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Abstract
The graph edit distance is an intuitive measure to quantify the dissimilarity of graphs,
but its computation is NP-hard and challenging in practice. We introduce methods
for answering nearest neighbor and range queries regarding this distance efficiently
for large databases with up to millions of graphs. We build on the filter-verification
paradigm, where lower and upper bounds are used to reduce the number of exact com-
putations of the graph edit distance. Highly effective bounds for this involve solving
a linear assignment problem for each graph in the database, which is prohibitive in
massive datasets. Index-based approaches typically provide only weak bounds leading
to high computational costs verification. In this work, we derive novel lower bounds
for efficient filtering from restricted assignment problems, where the cost function is
a tree metric. This special case allows embedding the costs of optimal assignments
isometrically into �1 space, rendering efficient indexing possible. We propose several
lower bounds of the graph edit distance obtained from tree metrics reflecting the edit
costs, which are combined for effective filtering. Our method termed EmbAssi can be
integrated into existing filter-verification pipelines as a fast and effective pre-filtering
step. Empirically we show that for many real-world graphs our lower bounds are
already close to the exact graph edit distance, while our index construction and search
scales to very large databases.
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1 Introduction

In various applications such as cheminformatics (Garcia-Hernandez et al. 2019), bioin-
formatics (Stöcker et al. 2019), computer vision (Xiao et al. 2013) and social network
analysis, complex structured data arises, which can be naturally represented as graphs.
To analyze large amounts of such data, meaningful measures of (dis)similarity are
required. A widely accepted approach is the graph edit distance, which measures the
dissimilarity of two graphs in terms of the total cost of transforming one graph into the
other by a sequence of edit operations. This concept is appealing because of its intu-
itive and comprehensible definition, its flexibility to adapt to different types of graphs
and annotations, and the interpretability of the dissimilarity measure. However, com-
puting the graph edit distance for a pair of graphs is NP-hard (Zeng et al. 2009) and
challenging in practice even for small graphs. This renders similarity search regarding
the graph edit distance in databases difficult, which is relevant in many applications.
A prime example is a molecular information system, which often contains millions
of graphs representing small molecules. A standard task in computational drug dis-
covery is similarity search in such databases, for which the concept of graph edit
distance has proven useful (Garcia-Hernandez et al. 2019). However, the extensive
use of graph-based methods in such systems is still hindered by the computational
burden, especially in comparison to embedding-based techniques, for which efficient
similarity search is well studied (Nasr et al. 2010). Moreover, similarity search is the
fundamental problem when using the graph edit distance in downstream supervised
or unsupervised machine learning methods such as k-nearest neighbors classification.
Promising results have been reported for classifying graphs from diverse applications
representing, e.g., small molecules (Kriege et al. 2019), petroglyphs (Seidl et al. 2015),
or cuneiform signs (Kriege et al. 2018). However, this approach does not readily scale
to large datasets, where embedding-based methods such as graph kernels (Kriege
et al. 2020) and graph neural networks (Wu et al. 2021) have become the dominating
techniques.

Algorithms for exact (Gouda andHassaan 2016), (Lerouge et al. 2017), (Chang et al.
2020), (Chen et al. 2019) or approximate (Neuhaus et al. 2006), (Riesen and Bunke
2009), (Kriege et al. 2019) graph edit distance computation have been extensively
studied. They are typically optimized for pairwise comparison but can be accelerated
in cases when a distance cutoff is given as part of the input. While not directly suitable
for searching large databases, these algorithms are used in the verification step after
a set of candidates has been obtained by filtering. In the filtering step, lower bounds
on the graph edit distance are typically used to eliminate graphs that cannot satisfy
the distance threshold, while upper bounds are used to add graphs to the answer set
without the need for verification. Several techniques following this paradigm have
been proposed, see Table 1 for an overview. An important characteristic for scalability
is whether these techniques use an index to avoid scanning every graph in the database.
This is not directly possible for many of the existing bounds on the graph edit distance,
whichwere often studied in other contexts. A recent systematic comparison of existing

123
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Table 1 Overview of methods for similarity search in graph databases

Name Ref. Description Bounds Index Exact

CStar (Zeng et al. 2009) Optimal assignments on star
structures

lower/upper no yes

GSim (Zhao et al. 2012) Approximation using
path-based q-grams

lower yes yes

Segos (Wang et al. 2012) Two-level inverted index lower/upper yes yes

k-AT (Wang et al. 2012) Index over tree-based
q-grams

lower yes yes

Pars (Zhao et al. 2013) Dynamic partitioning of
graphs

lower yes yes

Mixed (Zheng et al. 2015) Partitioning and q-gram
based filtering

lower yes yes

MLIndex (Liang and Zhao 2017) Partitioning graphs in a
multi-layered Index

lower yes yes

Inves (Kim et al. 2019) Incremental partitioning used
in verification

lower/upper no yes

BSS_GED (Chen et al. 2019) Filtering and efficient
verification algorithm

lower no yes

GHashing (Qin et al. 2020) Approximate filter via
hashing and GNNs

— yes no

EmbAssi Embedding assignment costs lower yes yes

bounds (Blumenthal et al. 2019) shows that there is a trade-off between the efficiency
of computation and the tightness of lower and upper bounds. Lower bounds based on
linear programming relaxations and solutions of the linear assignment problem were
found to be most effective. However, the computation of such bounds requires solving
non-trivial optimization problems and is inefficient compared to computing standard
distances on vectors. Moreover, their combination with well-studied indices for vector
or metric data is often not feasible because they do not satisfy the necessary properties
such as being metric or embeddable into vector space. (Qin et al. 2020) concluded,
that methods without an index do not scale well to very large databases, while those
with an index often provide only loose bounds leading to a high computational cost for
verification. To overcome this, they proposed an inexact filtering mechanism based on
hashing, which cannot guarantee a complete answer set. We show that exact similarity
search in very large databases using the filter-verification paradigm is possible. We
achieve this by developing tight lower bounds based on assignment costs which are
embedded into a vector space for index-based acceleration.
Our ContributionWe develop multiple efficiently computable tight lower bounds for
the graph edit distance, that allow exact filtering and can be used with an index for
scalability to large databases. Our techniques are shown to achieve a favorable trade-
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off between efficiency and effectivity in filtering. Specifically, we make the following
contributions.

(1)Embedding Assignment Costs.Webuild on a restricted version of the combinatorial
assignment problem between two sets, where the ground costs for assigning individual
elements are a treemetric.With this constraint, the cost of anoptimal assignment equals
the �1 distance betweenvectors derived from the sets and theweighted tree representing
the metric (Kriege et al. 2019). We show that these vectors can be computed in linear
time and optimized for combinationwithwell-studied indices for vector data (Schubert
and Zimek 2019).

(2) Lower Bounds. We formulate several assignment-based distance functions for
graphs that are proven to be lower bounds on the graph edit distance. We show that
their ground cost functions are tree metrics and derive the corresponding trees, from
which suitable vector representations are computed. We propose bounds supporting
uniform as well as non-uniform edit cost models for vertex labels. Further bounds
based on vertex degrees and labeled edges are introduced, some of which can be
combined to obtain tighter lower bounds. We analyze the proposed lower bounds and
formally relate them to existing bounds from the literature.

(3) EmbAssi.We use the vector representation for similarity search in graph databases
following the filter-verification paradigm, building upon established indices for the
Manhattan (�1) distance on vectors. Our approach supports range queries as well as
k-nearest neighbor search using the optimal multi-step k-nearest neighbor search algo-
rithm (Seidl and Kriegel 1998). This allows employing our approach in downstream
machine learning and data mining methods such as nearest neighbors classification,
local outlier detection (Schubert et al. 2014), or density-based clustering (Ester et al.
1996).

