
Embed to Control: A Locally Linear Latent

Dynamics Model for Control from Raw Images

Manuel Watter∗ Jost Tobias Springenberg∗

Joschka Boedecker
University of Freiburg, Germany

{watterm,springj,jboedeck}@cs.uni-freiburg.de

Martin Riedmiller
Google DeepMind

London, UK
riedmiller@google.com

Abstract

We introduce Embed to Control (E2C), a method for model learning and control
of non-linear dynamical systems from raw pixel images. E2C consists of a deep
generative model, belonging to the family of variational autoencoders, that learns
to generate image trajectories from a latent space in which the dynamics is con-
strained to be locally linear. Our model is derived directly from an optimal control
formulation in latent space, supports long-term prediction of image sequences and
exhibits strong performance on a variety of complex control problems.

1 Introduction

Control of non-linear dynamical systems with continuous state and action spaces is one of the key
problems in robotics and, in a broader context, in reinforcement learning for autonomous agents.
A prominent class of algorithms that aim to solve this problem are model-based locally optimal
(stochastic) control algorithms such as iLQG control [1, 2], which approximate the general non-
linear control problem via local linearization. When combined with receding horizon control [3], and
machine learning methods for learning approximate system models, such algorithms are powerful
tools for solving complicated control problems [3, 4, 5]; however, they either rely on a known system
model or require the design of relatively low-dimensional state representations. For real autonomous
agents to succeed, we ultimately need algorithms that are capable of controlling complex dynamical
systems from raw sensory input (e.g. images) only. In this paper we tackle this difficult problem.

If stochastic optimal control (SOC) methods were applied directly to control from raw image data,
they would face two major obstacles. First, sensory data is usually high-dimensional – i.e. images
with thousands of pixels – rendering a naive SOC solution computationally infeasible. Second,
the image content is typically a highly non-linear function of the system dynamics underlying the
observations; thus model identification and control of this dynamics are non-trivial.

While both problems could, in principle, be addressed by designing more advanced SOC algo-
rithms we approach the “optimal control from raw images” problem differently: turning the prob-
lem of locally optimal control in high-dimensional non-linear systems into one of identifying a
low-dimensional latent state space, in which locally optimal control can be performed robustly and
easily. To learn such a latent space we propose a new deep generative model belonging to the class
of variational autoencoders [6, 7] that is derived from an iLQG formulation in latent space. The
resulting Embed to Control (E2C) system is a probabilistic generative model that holds a belief over
viable trajectories in sensory space, allows for accurate long-term planning in latent space, and is
trained fully unsupervised. We demonstrate the success of our approach on four challenging tasks
for control from raw images and compare it to a range of methods for unsupervised representation
learning. As an aside, we also validate that deep up-convolutional networks [8, 9] are powerful
generative models for large images.

∗Authors contributed equally.
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2 The Embed to Control (E2C) model

We briefly review the problem of SOC for dynamical systems, introduce approximate locally optimal
control in latent space, and finish with the derivation of our model.

2.1 Problem Formulation

We consider the control of unknown dynamical systems of the form

st+1 = f(st,ut) + ξ, ξ ∼ N (0,Σξ), (1)

where t denotes the time steps, st ∈ R
ns the system state, ut ∈ R

nu the applied control and ξ
the system noise. The function f(st,ut) is an arbitrary, smooth, system dynamics. We equivalently
refer to Equation (1) using the notation P (st+1|st,ut), which we assume to be a multivariate normal
distribution N (f(st,ut),Σξ). We further assume that we are only given access to visual depictions
xt ∈ R

nx of state st. This restriction requires solving a joint state identification and control problem.
For simplicity we will in the following assume that xt is a fully observed depiction of st, but relax
this assumption later.

Our goal then is to infer a low-dimensional latent state space model in which optimal control can
be performed. That is, we seek to learn a function m, mapping from high-dimensional images xt
to low-dimensional vectors zt ∈ R

nz with nz ≪ nx, such that the control problem can be solved
using zt instead of xt:

zt = m(xt) + ω, ω ∼ N (0,Σω), (2)

whereω accounts for system noise; or equivalently zt ∼ N (m(xt),Σω). Assuming for the moment
that such a function can be learned (or approximated), we will first define SOC in a latent space and
introduce our model thereafter.

