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EMBEDDED CRYPTOGRAPHY: 

AN ANALYSIS AND EVALUATION OF PERFORMANCE AND CODE 

OPTIMIZATION TECHNIQUES FOR ENCRYPTION AND DECRYPTION IN 

EMBEDDED SYSTEMS  

 

Jayavardhan R Kandi 

 

ABSTRACT 
 

It is clear that Cryptography is computationally intensive.  It is also known that 

embedded systems have slow clock rates and less memory.  The idea for this thesis was 

to study the possibilities for analysis of cryptography on embedded systems.  The basic 

approach was the implementation of cryptographic algorithms on high-end, state-of-the-

art, DSP chips in order to study the various parameters that optimize the performance of 

the chip while keeping the overhead of encryption and decryption to a minimum. 

Embedded systems are very resource sensitive.  An embedded system is 

composed of different components, which are implemented in both hardware and 

software.  Therefore, hardware-software co-synthesis is a crucial factor affecting the 

performance of embedded systems.  Encryption algorithms are generally classified as 

data-dominated systems rather than ubiquitous control-dominated systems.  Data-

dominated systems have a high degree of parallelism.  Embedded systems populate the 



x 

new generation gadgets such as cell phones and Smartcards where the encryption 

algorithms are obviously an integral part of the system.  Due to the proliferation of 

embedded systems in all the current areas, there is a need for the systematic study of 

encryption techniques from the embedded systems point of view. 

This thesis explored the different ways encryption algorithms can be made to run 

faster with much less memory.  Some of the issues investigated were overlapped 

scheduling techniques for high-level synthesis, structural partitioning, real-time issues, 

reusability and functionality, random number and unique key generators, seamless 

integration of cryptographic code with other applications and architecture specific 

optimization techniques. 
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CHAPTER 1 
 

INTRODUCTION 

Ever since man developed his communication skills, he has embarked on a 

journey of technological developments.  These communication skills have been 

developed to such an extent that the information passed must, at times, be secret and 

authenticable.  The new conditions of secrecy, authenticity and integrity have given rise 

to a new field of science called cryptology.  Cryptology is divided into cryptography and 

cryptanalysis.  Cryptography, deals with the art and science of encoding and decoding 

information, whereas, cryptanalysis deals with breaking the encoded information. 

As the human race advanced, it developed machines to perform strenuous 

physical tasks and computers to perform logical tasks.  Presently, technology has 

advanced to a level where computers have invaded all spheres of science and technology. 

 In the future computing power will increase and become more pervasive through 

transformations in the form of embedded systems.  An embedded system can be defined 

as a computing system assigned to a specific task, which is embedded in a larger 

multifarious system.  A typical example of an embedded system is a router in a local area 

network. 

As the need for secure data transmission grows, there is a major urgency of 

integrating cryptography into the embedded systems, in order to enable secure and 

reliable data transfer.  This research explored the different factors that would enable a 

propitious insertion of the cryptography into the embedded systems. 

Embedded systems are comprised of microprocessors, microcontrollers, DSPs and 

FPGAs.  The software that runs on these hardware devices must be both concise and 

precise.  The cryptographic modules that help to encode and decode the data must be 

designed and implemented in a transparent manner in order not to consume too much of 

the memory and processing resources. 

The basic structure of this research was to incorporate the advanced encryption 
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standard (AES) algorithm onto the network DSP, StarCore, of Motorola.  The hardware-

software co-design formed the major breakthrough of this research.  The AES algorithm 

was divided into different sub-modules, which could be run in parallel and scheduled in 

such a manner that processing resources were consumed only when needed.  The 

objective of this research was to run the AES algorithm fast enough to enable the 

embedded system to work in a real-time environment without compromising either the 

secure transfer of the data or incurring any data loss. 

