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Abstract

Embarrassingly parallel applications represent 

an important workload in today's grid environments.

Scheduling and execution of this class of applications 

is considered mostly a trivial and well-understood

process on homogeneous clusters. However, while 

grid environments provide the necessary 

computational resources, associated resource

heterogeneity represents a new challenge for efficient 

task execution for these types of applications across 

multiple resources. This paper presents a set of 

examples illustrating how execution characteristics of 

individual tasks, and consequently a job, are affected 

by the choice of task execution resources, task 

invocation parameters, and task input data attributes.

It is the aim of this work to highlight this relationship 

between an application and an execution resource to 

promote development of better metascheduling 

techniques for the grid. By exploiting this relationship, 

application throughput can be maximized, also 

resulting in higher resource utilization. In order to 

achieve such benefits, a set of job scheduling and 

execution concerns is derived leading toward a

computational pipeline for scheduling embarrassingly 

parallel applications in grid environments. 

1. Introduction

Embarrassingly parallel (EP) class of applications 
is likely to represent the most widely deployed class of 
applications in the world [1]. EP applications, in 
nature very similar to SPMD (Single Process, Multiple 
Data) or Parameter Sweep, are characterized by 
independent, coarsely grained and indivisible tasks. 
The goal of EP applications is to introduce parallelism 
into application execution without any application 
code modification and associated cost. This is realized 
through multiple invocations of the same application, 
where each instance is invoked using a different input 
data set. The number of tasks being instantiated can 

range greatly from only a few instances to several 
hundred instances and each instance can execute from 
several seconds or minutes to many hours. The end 
result is speedup of application’s execution that is only 
limited by the number of resource available. 

Meanwhile, grid computing has emerged as the 
upcoming distributed computational infrastructure that 
enables virtualization and aggregation of 
geographically distributed compute resources into a 
seamless compute platform [2]. Characterized by 
heterogeneous resources with a wide range of network 
speeds between participating sites, high network 
latency, site and resource instability and a sea of local 
management policies, it seems the grid presents as 
many problems as it solves. Nonetheless, from the 
early days of the grid, EP class of applications has 
been categorized as the killer application for the grid 
[3]. This is due to the ability of EP applications to 
consume large numbers of resources accompanied 
with minimal requirements and dependencies on 
network status as well as high tolerance for partial 
failure. Furthermore, these applications were relatively 
easy to deploy and initiate execution. 

This suitability has materialized through several 
projects that have explored, exploited, and advanced 
capabilities of EP application in grid environments, for 
example AppLeS [4] and Nimrod/G [5]. However,
because of the lack of communication between 
individual tasks, a common assumption is that 
execution of EP application in grid environments is 
easy, or at least significantly easier than execution of 
tightly coupled, MPI applications. On the contrary, 
execution of EP applications in grid environments is 
confined by resource availability, optimized through 
task parameterization, hindered by simultaneous use 
and management of heterogeneous resources 
belonging to different administrative domains, and 
dependent on user requirements. As such, the act of 
application execution includes application scheduling, 
or assignment of tasks to appropriate resources. 
Because of the sheer number of influencing 
components, scheduling becomes a major component 
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for success of EP applications in the grid and should 
be handled comprehensively with respect to the 
application execution environment variables. 

As the grid evolves into independently managed 
clouds relying heavily on commercial aspects, 
resource owners will try to maximize resource 
utilization while satisfying users’ requirements. 
Simultaneously, users will impose stringent 
requirements on their application executions in terms 
of cost, execution time, reliability or data cost. In 
order to achieve these objectives an understanding of 
the components influencing application execution is 
necessary. In this paper, we offer a discussion of 
execution variables for EP applications in grid 
environments and their effects on applications’
runtimes. We have used the NCBI BLAST [6]
application as an example to highlight many of these 
issues and illustrate the need for advanced resource 
and application specific metascheduling techniques. 

2. Application Model

As briefly discussed, the Embarrassingly Parallel 
(EP) class of applications is composed of a class of 
applications whose computational load consists of 
executing the same application multiple times, with 
each instance operating on a varying input data set and 
perhaps varying parameters [7]. The most significant 
characteristic of EP applications is that, once started, 
there is no communication between individual tasks. 
This model can be seen as a modification of Flynn’s 
original SIMD (Single Instruction, Multiple Data) 
taxonomy and more general SPMD (Single Process, 
Multiple Data) model where individual processes can 
execute independent instructions at the same point in 
time but are, overall, executing the same code [7]. As 
such, an application execution with all of its instances 
is referred to as a job. A job is composed of a set of 
tasks or instances, where each instance is assigned a 
different input data set. More formally, a job J

composed of a set of tasks ti can be represented as 
follows:

(1)

In this section we present some of the key factors that 
affect metascheduling of EP class of applications in a 
grid along with potential solutions to address some of 
these issues. 

