
Embarrassingly Parallel Jobs Are Not Embarrassingly Easy to Schedule on
the Grid

Enis Afgan, Purushotham Bangalore
Department of Computer and Information Sciences

University of Alabama at Birmingham
1300 University Blvd., Birmingham AL 35294-1170

{afgane, puri}@cis.uab.edu

Abstract

Embarrassingly parallel applications represent

an important workload in today's grid environments.

Scheduling and execution of this class of applications

is considered mostly a trivial and well-understood

process on homogeneous clusters. However, while

grid environments provide the necessary

computational resources, associated resource

heterogeneity represents a new challenge for efficient

task execution for these types of applications across

multiple resources. This paper presents a set of

examples illustrating how execution characteristics of

individual tasks, and consequently a job, are affected

by the choice of task execution resources, task

invocation parameters, and task input data attributes.

It is the aim of this work to highlight this relationship

between an application and an execution resource to

promote development of better metascheduling

techniques for the grid. By exploiting this relationship,

application throughput can be maximized, also

resulting in higher resource utilization. In order to

achieve such benefits, a set of job scheduling and

execution concerns is derived leading toward a

computational pipeline for scheduling embarrassingly

parallel applications in grid environments.

1. Introduction

Embarrassingly parallel (EP) class of applications
is likely to represent the most widely deployed class of
applications in the world [1]. EP applications, in
nature very similar to SPMD (Single Process, Multiple
Data) or Parameter Sweep, are characterized by
independent, coarsely grained and indivisible tasks.
The goal of EP applications is to introduce parallelism
into application execution without any application
code modification and associated cost. This is realized
through multiple invocations of the same application,
where each instance is invoked using a different input
data set. The number of tasks being instantiated can

range greatly from only a few instances to several
hundred instances and each instance can execute from
several seconds or minutes to many hours. The end
result is speedup of application’s execution that is only
limited by the number of resource available.

Meanwhile, grid computing has emerged as the
upcoming distributed computational infrastructure that
enables virtualization and aggregation of
geographically distributed compute resources into a
seamless compute platform [2]. Characterized by
heterogeneous resources with a wide range of network
speeds between participating sites, high network
latency, site and resource instability and a sea of local
management policies, it seems the grid presents as
many problems as it solves. Nonetheless, from the
early days of the grid, EP class of applications has
been categorized as the killer application for the grid
[3]. This is due to the ability of EP applications to
consume large numbers of resources accompanied
with minimal requirements and dependencies on
network status as well as high tolerance for partial
failure. Furthermore, these applications were relatively
easy to deploy and initiate execution.

This suitability has materialized through several
projects that have explored, exploited, and advanced
capabilities of EP application in grid environments, for
example AppLeS [4] and Nimrod/G [5]. However,
because of the lack of communication between
individual tasks, a common assumption is that
execution of EP application in grid environments is
easy, or at least significantly easier than execution of
tightly coupled, MPI applications. On the contrary,
execution of EP applications in grid environments is
confined by resource availability, optimized through
task parameterization, hindered by simultaneous use
and management of heterogeneous resources
belonging to different administrative domains, and
dependent on user requirements. As such, the act of
application execution includes application scheduling,
or assignment of tasks to appropriate resources.
Because of the sheer number of influencing
components, scheduling becomes a major component

978-1-4244-2872-4/08/$25.00 ©2008 IEEE

for success of EP applications in the grid and should
be handled comprehensively with respect to the
application execution environment variables.

As the grid evolves into independently managed
clouds relying heavily on commercial aspects,
resource owners will try to maximize resource
utilization while satisfying users’ requirements.
Simultaneously, users will impose stringent
requirements on their application executions in terms
of cost, execution time, reliability or data cost. In
order to achieve these objectives an understanding of
the components influencing application execution is
necessary. In this paper, we offer a discussion of
execution variables for EP applications in grid
environments and their effects on applications’
runtimes. We have used the NCBI BLAST [6]
application as an example to highlight many of these
issues and illustrate the need for advanced resource
and application specific metascheduling techniques.