2.2 Stochastic locally optimal control in latent spaces

Let zt ∈ R
nz be the inferred latent state from image xt of state st and f lat(zt,ut) the transition

dynamics in latent space, i.e., zt+1 = f lat(zt,ut). Thus f lat models the changes that occur in
zt when control ut is applied to the underlying system as a latent space analogue to f(st,ut).
Assuming f lat is known, optimal controls for a trajectory of length T in the dynamical system can
be derived by minimizing the function J(z1:T ,u1:T ) which gives the expected future costs when
following (z1:T ,u1:T ):

J(z1:T ,u1:T ) = Ez

[

cT (zT ,uT ) +

T−1
∑

t0

c(zt,ut)

]

, (3)

where c(zt,ut) are instantaneous costs, cT (zT ,uT ) denotes terminal costs and z1:T = {z1, . . . , zT }
and u1:T = {u1, . . . ,uT } are state and action sequences respectively. If zt contains sufficient infor-
mation about st, i.e., st can be inferred from zt alone, and f lat is differentiable, the cost-minimizing
controls can be computed from J(z1:T ,u1:T ) via SOC algorithms [10]. These optimal control al-
gorithms approximate the global non-linear dynamics with locally linear dynamics at each time step
t. Locally optimal actions can then be found in closed form. Formally, given a reference trajectory
z̄1:T – the current estimate for the optimal trajectory – together with corresponding controls ū1:T

the system is linearized as

zt+1 = A(z̄t)zt +B(z̄t)ut+1 + o(z̄t) + ω, ω ∼ N (0,Σω), (4)

where A(z̄t) = δf lat(z̄t,ūt)
δz̄t

, B(z̄t) = δf lat(z̄t,ūt)
δūt

are local Jacobians, and o(z̄t) is an offset. To

enable efficient computation of the local controls we assume the costs to be a quadratic function of
the latent representation

c(zt,ut) = (zt − zgoal)
TRz(zt − zgoal) + uTt Ruut, (5)

where Rz ∈ R
nz×nz and Ru ∈ R

nu×nu are cost weighting matrices and zgoal is the inferred
representation of the goal state. We also assume cT (zT ,uT ) = c(zT ,uT ) throughout this paper.
In combination with Equation (4) this gives us a local linear-quadratic-Gaussian formulation at
each time step t which can be solved by SOC algorithms such as iterative linear-quadratic reg-
ulation (iLQR) [11] or approximate inference control (AICO) [12]. The result of this trajectory
optimization step is a locally optimal trajectory with corresponding control sequence (z∗1:T ,u

∗
1:T ) ≈

argminz1:T
u1:T

J(z1:T ,u1:T ).
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Figure 1: The information flow in the E2C model. From left to right, we encode and decode an
image xt with the networks henc

φ and hdec
θ , where we use the latent code zt for the transition step.

The htrans
ψ network computes the local matrices At,Bt,ot with which we can predict ẑt+1 from zt

and ut. Similarity to the encoding zt+1 is enforced by a KL divergence on their distributions and
reconstruction is again performed by hdec

θ .

2.3 A locally linear latent state space model for dynamical systems

Starting from the SOC formulation, we now turn to the problem of learning an appropriate low-
dimensional latent representation zt ∼ P (Zt|m(xt),Σω) of xt. The representation zt has to fulfill
three properties: (i) it must capture sufficient information about xt (enough to enable reconstruc-
tion); (ii) it must allow for accurate prediction of the next latent state zt+1 and thus, implicitly, of the
next observation xt+1; (iii) the prediction f lat of the next latent state must be locally linearizable for
all valid control magnitudes ut. Given some representation zt, properties (ii) and (iii) in particular
require us to capture possibly highly non-linear changes of the latent representation due to transfor-
mations of the observed scene induced by control commands. Crucially, these are particularly hard
to model and subsequently linearize. We circumvent this problem by taking a more direct approach:
instead of learning a latent space z and transition model f lat which are then linearized and combined
with SOC algorithms, we directly impose desired transformation properties on the representation zt
during learning. We will select these properties such that prediction in the latent space as well as
locally linear inference of the next observation according to Equation (4) are easy.

