

scheme), but no other information about v. For any two

encrypted values Enc(v) and Enc(v�), the cloud provider

learns if they are equal only if they are encrypted as part

of the same flow (which is the functionality desired for

the NAT), but it does not learn any other information

about their value or order. Hence, PrefixMatch leaks less

information than order-preserving encryption, which

reveals the order of encrypted prefixes/ranges.

Since EncryptValue is seeded in a per-connection

identifier, an attacker cannot correlate values across

flows. Essentially, there is a different key per flow. In

particular, even though EncryptValue is deterministic

within a flow, it is randomized across flows: for example,

the encryption of the same IP address in different flows is

different because the seed differs per flow.

We formalize and prove the security guarantees of

PrefixMatch in our extended paper.

4 Enterprise Gateway

The gateway serves two purposes. First, it redirects traffic

to/from the cloud for middlebox processing. Second, it

provides the cloud with encryptions of rulesets. Every

gateway is configured statically to tunnel traffic to a fixed

IP address at a single service provider point of presence. A

gateway can be logically thought of as three services: the

262 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

rule encryption service, the pipeline from the enterprise

to the cloud (Data encryption), and the pipeline from

the cloud to the enterprise (Data decryption). All three

services share access to the PrefixMatch interval map and

the private key k. Fig. 4 illustrates these three services and

the data they send to and from the cloud provider.

We design the gateway with two goals in mind:

Format-compatibility: in converting plaintext traffic

to encrypted traffic, the encrypted data should be struc-

tured in such a way that the traffic appears as normal

IPv6 traffic to middleboxes performing the processing.

Format-compatibility allows us to leave fast-path oper-

ations unmodified not only in middlebox software, but

also in hardware components like NICs and switches; this

results in good performance at the cloud.

Scalability and Low Complexity: the gateway should

perform only inexpensive per-packet operations and

should be parallelizable. The gateway should require only

a small amount of configuration.

4.1 Data Encryption and Decryption

As shown in Table 1, we categorize middleboxes as

Header middleboxes, which operate only on IP and

transport headers; DPI middleboxes, which operate on

arbitrary fields in a connection bytestream; and HTTP

middleboxes, which operate on values in HTTP headers

(these are a subclass of DPI middleboxes). We discuss

how each category of data is encrypted/decrypted in order

to meet middlebox requirements as follows.

4.1.1 IP and Transport Headers

IP and Transport Headers are encrypted field by field

(e.g., a source address in an input packet results in an

encrypted source address field in the output packet) with

PrefixMatch. We use PrefixMatch for these fields be-

cause many middleboxes perform analysis over prefixes

and ranges of values – e.g., a firewall may block all

connections from a restricted IP prefix.

To encrypt a value with PrefixMatch’s Encrypt-

Value, the gateway seeds the encryption with seed =
prfk(SIP, SP, DIP, DP, P), a function of both the key

and connection information using the notation in Table 1.

Note that in the system setup with two gateways, the gate-

ways generate the same encryption because they share k.

When encrypting IP addresses, two different IP

addresses must not map to the same encryption because

this breaks the NAT. To avoid this problem, encrypted IP

addresses in Embark must be IPv6 because the probability

that two IP addresses get assigned to the same encryption

is negligibly low. The reason is that each encrypted prefix

contains a large number of possible IP addresses. Suppose

we have n distinct firewall rules, m flows and a len-bit

space, the probability of a collision is approximately:

1−e
−m2(2n+1)

2len+1 (2)

Therefore, if len=128 (which is the case when we use

IPv6), the probability is negligible in a realistic setting.

When encrypting ports, it is possible to get collisions

since the port field is only 16-bit. However, this will not

break the NAT’s functionality as long as the IP address

does not collide, because NATs (and other middleboxes

that require injectivity) consider both IP addresses and

ports. For example, if we have two flows with source IP

and source ports of (SIP,SP1) and (SIP,SP2) with SP1 �=
SP2, the encryption of SIP will be different in the two flows

because the encryption is seeded in the 5-tuple of a con-

nection. As we discuss in Appendix A, the NAT table can

be larger for Embark, but the factor is small in practice.

Decryption. PrefixMatch is not reversible. To enable

packet decryption, we store the AES-encrypted values

for the header fields in the IPv6 options header. When the

gateway receives a packet to decrypt, if the values haven’t

been rewritten by the middlebox (e.g., NAT), it decrypts

the values from the options header and restores them.

Format-compatibility. Our modifications to the IP and

transport headers place the encrypted prefix match data

back into the same fields as the unencrypted data was

originally stored; because comparisons between rules

and encrypted data rely on ≤≥, just as unencrypted data,

this means that operations performing comparisons on IP

and transport headers remain entirely unchanged at the

middlebox. This ensures backwards compatibility with

existing software and hardware fast-path operations.

Because per-packet operations are tightly optimized in

production middleboxes, this compatibility ensures good

performance at the cloud despite our changes.

An additional challenge for format compatibility is

where to place the decryptable AES data; one option

would be to define our own packet format, but this

could potentially lead to incompatibilities with existing

implementations. By placing it in the IPv6 options header,

middleboxes can be configured to ignore this data.2

4.1.2 Payload Data

The connection bytestream is encrypted with Keyword-

Match. Unlike PrefixMatch, the data in all flows is

encrypted with the same key k. The reason is that Key-

wordMatch is randomized and it does not leak equality

patterns across flows.

This allows Embark to support DPI middleboxes,

such as intrusion detection or exfiltration prevention.

These devices must detect whether or not there exists

2It is a common misconception that middleboxes are incompatible

with IP options. Commercial middleboxes are usually aware of IP

options but many administrators configure the devices to filter or drop

packets with certain kinds of options enabled.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 263

an exact match for an encrypted rule string anywhere

in the connection bytestream. Because this encrypted

payload data is over the bytestream, we need to generate

encrypted values which span ‘between’ packet payloads.

Searchable Encryption schemes, which we use for

encrypted DPI, require that traffic be tokenized and that a

set of fixed length substrings of traffic be encrypted along

a sliding window – e.g., the word malicious might be

tokenized into ‘malici’, ‘alicio’, ‘liciou’, ‘icious’. If the

term ‘malicious’ is divided across two packets, we may

not be able to tokenize it properly unless we reconstruct

the TCP bytestream at the gateway. Hence, if DPI is

enabled at the cloud, we do exactly this.

After reconstructing and encrypting the TCP

bytestream, the gateway transmits the encrypted

bytestream over an ‘extension’, secondary channel that

only those middleboxes which perform DPI operations

inspect. This channel is not routed to other middle-

boxes. We implement this channel as a persistent TCP

connection between the gateway and middleboxes. The

bytestream in transmission is associated with its flow

identifier, so that the DPI middleboxes can distinguish

between bytestreams in different flows. DPI middleboxes

handle both the packets received from the extension

channel as well as the primary channel containing the

data packets; we elaborate on this mechanism in [55].