The current technology uses specialized ASICs running DES and 3-DES 

algorithms for encryption.  With the advent of AES, as successor to DES, and the 

prospects of embedded systems, this research holds a prominent position in the 

evaluation and analysis of the structure of the Rijndael algorithm (AES) from the 

embedded systems point of view.  Implementing a mere algorithm on hardware doesn’t 

ensure that the system is secure.  Most of the cryptographic systems on the market are not 

as secure as they claim.  This is due to the lack of importance given to the cryptography 

since the programmers deal with it as just another component of the program.  A system 

cannot be made absolutely secure unless the cryptographic issues are kept in mind from 

the conception to completion.  Cryptographic systems are very much different than other 

products.  There is no outward difference between a strong cryptographic and a weak 

cryptographic system.  Even though both may use the same algorithm and the same 

hardware, the secure system needs to consider all aspects of attacks and the means to 

prevent them.  After all, a cryptographic system is only as strong as its weakest point.  

What makes implementing a cryptographic system challenging is that attackers do not 

follow any rules.  Attackers try to breach the security protocols and tamper with the 

system in new ways that the designer might not even have thought about. 

Many algorithms appear to be very strong from the mathematical point of view.  

The most often neglected part is the implementation of these algorithms in a successful 

manner.  The first step for a secure system is to define the threat model.  The threat 

model should comprehensively consider how secure the data should be and what are the 

motivations of the attackers.  Consideration of how to detect an attack and prevent 

system crashes is crucial.  The threat model differs for different applications and roles.  A 

good cryptographer is one who is adept in areas such as number theory, complexity 
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theory, information theory, probability theory and abstract algebra.  Implementing a good 

cryptographic system entails far more than just understanding the algorithm.  A simple 

flaw like a poor random number generator or not discarding the key after its use can 

render the system useless.  Therefore, it was a major effort of this thesis to study the 

aspects, which the programmers have to deal with when attempting to implement a better 

cryptographic system.
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CHAPTER 2 

 
EMBEDDED SYSTEMS 

An embedded device is a computing system that is part of a bigger system.  The 

major difference between embedded devices and computers is that, unlike computers, 

embedded devices are designed and developed for fast and efficient execution of the 

assigned specific task.  Generally, a single embedded device is assigned a fixed specific 

task for its lifetime. 

An embedded device must be quick enough to respond to the high priority events. 

 In order to do so care must be taken to reduce the functional overhead as much as 

possible.  The functions of the embedded device must be kept in mind from the hardware 

design inception until the end of software execution [SJBW96].  There is a great deal of 

hardware-software interaction involved in the sharing and execution of the algorithms to 

be run over the embedded devices.  Therefore, programming for an embedded device is 

different from programming a conventional computer. 

The application and the controllers of the embedded systems are integrated both 

into the hardware and software.  Therefore, the embedded systems programmer must 

have a thorough knowledge of both the advantages and limitations of the hardware 

architecture.  An embedded system’s efficiency, [RL00], is invariably related to the 

extent of the code.  The efficiency of a program increases, as the code size decreases and 

the execution speed increases. Therefore, implementation of programs with very tight 

memory constraints is a challenge and a requirement for every embedded systems 

programmer. 
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2.1 Hardware/Software Co-design 

Some functions are better suited to run on hardware, and some others are suited to 

run on software.  Co-design considers both the abilities of the hardware and the 

flexibility of the software so as to optimize the performance of the system.  Some 

functions are implemented on both hardware and software.  Such seamless integration 

forms the core of the type of programming required for embedded systems. 

2.2 Structural Partitioning 

Interfaces with the outside world are as important as the internal structure.  Special 

attention must be given to the interfaces and in almost all cases; they are kept outside the 

internal processing.  This kind of structural partitioning helps in uninterrupted execution 

of assigned tasks, irrespective of possible overload in other structures. 

2.3 Functional Partitioning 

Some applications are better described by functionality rather than structure.  

Such functional partitioning yields simpler hardware design and results in time 

multiplexing of the signals.  Digital Signal Processors are better suited for this type of 

behavioral synthesis. 

2.4 Classification 

Embedded systems are mainly classified as follows: 

 Microcontroller Design:  These systems are principally used for control-

dominated systems.  They have a rich set of instructions for efficient bit-level data 

manipulation.  They usually have Complex Instruction Set Computer, (CISC), 

architectures. 