The transformation properties that we desire from a latent representation can be formalized directly
from the iLQG formulation given in Section 2.2 . Formally, following Equation (2), let the latent
representation be Gaussian P (Z|X) = N (m(xt),Σω). To infer zt from xt we first require a
method for sampling latent states. Ideally, we would generate samples directly from the unknown
true posterior P (Z|X), which we, however, have no access to. Following the variational Bayes
approach (see Jordan et al. [13] for an overview) we resort to sampling zt from an approximate
posterior distribution Qφ(Z|X) with parameters φ.

Inference model for Qφ. In our work this is always a diagonal Gaussian distribution Qφ(Z|X) =
N (µt, diag(σ2

t )), whose mean µt ∈ R
nz and covariance Σt = diag(σ2

t ) ∈ R
nz×nz are computed

by an encoding neural network with outputs

µt = Wµh
enc
φ (xt) + bµ, (6)

logσt = Wσh
enc
φ (xt) + bσ, (7)

where henc
φ ∈ R

ne is the activation of the last hidden layer and where φ is given by the set of all

learnable parameters of the encoding network, including the weight matrices Wµ, Wσ and biases
bµ, bσ . Parameterizing the mean and variance of a Gaussian distribution based on a neural network
gives us a natural and very expressive model for our latent space. It additionally comes with the
benefit that we can use the reparameterization trick [6, 7] to backpropagate gradients of a loss
function based on samples through the latent distribution.

Generative model for Pθ . Using the approximate posterior distribution Qφ we generate observed
samples (images) x̃t and x̃t+1 from latent samples zt and zt+1 by enforcing a locally linear rela-
tionship in latent space according to Equation (4), yielding the following generative model

zt ∼ Qφ(Z | X) = N (µt,Σt),

ẑt+1 ∼ Q̂ψ(Ẑ | Z,u) = N (Atµt +Btut + ot,Ct),
x̃t, x̃t+1 ∼ Pθ(X | Z) = Bernoulli(pt),

(8)

where Q̂ψ is the next latent state posterior distribution, which exactly follows the linear form re-
quired for stochastic optimal control. With ωt ∼ N (0,Ht) as an estimate of the system noise,
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C can be decomposed as Ct = AtΣtA
T
t + Ht. Note that while the transition dynamics in our

generative model operates on the inferred latent space, it takes untransformed controls into account.
That is, we aim to learn a latent space such that the transition dynamics in z linearizes the non-linear
observed dynamics in x and is locally linear in the applied controls u. Reconstruction of an image
from zt is performed by passing the sample through multiple hidden layers of a decoding neural
network which computes the mean pt of the generative Bernoulli distribution1 Pθ(X|Z) as

pt = Wph
dec
θ (zt) + bp, (9)

where hdec
θ (zt) ∈ R

nd is the response of the last hidden layer in the decoding network. The set of
parameters for the decoding network, including weight matrix Wp and bias bp, then make up the
learned generative parameters θ.

Transition model for Q̂ψ . What remains is to specify how the linearization matrices At ∈ R
nz×nz ,

Bt ∈ R
nz×nu and offset ot ∈ R

nz are predicted. Following the same approach as for distribution
means and covariance matrices, we predict all local transformation parameters from samples zt
based on the hidden representation htrans

ψ (zt) ∈ R
nt of a third neural network with parameters ψ –

to which we refer as the transformation network. Specifically, we parametrize the transformation
matrices and offset as

vec[At] = WA htrans
ψ (zt) + bA,

vec[Bt] = WB htrans
ψ (zt) + bB ,

ot = Wo h
trans
ψ (zt) + bo,

(10)

where vec denotes vectorization and therefore vec[At] ∈ R
(n2
z) and vec[Bt] ∈ R

(nz·nu). To cir-
cumvent estimating the full matrix At of size nz × nz , we can choose it to be a perturbation of the
identity matrix At = (I+ vtr

T
t ) which reduces the parameters to be estimated for At to 2nz .