Hence, if an intrusion prevention system finds a signature

in the extension channel, it can sever or reset connectivity

for the primary channel.

Decryption. The payload data is encrypted with AES and

placed back into the packet payload – like PrefixMatch,

KeywordMatch is not reversible and we require this

data for decryption at the gateway. Because the exten-

sion channel is not necessary for decryption, it is not

transmitted back to the gateway.

Format-compatibility. To middleboxes which only

inspect/modify packet headers, encrypting payloads has

no impact. By placing the encrypted bytestreams in the

extension channel, the extra traffic can be routed past and

ignored by middleboxes which do not need this data.

DPI middleboxes which do inspect payloads must

be modified to inspect the extension channel alongside

the primary channel, as described in [55]; DPI devices

are typically implemented in software and these modi-

fications are both straightforward and introduce limited

overhead (as we will see in §6).

4.1.3 HTTP Headers

HTTP Headers are a special case of payload data.

Middleboxes such as web proxies do not read arbitrary

values from packet payloads: the only values they read

are the HTTP headers. They can be categorized as

DPI middleboxes since they need to examine the TCP

bytesteam. However, due to the limitation of full DPI

support, we treat these values specially compared to other

payload data: we encrypt the entire (untokenized) HTTP

URI using a deterministic form of KeywordMatch.

Normal KeywordMatch permits comparison between

encrypted values and rules, but not between one value

and another value; deterministic KeywordMatch permits

two values to be compared as well. Although this is a

weaker security guarantee relative to KeywordMatch,

it is necessary to support web caching which requires

comparisons between different URIs. The cache hence

learns the frequency of different URIs, but cannot

immediately learn the URI values. This is the only field

which we encrypt in the weaker setting. We place this

encrypted value in the extension channel; hence, our

HTTP encryption has the same format-compatibility

properties as other DPI devices.

Like other DPI tasks, this requires parsing the entire

TCP bytestream. However, in some circumstances we

can extract and store the HTTP headers statelessly; so

long as HTTP pipelining is disabled and packet MTUs are

standard-sized (>1KB), the required fields will always

appear contiguously within a single packet. Given that

SPDY uses persistent connections and pipelined requests,

this stateless approach does not apply to SPDY.

Decryption. The packet is decrypted as normal using the

data stored in the payload; IP options are removed.

4.2 Rule Encryption

Given a ruleset for a middlebox type, the gateway

encrypts this ruleset with either KeywordMatch or Prefix-

Match, depending on the encryption scheme used by that

middlebox as in Table 1. For example, firewall rules are

encrypted using PrefixMatch. As a result of encryption,

some rulesets expand and we evaluate in §6 by how

much. For example, a firewall rule containing an IP prefix

that maps to two encrypted prefixes using PrefixMatch

becomes two rules, one for each encrypted prefix. The

gateway should generate rules appropriately to account

for the fact that a single prefix maps to encrypted prefixes.

For example, suppose there is a middlebox that counts the

number of connections to a prefix P. P maps to 2 encrypted

prefixes P1 and P2. If the original middlebox rule is ‘if v

in P then counter++’, the gateway should gener-

ate ‘if v in P1 or v in P2 then counter++’.

Rules for firewalls and DPI services come from a va-

riety of sources and can have different policies regarding

who is or isn’t allowed to know the rules. For example,

exfiltration detection rules may include keywords for

company products or unreleased projects which the client

may wish to keep secret from the cloud provider. On

the other hand, many DPI rules are proprietary features

of DPI vendors, who may allow the provider to learn

the rules, but not the client (gateway). Embark supports

three different models for KeywordMatch rules which

264 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

allow clients and providers to share rules as they are

comfortable: (a) the client knows the rules, and the

provider does not; (b) the provider knows the rule, and

the client does not; or (c) both parties know the rules.

PrefixMatch rules only supports (a) and (c) – the gateway

must know the rules to perform encryption properly.

If the client is permitted to know the rules, they encrypt

them – either generating a KeywordMatch, AES, or

PrefixMatch rule – and send them to the cloud provider.

If the cloud provider is permitted to know the rules as

well, the client will send these encrypted rules annotated

with the plaintext; if the cloud provider is not allowed,

the client sends only the encrypted rules in random order.

If the client (gateway) is not permitted to know the

rules, we must somehow allow the cloud provider to learn

the encryption of each rule with the client’s key. This is

achieved using a classical combination of Yao’s garbled

circuits [65] with oblivious transfer [40], as originally

applied by BlindBox [55]. As in BlindBox, this exchange

only succeeds if the rules are signed by a trusted third

party (such as McAffee, Symantec, or EmergingThreats)

– the cloud provider should not be able to generate their

own rules without such a signature as it would allow the

cloud provider to read arbitrary data from the clients’

traffic. Unlike BlindBox, this rule exchange occurs

exactly once – when the gateway initializes the rule.

After this setup, all connections from the enterprise are

encrypted with the same key at the gateway.

Rule Updates. Rule updates need to be treated carefully

for PrefixMatch. Adding a new prefix/range or removing

an existing range can affect the encryption of an existing

prefix. The reason is that the new prefix can overlap with

an existing one. In the worst case, the encryption of all

the rules needs to be updated.

The fact that the encryption of old rules changes poses

two challenges. The first challenge is the correctness of

middlebox state. Consider a NAT with a translation table

containing ports and IP addresses for active connections.

The encryption of an IP address with EncryptValue

depends on the list of prefixes so an IP address might

be encrypted differently after the rule update, becoming

inconsistent with the NAT table. Thus, the NAT state

must also be updated. The second challenge is a race

condition: if the middlebox adopts a new ruleset while

packets encrypted under the old ruleset are still flowing,

these packets can be misclassified.

To maintain a consistent state, the gateway first runs

EncryptPrefixes for the new set of prefixes. Then, the

gateway announces to the cloud the pending update, and

the middleboxes ship their current state to the gateway.

The gateway updates this state by producing new encryp-

tions and sends the new state back to the middleboxes.

During all this time, the gateway continued to encrypt

traffic based on the old prefixes and the middleboxes

processed it based on the old rules. Once all middleboxes

have the new state, the gateway sends a signal to the cloud

that it is about to ‘swap in’ the new data. The cloud buffers

incoming packets after this signal until all ongoing pack-

ets in the pipeline finish processing at the cloud. Then, the

cloud signals to all middleboxes to ‘swap in’ the new rules

and state; and finally it starts processing new packets.

For per-packet consistency defined in [51], the buffering

time is bounded by the packet processing time of the

pipeline, which is typically hundreds of milliseconds.