2. Application Model

As briefly discussed, the Embarrassingly Parallel
(EP) class of applications is composed of a class of
applications whose computational load consists of
executing the same application multiple times, with
each instance operating on a varying input data set and
perhaps varying parameters [7]. The most significant
characteristic of EP applications is that, once started,
there is no communication between individual tasks.
This model can be seen as a modification of Flynn’s
original SIMD (Single Instruction, Multiple Data)
taxonomy and more general SPMD (Single Process,
Multiple Data) model where individual processes can
execute independent instructions at the same point in
time but are, overall, executing the same code [7]. As
such, an application execution with all of its instances
is referred to as a job. A job is composed of a set of
tasks or instances, where each instance is assigned a
different input data set. More formally, a job J

composed of a set of tasks ti can be represented as
follows:

(1)

In this section we present some of the key factors that
affect metascheduling of EP class of applications in a
grid along with potential solutions to address some of
these issues.

2.1. Task heterogeneity

In more traditional cluster environments, where
individual compute nodes are homogeneous, execution
times of individual tasks within a job can be expected

Figure 1. Sample task runtimes of a job across

heterogeneous resources.

largely homogeneous. In grid environments, where
individual resources are highly heterogeneous, task
execution times can vary greatly [8]. Figure 1 shows
an example of task runtime variability resulting from
resource heterogeneity. Shown tasks were all fed an
equally-sized input file and executed across a range of
heterogeneous resources resulting in a significant level
of load imbalance. Tasks that have experienced
approximately equivalent runtimes got assigned to
multiple nodes within a single cluster by the high-level
scheduler. In the described environment, the runtime
of the entire job is determined by the longest running
task making a strong requirement for efficient load
balancing.

2.2. Task parameterization

In order to better understand factors influencing
runtime of a task, a task ti can be further decomposed
and represented as follows:

(2)

where di represents the task input data, ri represents
the execution resource for task ti, and pi represents the
parameter set used when invoking the given task.
Individually, the input data set is the single most
influential factor determining the runtime of a task.
However, because the input file or input parameters
are the purpose for the computation,the job is
constrained by the characteristics of the input.
Nonetheless, at the task level, existing file
characteristics may be exploited to better meet
resource capabilities. For example, Figure 2 is
showing runtime of two different NCBI BLAST [6]
jobs where a large number of only short search queries

0 2000 4000 6000 8000

1

3

5

7

9

11

13

15

17

Time taken (seconds)

T
a

sk
 n

u
m

b
e

r

Figure 2.Task runtime affected by input file

properties.

where fed to the program as opposed to a small
number of long queries. Both files were of
approximately same physical size. The figure shows a
difference in execution speed of several orders of
magnitude. Such observations are application specific,
but offer a new level of application-specific
scheduling that can be exploited in grid environments.
For example, in case of BLAST, variation in task
execution time between long and short queries is
caused by algorithm’s requirement to keep track of
various segments of the search query. For the long
queries, this process consumes significantly more time
than for the short queries. As such, this characteristic
can be exploited to divide the input data into sets of
only long and only short search queries. Then, long
queries can be submitted to fast resources while short
queries can be targeted for the slower, cheaper and
less loaded resources achieving overall job load
balance.

Figure 3.Execution times of a set of jobs across

heterogeneous architectures showing runtime
influence.

Because of grid resource heterogeneity, the factor
offering most flexibility regarding task runtime is the
resource selected for task execution. Figure 3 shows a
sample runtimes for a set of jobs on heterogeneous
resources. From the figure, it is obvious that even
small variations in underlying resources can cause
noticeable change in task and therefore job runtime.

Lastly, the parameter set used when invoking a
task can have a significant impact on resource
utilization and task runtime (see Figure 4). For
example, a sample parameter that the user may have
control over but that does not influence the results of
the computation is number of threads employed within
a process. Other such parameters may be application
dependent and can include transitional probabilities in
Hidden Markov Model (HHM) applications or step
size in Monte Carlo simulations. Figure 4 shows the
runtime influence of using varying number of threads
to complete the same task. For shown application
(NCBI BLAST), such functionality is supported
directly within the application and requires only an
additional parameter when invoking the task. What
can also be noticed from the figure is that scalability
of presented approach has its limits, and, more so,
those limits are resource dependent. As can be seen,
speedup of employing two threads as opposed to one
thread is nearly linear for all of the resources, but
when using four threads as opposed to two, only the
dual Opteron resource shows significant speedup.
Furthermore, when invoking the task with eight
threads, all the machines seem to have reached their
scalability maximum with respect to the available
parameter. This limit is caused by the total number of
processing cores available on underlying resources,
i.e., mentioned parameter scales well until the number
of threads is equivalent to the number of processing
cores available on the compute node. As an additional
note on application-resource dependency, if compute
nodes with multiple CPUsare considered, one may be
tempted to start multiple BLAST processes so that the
number of processes corresponds to the number of
CPUs on the node. As shown in Figure 5 though, such
parameterization results in approximately 7%
slowdown when compared to the single process and
multiple threads parameterization. These observations
apply to NCBI BLAST in particular and have been
derived through analysis of application’s execution
characteristics. Nonetheless, similar observations can
be derived for other applications.