2.1. Task heterogeneity

In more traditional cluster environments, where 
individual compute nodes are homogeneous, execution 
times of individual tasks within a job can be expected 

Figure 1. Sample task runtimes of a job across 

heterogeneous resources.

largely homogeneous. In grid environments, where 
individual resources are highly heterogeneous, task 
execution times can vary greatly [8]. Figure 1 shows 
an example of task runtime variability resulting from 
resource heterogeneity. Shown tasks were all fed an 
equally-sized input file and executed across a range of 
heterogeneous resources resulting in a significant level 
of load imbalance. Tasks that have experienced 
approximately equivalent runtimes got assigned to 
multiple nodes within a single cluster by the high-level 
scheduler. In the described environment, the runtime 
of the entire job is determined by the longest running 
task making a strong requirement for efficient load 
balancing. 

2.2. Task parameterization

In order to better understand factors influencing 
runtime of a task, a task ti can be further decomposed 
and represented as follows:

(2)

where di represents the task input data, ri represents 
the execution resource for task ti, and pi represents the 
parameter set used when invoking the given task. 
Individually, the input data set is the single most 
influential factor determining the runtime of a task. 
However, because the input file or input parameters 
are the purpose for the computation,the job is 
constrained by the characteristics of the input. 
Nonetheless, at the task level, existing file 
characteristics may be exploited to better meet 
resource capabilities. For example, Figure 2 is 
showing runtime of two different NCBI BLAST [6]
jobs where a large number of only short search queries 
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Figure 2.Task runtime affected by input file 

properties.

where fed to the program as opposed to a small 
number of long queries. Both files were of 
approximately same physical size. The figure shows a 
difference in execution speed of several orders of 
magnitude. Such observations are application specific, 
but offer a new level of application-specific 
scheduling that can be exploited in grid environments. 
For example, in case of BLAST, variation in task 
execution time between long and short queries is 
caused by algorithm’s requirement to keep track of 
various segments of the search query. For the long 
queries, this process consumes significantly more time 
than for the short queries. As such, this characteristic 
can be exploited to divide the input data into sets of 
only long and only short search queries. Then, long 
queries can be submitted to fast resources while short 
queries can be targeted for the slower, cheaper and 
less loaded resources achieving overall job load 
balance.

Figure 3.Execution times of a set of jobs across 

heterogeneous architectures showing runtime
influence.

Because of grid resource heterogeneity, the factor 
offering most flexibility regarding task runtime is the 
resource selected for task execution. Figure 3 shows a 
sample runtimes for a set of jobs on heterogeneous 
resources. From the figure, it is obvious that even 
small variations in underlying resources can cause 
noticeable change in task and therefore job runtime.

Lastly, the parameter set used when invoking a 
task can have a significant impact on resource 
utilization and task runtime (see Figure 4). For 
example, a sample parameter that the user may have
control over but that does not influence the results of 
the computation is number of threads employed within 
a process. Other such parameters may be application 
dependent and can include transitional probabilities in
Hidden Markov Model (HHM) applications or step 
size in Monte Carlo simulations. Figure 4 shows the 
runtime influence of using varying number of threads 
to complete the same task. For shown application 
(NCBI BLAST), such functionality is supported 
directly within the application and requires only an 
additional parameter when invoking the task. What 
can also be noticed from the figure is that scalability 
of presented approach has its limits, and, more so, 
those limits are resource dependent. As can be seen, 
speedup of employing two threads as opposed to one 
thread is nearly linear for all of the resources, but 
when using four threads as opposed to two, only the 
dual Opteron resource shows significant speedup. 
Furthermore, when invoking the task with eight 
threads, all the machines seem to have reached their 
scalability maximum with respect to the available 
parameter. This limit is caused by the total number of 
processing cores available on underlying resources, 
i.e., mentioned parameter scales well until the number 
of threads is equivalent to the number of processing 
cores available on the compute node. As an additional 
note on application-resource dependency, if compute 
nodes with multiple CPUsare considered, one may be 
tempted to start multiple BLAST processes so that the 
number of processes corresponds to the number of 
CPUs on the node. As shown in Figure 5 though, such 
parameterization results in approximately 7% 
slowdown when compared to the single process and 
multiple threads parameterization. These observations
apply to NCBI BLAST in particular and have been 
derived through analysis of application’s execution 
characteristics. Nonetheless, similar observations can 
be derived for other applications. 