However, for per-flow consistency, the buffering time

is bounded by the lifetime of a flow. Buffering for such

a long time is not feasible. In this case, if the cloud has

backup middleboxes, we can use the migration avoidance

scheme [43] for maintaining consistency. Note that all

changes to middleboxes are in the control plane.

5 Middleboxes: Design & Implementation

Embark supports the core functionality of a set of

middleboxes as listed in Table 1. Table 1 also lists the

functionality supported by Embark. In Appendix A, we

review the core functionality of each middlebox and

explain why the functionality in Table 1 is sufficient to

support these middleboxes. In this section, we focus on

implementation aspects of the middleboxes.

5.1 Header Middleboxes

Middleboxes which operate on IP and transport headers

only include firewalls, NATs, and L3/L4 load balancers.

Firewalls are read-only, but NATs and L4 load balancers

may rewrite IP addresses or port values. For header

middleboxes, per-packet operations remain unchanged

for both read and write operations.

For read operations, the firewall receives a set of

encrypted rules from the gateway and compares them di-

rectly against the encrypted packets just as normal traffic.

Because PrefixMatch supports ≤ and ≥, the firewall may

use any of the standard classification algorithms [34].

For write operations, the middleboxes assign values

from an address pool; it receives these encrypted pool

values from the gateway during the rule generation

phase. These encrypted rules are marked with a special

suffix reserved for rewritten values. When the gateway

receives a packet with such a rewritten value, it restores

the plaintext value from the pool rather than decrypting

the value from the options header.

Middleboxes can recompute checksums as usual after

they write.

5.2 DPI Middleboxes

We modify middleboxes which perform DPI operations

as in BlindBox [55]. The middleboxes search through

the encrypted extension channel – not the packet pay-

loads themselves – and block or log the connection if a

blacklisted term is observed in the extension. Embark

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 265

also improves the setup time and security for regular

expression rules as discussed in §2.4.

5.3 HTTP Middleboxes
Parental filters and HTTP proxies read the HTTP URI

from the extension channel. If the parental filter observes

a blacklisted URI, it drops packets that belong to the

connection.

The web proxy required the most modification of any

middlebox Embark supports; nonetheless, our proxy

achieves good performance as we will discuss in §6. The

proxy caches HTTP static content (e.g., images) in order

to improve client-side performance. When a client opens

a new HTTP connection, a typical proxy will capture the

client’s SYN packet and open a new connection to the

client, as if the proxy were the web server. The proxy

then opens a second connection in the background to

the original web server, as if it were the client. When a

client sends a request for new content, if the content is

in the proxy’s cache, the proxy will serve it from there.

Otherwise, the proxy will forward this request to the web

server and cache the new content.

The proxy has a map of encrypted file path to encrypted

file content. When the proxy accepts a new TCP con-

nection on port 80, the proxy extracts the encrypted URI

for that connection from the extension channel and looks

it up in the cache. The use of deterministic encryption

enables the proxy to use a fast search data structure/index,

such as a hash map, unchanged. We have two possible

cases: there is a hit or a miss. If there is a cache hit, the

proxy sends the encrypted file content from the cache

via the existing TCP connection. Even without being

able to decrypt IP addresses or ports, the proxy can still

accept the connection, as the gateway encrypts/decrypts

the header fields transparently. If there is a cache miss,

the proxy opens a new connection and forwards the

encrypted request to the web server. Recall that the traffic

bounces back to gateway before being forwarded to the

web server, so that the gateway can decrypt the header

fields and payloads. Conversely, the response packets

from the web server are encrypted by the gateway and

received by the proxy. The proxy then caches and sends

the encrypted content back. The content is separated into

packets. Packet payloads are encrypted on a per-packet

basis. Hence, the gateway can decrypt them correctly.

5.4 Limitations
Embark supports the core functionality of a wide-range

of middleboxes, as listed in Table 1, but not all middlebox

functionality one could envision outsourcing. We now

discuss some examples. First, for intrusion detection,

Embark does not support regular expressions that cannot

be expanded in a certain number of keyword matches,

running arbitrary scripts on the traffic [47], or advanced

statistical techniques that correlate different flows studied

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

APLOMB Header Header
 + HTTP

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

 0
 2x10

6
 4x10

6
 6x10

6
 8x10

6
 1x10

7
 1.2x10

7
 1.4x10

7
 1.6x10

7

APLOMB Header Header
 + HTTP

P
ac

k
et

s
p
er

 S
ec

o
n
d

Pessimal: min size packets
Realistic (mixed) packets

Maximal: 1500 byte packets
Empirical Trace (m57)

Figure 5: Throughput on a single core at stateless gateway.

 9.5

 9.6

 9.7

 9.8

 9.9

 10

1 2 4

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

of Cores

APLOMB
Embark, Header
Embark, Header+HTTP

Figure 6: Gateway throughput with increasing parallelism.

in the research literature [69].

Second, Embark does not support application-level

middleboxes, such as SMTP firewalls, application-level

gateways or transcoders. These middleboxes parse the

traffic in an application-specific way – such parsing is

not supported by KeywordMatch. Third, Embark does

not support port scanning because the encryption of a

port depends on the associated IP address. Supporting all

these functionalities is part of our future work.

6 Evaluation

We now investigate whether Embark is practical from a

performance perspective, looking at the overheads due to

encryption and redirection. We built our gateway using

BESS (Berkeley Extensible Software Switch, formerly

SoftNIC [35]) on an off-the-shelf 16-core server with

2.6GHz Xeon E5-2650 cores and 128GB RAM; the net-

work hardware is a single 10GbE Intel 82599 compatible

network card. We deployed our prototype gateway in our

research lab and redirected traffic from a 3-server testbed

through the gateway; these three client servers had the

same hardware specifications as the server we used as

our gateway. We deployed our middleboxes on Amazon

EC2. For most experiments, we use a synthetic workload

generated by the Pktgen [63]; for experiments where

an empirical trace is specified we use the m57 patents

trace [26] and the ICTF 2010 trace [62], both in IPv4.

Regarding DPI processing which is based on BlindBox,

we provide experiment results only for the improvements

Embark makes on top of BlindBox, and refer the reader

to [55] for detailed DPI performance.