With provided examples in mind, the pi factor
may need to be derived individually for each
application and can represent a complex structure
corresponding closely to application parameters. In
general, because of the effects all the components have
on the task computation time, a variable ei can be

0 2000 4000 6000 8000
Time (in seconds)

Many short queries

Few large queries

0

500

1000

1500

2000

2500

Figure 4.Task runtime dependencies on

invocation parameters across architectures.

introduced to represent the expected computation time
of a task ti:

(3)

To aim of variable ei is not necessarily
representation of an absolute and definite task runtime
that deals with job runtime models and job runtime
estimations. Rather, it provides a relative reference
among individual task options that exist when
submitting a job and provides insight into components
influencing task execution time. Finally, overall job
execution time can be defined as for all i.

2.3. Job parameterization

Following, the aim of a job submission effort and
an accompanying scheduler dealing with EP jobs is to
consider available options and factors influencing task
execution with the goal of minimizing load imbalance
between individual tasks ti. By minimizing load
imbalance among resources selected for execution, the
overall job runtime will be minimized. Presented

Figure 5.Effects of task parameterization -

invoking a task using a single process per node with
multiple threads as opposed to single process per

CPU.

formulation leads to a definition of job

parameterization, which can be defined as an
understanding and selection of job and task parameters
that are algorithm, input data, and resource dependent.

Because of the broad encompassment of EP class
of applications and the versatility of the model
describing them, other classes of applications can be
encapsulated within the EP class. This derivation can
be used to make a case for showing the difficulty
involved in scheduling and coordinating execution of
EP class of applications. Obviously, a sequential
application can be represented by a single task that
would also define the entire job. Similarly, a tightly
coupled MPI application can be encapsulated within a
single task. The value for the parameter factor pi from
Eq. 2 would include needed parallelism information.
Because of general inability of MPI applications to
cross individual cluster boundaries, currently there has
not been such a need for multiple task coordination.
This greatly simplifies the scheduling and job
submission process because load balance at the job
level does not have to be a concern. Master-worker
and all-worker classes of applications can be seen as
equivalent to EP class where the master process would
be handling the resource selection and job
parameterization rather than a higher-level scheduler.

3. Scheduling Considerations

Execution of EP jobs in grid environments
enables large reduction in overall job execution time,
increase in resource utilization and reduction in
resource operating cost. This job execution though is
perplexed with application and resource dependencies
that, if not understood, can easily invalidate many of
the available benefits. Scheduling of grid jobs, EP jobs
in particular, is thus the most relevant activity that can
realize these benefits. The first step toward efficient
job execution is understanding of the existing
application-resource relationship. Once understood,
these relationships can be leveraged to deliver sought
goals. Such understanding of an application’s
relationship to the numerous grid resources may seem
as a far fetched goal requiring un-proportional effort
for the benefit received. If decomposed, this process
can be classified into several main categories lending
themselves as a set of guidelines for deepening the
understanding of the application-resource relationship.
Furthermore, depending on the desired results, the
level of understanding of the existing relationship can
range from rudimentary, where merely a small number
of most obvious application characteristics are
recognized, all the way to a well-understood and well-
developed mathematical model for application’s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 thread 2 threads 4 threads 8 threads

T
im

e
 (

in
 s

e
co

n
d

s)

Pentium D 3.0 GHz

Core 2 Duo 2.33 GHz

Dual Opteron 265 1.8 GHz

225 230 235 240 245 250 255

Time (sec)

1 process per node

1 process per CPU

behavior that can later be mapped to individual
resources.