(4) Experimental Evaluation. We show that, while the proposed bounds are often
close to or even outperform state-of-the-art bounds (Blumenthal et al. 2019), (Zeng
et al. 2009), they can be computed much more efficiently. In the filter-verification
framework, our approach obtains manageable candidate sets for verification in a very
short time even in databases with millions of graphs, for which most competitors fail.
Our approach supports efficient construction of an index used for all query thresholds
and is, compared to several competitors (Liang and Zhao 2017), (Zhao et al. 2012), not
restricted to connected graphswith a certainminimum size.We show that our approach
can be combined with more expensive lower and upper bounds in a subsequent step
to further reduce overall query time.

2 Related work

We summarize the related work on similarity search in graph databases and graph edit
distance computation and conclude by a discussion motivating our approach.
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2.1 Similarity search in graph databases

Several methods for accelerating similarity search in graph databases have been pro-
posed, see Table 1. Most approaches follow the filter-verification paradigm and rely
on lower and upper bounds of the graph edit distance. These techniques focus almost
exclusively on range queries and assume a uniform cost function for graph edit oper-
ations. Most of the methods suitable for similarity search can be divided into two
categories depending on whether they compare overlapping or non-overlapping sub-
structures.

Representatives of the first category are k-AT (Wang et al. 2012),CStar (Zeng et al.
2009), Segos (Wang et al. 2012) and GSim (Zhao et al. 2012). These methods are
inspired by the concept of q-grams commonly used for string matching. In (Wang
et al. 2012) tree-based q-grams on graphs were proposed. The k-adjacent tree of a
vertex v ∈ V (G), denoted k-AT(v), is defined as the top-k level subtree of a breadth-
first search tree in G, starting with vertex v. For example, the 1-AT(v) is a tree rooted
at v with the neighbors of v as children. These trees can be generated for each vertex
of a graph and the graph can then be represented as the set of its k-ATs. Lower
bounds for filtering are computed from these representations, which are organized
in an inverted index. CStar (Zeng et al. 2009) is a method for computing an upper
and lower bound on the graph edit distance using so-called star representations of
graphs, which consist of a 1-AT for each vertex, called star. An optimal assignment
between the star representations of graphs regarding a ground cost function on stars
the assignment cost yields a lower bound (Zeng et al. 2009). An upper bound can be
obtained by using the cost of an edit path induced by the optimal assignment. Segos
(Wang et al. 2012) also uses these stars as (overlapping) substructures, but enhances
the computation of the mapping distance and makes use of a two-layered index for
range queries. Another view on q-grams is given by the GSim method (Zhao et al.
2012), which uses path-based q-grams, i.e., simple path of length q, instead of stars.
Since the number of path-based q-grams affected by an edit operation is lower than the
number of tree-based q-grams, the derived lower bound is tighter (Zhao et al. 2012).

The second category includes Pars (Zhao et al. 2013), MLIndex (Liang and Zhao
2017) and Inves (Kim et al. 2019), which partition the graphs into non-overlapping
substructures. They essentially obtain lower bounds based on the observation, that if
x partitions of a database graph are not contained in the query graph, the graph edit
distance is at least x . Pars uses a dynamic partitioning approach to exploit this, while
MLIndex uses a multi-layered index to manage multiple partitionings for each graph.
Inves is a method used to verify whether the graph edit distance of two graphs is below
a specified threshold by first trying to generate enough mismatching partitions.Mixed
(Zheng et al. 2015) combines the idea of q-grams and graph partitioning. First, a lower
bound that uses the same idea as Inves (Kim et al. 2019), but a different approach to find
mismatching partitions, is proposed. Another lower bound based on so-called branch
structures (a vertex and its adjacent edges without the opposite vertex) is combined
with the first one to gain an even tighter lower bound. This bound can be generalized to
non-uniform edit costs and is referred to as Branch (Blumenthal et al. 2019). Recently,
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it has been proven that this bound is metric and its combination with an index to speed
up similarity search for attributed graphs has been proposed (Bause et al. 2021).

2.1.1 Pairwise computation of the graph edit distance

In the verification step, the remaining candidates have to be validated by computing
the exact graph edit distance. Both general-purpose algorithms (Lerouge et al. 2017)
as well as approaches tailored to the verification step have been proposed (Chang et al.
2020), which are usually based on depth- or breadth-first search (Gouda and Hassaan
2016), (Chang et al. 2020) or integer linear programming (Lerouge et al. 2017).

On large graphs, these methods are not feasible and approximations are used
(Neuhaus et al. 2006), (Chen et al. 2019), (Riesen and Bunke 2009), (Kriege et al.
2019). These can be obtained from the exact approaches, e.g., using beam search
(Neuhaus et al. 2006) or linear programming relaxations (Blumenthal et al. 2019).
BeamD (Neuhaus et al. 2006) finds a sub-optimal edit path following the A∗ algo-
rithmby extending only a fixed number of partial solutions. A state-of-the-art approach
is BSS_GED (Chen et al. 2019), which reduces the search space based on beam stack
search. It is not only used for computation of the exact graph edit distance, but also
for similarity search by filtering with lower bounds during a linear database scan.
Recently, an approach using neural networks to improve the performance of the beam
search algorithm was proposed (Yang and Zou 2021).

A successful technique referred to as bipartite graph matching (Riesen and Bunke
2009) obtains a sub-optimal edit path from the solution of an optimal assignment
between the vertices where the ground costs also encode the local edge structure. The
assignment problem is solved in cubic time usingHungarian-type algorithms (Burkard
et al. 2012), (Munkres 1957) or in quadratic timeusing simple greedy strategies (Riesen
et al. 2015). The running time was further reduced by defining ground costs for the
assignment problem that are a tree metric (Kriege et al. 2019). This allows computing
an optimal assignment in linear time by associating elements to the nodes of the tree
and matching them in a bottom-up fashion. A tree metric gained from the Weisfeiler-
Lehman refinement showed promising results.

2.1.2 Discussion

Various upper and lower bounds for the graph edit distance are known, some of which
have been proposed for similarity search, while others are derived from algorithms
for pairwise computation and are not directly suitable for fast searching in databases.
Recently, an extensive study (Blumenthal et al. 2019) of different bounds confirmed,
that there is a trade-off between computational efficiency and tightness. Lower bounds
based on linear programming relaxations and the linear assignment problem were
found to be most effective. However, the computation of such bounds requires solving
an optimization problem and the combination with indices is non-trivial. Therefore, it
has been proposed to compute graph embeddings optimized by graph neural networks,
which reflect the graph edit distance, to make efficient index-based filtering possible
(Qin et al. 2020). This and numerous other approaches (Li et al. 2019), (Bai et al. 2019)
that use neural networks to approximate the similarity of graphs do not compute lower
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or upper bounds on the graph edit distance and hence cannot be used to obtain exact
results. Because of this, they are only suitable in situations inwhich incomplete answer
sets are acceptable and are not in direct competition with exact approaches.

Recently, distance measures based on optimal assignments or, more generally,
optimal transport (a.k.a. Wasserstein distance) have become increasingly popular for
structured data. A method for approximate nearest neighbor search regarding the
Wasserstein distance has been proposed recently (Backurs et al. 2020). Another line
ofwork studies special cases,which allowvector space embeddings, e.g., in the domain
of kernels for structured data (Kriege et al. 2016), (Le et al. 2019), (Kriege et al. 2019).
On that basis we develop embeddings of novel assignment-based lower bounds for the
graph edit distance, which are effective and allow index-accelerated similarity search,
while guaranteeing exact results.

3 Preliminaries

We first give an overview of basic definitions concerning graph theory and database
search. Then, we introduce tree metrics and the assignment problem, which play a
major role in our new approach.