6.1 Enterprise Performance
We first evaluate Embark’s overheads at the enterprise.

6.1.1 Gateway

How many servers does a typical enterprise require to

outsource traffic to the cloud? Fig. 5 shows the gateway

throughput when encrypting traffic to send to the cloud,

266 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

 3.5x10
6

 0 20000
 40000

 60000
 80000

 100000

 120000

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

T
h
ro

u
g
h
p
u
t

(p
p
s)

P
ro

ce
ss

in
g
 T

im
e

(u
s)

Throughput
Processing Time

Figure 7: Throughput as # of PrefixMatch rules increases.

first with normal redirection (as used in APLOMB [54]),

then with Embark’s L3/L4-header encryption, and fi-

nally with L3/L4-header encryption as well as state-

less HTTP/proxy encryption. For empirical traffic traces

with payload encryption (DPI) disabled, Embark averages

9.6Gbps per core; for full-sized packets it achieves over

9.8Gbps. In scalability experiments (Fig. 6) with 4 cores

dedicated to processing, our server could forward at up to

9.7Gbps for empirical traffic while encrypting for headers

and HTTP traffic. There is little difference between the

HTTP overhead and the L3/L4 overhead, as the HTTP en-

cryption only occurs on HTTP requests – a small fraction

of packets. With DPI enabled (not shown), throughput

dropped to 240Mbps per core, suggesting that an enter-

prise would need to devote at least 32 cores to the gateway.

How do throughput and latency at the gateway scale

with the number of rules for PrefixMatch? In §3.2, we

discussed how PrefixMatch stores sorted intervals; every

packet encryption requires a binary search of intervals.

Hence, as the size of the interval map goes larger, we can

expect to require more time to process each packet and

throughput to decrease. We measure this effect in Fig. 7.

On the y1 axis, we show the aggregate per packet through-

put at the gateway as the number of rules from 0 to 100k.

The penalty here is logarithmic, which is the expected per-

formance of the binary search. From 0-10k rules, through-

put drops from 3Mpps to 1.5Mpps; after this point the

performance penalty of additional rules tapers off. Adding

additional 90k rules drops throughput to 1.1Mpps. On the

y2 axis, we measure the processing time per packet, i.e.,

the amount of time for the gateway to encrypt the packet;

the processing time follows the same logarithmic trend.

Is PrefixMatch faster than existing order preserving

algorithms? We compare PrefixMatch to BCLO [21] and

mOPE [48], two prominent order-preserving encryption

schemes. Table 2 shows the results. We can see that

PrefixMatch is about four orders of magnitude faster than

these schemes.

Operation BCLO mOPE PrefixMatch

Encrypt 10K rules 9333µs 6640µs 0.53µs

Encrypt 100K rules 9333µs 8300µs 0.77µs

Decrypt 169µs 0.128µs 0.128µs

Table 2: PrefixMatch’s performance.

What is the memory overhead of PrefixMatch? Storing

10k rules in memory requires 1.6MB, and storing 100k

rules in memory requires 28.5MB – using unoptimized

C++ objects. This overhead is negligible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F
 (

S
it

es
)

Page Load Time (s)

Baseline
Central Office

CDN
EC2

Figure 8: Page load times under different deployments.

6.1.2 Client Performance

We use web performance to understand end-to-end user

experience of Embark. Fig. 8 shows a CDF for the Alexa

top-500 sites loaded through our testbed. We compare

the baseline (direct download) assuming three different

service providers: an ISP hosting services in a Central

Office (CO), a Content-Distribution Network, and a

traditional cloud provider (EC2). The mean RTTs from

the gateway are 60µs, 4ms, and 31ms, respectively. We

deployed Embark on EC2 and used this deployment for

our experiments, but for the CO and CDN we emulated

the deployment with inflated latencies and servers in our

testbed. We ran a pipeline of NAT, firewall and proxy (with

empty cache) in the experiment. Because of the ‘bounce’

redirection Embark uses, all page load times increase by

some fraction; in the median case this increase is less than

50ms for the ISP/Central Office, 100ms for the CDN,

and 720ms using EC2; hence, ISP based deployments

will escape human perception [39] but a CDN (or a cloud

deployment) may introduce human-noticeable overheads.

6.1.3 Bandwidth Overheads

We evaluate two costs: the increase in bandwidth due

to our encryption and metadata, and the increase in

bandwidth cost due to ‘bounce’ redirection.

How much does Embark encryption increase the amount

of data sent to the cloud? The gateway inflates the size of

traffic due to three encryption costs:

• If the enterprise uses IPv4, there is a 20-byte per-packet

cost to convert from IPv4 to IPv6. If the enterprise uses

IPv6 by default, there is no such cost.

• If HTTP proxying is enabled, there are on average 132

bytes per request in additional encrypted data.

• If HTTP IDS is enabled, there is at worst a 5× overhead

on all HTTP payloads [55].

We used the m57 trace to understand how these overheads

would play out in aggregate for an enterprise. On the up-

link, from the gateway to the middlebox service provider,

traffic would increase by 2.5% due to encryption costs for

a header-only gateway. Traffic would increase by 4.3× on

the uplink for a gateway that supports DPI middleboxes.

How much does bandwidth increase between the gateway

and the cloud from using Embark? How much would

this bandwidth increase an enterprises’ networking

costs? Embark sends all network traffic to and from

the middlebox service provider for processing, before

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 267

Application Baseline

Throughput

Embark

Throughput

IP Firewall 9.8Gbps 9.8Gbps

NAT 3.6Gbps 3.5 Gbps

Load Balancer L4 9.8 Gbps 9.8Gbps

Web Proxy 1.1Gbps 1.1Gbps

IDS 85Mbps 166Mbps [55]

Table 3: Middlebox throughput for an empirical workload.

sending that traffic out to the Internet at large.

In ISP contexts, the clients’ middlebox service provider

and network connectivity provider are one and the same

and one might expect costs for relaying the traffic to and

from the middleboxes to be rolled into one service ‘pack-

age;’ given the latency benefits of deployment at central

offices (as we saw in Fig. 8) we expect that ISP-based

deployments are the best option to deploy Embark.

In the cloud service setting the client must pay a

third party ISP to transfer the data to and from the

cloud, before paying that ISP a third time to actually

transfer the data over the network. Using current US

bandwidth pricing [24, 38, 61], we can estimate how

much outsourcing would increase overall bandwidth

costs. Multi-site enterprises typically provision two kinds

of networking costs: Internet access, and intra-domain

connectivity. Internet access typically has high bandwidth

but a lower SLA; traffic may also be sent over shared

Ethernet [24, 61]. Intra-domain connectivity usually

has a private, virtual Ethernet link between sites of the

company with a high SLA and lower bandwidth. Because

bounce redirection is over the ‘cheaper’ link, the overall

impact on bandwidth cost with header-only encryption

given public sales numbers is between 15-50%; with DPI

encryption, this cost increases to between 30-150%.

6.2 Middleboxes

We now evaluate the overheads at each middlebox.

Is throughput reduced at the middleboxes due to Embark?

Table 3 shows the throughput sustained for the apps we

implemented. The IP Firewall, NAT, and Load Balancer

are all ‘header only’ middleboxes; the results shown

compare packet processing over the same dataplane, once

with encrypted IPv6 data and once with unencrypted IPv4

data. The only middlebox for which any overhead is ob-

servable is the NAT – and this is a reduction of only 2.7%.