In the context of the EP applications, efficient job
execution can be warranted by minimization of the
load imbalance across instantiated tasks. This load
imbalance is minimized through coordination of
employed parameters in the context of Eq. 2 above
across job spectrum. Eq. 2 alone provides a baseline
for understanding individual components that affect
task’s runtime. As stated earlier in Section 2,
advancing understanding of effects each individual
component has on application’s execution is the first
step in achieving efficient task execution. The next
step is the derivation and coordination of multiple
tasks that are making up the current job. This is also
the most demanding step. With the ultimate goal of
achieving adequate load balance across tasks,
derivation of the tasks must be done simultaneously.
Thus, this problem can easily be described as a multi-
constraint multi-objective optimization problem.
Fortunately, because the grid is such a heterogeneous
and dynamic system, perfect solution to the problem is
rarely necessary and, even if attained, questionably
realizable. An approximate solution that recognizes
stated attributes and employs heuristics and best-effort
practices will often suffice. As such, the following is a
set of concerns and suggestion that should be kept in
mind during scheduling and execution of EP class of
applications:

Job-level coordination– it is beneficial to consider
a job in its entirety prior to its execution rather
than simply submitting jobs on first come, first
serve basis for example. Global overview and
comprehension of the job with respect to input file
size, input file format and characteristics, data
locality, available resources and user requirements
is desirable. Through acknowledgement of these
characteristics, the scheduling objectives, and thus
the scheduling algorithm, can be adjusted more
adequately. By considering a job as a unit, a
global plan can be developed a priori eliminating
many uncertainties as job execution gets under
way (e.g., job budget, input file distribution, data
accuracy, expected task failure rate). At the same
time, this job plan cannot be considered definitive
due to the core characteristics of the grid (e.g.,

unreliability, dynamic state) requiring provisions
to be made that enable in-execution plan
adjustments. An effective way to cope with the
uncertainty is to adopt dynamic task distribution
as opposed to the static distribution. The dynamic
task distribution offers higher tolerance for
individual task failure as well as dynamic
resource availability. The major concern
regarding dynamic task distribution is job

granularity. Due to the overhead associated with
task instantiation, a balance between number of
tasks created and individual task’s computation
time needs to be adequately tuned.

Task parameterization – once created, each task
can be seen as an individual job. This is especially
true from the resource perspective. Depending on
the characteristics of the execution resource,
parameterization of a task should be
independently handled and optimized for the
resource at hand. Based on the amount of data
available for current application and resource as
well as the level of understanding of an
application performance model, this process can
require a greatly variable amount of effort. Effects
of task parameterization can turn a poorly
behaving resource into a competitive one. An
example is shown in Figure 6 where a properly
parameterized task (Parameter set 2) executing on
an old Sun Sparc machine is comparable in
performance to an improperly parameterized task
(Parameter set 1) on a much newer Intel Xeon
based resource.

Load balancing – although each task of an EP
application executes independently, maximization
of job performance is achieved through
minimization of load imbalance across tasks. At
the job level, aiming at achieving load balance
results in task dependencies making efficient
scheduling of this class of applications
significantly more difficult. This is further
complicated by the suggested task-level
parameterization where significant variability
among task execution rates can be observed. An
approach to managing this issue can be seen in the
job plan management that is aware of individual
task-level optimizations and can thus guide the
computation toward set goals. Other possible
directions for achieving load balance in grid
applications include adaptation of techniques used
in parallel and distributed environments (e.g., [9,
10, 11]).

Figure 6.Significance of task-level parameterization -

improperly parameterized task can result in a resource
behaving very poorly.

0

1000

2000

3000

Parameter set 1 Parameter set 2

Intel Xeon, (2.66 GHz, 32

bit, 512 Kb L1)
Sun Sparc E450, (400 MHz,

4 GB RAM)

Task failure –superficially, execution of EP class
of applications with no task communication seems
like a perfect platform for easy handling of partial
task failures. However, under the goals discussed
throughout this paper, task failure introduces a
significant issue. The aim of developing a job
execution plan is to provide additional insight into
job execution and try to satisfy user objectives.
Once a task fails, the job plan is invalidated and,
depending on the failure situation, could
completely disrupt outlook of successful job
completion. As a general observation, tasks
executing on grid resources have the highest
failure rate during their initialization and startup
process. This can be due to resource miss-
configurations, task miss-configuration, policies
or events local to a resource as well as any of
other host of variables. As such, a much higher
probability of success can be assigned to a task
that has reported as being under execution.
Alternatively, multiple submission of a task can
be started, albeit resulting in wastage of resources.
If balance between computation time and number
of tasks is well tuned, using dynamic task
distribution can offer highest tolerance for task
failure [12]. However, other issues, such as
consistent resource availability, may pose
alternate problems then. While there is no safe-
guard against task failure, observations and
models such as these can be incorporated into the
job planning process leading to a more robust
execution.