A sketch of the complete architecture is shown in Figure 1. It also visualizes an additional constraint
that is essential for learning a representation for long-term predictions: we require samples ẑt+1

from the state transition distribution Q̂ψ to be similar to the encoding of xt+1 through Qφ. While it
might seem that just learning a perfect reconstruction of xt+1 from ẑt+1 is enough, we require multi-
step predictions for planning in Z which must correspond to valid trajectories in the observed space

X . Without enforcing similarity between samples from Q̂ψ and Qφ, following a transition in latent
space from zt with action ut may lead to a point ẑt+1, from which reconstruction of xt+1 is possible,
but that is not a valid encoding (i.e. the model will never encode any image as ẑt+1). Executing
another action in ẑt+1 then does not result in a valid latent state – since the transition model is
conditional on samples coming from the inference network – and thus long-term predictions fail.
In a nutshell, such a divergence between encodings and the transition model results in a generative
model that does not accurately model the Markov chain formed by the observations.

2.4 Learning via stochastic gradient variational Bayes

For training the model we use a data set D = {(x1,u1,x2), . . . , (xT−1,uT−1,xT )} containing ob-
servation tuples with corresponding controls obtained from interactions with the dynamical system.
Using this data set, we learn the parameters of the inference, transition and generative model by
minimizing a variational bound on the true data negative log-likelihood − logP (xt,ut,xt+1) plus
an additional constraint on the latent representation. The complete loss function2 is given as

L(D) =
∑

(xt,ut,xt+1)∈D

Lbound(xt,ut,xt+1) + λ KL
(

Q̂ψ(Ẑ | µt,ut)
∥

∥Qφ(Z | xt+1)
)

. (11)

The first part of this loss is the per-example variational bound on the log-likelihood

Lbound(xt,ut,xt+1) = E zt∼Qφ

ẑt+1∼Q̂ψ

[− logPθ(xt|zt)− logPθ(xt+1|ẑt+1)]+KL(Qφ||P (Z)), (12)

where Qφ, Pθ and Q̂ψ are the parametric inference, generative and transition distributions from
Section 2.3 and P (Zt) is a prior on the approximate posterior Qφ; which we always chose to be

1A Bernoulli distribution for Pθ is a common choice when modeling black-and-white images.
2Note that this is the loss for the latent state space model and distinct from the SOC costs.
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an isotropic Gaussian distribution with mean zero and unit variance. The second KL divergence in
Equation (11) is an additional contraction term with weight λ, that enforces agreement between the
transition and inference models. This term is essential for establishing a Markov chain in latent space
that corresponds to the real system dynamics (see Section 2.3 above for an in depth discussion). This
KL divergence can also be seen as a prior on the latent transition model. Note that all KL terms can
be computed analytically for our model (see supplementary for details).

During training we approximate the expectation in L(D) via sampling. Specifically, we take one
sample zt for each input xt and transform that sample using Equation (10) to give a valid sample

ẑt+1 from Q̂ψ . We then jointly learn all parameters of our model by minimizing L(D) using SGD.

3 Experimental Results

We evaluate our model on four visual tasks: an agent in a plane with obstacles, a visual version of the
classic inverted pendulum swing-up task, balancing a cart-pole system, and control of a three-link
arm with larger images. These are described in detail below.

3.1 Experimental Setup

Model training. We consider two different network types for our model: Standard fully connected
neural networks with up to three layers, which work well for moderately sized images, are used for
the planar and swing-up experiments; A deep convolutional network for the encoder in combination
with an up-convolutional network as the decoder which, in accordance with recent findings from
the literature [8, 9], we found to be an adequate model for larger images. Training was performed
using Adam [14] throughout all experiments. The training data set D for all tasks was generated by
randomly sampling N state observations and actions with corresponding successor states. For the
plane we used N=3, 000 samples, for the inverted pendulum and cart-pole system we used N=
15, 000 and for the arm N=30, 000. A complete list of architecture parameters and hyperparameter
choices as well as an in-depth explanation of the up-convolutional network are specified in the
supplementary material. We will make our code and a video containing controlled trajectories for all
systems available under http://ml.informatik.uni-freiburg.de/research/e2c .