We re-implemented the Web Proxy and IDS to enable

the bytestream aware operations they require over our

encrypted data. We compare our Web Proxy implemen-

tation with Squid [10] to show Embark can achieve

competitive performance. The Web Proxy sustains the

same throughput with and without encrypted data, but, as

we will present later, does have a higher service time per

cache hit. The IDS numbers compare Snort (baseline) to

the BlindBox implementation; this is not an apples-to-

apples comparison as BlindBox performs mostly exact

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 500
 1000

 1500
 2000

 2500
 3000T

im
e

p
er

 r
eq

u
es

t
(m

s)

Concurrent Connections

Embark Proxy
Unencrypted Proxy

Figure 9: Access time per page against the number of concurrent

connections at the proxy.

matches where Snort matches regular expressions.

In what follows, we provide some further middlebox-

specific benchmarks for the firewall, proxy, and IDS.

Firewalls: Does Embark support all rules in a typical

firewall configuration? How much does the ruleset

“expand” due to encryption?

We tested our firewall with three rulesets provided

to us by a network administrator at our institution and

an IP firewall ruleset from Emerging Threats [3]. We

were able to encode all rules using range and keyword

match encryptions. The size of 3 rulesets did not change

after encryption, while the size of the other ruleset from

Emerging Threats expanded from 1363 to 1370 – a 0.5%

increase. Therefore, we conclude that it has negligible

impact on the firewall performance.

Proxy/Caching: The throughput number shown in

Table 3 is not the typical metric used to measure proxy

performance. A better metric for proxies is how many

connections the proxy can handle concurrently, and

what time-to-service it offers each client. In Fig. 9, we

plot time-to-service against the number of concurrent

connections, and see that it is on average higher for

Embark than the unencrypted proxy, by tens to hundreds

of milliseconds per page. This is not due to computation

costs, but instead, due to the fact that the encrypted HTTP

header values are transmitted on a different channel

than the primary data connection. The Embark proxy

needs to synchronize between these two flows; this

synchronization cost is what increases the time to service.

Intrusion Detection: Our IDS is based on BlindBox [55].

BlindBox incurs a substantial ‘setup cost’ every time a

client initiates a new connection. With Embark, however,

the gateway and the cloud maintain one, long-term

persistent connection. Hence, this setup cost is paid once

when the gateway is initially configured. Embark also

heuristically expands regular expressions in the rulesets

into exact match strings. This results in two benefits:

(1) End-to-end performance improvements. Where

BlindBox incurs an initial handshake of 97s [55] to

open a new connection and generate the encrypted rules,

end hosts under Embark never pay this cost. Instead,

the gateway pays a one-time setup cost, and end hosts

afterwards perform a normal TCP or SSL handshake of

only 3-5 RTTs. In our testbed, this amounts to between

30 and 100 ms, depending on the site and protocol – an

268 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

improvement of 4 orders of magnitude.

(2) Security improvements. Using IDS rulesets from

Snort, we converted regular expressions to exact match

strings as discussed in §2.4. In BlindBox, exact match

rules can be supported with higher security than regular

expressions. With 10G memory, we were able to convert

about half of the regular expressions in this ruleset to a fi-

nite number of exact match strings; the remainder resulted

in too many possible states. We used two rulesets to evalu-

ate this [3, 9]. With the first ruleset BlindBox would resort

to a lower security level for 33% of rules, but Embark

would only require this for 11.3%. With the second rule-

set, BlindBox would use lower security for 58% of rules,

but Embark would only do so for 20.2%. At the same time,

Embark does not support the lower security level so Em-

bark simply does not support the remaining regexp rules.

It is also worth noting that regular expression expan-

sion in this way makes the one-time setup very slow in one

of the three cases: the case when the gateway may not see

the rules. The reason is that, in this case, Embark runs the

garbled circuit rule-exchange protocol discussed in §4.2,

whose slowdown is linear in the number of rules. On one

machine, the gateway to server initial setup would take

over 3,000 hours to generate the set of encrypted rules due

to the large number of keywords. Fortunately, this setup

cost is easily parallelizable. Moreover, this setup cost

does not occur in the other two rule exchange approaches

discussed in §4.2, since they rely only on one AES encryp-

tion per keyword rather than a garbled circuit computation

which is six orders of magnitude more expensive.

7 Related Work

Middlebox Outsourcing: APLOMB [54] is a practical

service for outsourcing enterprise’s middleboxes to the

cloud, which we discussed in more detail in §2.

Data Confidentiality: Confidentiality of data in the cloud

has been widely recognized as an important problem and

researchers proposed solutions for software [18], web ap-

plications [30, 50], filesystems [19, 36, 31], databases [49,

46], and virtual machines [68]. CryptDB [49] was one of

the first practical systems to compute on encrypted data,

but its encryption schemes and database system design

do not apply to our network setting.

Focusing on traffic processing, the most closely related

work to Embark is BlindBox [55], discussed in §2.4.

mcTLS [41] proposed a protocol in which client and

server can jointly authorize a middlebox to process

certain portions of the encrypted traffic. Unlike Embark,

the middlebox gains access to unencrypted data. A

recent paper [67] proposed a system architecture for

outsourced middleboxes to specifically perform deep

packet inspection over encrypted traffic.

Trace Anonymization and Inference: Some systems

which focus on offline processing allow some analysis

over anonymized data [44, 45]; they are not suitable for

online processing as is Embark. Yamada et al [64] show

how one can perform some very limited processing on

an SSL-encrypted packet by using only the size of data

and the timing of packets, however they cannot perform

analysis of the contents of connection data.

Encryption Schemes: Embark’s PrefixMatch scheme

is similar to order preserving encryption schemes [15],

but no existing scheme provided both the performance

and security properties we required. Order-preserving

encryption (OPE) schemes such as [21, 48] are > 10000

times slower than PrefixMatch (§6) and additionally leak

the order of the IP addresses encrypted. On the other

hand, OPE schemes are more generic and applicable to a

wider set of scenarios. PrefixMatch, on the other hand, is

designed for our particular scenario.

The encryption scheme of Boneh et al. [22] enables

detecting if an encrypted value matches a range and

provides a similar security guarantee to PrefixMatch; at

the same time, it is orders of magnitude slower than the

OPE schemes which are already slower than PrefixMatch.

Acknowledgments

We thank our shepherd, Srinivasan Seshan, and the

anonymous reviewers for their thoughtful comments.