 RISC Architecture Systems:  These systems have Reduced Instruction Set 

Computer, (RISC), architectures and are suited for fast execution.  They usually 

have a large number of registers in order to speed up instruction execution.  The 

instruction set is composed of a deliberately chosen set of instructions capable of 

executing multiple tasks.  In other words, a single RISC instruction is equivalent 

to multiple CISC instructions. 
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 Digital Signal Processors:  These kinds of systems are used for arithmetic-

intensive systems such as speech analysis, encryption and image processing.  The 

DSP architecture supports hardware multiplication, address generation units and 

separate data and address buses. 

 Field Programmable Gate Arrays:  These kind of systems often run different 

functions in parallel to maximize system performance.  These systems are 

reconfigurable in nature, which means that their functionality can be upgraded or 

changed altogether when needed.  This provides them with fault-tolerance ability 

since they can be reconfigured to remove a hardware or software fault. 

 Application Specific Processors:  These kinds of systems are composed of 

specially designed integrated circuits called Application Specific Integrated 

Circuits or ASICs.  ASICs are often specialized enough that they are used as 

common of the shelf components.  These systems do not have the capability of 

being upgraded and are mostly hardware oriented. 

2.5 Programming Languages 

Programming of an embedded system is a very important task.  Although assembly-

level programming gives the optimum level of performance, high-level programming is 

still needed to design the program structure at higher abstract levels.  Some of the 

programming languages that have gained importance in the design of embedded systems 

are as follows: 

 C:  The C language is a well-established and proven language in the programming 

community.  The main advantages of the C language are that it is very easy to 

learn and offers an almost assembly like code to the processors.  The strong point 

of the C language is direct memory access through pointers. 

 C++:  C++ evolved from C.  When applied to the programming of embedded 

systems, C++ generates a considerable amount of overhead that is detrimental for 

embedded programming.  In order to increase the run-time efficiency and reduce 

the code size, a new standard called EC++, which stands for Embedded C++, is 

being developed. 
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 Java:  Java is an object-oriented programming language that was designed for 

Internet applications.  However, it has become quite popular due its flexibility and 

some enthusiasts are applying Java to embedded systems programming.  A 

modified version called embedded java is gaining popularity due to such features 

as portability and software reuse. 
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CHAPTER 3 

 
CRYPTOGRAPHY 

Cryptography is the science and art of encoding and decoding data in order to 

attribute the properties of secrecy to the data.  The data to be encoded is termed as plain 

text.  The encoded data is known as cipher text.  Thus, the process of encoding and 

decoding can also be termed encryption and decryption respectively.  The system for 

encrypting or decrypting is called a cryptosystem and the persons who design such 

systems are classified as cryptographers.  The process of encryption involves an 

algorithm for combining the plain text with a key resulting in the cipher.  A key is a 

selected number or string of characters that should be known only to the sender and the 

recipient. 

Cryptanalysis deals with the techniques of breaking the codes in order to extract 

the plaintext from the cipher without the consent of the sender or recipient.  The persons 

who are adept at cryptanalysis are called as cryptanalysts.  Both cryptography and 

cryptanalysis fall under the broad science of cryptology. 

The essence of using cryptography in this world is to validate the following three 

conditions: 

 Secrecy:  The data transmitted must be secret and any eavesdropper should not be 

able to understand it. 

 Authenticity:  The recipient must be guaranteed that the transmitted data is from 

an authentic sender and is not from any other person. 

 Integrity:  The transmitted data must be tamper resistant and any eavesdropper 

should not be able to meddle with the cipher. 

 

The security of a cryptographic algorithm should be based on the key and not on 

the secrecy of the algorithm.  This means that the algorithm should be made public and 

allowed for scrutiny by the intellectual community.  The types of attacks it can withstand 
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are the only gauges of the strength of an algorithm.  An ideal algorithm should be so 

strong that it can only be cracked by knowing the key.  This type of attack, which 

exploits the different combinations of keys, is known as a bruteforce attack.  The 

classification of cryptographic algorithms is based on the keys and is discussed next. 