3.1 Graph theory

A graph G = (V , E, μ, ν) consists of a set of vertices V (G) = V , a set of edges
E(G) = E ⊆ V × V , and labeling functions μ : V → L and ν : E → L for the
vertices and edges. The labels L can be arbitrarily defined. We consider undirected
graphs and denote an edge between u and v by uv. The neighbors of a vertex v

are denoted by N (v) = {u | uv ∈ E(G)} and the degree of v is δ(v) = |N (v)|. The
maximumdegree of a graphG is δ(G) = maxv∈V δ(v) andwe let� = maxG∈DB δ(G)

for the graph dataset DB.
A measure commonly used to describe the similarity of two graphs is the graph

edit distance. An edit operation can be deleting or inserting an isolated vertex or an
edge or relabeling any of the two. An edit path between graphs G and H is a sequence
(e1, e2, . . . , ek) of edit operations that transforms G into H . This means, that if we
apply all operations in the edit path to G, we get a graph G ′ that is isomorphic to
H , i.e., we can find a bijection ξ : V (G ′) → V (H), so that ∀v ∈ V (G ′).μ(v) =
μ(ξ(v)) ∧ ∀uv ∈ E(G ′).ν(uv) = ν(ξ(u)ξ(v)). The graph edit distance is the cost of
the (not necessarily unique) cheapest edit path.

Definition 1 (GraphEditDistance (Riesen andBunke 2009) Let c be a function assign-
ing non-negative costs to edit operations. The graph edit distance between two graphs
G and H is defined as

dged(G, H) = min
{∑k

i=1 c(ei ) | (e1, . . . , ek) ∈ ϒ(G, H)
}

,

where ϒ(G, H) denotes all possible edit paths from G to H .
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Computation of the graph edit distance is NP-hard (Zeng et al. 2009). Hence, exact
computation is possible only for small graphs. There are several heuristics, see Sect. 2,
many of which are based on solving an assignment problem.

3.2 Optimal assignments and treemetrics

The assignment problem is a well-studied combinatorial optimization problem
(Munkres 1957), (Burkard et al. 2012).

Definition 2 (Assignment Problem) Let A and B be two sets with |A| = |B| = n
and c : A × B → R a ground cost function. An assignment between A and B is a
bijection f : A → B. The cost of an assignment f is c( f ) = ∑

a∈A c(a, f (a)). The
assignment problem is to find an assignment with minimum cost.

For an assignment instance (A, B, c), we denote the cost of an optimal assignment
by dcoa(A, B). The assignment problem can be solved in cubic running time using a
suitable implementation of the Hungarian method (Munkres 1957), (Burkard et al.
2012). The running time can be improved when the cost function is restricted, e.g.,
to integral values from a bounded range (Duan and Su 2012). Of particular interest
for our work is the requirement that the cost function is a tree metric, which allows
to solve the assignment problem in linear time (Kriege et al. 2019) and relates the
optimal cost to the Manhattan distance, see Sect. 4.1 for details. We summarize the
concepts related to these distances.

Definition 3 (Metric) A metric d on X is a function d : X × X → R that satis-
fies the following properties for all x, y, z ∈ X : (1) d(x, y) ≥ 0 (non-negativity),
(2) d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles), (3) d(x, y) = d(y, x)
(symmetry), (4) d(x, y) ≤ d(x, z) + d(y, z) (triangle inequality).

The Manhattan metric (also city-block or �1 distance) is the metric function
dm(x, y) = ‖x − y‖1 = ∑n

i=1 | xi − yi |. A tree T is an acyclic, connected graph. To
avoid confusion, we will call its vertices nodes. A tree with non-negative edge weights
w : E(T ) → R≥0 yields a function dT,w(u, v) = ∑

e∈P(u,v) w(e) on V (T ), where
P(u, v) is the unique simple path from u to v in T .

Definition 4 (Tree Metric) A function d : X × X → R is a tree metric if there is a
tree T with X ⊆ V (T ) and strictly positive real-valued edge weights w, such that
d(u, v) = dT,w(u, v), for all u, v ∈ X .

Vice versa, every tree with strictly positive weights induces a tree metric on its nodes.
Equivalently, a metric d is a tree metric iff ∀v,w, x, y ∈ X . d(x, y) + d(v,w) ≤
max{d(x, v) + d(y, w), d(x, w) + d(y, v)} (Semple and Steel 2003). For such a tree
with leaves X , a distinguished root, and the additional constraint that all paths from
the root to a leaf have the same weighted length, the induced tree metric is an ultra-
metric. Equivalently, a metric d on X is an ultrametric if it satisfies the strong triangle
inequality ∀x, y, z ∈ X . d(x, y) ≤ max{d(x, z), d(y, z)} (Semple and Steel 2003).
In the following, we also allow edge weight zero. Therefore, the distances induced by
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a tree may violate property (2) of Definition 3 and are therefore pseudometrics. For
the sake of simplicity, we still use the terms tree metric and ultrametric.

We consider the assignment problem, where the cost function c : A × B → R is
a tree metric d : X × X → R. To formalize the link between these two functions
and, hence, Definitions 2 and 4, we introduce the map � : A ∪ B → X . Given a tree
metric specified by the tree T with weights w and the map �, the cost for assigning an
object a ∈ A to an object b ∈ B is defined as c(a, b) = dT,w(�(a), �(b)). Note that
� is not required to be injective. Therefore, c may be a pseudometric even for trees
with strictly positive weights. The input size of the assignment problem according to
Definition 2 typically is quadratic in n as c is given by an n × n matrix. If c is a tree
metric, it can be compactly represented by the tree T with weights w having a total
size linear in n.

3.3 Searching in databases

Databases can store data in order to retrieve, insert or change it efficiently. Regarding
data analysis, retrieval (search) is usually the crucial operation on databases, because it
will be performed much more often than updates. We focus on two types of similarity
queries when searching a database DB, the first of which is the range query for a
radius r .

Definition 5 (Range Query) Given a query object q and a threshold r , determine
range(q, r) = {o ∈ DB | d(o, q) ≤ r}.

A range query finds all objects with a distance no more than the specified range
threshold r to the query object q. If the distance d is expensive to compute, it makes
sense to use the so-called filter-verification principle. In this approach different lower
and upper bounds are used to filter out a hopefully large portion of the database.
A function d ′ is a lower bound on d if d ′(x, y) ≤ d(x, y), and an upper bound if
d ′(x, y) ≥ d(x, y) for all x, y ∈ X . Clearly, objects where one of the lower bounds
is greater than r can be dismissed since the exact distance would be even greater.
Objects, where an upper bound is at most r can be added to the result immediately.
Only the remaining objects need to be verified by computing the exact distance.

The second type of query considered here is the nearest neighbor query, which
returns the objects that are closest to the query object.

Definition 6 (k-Nearest Neighbor Query, knn Query) Given a query object q and a
parameter k, determine the smallest set NN(q, k) ⊆ DB, so that |NN(q, k)| ≥ k and
∀o ∈ NN(q, k),∀o′ ∈ DB \ NN(q, k) : d(o, q) < d(o′, q).

In conjunction with range queries, it is preferable to return all the objects with a
distance, that does not exceed the distance to the kth neighbor, which may be more
than k objects when tied. That yields an equivalency of the results of knn queries
and range queries, i.e., we have range(q, r) = NN(q, |range(q, r)|) and NN(q, k) =
range(q, rk), where rk is the maximum distance in NN(q, k).