We’re also grateful to Dahlia Malkhi and Ittai Abraham

from VMware Research for their valuable feedback on

PrefixMatch.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 269

A Sufficient Properties for Middleboxes

In this section, we discuss the core functionality of the

IP Firewall, NAT, L3/L4 Load Balancers in Table 1, and

why the properties listed in the Column 2 of Table 1 are

sufficient for supporting the functionality of those mid-

dleboxes. We omit the discussion of other middleboxes in

the table since the sufficiency of those properties is obvi-

ous. The reason Embark focuses on the core (“textbook”)

functionality of these middleboxes is that there exist vari-

ations and different configurations on these middleboxes

and Embark might not support some of them.

A.1 IP Firewall

Firewalls from different vendors may have significantly

different configurations and rule organizations, and thus

we need to extract a general model of firewalls. We used

the model defined in [66], which describes Cisco PIX

firewalls and Linux iptables. In this model, the firewall

consists of several access control lists (ACLs). Each ACL

consists of a list of rules. Rules can be interpreted in the

form (predicate, action), where the predicate describes

the packets matching this rule and the action describes the

action performed on the matched packets. The predicate

is defined as a combination of ranges of source/destina-

tion IP addresses and ports as well as the protocol. The

set of possible actions includes "accept" and "deny".

Let Enc denote a generic encryption protocol, and

(SIP[], DIP[], SP[], DP[], P) denote the predicate of a

rule. Any packet with a 5-tuple (SIP, DIP, SP, DP, P) ∈
(SIP[], DIP[], SP[], DP[], P) matches that rule. We

encrypt both tuples and rules. The following property of

the encryption is sufficient for firewalls.

(SIP, DIP, SP, DP, P)∈(SIP[], DIP[], SP[], DP[], P)⇔

Enc(SIP, DIP, SP, DP, P)∈

Enc(SIP[], DIP[], SP[], DP[], P).

(3)

A.2 NAT

A typical NAT translates a pair of source IP and port

into a pair of external source IP and port (and back),

where the external source IP is the external address of the

gateway, and the external source port is arbitrarily chosen.

Essentially, a NAT maintains a mapping from a pair of

source IP and port to an external port. NATs have the

following requirements: 1) same pairs should be mapped

to the same external source port; 2) different pairs should

not be mapped to the same external source port. In order

to satisfy them, the following properties are sufficient:

(SIP1,SP1) = (SIP2,SP2)

⇒Enc(SIP1,SP1)=Enc(SIP2,SP2),
(4)

Enc(SIP1,SP1)=Enc(SIP2,SP2)

⇒(SIP1,SP1)=(SIP2,SP2).
(5)

However, we may relax 1) to: the source IP and port pair

that belongs to the same 5-tuple should be mapped to the

same external port. After relaxing this requirement, the

functionality of NAT is still preserved, but the NAT table

may get filled up more quickly since the same pair may

be mapped to different ports. However, we argue that this

expansion is small in practice because an application on

a host rarely connects to different hosts or ports using the

same source port. The sufficient properties then become:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇒Enc(SIP1,SP1)=Enc(SIP2,SP2)

(6)

and

Enc(SIP1,SP1)=Enc(SIP2,SP2)

⇒(SIP1,SP1)=(SIP2,SP2).
(7)

A.3 L3 Load Balancer

L3 Load Balancer maintains a pool of servers. It chooses a

server for an incoming packet based on the L3 connection

information. A common implementation of L3 Load

Balancing uses the ECMP scheme in the switch. It guar-

antees that packets of the same flow will be forwarded

to the same server by hashing the 5-tuple. Therefore, the

sufficient property for L3 Load Balancer is:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)⇔

Enc(SIP1,DIP1,SP1,DP1,P1) =

Enc(SIP2,DIP2,SP2,DP2,P2).

(8)

A.4 L4 Load Balancer

L4 Load Balancer [4], or TCP Load Balancer also main-

tains a pool of servers. It acts as a TCP endpoint that ac-

cepts the client’s connection. After accepting a connection

from a client, it connects to one of the server and forwards

the bytestreams between client and server. The encryption

scheme should make sure that two same 5-tuples have

the same encryption. In addition, two different 5-tuple

should not have the same encryption, otherwise the L4

Load Balancer cannot distinguish those two flows. Thus,

the sufficient property of supporting L4 Load Balancer is:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)⇔

Enc(SIP1,DIP1,SP1,DP1,P1) =

Enc(SIP2,DIP2,SP2,DP2,P2)

(9)

270 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

B Formal Properties of PrefixMatch

In this section, we show how PrefixMatch supports mid-

dleboxes indicated in Table 1. First of all, we formally list

the properties that PrefixMatch preserves. As discussed in

3.2, PrefixMatch preserves the functionality of firewalls

by guaranteeing Property 3. In addition, PrefixMatch also

ensures the following properties:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)⇒

Enc(SIP1,DIP1,SP1,DP1,P1) =

Enc(SIP2,DIP2,SP2,DP2,P2)

(10)

The following statements hold with high probability:

Enc(SIP1)=Enc(SIP2) ⇒ SIP1=SIP2 (11)

Enc(DIP1)=Enc(DIP2) ⇒ DIP1=DIP2 (12)

Enc(SIP1,SP1)=Enc(SIP2,SP2) ⇒

(SIP1,SP1)=(SIP2,SP2)
(13)

Enc(DIP1,DP1)=Enc(DIP2,DP2) ⇒

(DIP1,DP1)=(DIP2,DP2)
(14)

Enc(P1)=Enc(P2) ⇒ P1=P2 (15)

We discuss how those properties imply all the sufficient

properties in §A as follows.

NAT We will show that Eq.(10)-Eq.(15) imply

Eq.(6)- Eq.(7). Given (SIP1, DIP1, SP1, DP1, P1) =
(SIP2, DIP2, SP2, DP2, P2), by Eq. (10), we have

Enc(SIP1, SP1) = Enc(SIP2, SP2). Hence, Eq.(6) holds.

Similarly, given Enc(SIP1, SP1) = Enc(SIP2, SP2), by

Eq.(13), we have (SIP1,SP1)=(SIP2,SP2). Hence, Eq.(7)

also holds. Note that if we did not relax the property in

Eq.(6), we could not obtain such a proof.

L3 Load Balancer By Eq.(10), the left to right direction

of Eq.(8) holds. By Eq.(11)-Eq.(15), the right to left

direction of Eq.(8) also holds.

L4 Load Balancer By Eq.(10), the left to right direction

of Eq.(9) holds. By Eq.(11)-Eq.(15), the right to left

direction of Eq.(9) also holds.

References

[1] Brocade Network Function Virtualiza-

tion. http://www.brocade.com/

en/products-services/software-

networking/network-functions-

virtualization.html.

[2] Cisco IOS IPv6 Commands. http://www.

cisco.com/c/en/us/td/docs/ios-

xml/ios/ipv6/command/ipv6-cr-

book/ipv6-s2.html.