With provided examples in mind, the pi factor 
may need to be derived individually for each 
application and can represent a complex structure 
corresponding closely to application parameters. In 
general, because of the effects all the components have 
on the task computation time, a variable ei can be 
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Figure 4.Task runtime dependencies on 

invocation parameters across architectures.

introduced to represent the expected computation time 
of a task ti:

(3)

To aim of variable ei is not necessarily 
representation of an absolute and definite task runtime 
that deals with job runtime models and job runtime 
estimations. Rather, it provides a relative reference 
among individual task options that exist when 
submitting a job and provides insight into components 
influencing task execution time. Finally, overall job 
execution time can be defined as for all i.

2.3. Job parameterization

Following, the aim of a job submission effort and 
an accompanying scheduler dealing with EP jobs is to 
consider available options and factors influencing task 
execution with the goal of minimizing load imbalance 
between individual tasks ti. By minimizing load 
imbalance among resources selected for execution, the 
overall job runtime will be minimized. Presented 

Figure 5.Effects of task parameterization -

invoking a task using a single process per node with 
multiple threads as opposed to single process per 

CPU.

formulation leads to a definition of job 

parameterization, which can be defined as an 
understanding and selection of job and task parameters 
that are algorithm, input data, and resource dependent.

Because of the broad encompassment of EP class 
of applications and the versatility of the model 
describing them, other classes of applications can be 
encapsulated within the EP class. This derivation can 
be used to make a case for showing the difficulty 
involved in scheduling and coordinating execution of 
EP class of applications. Obviously, a sequential 
application can be represented by a single task that 
would also define the entire job. Similarly, a tightly 
coupled MPI application can be encapsulated within a 
single task. The value for the parameter factor pi from 
Eq. 2 would include needed parallelism information. 
Because of general inability of MPI applications to 
cross individual cluster boundaries, currently there has
not been such a need for multiple task coordination. 
This greatly simplifies the scheduling and job 
submission process because load balance at the job 
level does not have to be a concern. Master-worker 
and all-worker classes of applications can be seen as 
equivalent to EP class where the master process would 
be handling the resource selection and job 
parameterization rather than a higher-level scheduler. 

3. Scheduling Considerations

Execution of EP jobs in grid environments 
enables large reduction in overall job execution time, 
increase in resource utilization and reduction in 
resource operating cost. This job execution though is 
perplexed with application and resource dependencies 
that, if not understood, can easily invalidate many of 
the available benefits. Scheduling of grid jobs, EP jobs 
in particular, is thus the most relevant activity that can 
realize these benefits. The first step toward efficient 
job execution is understanding of the existing 
application-resource relationship. Once understood, 
these relationships can be leveraged to deliver sought 
goals. Such understanding of an application’s 
relationship to the numerous grid resources may seem 
as a far fetched goal requiring un-proportional effort 
for the benefit received. If decomposed, this process 
can be classified into several main categories lending 
themselves as a set of guidelines for deepening the 
understanding of the application-resource relationship. 
Furthermore, depending on the desired results, the 
level of understanding of the existing relationship can 
range from rudimentary, where merely a small number 
of most obvious application characteristics are 
recognized, all the way to a well-understood and well-
developed mathematical model for application’s 
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behavior that can later be mapped to individual 
resources.

In the context of the EP applications, efficient job 
execution can be warranted by minimization of the 
load imbalance across instantiated tasks. This load 
imbalance is minimized through coordination of 
employed parameters in the context of Eq. 2 above 
across job spectrum. Eq. 2 alone provides a baseline 
for understanding individual components that affect 
task’s runtime. As stated earlier in Section 2,
advancing understanding of effects each individual 
component has on application’s execution is the first 
step in achieving efficient task execution. The next 
step is the derivation and coordination of multiple 
tasks that are making up the current job. This is also 
the most demanding step. With the ultimate goal of 
achieving adequate load balance across tasks, 
derivation of the tasks must be done simultaneously. 
Thus, this problem can easily be described as a multi-
constraint multi-objective optimization problem. 
Fortunately, because the grid is such a heterogeneous 
and dynamic system, perfect solution to the problem is 
rarely necessary and, even if attained, questionably 
realizable. An approximate solution that recognizes 
stated attributes and employs heuristics and best-effort 
practices will often suffice. As such, the following is a 
set of concerns and suggestion that should be kept in 
mind during scheduling and execution of EP class of 
applications:

Job-level coordination– it is beneficial to consider 
a job in its entirety prior to its execution rather 
than simply submitting jobs on first come, first 
serve basis for example. Global overview and 
comprehension of the job with respect to input file 
size, input file format and characteristics, data 
locality, available resources and user requirements 
is desirable. Through acknowledgement of these 
characteristics, the scheduling objectives, and thus 
the scheduling algorithm, can be adjusted more 
adequately. By considering a job as a unit, a 
global plan can be developed a priori eliminating 
many uncertainties as job execution gets under 
way (e.g., job budget, input file distribution, data 
accuracy, expected task failure rate). At the same 
time, this job plan cannot be considered definitive 
due to the core characteristics of the grid (e.g.,

unreliability, dynamic state) requiring provisions 
to be made that enable in-execution plan 
adjustments. An effective way to cope with the 
uncertainty is to adopt dynamic task distribution 
as opposed to the static distribution. The dynamic 
task distribution offers higher tolerance for 
individual task failure as well as dynamic 
resource availability. The major concern 
regarding dynamic task distribution is job 

granularity. Due to the overhead associated with 
task instantiation, a balance between number of 
tasks created and individual task’s computation 
time needs to be adequately tuned.

Task parameterization – once created, each task 
can be seen as an individual job. This is especially 
true from the resource perspective. Depending on 
the characteristics of the execution resource, 
parameterization of a task should be 
independently handled and optimized for the 
resource at hand. Based on the amount of data 
available for current application and resource as 
well as the level of understanding of an 
application performance model, this process can 
require a greatly variable amount of effort. Effects 
of task parameterization can turn a poorly 
behaving resource into a competitive one. An 
example is shown in Figure 6 where a properly 
parameterized task (Parameter set 2) executing on 
an old Sun Sparc machine is comparable in 
performance to an improperly parameterized task 
(Parameter set 1) on a much newer Intel Xeon 
based resource.

Load balancing – although each task of an EP 
application executes independently, maximization 
of job performance is achieved through 
minimization of load imbalance across tasks. At 
the job level, aiming at achieving load balance 
results in task dependencies making efficient 
scheduling of this class of applications 
significantly more difficult. This is further 
complicated by the suggested task-level 
parameterization where significant variability 
among task execution rates can be observed. An 
approach to managing this issue can be seen in the 
job plan management that is aware of individual 
task-level optimizations and can thus guide the 
computation toward set goals. Other possible 
directions for achieving load balance in grid 
applications include adaptation of techniques used 
in parallel and distributed environments (e.g., [9, 
10, 11]). 

Figure 6.Significance of task-level parameterization -
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Task failure –superficially, execution of EP class 
of applications with no task communication seems 
like a perfect platform for easy handling of partial 
task failures. However, under the goals discussed 
throughout this paper, task failure introduces a 
significant issue. The aim of developing a job 
execution plan is to provide additional insight into 
job execution and try to satisfy user objectives. 
Once a task fails, the job plan is invalidated and, 
depending on the failure situation, could 
completely disrupt outlook of successful job 
completion. As a general observation, tasks 
executing on grid resources have the highest 
failure rate during their initialization and startup 
process. This can be due to resource miss-
configurations, task miss-configuration, policies 
or events local to a resource as well as any of 
other host of variables. As such, a much higher 
probability of success can be assigned to a task 
that has reported as being under execution. 
Alternatively, multiple submission of a task can 
be started, albeit resulting in wastage of resources. 
If balance between computation time and number 
of tasks is well tuned, using dynamic task 
distribution can offer highest tolerance for task 
failure [12]. However, other issues, such as 
consistent resource availability, may pose 
alternate problems then. While there is no safe-
guard against task failure, observations and 
models such as these can be incorporated into the 
job planning process leading to a more robust 
execution. 