The optimal multi-step k-nearest neighbor search algorithm (Seidl and Kriegel
1998) minimizes the number of candidates verified by using an incremental neighbor
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search, which returns the objects in ascending order regarding the lower bound.As new
candidates are discovered, their exact distance is computed. The current kth smallest
exact distance is used as a bound on the incremental search: once we have found at
least k objects with an exact distance smaller than the lower bound of all remaining
objects, the result is complete. This approach is optimal in the sense that none of the
exact distance computations could have been avoided (Seidl and Kriegel 1998).

4 EmbAssi: embedding assignment costs for graph edit distance
lower bounds

We define lower bounds for the graph edit distance obtained from optimal assignments
regarding treemetric costs. These bounds are embedded in �1 space and used for index-
accelerated filtering. In Sect. 4.1 we describe the general technique for embedding
optimal assignment costs for tree metric ground costs based on (Kriege et al. 2019).
In Sect. 4.2 we propose several embeddable lower bounds for the graph edit distance
derived from such assignment problems. These are suitable for graphs with discrete
labels and uniformedit costs and are generalized to non-uniformedit costs. In Sects. 5.1
and 5.2we showhow to use these bounds for both range and k-nearest neighbor queries
and discuss optimization details.

4.1 Embedding assignment costs

Let (A, B, c) be an assignment problem, where the cost function c is a tree metric
defined by the tree T with weights w. The cost of an optimal assignment is equal to
the Manhattan distance between vectors derived from the sets A and B using the tree
T and weights w (Kriege et al. 2019). Recall that the cost of an assignment is the sum
of the costs of all matched pairs. A matched pair (a, b) contributes the cost defined
by the weight of the edges on the unique path between the nodes �(a) and �(b) in T .
Hence, the total cost can be obtained from the number of times the edges occur on
such paths.

Let S←−uv correspond to the number of elements of a set S, that are associated by the
mapping � with nodes in the subtree of T containing u, when the edge uv is deleted
(see Fig. 1). It was shown in (Kriege et al. 2019) that an optimal assignment has cost

dcoa(A, B) =
∑

uv∈E(T )
| A←−uv − B←−uv | ·w(uv). (1)

Note that the roles of u and v are interchangeable and we indicate the choice by
directing the edge accordingly. Although this does not affect the assignment cost
when applied consistently, there are subtle technical consequences, which we discuss
for concrete tree metrics in Sect. 5.1. Using T andw we canmap sets to vectors having
a component for every edge of T defined as 	c(S) = [S←−uv · w(uv)]uv∈E(T ) . From
Eq. 1 it directly follows that the optimal assignment cost are

dcoa(A, B) = ‖	c(A) − 	c(B)‖1.

123
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This embedding of the optimal assignment cost into �1 space is used in the following
to obtain assignment-based lower bounds on the graph edit distance.

4.2 Embeddable lower bounds

Several lower bounds on the graph edit distance can be obtained from optimal assign-
ments (Blumenthal et al. 2019). However, these typically do not use a tree metric
cost function, which complicates the embedding of assignment costs. In (Kriege et al.
2019) two tree metrics, one based on Weisfeiler-Lehman refinement for graphs with
discrete labels and one using clustering for attributed graphs, were introduced. These,
however, both do not yield a lower bound. We develop new lower bounds on the graph
edit distance from optimal assignment instances, which have a tree metric ground
cost function. Most similarity search techniques for the graph edit distance assume a
uniform cost model, where every edit operation has the same cost. We also support
variable cost functions and discuss choices that are supported by our approach. We
use cv/ce to denote the costs of inserting or deleting vertices/edges and cvl /cel for the
costs of changing the respective label.

4.2.1 Vertex label lower bounds

A natural method for defining a lower bound on the graph edit distance is to just take
the labels into account ignoring the graph structure.Wefirst discuss the case of uniform
cost for changing a label, which is common for discrete labels. Then, non-uniform
costs are considered.

Uniform Cost Functions Clearly, each vertex of one graph, that cannot be assigned
to a vertex of the other graph with the same label has to be either deleted or relabeled.
The idea leads to a particularly simple assignment instance when we assume fixed
costs cvl and cv . Let G and H be two graphs with n respectivelym vertices. Following
the common approach to obtain an assignment instance (Riesen and Bunke 2009), we

u v

t

s

x

w

(a)Tree T representing metric c

←−su ←−
tu ←−uv ←−wv ←−xv

Φc(A) 0 2 2 3 0

Φc(B) 2 1 3 1 1

(b)Embeddings

Fig. 1 a An assignment problem (A, B, c) with a tree T representing the metric c. The elements of A are
denoted by red circle and the elements of B by blue circle and associated to the nodes of T by � as depicted.
All edges have weight 1. b Embedding of A and B regarding T . The entry ←−uv for the set B counts the total
number of blue circle elements associated with the nodes s, t and u as indicated by the direction of the edge
uv in the tree. The assignment cost is dcoa(A, B) = 7
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extend G by m and H by n dummy nodes denoted by ε.1 We consider the following
assignment problem.

Definition 7 (Label Assignment) The label assignment instance for G and H is given
by (V (G), V (H), cllb), where the ground cost function is

cllb(u, v) =

⎧
⎪⎨
⎪⎩

0 if μ(u) = μ(v) or u = v = ε

cvl if μ(u) �= μ(v)

cv if either u = ε or v = ε.

We define LLB(G, H) = dcllboa (V (G), V (H)) and show that it provides a lower bound
on the graph edit distance.

Proposition 1 (Label lower bound) For any two graphs G and H, we have
LLB(G, H) ≤ GED(G, H).

Proof Every assignment directly induces a set of edit operations,which canbe arranged
to form an edit path. Vice versa, every edit path can be represented by an assignment
(Riesen and Bunke 2009), (Blumenthal et al. 2019). Let e be aminimum cost edit path.
We construct an assignment f from the vertex operations in e, where the deletion of v is
represented by (v, ε) ∈ f , insertion by (ε, v) ∈ f , and relabeling of the vertex u with
the label of v by (u, v) ∈ f , where u, v �= ε.Wehave c(e) = Zv+Ze, where Zv and Ze

are the costs of vertex and edge edit operations, respectively.According to the definition
of cllb and the construction of f we have Zv = cllb( f ). An optimal assignment o
satisfies cllb(o) ≤ cllb( f ) and LLB(G, H) = cllb(o) ≤ cllb( f ) ≤ c(e) = GED(G, H)

follows, since Ze ≥ 0. ��
To obtain embeddings, we investigate for which choices of edit costs the ground

cost function cllb is a tree metric.

Proposition 2 (LLB tree metric) The ground cost function cllb is a tree metric if and
only if cvl ≤ 2cv .

Proof First we assume cvl ≤ 2cv and define a tree T with a central node r having
a neighbor for every label l ∈ L and a neighbor d. Let w(rl) = 1

2cvl for all l ∈ L
and w(rd) = cv − 1

2cvl , cf. Figure 2b. The assumption guarantees that all weights are
non-negative. We consider the map �(v) = μ(v) for v �= ε and �(ε) = d. We observe
that cllb(u, v) = dT,w(�(u), �(v)) by verifying the three cases.