[3] Emerging Threats.net Open rulesets. http://

rules.emergingthreats.net/.

[4] HAProxy. http://www.haproxy.org/.

[5] Intel 82599 10 GbE Controller Datasheet.

http://www.intel.com/content/

dam/www/public/us/en/documents/

datasheets/82599-10-gbe-

controller-datasheet.pdf.

[6] Network Edge Services Products. https:

//www.juniper.net/us/en/products-

services/network-edge-services/.

[7] Network Function Virtualization for Telecom.

http://www.dell.com/learn/us/

en/04/tme-telecommunications-

solutions-telecom-nfv/.

[8] OPNFV: An Open Platform to Accelerate

NFV. https://www.opnfv.org/sites/

opnfv/files/pages/files/opnfv_

whitepaper_103014.pdf.

[9] Snort v2.9 Community Rules. https:

//www.snort.org/downloads/

community/community-rules.tar.gz.

[10] Squid: Optimising Web Delivery. http://www.

squid-cache.org/.

[11] Telefónica NFV Reference Lab. http://

www.tid.es/long-term-innovation/

network-innovation/telefonica-

nfv-reference-lab.

[12] What are White Box Switches? https://www.

sdxcentral.com/resources/white-

box/what-is-white-box-networking/.

[13] ZScaler. http://www.zscaler.com/.

[14] AT&T Domain 2.0 Vision White Paper.

https://www.att.com/Common/

about_us/pdf/AT&T%20Domain%202.

0%20Vision%20White%20Paper.pdf, Nov.

2013.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 271

[15] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order

preserving encryption for numeric data. In Pro-

ceedings of the 2004 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’04,

pages 563–574. ACM, 2004.

[16] Ars Technica. AT&T fined $25 million after

call center employees stole customers data.

http://arstechnica.com/tech-

policy/2015/04/att-fined-25-

million-after-call-center-

employees-stole-customers-data/.

[17] Aryaka. WAN Optimization. http:

//www.aryaka.com/.

[18] A. Baumann, M. Peinado, and G. Hunt. Shielding

Applications from an Untrusted Cloud with Haven.

In Proceedings of the 11th USENIX Conference

on Operating Systems Design and Implementation,

OSDI’14, pages 267–283. USENIX Association,

2014.

[19] M. Blaze. A Cryptographic File System for UNIX.

In Proceedings of the 1st ACM Conference on

Computer and Communications Security, CCS ’93,

pages 9–16. ACM, 1993.

[20] Bloomberg Business. RadioShack Sells

Customer Data After Settling With States.

http://www.bloomberg.com/news/

articles/2015-05-20/radioshack-

receives-approval-to-sell-name-

to-standard-general.

[21] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.

Order-Preserving Symmetric Encryption. In

Proceedings of the 28th Annual International Con-

ference on Advances in Cryptology: The Theory and

Applications of Cryptographic Techniques, EURO-

CRYPT ’09, pages 224–241. Springer-Verlag, 2009.

[22] D. Boneh, A. Sahai, and B. Waters. Fully Collusion

Resistant Traitor Tracing with Short Ciphertexts

and Private Keys. In Proceedings of the 24th Annual

International Conference on The Theory and

Applications of Cryptographic Techniques, EURO-

CRYPT’06, pages 573–592. Springer-Verlag, 2006.

[23] P. R. Clearinghouse. Chronology of data breaches

. http://www.privacyrights.org/

data-breach.

[24] Comcast. Small Business Internet. http:

//business.comcast.com/internet/

business-internet/plans-pricing.

[25] I. Cooper, I. Melve, and G. Tomlinson. Internet

Web Replication and Caching Taxonomy. IETF

RFC 3040, Jan. 2001.

[26] Digital Corpora. m57-Patents Scenario.

http://digitalcorpora.org/corpora/

scenarios/m57-patents-scenario.

[27] European Telecommunications Standards Institute.

NFV Whitepaper. https://portal.etsi.

org/nfv/nfv_white_paper.pdf.

[28] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu,

and J. C. Mogul. Enforcing Network-wide Policies

in the Presence of Dynamic Middlebox Actions

Using FlowTags. In Proceedings of the 11th

USENIX Conference on Networked Systems Design

and Implementation, NSDI’14, pages 533–546.

USENIX Association, 2014.

[29] A. Gember-Jacobson, R. Viswanathan, C. Prakash,

R. Grandl, J. Khalid, S. Das, and A. Akella.

OpenNF: Enabling Innovation in Network Func-

tion Control. In Proceedings of the 2014 ACM

Conference on SIGCOMM, SIGCOMM ’14, pages

163–174. ACM, 2014.

[30] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Maz-

ières, J. C. Mitchell, and A. Russo. Hails: Protecting

Data Privacy in Untrusted Web Applications. In

Proceedings of the 10th USENIX Conference on

Operating Systems Design and Implementation,

OSDI’12, pages 47–60. USENIX Association,

2012.

[31] E.-J. Goh, H. Shacham, N. Modadugu, and

D. Boneh. SiRiUS: Securing Remote Untrusted

Storage. In Proceedings of the Tenth Network and

Distributed System Security Symposium, NDSS ’03,

pages 131–145. Internet Society (ISOC), Feb. 2003.

[32] O. Goldreich. Foundations of Cryptography:

Volume I Basic Tools. Cambridge University Press,

2001.

[33] M. Goodrich and R. Tamassia. Introduction to

Computer Security. Pearson, 2010.

[34] P. Gupta and N. McKeown. Algorithms for Packet

Classification. IEEE Network, 15(2):24–32, Mar.

2001.

[35] S. Han, K. Jang, A. Panda, S. Palkar, D. Han,

and S. Ratnasamy. SoftNIC: A Software NIC to

Augment Hardware. Technical Report UCB/EECS-

2015-155, EECS Department, University of

California, Berkeley, May 2015.

272 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[36] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,

and K. Fu. Plutus: Scalable Secure File Sharing

on Untrusted Storage. In Proceedings of the

2nd USENIX Conference on File and Storage

Technologies, FAST ’03, pages 29–42. USENIX

Association, 2003.

[37] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,

M. Honda, R. Bifulco, and F. Huici. ClickOS and the

Art of Network Function Virtualization. In Proceed-

ings of the 11th USENIX Conference on Networked

Systems Design and Implementation, NSDI’14,

pages 459–473. USENIX Association, 2014.

[38] Megapath. Ethernet Data Plus. http://

www.megapath.com/promos/ethernet-

dataplus/.

[39] R. B. Miller. Response Time in Man-computer

Conversational Transactions. In Proceedings of

the December 9-11, 1968, Fall Joint Computer

Conference, Part I, AFIPS ’68 (Fall, part I), pages

267–277. ACM, 1968.