Model variants. In addition to the Embed to Control (E2C) dynamics model derived above, we
also consider two variants: By removing the latent dynamics network htrans

ψ , i.e. setting its output

to one in Equation (10) – we obtain a variant in which At, Bt and ot are estimated as globally
linear matrices (Global E2C). If we instead replace the transition model with a network estimating

the dynamics as a non-linear function f̂ lat and only linearize during planning, estimating At, Bt, ot
as Jacobians to f̂ lat as described in Section 2.2, we obtain a variant with nonlinear latent dynamics.

Baseline models. For a thorough comparison and to exhibit the complicated nature of the tasks,
we also test a set of baseline models on the plane and the inverted pendulum task (using the same
architecture as the E2C model): a standard variational autoencoder (VAE) and a deep autoencoder
(AE) are trained on the autoencoding subtask for visual problems. That is, given a data set D
used for training our model, we remove all actions from the tuples in D and disregard temporal
context between images. After autoencoder training we learn a dynamics model in latent space,
approximating f lat from Section 2.2. We also consider a VAE variant with a slowness term on the
latent representation – a full description of this variant is given in the supplementary material.

Optimal control algorithms. To perform optimal control in the latent space of different models,
we employ two trajectory optimization algorithms: iterative linear quadratic regulation (iLQR) [11]
(for the plane and inverted pendulum) and approximate inference control (AICO) [12] (all other

experiments). For all VAEs both methods operate on the mean of distributions Qφ and Q̂ψ . AICO
additionally makes use of the local Gaussian covariances Σt and Ct. Except for the experiments
on the planar system, control was performed in a model predictive control fashion using the reced-
ing horizon scheme introduced in [3]. To obtain closed loop control given an image xt, it is first
passed through the encoder to obtain the latent state zt. A locally optimal trajectory is subsequently
found by optimizing (z∗t:t+T ,u

∗
t:t+T ) ≈ argminzt:t+T

ut:t+T

J(zt:t+T ,ut:t+T ) with fixed, small horizon

T (with T = 10 unless noted otherwise). Controls u∗
t are applied to the system and a transition to

zt+1 is observed (by encoding the next image xt+1). Then a new control sequence – with horizon
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Figure 2: The true state space of the planar system (left) with examples (obstacles encoded as circles)
and the inferred spaces (right) of different models. The spaces are spanned by generating images for
every valid position of the agent and embedding them with the respective encoders.

T – starting in zt+1 is found using the last estimated trajectory as a bootstrap. Note that planning
is performed entirely in the latent state without access to any observations except for the depiction
of the current state. To compute the cost function c(zt,ut) required for trajectory optimization in
z we assume knowledge of the observation xgoal of the goal state sgoal. This observation is then
transformed into latent space and costs are computed according to Equation (5).

3.2 Control in a planar system

The agent in the planar system can move in a bounded two-dimensional plane by choosing a con-
tinuous offset in x- and y-direction. The high-dimensional representation of a state is a 40 × 40
black-and-white image. Obstructed by six circular obstacles, the task is to move to the bottom right
of the image, starting from a random x position at the top of the image. The encodings of obstacles
are obtained prior to planning and an additional quadratic cost term is penalizing proximity to them.

A depiction of the observations on which control is performed – together with their corresponding
state values and embeddings into latent space – is shown in Figure 2. The figure also clearly shows
a fundamental advantage the E2C model has over its competitors: While the separately trained
autoencoders make for aesthetically pleasing pictures, the models failed to discover the underlying
structure of the state space, complicating dynamics estimation and largely invalidating costs based
on distances in said space. Including the latent dynamics constraints in these end-to-end models on
the other hand, yields latent spaces approaching the optimal planar embedding.