The reverse direction is proven by contradiction. Assume cvl > 2cv and cllb a
tree metric. Let u and v be two vertices with μ(u) �= μ(v), then cllb(u, v) = cvl and
cllb(u, ε) = cllb(ε, v) = cv . Therefore, cllb(u, v) > cllb(u, ε)+cllb(ε, v) contradicting
the triangle inequality, Definition 3, (4). Thus, cllb is not a metric and, in particular,
not a tree metric contradicting the assumption. ��
1 One can also add only a single dummy node and modify the definition of an assignment (Blumenthal
et al. 2019). However, this makes no difference for our technique, which embeds the assignment costs. We
discuss how dummy vertices can be avoided in Sect. 5.1.
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G

H

(a) Graphs

r

d

w1

w2
w2

w2

(b)Weighted tree

Φ(G)
4 · w1
1 · w2
1 · w2
2 · w2

Φ(H)
4 · w1
1 · w2
2 · w2
1 · w2

(c) Embeddings

Fig. 2 Two graphsG and H a, theweighted tree representing the ground cost function cllb b, and the derived
embeddings c. The weights are w1 = cv − 1

2 cvl and w2 = 1
2 cvl . The entries of the vectors correspond to

the edges of the tree, from left to right, arrows indicate the direction used when counting elements

The requirement cvl ≤ 2cv states that relabeling a vertex is at most as expensive
as deleting and inserting it with the correct label. This is generally reasonable and not
a severe limitation. Because the proof is constructive, it allows us to represent cllb by
a weighted tree, from which we can compute the graph embedding representing the
assignment costs following the approach described in Sect. 4.1.

Figure 2 illustrates the embedding of the label lower bound for an example. The
tree representing the cost function is shown in Fig. 2b. The weight of the edge from
the dummy node to the root is chosen, such that the path length from a label to the
dummy node is cv . Figure 2c shows the vectors 	 of the two example graphs, which
allows obtaining LLB(G, H) = ‖	(G) − 	(H)‖1 = cvl as the Manhattan distance.

Non-Uniform Cost FunctionsWe have discussed the case where changing one label
into another has a fixed cost of cvl . In general, the cost for this may depend on the
two labels involved, i.e., we assume that a cost function cvl : L × L → R≥0 is given.
Two common scenarios can be distinguished: First, L is a (small) finite set of labels
that are similar to varying degrees. An example are molecular graphs, where the costs
are defined based on vertex labels encoding their pharmacophore properties (Garcia-
Hernandez et al. 2019). Second, L is infinite (or very large), e.g., vertices are annotated
with coordinates in R

2 and the cost is defined as the Euclidean distance. We propose
a general method and then discuss its applicability to both scenarios.

We can extend the tree defining the metric used in the above paragraph to allow
for more fine-grained vertex relabel costs. To this end, an arbitrary ultrametric tree on
the labels L is defined, where the node d representing deletions is added to its root
r . Recall that in an ultrametric tree the lengths of all paths from the root to a leaf are
equal to, say, u. We define the weight of the edge between r and d as cv − u and
observe that cv ≥ u is required to obtain a valid tree metric in analogy to the proof of
Proposition 2.

To obtain an ultrametric tree that reflects the given edit cost function cvl , we employ
hierarchical clustering. To guarantee that the assignment costs are a lower bound on
the graph edit distance, it is crucial that interpreting the hierarchy as an ultrametric
tree will underestimate the real edit costs. For optimal results, we would like to obtain
a tight lower bound. We formalize the requirements. Let cvl : L×L → R≥0 be the
given cost function and dhc : L×L → R≥0 the ultrametric induced by hierarchical
clustering of L with cost function cvl . Let U−(cvl) be the set of all ultrametrics that
are lower bounds on cvl . There is a unique ultrametric d∗ ∈ U−(cvl) defined as
d∗(l1, l2) = supd∈U−(cvl ){d(l1, l2)} for all l1, l2 ∈ L (Bock 1974). This d∗ is an
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upper bound on all ultrametrics in U−(cvl), a lower bound on cvl and called the
subdominant ultrametric to cvl . The subdominant ultrametric is generated by single-
linkage hierarchical clustering (Bock 1974), which therefore is, in this respect, optimal
for our purpose. In particular, it reconstructs an ultrametric tree if the original costs
are ultrametric. Moreover, single-linkage clustering can be implemented with running
time O(|L|2) (Sibson 1973).

For a finite set of labels L , our method is a viable solution if the edit cost function
cvl is close to an ultrametric and L is small. If L is infinite, we need to approximate
it with a finite set through quantization or space partitioning. The realization of such
an approach preserving the lower bound property depends on the specific application
and is hence not further explored here.

4.2.2 Degree lower bound

The LLB does not take the graph structure into account. We now introduce the degree
lower bound, which focuses on how many edges have to be inserted or deleted at the
minimum. When deleting or inserting vertices, all of the adjacent edges have to be
deleted or inserted as well. If two vertices with differing degrees are assigned to one
another, again edges have to be deleted or inserted accordingly. As in Sect. 4.2.1, we
extend the graphs G and H by dummy nodes ε and define an assignment problem.

Definition 8 (Degree Assignment) The degree assignment instance for G and H is
given by (V (G), V (H), cdlb), where the ground cost function is cdlb(u, v) = 1

2ce |
δ(u) − δ(v) | with δ(ε) := 0 for the dummy nodes.

We define DLB(G, H) = dcdlboa (V (G), V (H)), and show that it is a lower bound.

Proposition 3 (Degree lower bound) For any two graphs G and H, we have
DLB(G, H) ≤ GED(G, H).

Proof Using the same arguments as in the proof of Proposition 2, let e be a minimum
cost edit path and f an assignment that induces e. We divide the costs c(e) = Zv+Ze

into costs Zv and Ze of vertex and edge edit operations. For the matched vertices v

and f (v) at least | δ(v) − δ( f (v)) | edges must be deleted or inserted to balance
the degrees; in case of insertion and deletion all adjacent edges must be inserted or
deleted. Since each edge edit operation increases or decreases the degree of its two
endpoints by one, the sum of these costs over all vertices must be divided by two and
cdlb( f ) = Ze follows. ��

To obtain an embedding, we show that cdlb is a tree metric.

Proposition 4 (DLB tree metric) The ground cost function cdlb is a tree metric.

Proof To prove that cdlb is a tree metric, we construct a tree T with edge weights w

and a map �, so that cdlb(u, v) = dT,w(�(u), �(v)). Let T have nodes V (T ) = {r =
0, 1, . . . , �} and edges E(T ) = {i j | j = i+1} with weight w1 = 1

2ce. Since ce
cannot be negative, all edge weights are non-negative. We consider the map

�(u) =
{
r if u = ε or δ(u) = 0

δ(u) otherwise.
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G

H
r 1 2 3w1 w1 w1

Φ(G)
4 · w1
3 · w1
1 · w1

Φ(H)
4 · w1
4 · w1
0 · w1

(a)Graphs (b)Weighted tree (c)Embeddings

Fig. 3 Two graphs G and H a, the weighted tree representing the cost function cdlb b, and the derived
embeddings c

It can easily be seen, that cdlb(u, v) = dT,w(�(u), �(v)) by verifying the path lengths
in the tree. ��

The proof gives a concept to construct a tree representing the DLB cost function.
As there is no difference between a vertex with degree 0 and a dummy vertex, they can
both be assigned to the root node r . Note, that the edge labels are not taken into account
by this lower bound and edge insertion and deletion are not distinguished. Figure 3
illustrates the embedding of the degree lower bound, which yields DLB(G, H) = ce
for the running example.

4.2.3 Combined lower bound

We can combine LLB and DLB to improve the approximation.

Definition 9 (CLB) The combined lower bound between G and H is defined as
CLB(G, H) = LLB(G, H) + DLB(G, H).

We show, that CLB is a lower bound on the graph edit distance. Note that this lower
bound is based on the two assignments given by LLB and DLB, which are not neces-
sarily equal.

Lemma 1 Let c1, c2 and c be ground cost functions on X and c(x, y) = c1(x, y) +
c2(x, y) for all x, y ∈ X. Then for any A, B ⊆ X, |A| = |B| = n, the inequality
dc1oa(A, B) + dc2oa(A, B) ≤ dcoa(A, B) holds.