Cost – considering the general direction of grid 
computing toward enterprise and cloud computing 
where economical aspects are being increasingly 
prevalent [13], cost associated with job execution 
is becoming a major concern. Because job cost is 
obtained from cumulative task cost, utilization 
realized by each task is directly proportional to 
the end cost. From the perspective of job 
scheduling, it is thus important to generate 
efficient job execution plan that satisfies user’s 
requirements while yielding profit to the resource 
owner. Thus, cost is another major variable when 
scheduling EP jobs. Adopting the job plan model 
discussed leads toward desired estimations. 

User requirements – in the context of enterprise 
and cloud computing, user requirements will 
become the major driving force behind job 
scheduling policies. Unlike the more traditional 
cluster computing environments where resource 
utilization was the main objective, service 
oriented architecture promoted by the grid 
infrastructure is advocating a user centric 
orientation. Here, the quality of a system is 

realized by user satisfaction and measured 
through user utility. These notions are realized 
through the Quality of Service (QoS) 
requirements imposed by the users and agreed 
upon by the resource provider through the Service 
Level Agreements (SLAs). With future 
advancements of pervasive computing, user will 
require detailed insight into their consumption of 
computational power further complicated with 
imposed requirements on alternative job 
execution plans. While current efforts in 
scheduling EP applications primarily focus on 
runtime minimization, largely because runtime is 
equated with cost, in future systems cost will take 
on different forms (e.g., result accuracy, system 
responsiveness, power consumption, availability)
and will become a primary scheduling 
consideration. 

4. EP Application Scheduling Framework

Considering described components that affect 
execution of EP applications in grid environments, 
scheduling of this class of applications needs to move 
beyond using a generic resource comparison as a 
guideline for task distribution and submission.
Scheduling needs to involve coordination of resource 
capabilities, matching those to application’s observed 
potential, coupled with adequate data distribution and 
finalized through individual task parameterization. A 
single scheduling action must coordinate execution 
parameters of such heterogeneous tasks with the goal 
of meeting user requirements. As such, an EP 
application with its derived tasks becomes a 
heterogeneous unit whose interactions and execution 
characteristics need to be simultaneously balanced and 
coordinated.

A diagram of the framework outlining the general 
process of effective EP application scheduling is 
provided Figure 7. As can be seen in the figure, 
effective EP application scheduling is a two-step 
process. Initially, the application needs to be analyzed,
yielding needed application-specific information. 
Following, as user jobs arrive, the derived information 
is exploited to account for the application-specifics 
and in turn provide a job execution plan that aims at 
optimizing job’s performance. Once a job plan has 
been derived, the control is transferred to a job 
submission engine for execution on grid resources.

Analyzer and planner are the two main 
components of described framework. Analyzer 
operates at the application level by performing a semi-
permanent analysis of an application. Such analysis 
attempts at deriving application-specific relationships 
between input data, input parameters, runtime modes, 



Figure 7. A sample EP application scheduling 

framework that accounts for application-specific 
behavior across grid resources.

and execution resources. Unfortunately, application 
analysis can often be a non-automated process that 
requires acquiring individual’s familiarity with the 
application execution patterns. Tools and services such 
as AIS [14] can help in guiding and performing the 
analysis as well as storing derived conclusions for 
later retrieval and use. In the simplest format, 
application analysis involves benchmarking of various 
resources enabling relative comparison of those 
resources for later job execution (sample 
benchmarking tools: [15, 16]). In the most 
complicated format, application analysis involves 
development of a mathematical model that describes 
application execution patterns and dependencies. Once 
an application has been analyzed, user jobs can exploit 
derived information to improve their performance. Job 
planner is the component that operates at the job level 
and it integrates application analysis information along 
with resource availability information to produce a job 
plan. Job planner may require an application-specific 
module that can perform application data distribution 
or input data re-formatting in order for the job to 
maximize its performance. Once a job plan has been 
created, it is handed to the job manager and a job 
submission engine. The job manager component is an 
optional component than can implement application-
specific logic for partial task failure and changes in 
resource availability. 

5. Scheduling Examples

This section serves as a brief outlook into 
application execution characteristics and benefits as a 
result of applying considerations presented earlier. 

Two EP applications were used to perform needed 
analysis followed by job execution. Runtime results 
show an order of magnitude improvement in job 
execution characteristic.

As throughout the rest of this paper, NCBI 
BLAST application was chosen as one of the 
applications for execution. Figure 9 shows the 
runtimes of job segments as they were distributed 
across individual resources. A segment is defined as a 
set of tasks that executes on any one resource. 
Analyzing job turnaround time at the segment level is 
semantically equivalent to analyzing job turnaround 
time at individual task level with the benefit of 
reducing number of entities to display and keep track 
of, and has thus been used as the method of choice for 
result display. 