We test the long-term accuracy by accumulating latent and real trajectory costs to quantify whether
the imagined trajectory reflects reality. The results for all models when starting from random posi-
tions at the top and executing 40 pre-computed actions are summarized in Table 1 – using a seperate
test set for evaluating reconstructions. While all methods achieve a low reconstruction loss, the dif-
ference in accumulated real costs per trajectory show the superiority of the E2C model. Using the
globally or locally linear E2C model, trajectories planned in latent space are as good as trajectories
planned on the real state. All models besides E2C fail to give long-term predictions that result in
good performance.

3.3 Learning swing-up for an inverted pendulum

We next turn to the task of controlling the classical inverted pendulum system [15] from images.
We create depictions of the state by rendering a fixed length line starting from the center of the
image at an angle corresponding to the pendulum position. The goal in this task is to swing-up and
balance an underactuated pendulum from a resting position (pendulum hanging down). Exemplary
observations and reconstructions for this system are given in Figure 3(d). In the visual inverted
pendulum task our algorithm faces two additional difficulties: the observed space is non-Markov, as
the angular velocity cannot be inferred from a single image, and second, discretization errors due to
rendering pendulum angles as small 48x48 pixel images make exact control difficult. To restore the
Markov property, we stack two images (as input channels), thus observing a one-step history.

Figure 3 shows the topology of the latent space for our model, as well as one sample trajectory in
true state and latent space. The fact that the model can learn a meaningful embedding, separating
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Table 1: Comparison between different approaches to model learning from raw pixels for the planar
and pendulum system. We compare all models with respect to their prediction quality on a test set
of sampled transitions and with respect to their performance when combined with SOC (trajectory
cost for control from different start states). Note that trajectory costs in latent space are not neces-
sarily comparable. The “real” trajectory cost was computed on the dynamics of the simulator while
executing planned actions. For the true models for st, real trajectory costs were 20.24± 4.15 for the
planar system, and 9.8 ± 2.4 for the pendulum. Success was defined as reaching the goal state and
staying ǫ-close to it for the rest of the trajectory (if non terminating). All statistics quantify over 5/30
(plane/pendulum) different starting positions. A † marks separately trained dynamics networks.

Algorithm State Loss Next State Loss Trajectory Cost Success
log p(xt|x̂t) log p(xt+1|x̂t,ut) Latent Real percent

Planar System

AE† 11.5 ± 97.8 3538.9 ± 1395.2 1325.6 ± 81.2 273.3 ± 16.4 0 %
VAE† 3.6 ± 18.9 652.1 ± 930.6 43.1 ± 20.8 91.3 ± 16.4 0 %
VAE + slowness† 10.5 ± 22.8 104.3 ± 235.8 47.1 ± 20.5 89.1 ± 16.4 0 %
Non-linear E2C 8.3 ± 5.5 11.3 ± 10.1 19.8 ± 9.8 42.3 ± 16.4 96.6 %
Global E2C 6.9 ± 3.2 9.3 ± 4.6 12.5 ± 3.9 27.3 ± 9.7 100 %
E2C 7.7 ± 2.0 9.7 ± 3.2 10.3 ± 2.8 25.1 ± 5.3 100 %

Inverted Pendulum Swing-Up

AE† 8.9 ± 100.3 13433.8 ± 6238.8 1285.9 ± 355.8 194.7 ± 44.8 0 %
VAE† 7.5 ± 47.7 8791.2 ± 17356.9 497.8 ± 129.4 237.2 ± 41.2 0 %
VAE + slowness† 26.5 ± 18.0 779.7 ± 633.3 419.5 ± 85.8 188.2 ± 43.6 0 %
E2C no latent KL 64.4 ± 32.8 87.7 ± 64.2 489.1 ± 87.5 213.2 ± 84.3 0 %
Non-linear E2C 59.6 ± 25.2 72.6 ± 34.5 313.3 ± 65.7 37.4 ± 12.4 63.33 %
Global E2C 115.5 ± 56.9 125.3 ± 62.6 628.1 ± 45.9 125.1 ± 10.7 0 %
E2C 84.0 ± 50.8 89.3 ± 42.9 275.0 ± 16.6 15.4 ± 3.4 90 %

velocities and positions, from this data is remarkable (no other model recovered this shape). Table 1
again compares the different models quantitatively. While the E2C model is not the best in terms of
reconstruction performance, it is the only model resulting in stable swing-up and balance behavior.
We explain the failure of the other models with the fact that the non-linear latent dynamics model
cannot be guaranteed to be linearizable for all control magnitudes, resulting in undesired behav-
ior around unstable fixpoints of the real system dynamics, and that for this task a globally linear
dynamics model is inadequate.