3.1 Symmetric Algorithms 

Symmetric algorithms, are those where the encryption key and the decryption key 

are the same or are calculated from each other.  If the algorithm uses a single key for both 

encryption and decryption, then it is called as a single-key algorithm. 

Symmetric algorithms can be divided into two types: 

 Block algorithms:  These algorithms operate on a block of data each time in order 

to convert it into a block cipher.  A typical block size would be 64 bytes. 

 Stream algorithms:  These algorithms operate on a stream of data at a single bit or 

a single byte at a time. 

3.2 Asymmetric Algorithms 

Asymmetric algorithms are those that use different keys for encryption and 

decryption and one key cannot be computed from the other key.  They are also called 

public-key algorithms due to the fact that the encryption key can be made public.  The 

recipient has the private key with which only she can decrypt the cipher. 

3.3 Building Blocks of an Algorithm 

The basic building blocks of an algorithm consist of activities such as: 

 Substitution Cipher:  This is a cipher where each character of the plain text is 

substituted for a preconceived cipher character.  Substitution falls under the 

confusion scheme with the purpose of frustrating the eavesdropper. 

 Transposition Cipher:  This is a cipher where the order of the characters of a fixed 

block plain text is shuffled in a predetermined fashion.  Transposition falls under 

the diffusion scheme, which removes the redundancies in the cipher. 

 Exclusive-OR Cipher:  This is a cipher formed by a simple bit-wise XOR 

operation on the plain text and the keyword. 
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Encryption

Decryption

Plaintext block (P)

Encryption (E)

Cipher (C)

Decryption (D)

Plaintext block (P)

Key (K) 

Cipher (C)

Key (K) 

3.4 Key Length 

A bruteforce attack should be made as complex as possible.  This is achieved by 

increasing the length of the key.  If the key size is 60 bits, then there are 264 possible 

keys, which would require considerable processing time in order to test all the keys.  If 

the key size is increased to 128 bits, then the number of possible keys is 2128 and this 

huge figure makes it very difficult to find the right key.  As technology grows, computing 

power also increases.  Therefore, care must be taken to consider the technological growth 

and the key-size should be aptly decided so that the algorithm will remain strong into the 

future. 

3.5 Algorithm Modes 

Even though a basic algorithm is designed to be efficient, different cipher modes 

are implemented in order to make the algorithm efficient in concealing the patterns.  The 

different types of cipher modes are as follows: 

3.5.1 Electronic Code Book 

Electronic Code Book is a straightforward method of converting a block of 

plaintext into cipher text.  The advantage of this mode is asynchronous enciphering of the 

data.  However, this mode is vulnerable to attacks since the same plain text is always 

converted to the same cipher text.  Figure 3.5.1 presents the block diagram for the 

Electronic Code Book (ECB) mode. 

Figure 3.5.1:  Block cipher encryption in electronic code book (ECB) mode 
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3.5.2 Cipher Block Chaining 

In Cipher Block Chaining mode, the plain text is XORed with the previous cipher 

text block before encryption.  Thus, the encryption of each block depends on all the 

previous blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.2:  Block cipher encryption in cipher block chaining (CBC) mode 

 

Figure 3.5.2 presents the block diagram for the Cipher Block Chaining (CBC) 

mode.  This mode removes the patterns when compared to the ECB mode.  If a bit error 

occurs during encryption, it will affect all the subsequent blocks.  However, during 

decryption, the effect is reversed and the recovered plain text will only have a single 

error. 

3.5.3 Cipher Feedback Mode 

Cipher Feedback Mode is used when data must be transmitted in blocks smaller 

than as a full block.  The incoming byte, or a group of bytes, of plaintext is XORed with 

the LSB of the self-synchronizing stream cipher.  A self-synchronizing stream cipher has 
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a key stream in which every bit is a function of a fixed number of previous cipher texts.  