[40] M. Naor and B. Pinkas. Efficient Oblivious Transfer

Protocols. In Proceedings of the Twelfth Annual

ACM-SIAM Symposium on Discrete Algorithms,

SODA ’01, pages 448–457. Society for Industrial

and Applied Mathematics, 2001.

[41] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis,

J. Blackburn, D. R. López, K. Papagiannaki, P. Ro-

driguez Rodriguez, and P. Steenkiste. Multi-Context

TLS (mcTLS): Enabling Secure In-Network Func-

tionality in TLS. In Proceedings of the 2015 ACM

Conference on Special Interest Group on Data

Communication, SIGCOMM ’15, pages 199–212.

ACM, 2015.

[42] E. Nordmark. Stateless IP/ICMP Translation

Algorithm (SIIT). IETF RFC 2765, Feb. 2000.

[43] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda,

S. Ratnasamy, L. Rizzo, and S. Shenker. E2: A

Framework for NFV Applications. In Proceedings

of the 25th Symposium on Operating Systems

Principles, SOSP ’15, pages 121–136, New York,

NY, USA, 2015. ACM.

[44] R. Pang, M. Allman, V. Paxson, and J. Lee. The

Devil and Packet Trace Anonymization. SIGCOMM

Computer Communication Review, 36(1):29–38,

Jan. 2006.

[45] R. Pang and V. Paxson. A High-level Programming

Environment for Packet Trace Anonymization and

Transformation. In Proceedings of the 2003 Confer-

ence on Applications, Technologies, Architectures,

and Protocols for Computer Communications,

SIGCOMM ’03, pages 339–351. ACM, 2003.

[46] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin,

S. G. Choi, W. George, A. Keromytis, and

S. Bellovin. Blind Seer: A Scalable Private DBMS.

In Proceedings of the 2014 IEEE Symposium on

Security and Privacy, SP ’14, pages 359–374. IEEE

Computer Society, 2014.

[47] V. Paxson. Bro: A System for Detecting Network

Intruders in Real-time. Computer Networks,

31(23-24):2435–2463, Dec. 1999.

[48] R. A. Popa, F. H. Li, and N. Zeldovich. An Ideal-

Security Protocol for Order-Preserving Encoding.

In Proceedings of the 2013 IEEE Symposium on

Security and Privacy, SP ’13, pages 463–477. IEEE

Computer Society, 2013.

[49] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and

H. Balakrishnan. CryptDB: Protecting Confi-

dentiality with Encrypted Query Processing. In

Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles, SOSP ’11, pages

85–100. ACM, 2011.

[50] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zel-

dovich, M. F. Kaashoek, and H. Balakrishnan.

Building Web Applications on Top of Encrypted

Data Using Mylar. In Proceedings of the 11th

USENIX Conference on Networked Systems Design

and Implementation, NSDI’14, pages 157–172.

USENIX Association, 2014.

[51] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,

and D. Walker. Abstractions for Network Update. In

Proceedings of the ACM SIGCOMM 2012 Confer-

ence on Applications, Technologies, Architectures,

and Protocols for Computer Communication,

SIGCOMM ’12, pages 323–334. ACM, 2012.

[52] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and

G. Shi. Design and Implementation of a Consol-

idated Middlebox Architecture. In Proceedings

of the 9th USENIX Conference on Networked

Systems Design and Implementation, NSDI’12,

pages 24–24. USENIX Association, 2012.

[53] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and

G. Shi. The Middlebox Manifesto: Enabling Inno-

vation in Middlebox Deployment. In Proceedings of

the 10th ACM Workshop on Hot Topics in Networks,

HotNets-X, pages 21:1–21:6. ACM, 2011.

[54] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,

S. Ratnasamy, and V. Sekar. Making Middleboxes

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 273

Someone else’s Problem: Network Processing

As a Cloud Service. In Proceedings of the ACM

SIGCOMM 2012 Conference on Applications,

Technologies, Architectures, and Protocols for

Computer Communication, SIGCOMM ’12, pages

13–24. ACM, 2012.

[55] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy.

BlindBox: Deep Packet Inspection over Encrypted

Traffic. In Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication,

SIGCOMM ’15, pages 213–226. ACM, 2015.

[56] G. Silowash, T. Lewellen, J. Burns, and D. Costa.

Detecting and Preventing Data Exfiltration Through

Encrypted Web Sessions via Traffic Inspection.

Technical Report CMU/SEI-2013-TN-012, Soft-

ware Engineering Institute, Carnegie Mellon

University, 2013.

[57] P. Srisuresh and K. B. Egevang. Traditional IP

Network Address Translator (Traditional NAT).

IETF RFC 3022, Jan. 2001.

[58] D. Thaler and C. E. Hopps. Multipath Issues in

Unicast and Multicast Next-Hop Selection. IETF

RFC 2991, Nov. 2000.

[59] The Snort Project. Snort users manual, 2014.

Version 2.9.7.

[60] Verizon. 2015 Data Breach Investigations Report.

http://www.verizonenterprise.com/

DBIR/2015/.

[61] Verizon. High Speed Internet Pack-

ages. http://www.verizon.com/

smallbusiness/products/business-

internet/broadband-packages/.

[62] G. Vigna. ICTF Data. https://ictf.cs.

ucsb.edu/.

[63] K. Wiles. Pktgen. https://pktgen.

readthedocs.org/.

[64] A. Yamada, Y. Saitama Miyake, K. Takemori,

A. Studer, and A. Perrig. Intrusion Detection for

Encrypted Web Accesses. In 21st International

Conference on Advanced Information Networking

and Applications Workshops, 2007.

[65] A. C.-C. Yao. How to Generate and Exchange Se-

crets. In Proceedings of the 27th Annual Symposium

on Foundations of Computer Science, SFCS ’86,

pages 162–167. IEEE Computer Society, 1986.
[66] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and

P. Mohapatra. FIREMAN: A Toolkit for FIREwall

Modeling and ANalysis. In Proceedings of the 2006

IEEE Symposium on Security and Privacy, SP ’06,

pages 199–213. IEEE Computer Society, 2006.

[67] X. Yuan, X. Wang, J. Lin, and C. Wang. Privacy-

preserving Deep Packet Inspection in Outsourced

Middleboxes. In Proceedings of the 2016 IEEE

Conference on Computer Communications, INFO-

COM ’16, 2016.

[68] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVi-

sor: Retrofitting Protection of Virtual Machines in

Multi-tenant Cloud with Nested Virtualization. In

Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles, SOSP ’11, pages

203–216. ACM, 2011.

[69] Y. Zhang and V. Paxson. Detecting stepping stones.

In Proceedings of the 9th Conference on USENIX

Security Symposium - Volume 9, SSYM’00, pages

13–13. USENIX Association, 2000.