3.4 Balancing a cart-pole and controlling a simulated robot arm

Finally, we consider control of two more complex dynamical systems from images using a six layer
convolutional inference and six layer up-convolutional generative network, resulting in a 12-layer
deep path from input to reconstruction. Specifically, we control a visual version of the classical cart-
pole system [16] from a history of two 80× 80 pixel images as well as a three-link planar robot arm
based on a history of two 128 × 128 pixel images. The latent space was set to be 8-dimensional in
both experiments. The real state dimensionality for the cart-pole is four and is controlled using one
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Figure 3: (a) The true state space of the inverted pendulum task overlaid with a successful trajectory
taken by the E2C agent. (b) The learned latent space. (c) The trajectory from (a) traced out in the
latent space. (d) Images x and reconstructions x̂ showing current positions (right) and history (left).
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Figure 4: Left: Trajectory from the cart-pole domain. Only the first image (green) is “real”, all
other images are “dreamed up” by our model. Notice discretization artifacts present in the real
image. Right: Exemplary observed (with history image omitted) and predicted images (including
the history image) for a trajectory in the visual robot arm domain with the goal marked in red.

action, while for the arm the real state can be described in 6 dimensions (joint angles and velocities)
and controlled using a three-dimensional action vector corresponding to motor torques.

As in previous experiments the E2C model seems to have no problem finding a locally linear em-
bedding of images into latent space in which control can be performed. Figure 4 depicts exemplary
images – for both problems – from a trajectory executed by our system. The costs for these trajec-
tories (11.13 for the cart-pole, 85.12 for the arm) are only slightly worse than trajectories obtained
by AICO operating on the real system dynamics starting from the same start-state (7.28 and 60.74
respectively). The supplementary material contains additional experiments using these domains.

4 Comparison to recent work

In the context of representation learning for control (see Böhmer et al. [17] for a review), deep
autoencoders (ignoring state transitions) similar to our baseline models have been applied previously,
e.g. by Lange and Riedmiller [18]. A more direct route to control based on image streams is taken
by recent work on (model free) deep end-to-end Q-learning for Atari games by Mnih et al. [19], as
well as kernel based [20] and deep policy learning for robot control [21].

Close to our approach is a recent paper by Wahlström et al. [22], where autoencoders are used to
extract a latent representation for control from images, on which a non-linear model of the forward
dynamics is learned. Their model is trained jointly and is thus similar to the non-linear E2C variant
in our comparison. In contrast to our model, their formulation requires PCA pre-processing and does
neither ensure that long-term predictions in latent space do not diverge, nor that they are linearizable.

As stated above, our system belongs to the family of VAEs and is generally similar to recent work
such as Kingma and Welling [6], Rezende et al. [7], Gregor et al. [23], Bayer and Osendorfer [24].
Two additional parallels between our work and recent advances for training deep neural networks
can be observed. First, the idea of enforcing desired transformations in latent space during learning
– such that the data becomes easy to model – has appeared several times already in the literature.
This includes the development of transforming auto-encoders [25] and recent probabilistic models
for images [26, 27]. Second, learning relations between pairs of images – although without control –
has received considerable attention from the community during the last years [28, 29]. In a broader
context our model is related to work on state estimation in Markov decision processes (see Langford
et al. [30] for a discussion) through, e.g., hidden Markov models and Kalman filters [31, 32].

5 Conclusion

We presented Embed to Control (E2C), a system for stochastic optimal control on high-dimensional
image streams. Key to the approach is the extraction of a latent dynamics model which is constrained
to be locally linear in its state transitions. An evaluation on four challenging benchmarks revealed
that E2C can find embeddings on which control can be performed with ease, reaching performance
close to that achievable by optimal control on the real system model.
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