Application analysis included benchmarking of 
each machine using BLAST and systematically 
changing input parameters. Following, based on 
benchmark data, application-specific modules for data 
distribution were developed. Given an input file, 
resource-application benchmarks were used to 
distribute and allocate appropriate chunks of data to 
selected resources with the goal of reducing job load 
imbalance. Initial and adjusted job data distributions
can be seen in Figure 8. Furthermore, in order to 
exploit some of the observed dependencies [8] on job 
input file format, additional application-specific 
module has been developed and used to rearrange data 
in the input files enabling a finer level of control over 
reducing load imbalance. This module allows a key 
step in optimizing job execution parameters. Lastly, 
each task was parameterized to use appropriate 
number of threads to meet resource capabilities (i.e.,

meet number of cores on a node) and thus minimize 
tasks’ runtime. 

Figure 8. BLAST job data distribution across 

resources between initial and optimized job executions. 

In short, the following components were 
addressed to obtain optimized job execution: resources 
were benchmarked, results of the application 
benchmarks were used to perform data distribution of 
for optimized tasks, input file for each task was re-
formatted providing finer level of load balance 
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control, and lastly, each task was parameterized to use 
number of threads suitable to execution host.

From the Figure 9, it can be seen that the 
reduction in job turnaround time of the optimized case 
is on the order of 50%. In all of the test cases, the 
same number of tasks and the same number of 
compute nodes was used as in the initial case; thus, the 
increase in resource utilization is obtained purely 
through more appropriate job parameterization. 
Furthermore, it is obvious that the load imbalance 
across the machines has been drastically reduced and 
almost eliminated in the optimized case. The only 
difference in execution parameters of the adjusted and 
optimized cases is use of the input file re-formatting 
module. From the results, it can be concluded that for 
true optimization of application’s execution, a fine-
level understanding and analysis of an application is 
needed. Obviously, such understanding may be quite 
complicated and time consuming. Therefore, 
depending on expected application execution benefits
and needs, highly detailed optimization of 
application’s execution patterns may or may not be 
needed.

Presented methods have also been applied and 
used during job submission of statistical R code. 
Similar to execution of BLAST jobs, executing R code 
targeted at exploiting knowledge about individual 
resources and application’s suitability to those. Unlike 
BLAST, R code does not support multiple threads and 
thus majority of speedup was achieved through data 
distribution that would match resource capabilities 
more closely. As was case with BLAST, the same 
number of compute nodes was used for all jobs; the 
only difference was in how individual tasks were 
parameterized. In case of selected R code, this 
required heterogeneous parameterization of tasks that 
corresponded to benchmarked relative resource 
capabilities. Furthermore, due to the lack of multi-
threaded support in the application but due to the

Figure 9. Difference in job runtime and load balance 

between a naïve job submission and an optimized job 
submission of a BLAST job.

publicized scheduling policies of available resources, 
resource specific knowledge was exploited to create 
multiple processes within a single assigned compute 
node resulting in higher overall throughput. After 
initial resource benchmarks, a targeted job plan was 
created by developing an R-specific data distribution 
module. The first iteration of job’s execution resulted 
in significant reduction of job turnaround time 
(‘adjusted’ column in Figure 10). However, 
considerable load imbalance was still observed. In 
order to remove such load imbalance, similar to 
heterogeneous parameterization of tasks assigned to 
individual resources, tasks within a resource were then 
parameterized in heterogeneous fashion (based on 
runtime data observed during the ‘adjusted’ run). Final 
runtime results are shown under ‘optimized’ column in 
Figure 10 where it can be seen that load imbalance 
was further reduced leading to 75% reduction in 
runtime when compared to the initial case.

Figure 10. Job runtime reduction as a result of 

exploiting application-resource relationship and 
knowledge when executing R code.

Obviously, customizations and optimizations 
taking place during shown job submissions can be 
very application specific. It can thus be concluded that 
there is no single silver bullet that can be applied to 
any and all applications resulting in shown benefits. 
Rather, and as indicated in the introduction, the 
purpose of this paper is to provide a set of insights and 
tentative guidelines that can be considered when 
developing metaschedulers or executing jobs in grid 
environments. Currently, provided framework
architecture can be used as performance optimization 
model rather than a concrete implementation. 
Obtaining desired results automatically requires an 
application-specific module or scheduler that 
understands and exploits existing relationships. The 
major drawback of this model is the need to, on 
application-per-application basis, understand and learn 
existing application-resource relationships followed by 
scheduler development. However, presented 
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guidelines present a broad framework offering one a 
directed path in achieving sought result.