Proof Let o1, o2 and o be optimal assignments between A and B regarding the ground
costs c1, c2 and c, respectively. Due to the optimality we have c1(o1) ≤ c1(o) and
c2(o2) ≤ c2(o). Hence, d

c1
oa(A, B)+dc2oa(A, B) = c1(o1)+ c2(o2) ≤ c1(o)+ c2(o) =

c(o) = dcoa(A, B). ��
Proposition 5 (Combined lower bound) For any two graphs G and H, we have
CLB(G, H) ≤ GED(G, H).

Proof Let e be aminimum cost edit path and f an assignment that induces e.We divide
the costs c(e) = Zv + Ze into costs Zv and Ze of vertex and edge edit operations.
From the proof of Propositions 1 and 3 we know that Zv ≥ cllb( f ) and Ze ≥ cdlb( f )
and, hence, c(e) ≥ cllb( f ) + cdlb( f ). Application of Lemma 1 yields CLB(G, H) =
cllb( f1) + cdlb( f2) ≤ cllb( f ) + cdlb( f ) ≤ c(e) = GED(G, H), where f1 and f2 are
optimal assignments regarding cllb and cdlb. ��
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This lower bound is at least as tight as the ones it consists of and, therefore, most
promising. The combined lower bound is embedded by concatenating the vectors for
LLB and DLB.

4.3 Analysis

We provide a theoretical comparison of our proposed bounds to existing lower bounds
and also give details on the time complexity of our approach.

4.3.1 Comparison with existing bounds

We relate the CLB to two well-known lower bounds when applied to graphs with
vertex labels. The simple label filter (SLF) is the intersection of vertex and edge label
multisets, i.e., SLF(G, H) = |LV (G) ∩ LV (H)| + ||E(G)| − |E(H)|| in our case,
where LV denotes the vertex label multiset of a graph. Although simple, this bound
is often found to be selective (Kim et al. 2019) and, therefore, widely-used (Zhao
et al. 2012), (Zhao et al. 2013). A very effective bound according to (Blumenthal et al.
2019) is BranchLB based on general optimal assignments. Several variants have been
proposed (Riesen and Bunke 2009), (Zheng et al. 2015), (Blumenthal et al. 2019) with
at least cubic worst-case time complexity. In our case, BranchLB is the cost of the
optimal assignment regarding the ground costs cbranch(u, v) = cllb(u, v) + cdlb(u, v).
Note that cbranch in general is not a tree metric. SLF assumes cv = cvl = ce = 1
and we consider this setting although CLB and BranchLB are more general. Using
counting arguments and Lemma 1 we obtain the following relation:

Proposition 6 For any two vertex-labeled graphs G and H, SLF(G, H)≤CLB(G, H)

≤BranchLB(G, H)≤GED(G, H).

Experimentally we show in Sect. 6 that our combined lower bound is close to
BranchLB for a wide-range of real-world datasets, but is computed several orders
of magnitude faster and allows indexing. This makes it ideally suitable for fast pre-
filtering and search.

4.3.2 Time complexity

We first consider the time required for generating the vector 	c(S) for a set S and tree
T defining the ground cost function c.

Proposition 7 Given a set S and a weighted tree T representing the ground cost
function c, the vector 	c(S) can be computed in O(|V (T )| + |S|) time.
Proof We first associate the elements of S with the nodes of T via the map � and then
traverse T starting from the leaves progressively moving towards the center. The order
guarantees that when the node u is visited, exactly one of its neighbors, say v, has
not yet been visited. Then S←−uv can be obtained as

∑
w∈N (u)\{v} S←−

wu from the values
computed previously. The tree traversal and computation of S←−uv for all uv ∈ E(T )

takes O(|V (T )|) total time. Together with the time for processing the set S we obtain
O(|V (T )| + |S|) time. ��
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The time complexity of the different bounds depends on the size of the tree repre-
senting the metric and the size of the graphs.

Proposition 8 The bounds cllb, cdlb and cclb for two graphs G and H can be computed
in O(|V (G)| + |V (H)|) time.
Proof First the tree T defining the metric is computed. For the different tree metrics,
the trees sizes are linear in the number of nodes of the two graphs G and H : For cllb
the tree (denoted Tllb) has size |Lv(G) ∪ Lv(H)| + 2, where Lv(G) denotes the set of
vertex labels occurring in G. The tree consists of a node for each vertex label plus a
dummy and a central node. In the worst case, where all labels occur only once, the tree
is of size |V (G)| + |V (H)| + 2. For cdlb, we have |V (Tdlb)| = max(δ(G), δ(H))+ 1,
since there is a node for each vertex degree, up to the maximum degree (including
degree 0). As shown in Proposition 7, the vector 	c(G) can then be computed in
time O(|V (T )| + |V (G)|). For cclb we concatenate the vectors of cllb and cdlb. The
Manhattan distance between two vectors is computed in time linear in the number of
components, which is O(|V (T )|). Thus, the total running time for computing any of
the bounds is in O(|V (G)| + |V (H)|). ��

The bound SLF also has a linear time complexity while BranchLB requires
O(n2�3 + n3) time for graphs with n vertices and maximum degree � (Blumen-
thal et al. 2019). Our new approach matches the running time of SLF but in most cases
yields tighter bounds, cf. Proposition 6 and our experimental evaluation in Sect. 6.
Hence, it provides a favorable trade-off between efficiency and quality and at the
same time can conveniently be combined with indices.

5 EmbAssi for graph similarity search

We use the proposed lower bounds for similarity search by computing embeddings
for all the graphs in the database in a preprocessing step. Given a query graph, we

Fig. 4 Overview of our pipeline for graph similarity search. In a preprocessing step the embeddings of all
database graphs under the specified tree metric are computed and stored in an index. Then similarity search
queries are answered by computing the embedding of the query graph and filtering regarding theManhattan
distance. In k-nearest neighbor search, the information gained from refining candidates is used to reduce
the search range. This is indicated with a gray arrow
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Algorithm 1 Construction for LLB
procedure constructIndex(set of graphs DB)

T ← new tree with root ε and child r
w((ε, r)) ← cv − 1

2 cvl � Set edge weight
for all G ∈ DB do � Construct tree metric LLB

for all v ∈ V (G) do
if μ(v) /∈ T then

add node μ(v) as child of r with w((r , μ(v))) = 1
2 cvl

�(v) ← μ(v)

end if
end for

end for
for all G ∈ DB do � Compute embedding under tree metric

	(G) ← computeVector(G, T )
end for
Create index({	(G) | G ∈ DB}, Manhattan distance)

end procedure

Algorithm 2 Vector Computation
procedure computeVector(graph G, tree T )

	(G) ← sparse vector
S ← relevant subtree(V (G), T ) � ∀v ∈ V (G) : �(v) and path to root
count[n] ← 0, ∀n ∈ V (S)

for all v ∈ V (G) do
count[�(v)] ← count[�(v)] + 1 � Count vertices at leaves

end for
leaves ← leaves of S
while l ← leaves.dequeue() and l �= root of S do

	(G)[(l, p)] ← w((l, p)) · count[l]
count[p] = count[p] + count[l] � Propagate vertex count to parent
delete l from S
if δ(p) ≤ 1 then � p is now a leaf itself

leaves.enqueue(p)
end if

end while
return 	(G)

end procedure

compute its embedding and realize filtering utilizing indices regarding the Manhattan
distance. The approach is illustrated in Fig. 4. Algorithm 1 shows how the preprocess-
ing is done, exemplary for LLB: We construct the tree metric based on the labels and
associate the vertices with the leaves of the tree. Then for each graph the embedding
is computed using Algorithm 2.