Cost – considering the general direction of grid
computing toward enterprise and cloud computing
where economical aspects are being increasingly
prevalent [13], cost associated with job execution
is becoming a major concern. Because job cost is
obtained from cumulative task cost, utilization
realized by each task is directly proportional to
the end cost. From the perspective of job
scheduling, it is thus important to generate
efficient job execution plan that satisfies user’s
requirements while yielding profit to the resource
owner. Thus, cost is another major variable when
scheduling EP jobs. Adopting the job plan model
discussed leads toward desired estimations.

User requirements – in the context of enterprise
and cloud computing, user requirements will
become the major driving force behind job
scheduling policies. Unlike the more traditional
cluster computing environments where resource
utilization was the main objective, service
oriented architecture promoted by the grid
infrastructure is advocating a user centric
orientation. Here, the quality of a system is

realized by user satisfaction and measured
through user utility. These notions are realized
through the Quality of Service (QoS)
requirements imposed by the users and agreed
upon by the resource provider through the Service
Level Agreements (SLAs). With future
advancements of pervasive computing, user will
require detailed insight into their consumption of
computational power further complicated with
imposed requirements on alternative job
execution plans. While current efforts in
scheduling EP applications primarily focus on
runtime minimization, largely because runtime is
equated with cost, in future systems cost will take
on different forms (e.g., result accuracy, system
responsiveness, power consumption, availability)
and will become a primary scheduling
consideration.

4. EP Application Scheduling Framework

Considering described components that affect
execution of EP applications in grid environments,
scheduling of this class of applications needs to move
beyond using a generic resource comparison as a
guideline for task distribution and submission.
Scheduling needs to involve coordination of resource
capabilities, matching those to application’s observed
potential, coupled with adequate data distribution and
finalized through individual task parameterization. A
single scheduling action must coordinate execution
parameters of such heterogeneous tasks with the goal
of meeting user requirements. As such, an EP
application with its derived tasks becomes a
heterogeneous unit whose interactions and execution
characteristics need to be simultaneously balanced and
coordinated.

A diagram of the framework outlining the general
process of effective EP application scheduling is
provided Figure 7. As can be seen in the figure,
effective EP application scheduling is a two-step
process. Initially, the application needs to be analyzed,
yielding needed application-specific information.
Following, as user jobs arrive, the derived information
is exploited to account for the application-specifics
and in turn provide a job execution plan that aims at
optimizing job’s performance. Once a job plan has
been derived, the control is transferred to a job
submission engine for execution on grid resources.

Analyzer and planner are the two main
components of described framework. Analyzer
operates at the application level by performing a semi-
permanent analysis of an application. Such analysis
attempts at deriving application-specific relationships
between input data, input parameters, runtime modes,

Figure 7. A sample EP application scheduling

framework that accounts for application-specific
behavior across grid resources.

and execution resources. Unfortunately, application
analysis can often be a non-automated process that
requires acquiring individual’s familiarity with the
application execution patterns. Tools and services such
as AIS [14] can help in guiding and performing the
analysis as well as storing derived conclusions for
later retrieval and use. In the simplest format,
application analysis involves benchmarking of various
resources enabling relative comparison of those
resources for later job execution (sample
benchmarking tools: [15, 16]). In the most
complicated format, application analysis involves
development of a mathematical model that describes
application execution patterns and dependencies. Once
an application has been analyzed, user jobs can exploit
derived information to improve their performance. Job
planner is the component that operates at the job level
and it integrates application analysis information along
with resource availability information to produce a job
plan. Job planner may require an application-specific
module that can perform application data distribution
or input data re-formatting in order for the job to
maximize its performance. Once a job plan has been
created, it is handed to the job manager and a job
submission engine. The job manager component is an
optional component than can implement application-
specific logic for partial task failure and changes in
resource availability.

5. Scheduling Examples

This section serves as a brief outlook into
application execution characteristics and benefits as a
result of applying considerations presented earlier.

Two EP applications were used to perform needed
analysis followed by job execution. Runtime results
show an order of magnitude improvement in job
execution characteristic.

As throughout the rest of this paper, NCBI
BLAST application was chosen as one of the
applications for execution. Figure 9 shows the
runtimes of job segments as they were distributed
across individual resources. A segment is defined as a
set of tasks that executes on any one resource.
Analyzing job turnaround time at the segment level is
semantically equivalent to analyzing job turnaround
time at individual task level with the benefit of
reducing number of entities to display and keep track
of, and has thus been used as the method of choice for
result display.