6. Future Trends

Existing EP scheduling approaches and 
algorithms focus on minimizing job turnaround time, 
cost or both. Furthermore, current models require the 
user to specify job requirements and select most of the 
job execution parameters. Examples of options 
requested from the user can include specification of a 
preferred execution resource, number of processors to 
use, required amount of memory, and even creation of 
a virtual machine with all the necessary components 
and invocation parameters. Consequently, the user is 
still deeply involved in the job submission and 
scheduling process where the scheduler primarily 
performs actions requested. Even though today’s 
schedulers advertise cost and runtime optimality, 
because they operate under constraints specified by the 
user, the schedulers are likely not exploring the entire 
application execution space. An analogy can be drawn 
here between searching for a local optimum versus a 
global optimum that actually exists in the application-
resource space but is not even being explored due to 
the constraints imposed by uninformed user.

Future systems should advance the scheduling 
environment and alleviate the user of otherwise 
required effort by providing options and solutions to 
the user. The level of understanding of the relationship 
between an application and a resource should be 
understood by the scheduler to the point where advice
can be provided to the user automatically and prior to 
job’s execution. Such advice can come in form of 
concrete values such as compute time, cost, or data 
accuracy (for sample methods of estimating needed 
values, interested reader can refer to [17]) or more 
abstractly where only a window of various execution 
alternatives are presented. The latter alternatives may 
not be mapped to concrete values but could be related 
only to each other, thus providing insight to the user 
about the existing job execution alternatives. Without 
such support, the user may not even be aware of 
existing options and is thus less likely to realize 
attainable goals. By enabling generation and 
presentation of described alternatives, job submission 
can be tailored to each individual user and each 
individual job to better match user’s requirements. 
This is the goal of service oriented technology. 

An example of what the user may be presented 
with in future is provided in Figure 11, where a sample 
of application’s execution space is made available to 
the user. Such an execution space should be derived 
automatically, following guidelines presented above 
and merged with user’s job requirements (e.g., job file 

size). Upon collection of needed information, job 
execution options are generated providing desired 
insight to the user. The user can then simply select the 

Figure 11. A sample job execution option space 

presented to the user showing job execution tradeoffs.

execution option based on their current situation, thus 
satisfying their needs more adequately.

In order to achieve described functionality, a deep 
understanding of an application needs to be attained. 
Initial works on understanding and exploiting this 
functionality have already begun (e.g., [18, 19, 20])
with more coming. Furthermore, each application 
needs by be analyzed and described independently. 
Examples of application-specific characteristics can 
include scalability levels, input data characteristic, as 
well as resource compatibility. Added difficulty stems 
from the dynamics of the grid where resources fail, 
come online during job’s execution or vary their 
performance rate based on current load. Some of these 
issues may be alleviated through existing and 
developing systems (e.g., advance reservation), while 
others cannot be remedied for but only dealt with as 
they arise. Additional technologies, such as machine 
learning, may need to be employed to enable and 
automate aspirations such as these. Altogether, this is 
what makes scheduling a complex issue, but also one 
that is a cornerstone of a successful paradigm.

7. Conclusions

EP class of applications represents an ever-
growing workload on today’s compute resources. This 
workload is generated by larger problems as well as a 
desire for more accurate results. Grid computing 
presents itself as a viable solution to the resource 
shortage problem because independent institution can 
now share their resources, thus increasing resources’ 
overall utilization. Integration of the independent 
resources was the first step towards achieving goals 
set by grid computing ideals. The second step is 



efficient usage of those resources. This means that 
resource should not only be used continuously (i.e.,

increasing their utilization) but also effectively (i.e.,

increasing their throughput). In order to achieve such 
execution, relationship between an application and a 
resource needs to be understood and exploited by the 
metascheduler. Then, the third step of customizing the 
execution of an application to user’s current needs 
becomes a realizable goal. At that point, the user 
abstracts themselves from underlying application 
execution details and is able to focus on the original 
problem. Work presented in this paper aims at 
promoting existence and importance of the 
application-resource relationship followed by a set of 
general concerns that can be used in order to develop 
more effective metascheduling techniques and 
solutions.  
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