Several technical details must be considered. The choice of how to direct the edges
has a huge impact on the resulting vectors and of course using a suitable index is also
important. In the following, we briefly discuss our choices and explain how similarity
search queries can be answered.
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5.1 Index construction

We compute the vectors for all graphs in the database and store them in an index to
accelerate queries. When defining the bounds, we considered the pairwise comparison
of two graphs and added dummy vertices to obtain graphs of the same size. We have
chosen the direction of edges in the trees representing the metrics carefully, cf. Sec-
tion 4.1, to generate consistent embeddings for the entire database. By rooting the
trees at the node �(ε) representing the dummy vertices (see Algorithm 1) and direct-
ing all edges towards the leaves the dummy vertices are not counted in any entry of
the vectors, see Fig. 2 and 3. Moreover, this choice often leads to sparse vectors, e.g.,
for the LLB, where every entry just counts the number of vertices with one specific
label. Labels that only appear in a small fraction of the graphs in the database then lead
to zero-entries in the vectors of the other graphs and sparse data structures become
beneficial. Moreover, this simplifies to dynamically add new vertex labels without
requiring to update all existing vectors in the database. Using sparse vector represen-
tations, Algorithm 2 can be implemented in time O(|V (G)|) by considering only the
relevant part of T . This is the subtree S formed by the nodes of T to which vertices
of G are assigned to via �, and the nodes on the path to the root from these nodes.
The subtree S is processed in a bottom-up fashion computing a non-zero component
of 	(G) in each step. Note that S can be maintained and modified with low overhead
using flags to indicate whether a node of T is contained in S.

The choice of a suitable index is crucial for the performance of our approach.
We chose to use the cover tree (Beygelzimer et al. 2006) because our data is too
high-dimensional for the popular k-d-tree, and our vectors have many zeros and dis-
crete values. The cover tree is a good choice for an in-memory index because of its
lightweight construction, lowmemory requirements, and good metric pruning proper-
ties. It is usually superior to the k-d-tree or R-tree if the data stored is high-dimensional
but still has a small doubling dimension.

5.2 Queries

For similarity search, we compute the embedding of the query graph and use the index
for similarity search regarding Manhattan distance. The index takes responsibility to
disregard parts of the database that are too far away from the query object. In k-nearest
neighbor search, we use the optimal multi-step k-nearest neighbor search (Seidl and
Kriegel 1998) as described in Sect. 3.3 to stop the search as early as possible and
compute the minimum necessary number of exact graph edit distances. Our lower
bounds are especially useful for this because it is well understood how to index data
for ranking by Manhattan distance. Further exact distance computations (in particular
for range queries) can be avoided by checking additional bounds similar to Inves (Kim
et al. 2019) or BSS_GED (Chen et al. 2019) prior to an exact distance computation.

A tighter (but more expensive) lower bound produces fewer candidates, while in
some applications (such as DBSCAN clustering), where the exact distance is not
necessary to have, an upper bound can identify true positives efficiently.
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6 Experimental evaluation

In this section,we compareEmbAssi to state-of-the-art approaches regarding efficiency
and approximation quality in range and k-nearest neighbor queries. We investigate the
speed-up of existing filter-verification pipelineswhenEmbAssi is used in a pre-filtering
step. Specifically, we address the following research questions:

Q1 How tight are our lower bounds compared to the state-of-the-art? How do our
bounds perform when taking the trade-off between bound quality and runtime
into account?

Q2 Can EmbAssi compete with state-of-the-art methods in terms of runtime and
selectivity? Is CLB a suitable lower bound to provide initial candidates for range
queries?

Q3 Can EmbAssi perform similarity search on datasets with a million graphs or
more?

Q4 Can k-nearest neighbor queries be answered efficiently?

6.1 Setup

This section gives an overview of the datasets, the methods, and their configuration
used in the experimental comparison.

Methods and Distance FunctionsWe compare EmbAssi toGSim (Zhao et al. 2012)
andMLIndex (Liang and Zhao 2017), which are representative methods for similarity
search based on overlapping substructures and graph partitioning. MLIndex is con-
sidered as state-of-the-art (Qin et al. 2020), although we observed that GSim often
performs much better. We also compare to CStar (Zeng et al. 2009) and Branch (Blu-
menthal et al. 2019), which provide both upper and lower bounds on the graph edit
distance, but are not accelerated with indices. Furthermore, we compare to the exact
graph edit distance BLP (Lerouge et al. 2017), BSS_GED (Chen et al. 2019), and the
approximations LinD (Kriege et al. 2019), BLPlb (Blumenthal et al. 2019) and BeamS
(Neuhaus et al. 2006) regarding the approximation of the GED. The costs of all edit
operations were set to one because some of the comparison methods only support
uniform costs. For BeamD, we used a maximum list size of 100. For LinD, the tree
was generated using the Weisfeiler-Lehman algorithm with one refinement iteration.
For GSim, we used all provided filters and q = 3. For MLIndex, the default settings
of the authors’ implementation were used.

The bounds computed by CStar can also be used separately and will be referred to
as CStarLB, CStarUB, and CStarUBRef, which is obtained by improving an edit path
using local search. SLF and BranchLB are the lower bounds discussed in Sect. 4.2.3
and were implemented following the description in (Kim et al. 2019) and (Blumenthal
et al. 2019), respectively. BranchLB and the upper bound gained from the edit path
induced by it (BranchUB) are referred to as Branch when applied together. Table 2
gives an overview of the distance functions compared in the experiments including
those known from literature as well as those proposed here for use with EmbAssi. The
graphs and their respective vectors are indexed using the cover tree (Beygelzimer et al.
2006) implementation of the ELKI framework (Schubert and Zimek 2019).
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Table 2 Distance functions compared in the experiments

Name Description Bound Source

BLP Exact graph edit distance exact (Lerouge et al. 2017)

BSS_GED Efficient ged computation/verification exact (Chen et al. 2019)

BeamD Approximation using BeamSearch upper (Neuhaus et al. 2006)

LinD Optimal assignments with WL upper (Kriege et al. 2019)

BranchUB Cost of edit path gained from BranchLB upper (Blumenthal et al. 2019)

CStarUB Optimal assignments with stars upper (Zeng et al. 2009)

CStarUBRef Refined Version of CStarUB upper (Zeng et al. 2009)

CStarLB Mapping distance between stars lower (Zeng et al. 2009)

SLF Min. label changes lower (Kim et al. 2019)

BranchLB Modification of BP lower (Blumenthal et al. 2019)

BLPlb Relaxation of BLP lower (Blumenthal et al. 2019)

New distance functions based on tree metrics

LLB Min. vertex label changes lower new

DLB Min. edge insertion/deletions lower new

CLB LLB and DLB combined lower new

Table 3 Datasets with discrete vertex labels and their statistics Morris et al. (2020). ChEMBL (chembl_27,
Gaulton et al. (2016)) contains small molecules, Protein Com contains protein complex graphs Stöcker
et al. (2019)

Name |Graphs| avg |V | avg |E | avg δ(v) |L|
KKI 83 26.96 48.42 3.59±2.58 190

MCF-7 27770 26.08 28.29 2.16±0.76 23

MUTAG 188 17.93 19.79 2.20±0.74 7

NCI1 4110 29.04 31.61 2.16±0.78 21

PTC_FM 349 14.11 14.48 2.05±0.81 18

Protein Com 1455324 9.98 8.98 1.80±3.03 717

ChEMBL 1941411 30.18 32.71 2.15±0.74 31

DatasetsWe tested all methods on awide range of real-world datasets with different
characteristics, see Table 3. The datasets have discrete vertex labels. Edge labels and
attributes, if present, were removed prior to the experiments since not all methods
support them. Also, since MLIndex and GSim do not work for disconnected graphs,
only their largest connected components were used.

6.2 Results

In the following, we report on our experimental results and discuss the different
research questions.