Application analysis included benchmarking of
each machine using BLAST and systematically
changing input parameters. Following, based on
benchmark data, application-specific modules for data
distribution were developed. Given an input file,
resource-application benchmarks were used to
distribute and allocate appropriate chunks of data to
selected resources with the goal of reducing job load
imbalance. Initial and adjusted job data distributions
can be seen in Figure 8. Furthermore, in order to
exploit some of the observed dependencies [8] on job
input file format, additional application-specific
module has been developed and used to rearrange data
in the input files enabling a finer level of control over
reducing load imbalance. This module allows a key
step in optimizing job execution parameters. Lastly,
each task was parameterized to use appropriate
number of threads to meet resource capabilities (i.e.,

meet number of cores on a node) and thus minimize
tasks’ runtime.

Figure 8. BLAST job data distribution across

resources between initial and optimized job executions.

In short, the following components were
addressed to obtain optimized job execution: resources
were benchmarked, results of the application
benchmarks were used to perform data distribution of
for optimized tasks, input file for each task was re-
formatted providing finer level of load balance

0%

20%

40%

60%

80%

100%

Initial Adjusted

Resource 3

Resource 2

Resource 1

control, and lastly, each task was parameterized to use
number of threads suitable to execution host.

From the Figure 9, it can be seen that the
reduction in job turnaround time of the optimized case
is on the order of 50%. In all of the test cases, the
same number of tasks and the same number of
compute nodes was used as in the initial case; thus, the
increase in resource utilization is obtained purely
through more appropriate job parameterization.
Furthermore, it is obvious that the load imbalance
across the machines has been drastically reduced and
almost eliminated in the optimized case. The only
difference in execution parameters of the adjusted and
optimized cases is use of the input file re-formatting
module. From the results, it can be concluded that for
true optimization of application’s execution, a fine-
level understanding and analysis of an application is
needed. Obviously, such understanding may be quite
complicated and time consuming. Therefore,
depending on expected application execution benefits
and needs, highly detailed optimization of
application’s execution patterns may or may not be
needed.

Presented methods have also been applied and
used during job submission of statistical R code.
Similar to execution of BLAST jobs, executing R code
targeted at exploiting knowledge about individual
resources and application’s suitability to those. Unlike
BLAST, R code does not support multiple threads and
thus majority of speedup was achieved through data
distribution that would match resource capabilities
more closely. As was case with BLAST, the same
number of compute nodes was used for all jobs; the
only difference was in how individual tasks were
parameterized. In case of selected R code, this
required heterogeneous parameterization of tasks that
corresponded to benchmarked relative resource
capabilities. Furthermore, due to the lack of multi-
threaded support in the application but due to the

Figure 9. Difference in job runtime and load balance

between a naïve job submission and an optimized job
submission of a BLAST job.

publicized scheduling policies of available resources,
resource specific knowledge was exploited to create
multiple processes within a single assigned compute
node resulting in higher overall throughput. After
initial resource benchmarks, a targeted job plan was
created by developing an R-specific data distribution
module. The first iteration of job’s execution resulted
in significant reduction of job turnaround time
(‘adjusted’ column in Figure 10). However,
considerable load imbalance was still observed. In
order to remove such load imbalance, similar to
heterogeneous parameterization of tasks assigned to
individual resources, tasks within a resource were then
parameterized in heterogeneous fashion (based on
runtime data observed during the ‘adjusted’ run). Final
runtime results are shown under ‘optimized’ column in
Figure 10 where it can be seen that load imbalance
was further reduced leading to 75% reduction in
runtime when compared to the initial case.

Figure 10. Job runtime reduction as a result of

exploiting application-resource relationship and
knowledge when executing R code.

Obviously, customizations and optimizations
taking place during shown job submissions can be
very application specific. It can thus be concluded that
there is no single silver bullet that can be applied to
any and all applications resulting in shown benefits.
Rather, and as indicated in the introduction, the
purpose of this paper is to provide a set of insights and
tentative guidelines that can be considered when
developing metaschedulers or executing jobs in grid
environments. Currently, provided framework
architecture can be used as performance optimization
model rather than a concrete implementation.
Obtaining desired results automatically requires an
application-specific module or scheduler that
understands and exploits existing relationships. The
major drawback of this model is the need to, on
application-per-application basis, understand and learn
existing application-resource relationships followed by
scheduler development. However, presented

0

300

600

900

1200

1500

Initial Adjusted Optimized

T
im

e
 (

se
c)

Data distribution variations

Resource 1 (24 nodes)

Resource 2 (48 nodes)

Resource 3 (128 nodes)

0

10

20

Initial Adjusted Optimized

T
im

e
 (

h
rs

)

Distribution variations

Resource 1 (10 nodes)

Resource 2 (5 nodes)

Resource 3 (25 nodes)

guidelines present a broad framework offering one a
directed path in achieving sought result.