Q1: BoundQuality and RuntimeAccuracy is crucial to obtain effective filters for
similarity search. We investigate how tight the proposed lower bounds on the graph
edit distance are. Figure 5 shows the average relative approximation error

|GED−dapprox|
GED
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Fig. 5 Comparison of several different approximations regarding their relative approximation error and
runtime. �: exact approach, ◦: upper bound, ×: existing lower bound, �: newly proposed lower bound
from tree metric

of the different bounds in comparison to their runtime. The newly proposed bounds,
as well as SLF, are very fast, with varying degrees of accuracy. Although CLB is much
faster than BranchLB, its accuracy is in many cases on par or only slightly worse. Note
that a timeout of 120 seconds per graph pair was used for the computation of the exact
graph edit distance for this experiment. For this reason, values for BSS_GED are not
present for the datasets with larger graphs.

Q2: Evaluation of Runtime and Selectivity The runtime of the algorithms con-
sists of three parts: (1) preprocessing and indexing, (2) filtering, and (3) verification.
Preprocessing and indexing is performed only once, and this cost amortizes over many
queries, while the time required to determine the candidate set and its size are crucial.
The verification step requires to compute the exact graph edit distance and is usually
most expensive and essentially depends on the number of candidates.

In the following, we investigate how well EmbAssi performs on range queries, how
much of a speed-up can be achieved for existing pipelines when filtering withEmbAssi
first, and compare to state-of-the-art approaches. We omit bounds that were shown in
the previous experiments to have a poor accuracy or a very high runtime. Figure 6
shows the runtime for preprocessing, filtering and the average number of candidates
per query for range queries with thresholds 1 to 5. The solid lines show the results,
when using EmbAssi with CLB as a first filter, while the dotted line represent the
original approaches. The solid red line shows the results using only EmbAssi with
CLB and no further filters.GSim andMLIndex are shown with dashed lines, since they
are stand-alone approaches. These two methods skip database graphs that are smaller
than the given threshold. To obtain a valid candidate set, these graphs were added
back after filtering. For GSim and MLIndex the preprocessing time is rather high and
highly dependent on the maximum threshold for range search, which must be chosen
in advance.

It becomes evident that EmbAssi significantly accelerates all methods across the
various datasets. The preprocessing and filtering time of EmbAssi is very low: While
filtering only takes a few milliseconds, preprocessing ranges from 0.01 to 2 seconds
over the various datasets. CStar and Branch have the best selectivity, but they also
employ both upper and lower bounds and need more time for filtering. The usage of
EmbAssi heavily accelerates both methods, while even increasing the selectivity of
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Fig. 6 Runtime and selectivity comparison of different filters. Preprocessing time, filtering time for 50 range
queries (excluding verification), and the average number of candidates, that need to be verified, is shown.
For the methods, that can be enhanced using EmbAssi, the solid line shows the advantage of pre-filtering
with CLB, while the dotted line is the original approach

CStar (as seen in Fig. 5, CStar LB seems to be looser than CLB in general). Note,
that LinD is an upper bound, so the candidate set consist of all graphs, that could not
be reported as a result. In combination with EmbAssi it is only slightly worse than the
other approaches regarding filter selectivity, while being very fast.

Considering the properties of the datasets and the performance, we observe that a
larger set of vertex labels and a high variance among the vertex degrees seem to lead
to a better filter quality. The larger the graphs, the greater the improvement in runtime
during the filtering step.

Since competing approaches do not use the fast verification algorithm BSS_GED
(Chen et al. 2019) a comparison of verification time would not be fair. On the various
datasets the time for verification (of 50 queries with threshold 5) using the candidates
of CLB ranged from around 35ms (KKI) to a maximum of 5s (MCF-7).

Combining these results,we can conclude thatEmbAssi iswell suited as pre-filtering
for more effective computational demanding bounds. EmbAssi substantially reduces
the filtering time and promises scalability even to very large datasets. We investigate
this below.

Q3: Similarity Search on Very Large DatasetsWe investigate how well EmbAssi
performs on very large graph databases using the datasets Protein Com and ChEMBL.
Figure 7 shows the average number of candidates per query as reported by the different
methods, as well as the time needed for preprocessing and filtering. MLIndex did not
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Fig. 7 Comparison of several different filters regarding their selectivity and runtime on datasets Protein
Com and ChEMBL. The solid lines show the advantage of using EmbAssi with CLB as a pre-filter, while
the dotted lines show the original approaches

Table 4 Runtime and number of
candidates in k-nearest-neighbor
search using EmbAssi and
BranchLB

k EmbAssi BranchLB |NN|
|Cand| Time (sec) |Cand| Time (sec)

PTC_FM

1 14.40 0.24 9.00 1.42 1.20

2 24.40 0.42 19.60 1.34 3.40

3 28.40 0.43 22.20 1.16 4.40

4 31.80 1.06 25.20 1.40 5.60

5 39.00 1.19 31.20 1.24 6.60

MUTAG

1 6.80 0.15 6.80 0.87 1.60

2 9.80 0.22 9.80 0.99 3.80

3 14.00 0.25 14.00 1.31 5.80

4 14.00 0.49 14.00 1.03 5.80

5 15.80 0.55 15.80 1.08 7.40

MCF-7

1 659.67 48.04 434.33 191.95 1.33

2 1114.33 152.43 737.00 244.42 2.33

3 1610.00 214.64 1045.67 410.11 4.00

4 1968.33 391.37 1380.33 577.75 10.00

5 2401.00 642.29 1696.33 678.06 10.67
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finish onChEMBLwithin a time limit of 24 hours (for threshold 1). For datasetProtein
Com our new approach is not only much faster, but also provides a better filter quality
than state-of-the-art methods. It can clearly be seen, that EmbAssi with CLB provides
a substantial boost in runtime, while also improving the filter quality.

Q4: k-Nearest-Neighbor Search An advantage of EmbAssi is that it can also
answer k-nn queries efficiently due to the use of the multi-step k-nearest neighbor
search algorithm as described in Sect. 3.3. Table 4 compares the average number of
candidates generated using EmbAssi (withCLB) and BranchLB, as well as the average
time needed for answering a k-nn query. In both methods, candidate sets were verified
using the faster exact graph edit distance computation BSS_GED. The last column
shows the average number of nearest neighbors reported, which may be larger than k
because of ties.

It can be seen, that EmbAssi provides a runtime advantage in k-nearest neighbor
search, and the number of candidates generated is not much higher than when using
BranchLB. For larger datasets, we expect the advantage of EmbAssi to be more sig-
nificant. Further optimization of the approach is possible. For example, it might be
beneficial to combine both methods and use EmbAssi in combination with tighter
lower bounds such as BranchLB to reduce the number of exact graph edit distance
computations.

7 Conclusions

We have proposed new lower bounds on the graph edit distance, which are efficiently
computed, readily combined with indices, and fairly selective in filtering. This makes
them ideally suitable as a pre-filtering step in existing filter-verification pipelines that
do not scale to large databases. Our approach supports efficient k-nearest neighbor
search using the optimal multi-step k-nearest neighbor search algorithm unlike many
comparable methods. Other methods have to first perform a range query with a suffi-
cient range and find the k-nearest neighbors among those candidates.

An interesting direction of future work is the combination and development of
indices for computational demanding lower bounds such as those obtained from gen-
eral assignment problems or linear programming relaxations. Efficient methods for
similarity search regarding the Wasserstein distance have only recently been investi-
gated (Backurs et al. 2020). Moreover, approximate filter techniques for the graph edit
distance based on embeddings learned by graph neural networks were only recently
proposed (Qin et al. 2020). With the increasing amount of structured data, scalability
is a key issue in graph similarity search.
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