6. Future Trends

Existing EP scheduling approaches and
algorithms focus on minimizing job turnaround time,
cost or both. Furthermore, current models require the
user to specify job requirements and select most of the
job execution parameters. Examples of options
requested from the user can include specification of a
preferred execution resource, number of processors to
use, required amount of memory, and even creation of
a virtual machine with all the necessary components
and invocation parameters. Consequently, the user is
still deeply involved in the job submission and
scheduling process where the scheduler primarily
performs actions requested. Even though today’s
schedulers advertise cost and runtime optimality,
because they operate under constraints specified by the
user, the schedulers are likely not exploring the entire
application execution space. An analogy can be drawn
here between searching for a local optimum versus a
global optimum that actually exists in the application-
resource space but is not even being explored due to
the constraints imposed by uninformed user.

Future systems should advance the scheduling
environment and alleviate the user of otherwise
required effort by providing options and solutions to
the user. The level of understanding of the relationship
between an application and a resource should be
understood by the scheduler to the point where advice
can be provided to the user automatically and prior to
job’s execution. Such advice can come in form of
concrete values such as compute time, cost, or data
accuracy (for sample methods of estimating needed
values, interested reader can refer to [17]) or more
abstractly where only a window of various execution
alternatives are presented. The latter alternatives may
not be mapped to concrete values but could be related
only to each other, thus providing insight to the user
about the existing job execution alternatives. Without
such support, the user may not even be aware of
existing options and is thus less likely to realize
attainable goals. By enabling generation and
presentation of described alternatives, job submission
can be tailored to each individual user and each
individual job to better match user’s requirements.
This is the goal of service oriented technology.

An example of what the user may be presented
with in future is provided in Figure 11, where a sample
of application’s execution space is made available to
the user. Such an execution space should be derived
automatically, following guidelines presented above
and merged with user’s job requirements (e.g., job file

size). Upon collection of needed information, job
execution options are generated providing desired
insight to the user. The user can then simply select the

Figure 11. A sample job execution option space

presented to the user showing job execution tradeoffs.

execution option based on their current situation, thus
satisfying their needs more adequately.

In order to achieve described functionality, a deep
understanding of an application needs to be attained.
Initial works on understanding and exploiting this
functionality have already begun (e.g., [18, 19, 20])
with more coming. Furthermore, each application
needs by be analyzed and described independently.
Examples of application-specific characteristics can
include scalability levels, input data characteristic, as
well as resource compatibility. Added difficulty stems
from the dynamics of the grid where resources fail,
come online during job’s execution or vary their
performance rate based on current load. Some of these
issues may be alleviated through existing and
developing systems (e.g., advance reservation), while
others cannot be remedied for but only dealt with as
they arise. Additional technologies, such as machine
learning, may need to be employed to enable and
automate aspirations such as these. Altogether, this is
what makes scheduling a complex issue, but also one
that is a cornerstone of a successful paradigm.

7. Conclusions

EP class of applications represents an ever-
growing workload on today’s compute resources. This
workload is generated by larger problems as well as a
desire for more accurate results. Grid computing
presents itself as a viable solution to the resource
shortage problem because independent institution can
now share their resources, thus increasing resources’
overall utilization. Integration of the independent
resources was the first step towards achieving goals
set by grid computing ideals. The second step is

efficient usage of those resources. This means that
resource should not only be used continuously (i.e.,

increasing their utilization) but also effectively (i.e.,

increasing their throughput). In order to achieve such
execution, relationship between an application and a
resource needs to be understood and exploited by the
metascheduler. Then, the third step of customizing the
execution of an application to user’s current needs
becomes a realizable goal. At that point, the user
abstracts themselves from underlying application
execution details and is able to focus on the original
problem. Work presented in this paper aims at
promoting existence and importance of the
application-resource relationship followed by a set of
general concerns that can be used in order to develop
more effective metascheduling techniques and
solutions.

8. References

[1] A. Iosup, C. Dumitrescu, D. H. Epema, H. Li, and L.

Wolters, "How are real grids used? The analysis of four grid

traces and its implications," in International Conference on

Grid Computing 2006, Barcelona, Spain, 2006, pp. 262-269.

[2] I. Foster and C. Kesselman, Eds. The Grid 2, Second

ed., New York: Morgan Kaufmann, 2004.

[3] D. Abramson, J. Giddy, and L. Kotler, "High

Performance Parametric Modeling with Nimrod/G: Killer

Application for the Global Grid," in International Parallel

and Distributed Processing Symposium (IPDPS), Cancun,

Mexico, 2000, pp. 520-528.

[4] H. Casanova, G. Obertelli, F. Berman, and R. Wolski,

"The AppLeS Parameter Sweep Template: User-Level

Middleware for the Grid," in Supercomputing 2000, Dallas,

TX, 2000.

[5] R. Buyya, D. Abramson, and J. Giddy, "Nimrod-G

Resource Broker for Service-Oriented Grid Computing,"

IEEE Distributed Systems Online, 2(7), November 2001,

[6] T. Madden, "The BLAST Sequence Analysis Tool,"

NCBI August 13 2003.

[7] V. Kumar, Introduction to Parallel Computing:

Addison-Wesley Longman Publishing Co., Inc. Boston, MA,

USA, 2002.

[8] E. Afgan and P. Bangalore, "Performance

Characterization of BLAST for the Grid," in IEEE 7th

International Symposium on Bioinformatics &

Bioengineering (IEEE BIBE 2007) Boston, MA, 2007, pp.

1394-1398.

[9] I. Banicescu and Z. Liu., "Adaptive Factoring: A

Dynamic Scheduling Method Tuned to the Rate of Weight

Changes," in High Performance Computing Symposium

(HPC 2000), Washington, D.C., 2000, pp. 122-129.

[10] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R.

Nudd, "Agent-Based Grid Load Balancing Using

Performance-Driven Task Scheduling," in 17th International

Symposium on Parallel and Distributed Processing (IPDPS)

2003, Nice, France, 2003, p. 49.2.

[11] R. U. Payli, E. Yilmaz, A. Ecer, H. U. Akay, and S.

Chien, "DLB – A Dynamic Load Balancing Tool for Grid

Computing," in Parallel CFD Conference, Grand Canaria,

Canary Islands, Spain, 2004, p. 8.

[12] J. Dean and S. Ghemawat, "MapReduce: Simplified

Data Processing on Large Clusters," in OSDI'04: Sixth

Symposium on Operating System Design and

Implementation San Francisco, CA, 2004, p. 13.

[13] J. Broberg, S. Venugopal, and R. Buyya, "Market-

oriented Grids and Utility Computing: The State-of-the-art

and Future Directions," Journal of Grid Computing, 5(4),

December 28 2007,

[14] E. Afgan and P. Bangalore, "Application Specification

Language (ASL) – A Language for Describing Applications

in Grid Computing," in The 4th International Conference on

Grid Services Engineering and Management - GSEM 2007

Leipzig, Germany, 2007, pp. 24-38.

[15] G. Tsouloupas and M. D. Dikaiakos, "Grid Resource

Ranking Using Low-Level Performance Measurements," in

13th International Euro-Par Conference 2007 on Parallel

Processing, Rennes, France, 2007, pp. 467-476.

[16] G. Tsouloupas and M. Dikaiakos, "GridBench: A Tool

for Benchmarking Grids," in 4th International Workshop on

Grid Computing (Grid2003), Phoenix, AZ, 2003, pp. 60-67.

[17] E. Elmroth, J. Tordsson, T. Fahringer, F. Nadeem, R.

Gruber, and V. Keller, "Three Complementary Performance

Prediction Methods For Grid Applications," in CoreGRID

Integration Workshop 2008, Heraklion, Greece, 2008.

[18] G. Tan, L. Xu, Z. Dai, S. Feng, and N. Sun, "A Study

of Architectural Optimization Methods in Bioinformatics

Applications," International Journal of High Performance

Computing Applications, 21(3), August 2007, pp. 371-384.

[19] H. Stockinger, M. Pagni, L. Cerutti, and L. Falquet,

"Grid Approach to Embarrassingly Parallel CPU-Intensive

Bioinformatics Problems," in IEEE International

Conference on e-Science and Grid Computing Amsterdam,

Netherlands: IEEE 2006, pp. 58-68.

[20] A. Tirado-Ramos, G. Tsouloupas, M. Dikaiakos, and P.

Sloot, "Grid Resource Selection by Application

Benchmarking for Computational Haemodynamics

Applications," in International Conference on

Computational Science (ICCS) 2005, Kassel, Germany,

2005, pp. 534-543.