Figure 3.5.3 presents the block diagram for the Cipher Feedback (CFB) mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.3:  Stream cipher encryption in cipher feedback (CFB) mode 

3.5.4 Output Feedback Mode 

The Output Feedback Mode (OFB) also uses a synchronous stream cipher but the 

feedback mechanism is independent of the plain text and the cipher text stream.  Instead 

of inserting the cipher text bits as feedback, the n bits of the output block are moved to 

the right side of the shift register.  Therefore, this mode provides ease of processing even 

before the plain text arrives.  When the plain text arrives, it is simply XORed with the 

output bits of the algorithm in order to form the cipher text.  Figure 3.5.4 presents the 

block diagram for the Output Feedback mode. 
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Figure 3.5.4:  Stream cipher encryption in output feedback (OFB) mode 

3.5.5 Counter Mode 

All the above modes were used in a pre-AES time.  Except for the ECB mode, they all 

involve feedback, which is comparatively insecure and performance delay are observed.  

Therefore, a new type of mode was proposed, which is termed the counter mode.  In this 

mode, a counter is encrypted to generate a key stream, which is simply XORed with the 

plain text in order to generate the cipher text.  The advantage of counter mode is that 

there is no feedback or chaining.  Figure 3.5.5 presents the block diagram for the Counter 

(CTR) mode. 
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Figure 3.5.5:  Stream cipher encryption in counter (CTR) mode 

3.6 Selection of Algorithm 

The strength of the algorithm is as important as the length of the key.  Therefore, 

selection of an algorithm to design a cryptosystem forms the first and most formidable 

task. There are many aspects that require consideration in choosing a particular 

algorithm, [BS96], such as: 

 Relying on a published algorithm and hoping that the published algorithm is open 

to public scrutiny and hasn’t been broken 

 Relying on some commercial product 

 Relying on the algorithms proposed as the standards 

 Writing a new algorithm 

The only way an algorithm can be considered reliable is when it has been 

scrutinized thoroughly and the intellectual community finds no known attacks. 
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3.7 Hardware/Software Co-synthesis 

3.7.1 Hardware Encryption 

Until recently, encryption was performed through specialized hardware chips.  

The inherent advantage of using hardware for encryption is speed.  These hardware 

devices were connected at the data transfer links in order to enable encryption and 

decryption.  Hardware is also preferred in order to make the encryption system tamper-

proof. 

3.7.2 Software Encryption 

Software encryption is currently being widely used due to the software features of 

portability and flexibility.  However, software encryption is very slow and is insecure in 

many aspects of key management and program manipulation. 

3.7.3 Hardware/Software Encryption 

A new blend of hardware and software is currently being used for encryption in 

order to combine the best features of both.  This provides a considerable speed advantage 

and security.  Additionally, it provides for ease of programming.  Future devices will 

contain encryption modules along with other applications. 

3.8 Advanced Encryption Standard 

The National Institute of Standards and Technology has selected the Rijndael 

algorithm, [DR01], as its current encryption standard.  Henceforth this algorithm will be 

called the Advanced Encryption Standard, (AES).  The AES is supposed to be the current 

encryption standard, which is deemed stronger than the old DES and triple-DES 

standards.  The Rijndael algorithm, which was invented by Vincent Rijmen and Joan 

Daemen, consists of data block and key lengths of 128, 160, 192, 224 or 256 bits.  

However, for the AES a fixed data block length of 128 bits was standardized with a 

variation in key sizes of 128, 192 and 256 bits.  Thus, the corresponding names are AES-

128, AES-192 and AES-256.  A detailed analysis of the AES is provided in chapter 4. 
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CHAPTER 4 

 
SYSTEM DESIGN 

4.1 StarCore-Hardware Overview 

The Motorola MSC8101 is a 16-bit digital signal processor. This is based on the 

StarCore™ SC140 DSP core and is a fully static low-power CMOS device that operates 

from 0 to 300MHz.  Figure 4.1.1 presents the block diagram of the MSC8101 processor. 

Figure 4.1.1:  Block diagram of MSC8101 – courtesy of Motorola Inc. 

4.1.1 SC140 Core  

The SC140 core consists of the Data Arithmetic Logic Unit (Data ALU), the 

Address Generation Unit (AGU) and the Program Sequencer (PSEQ). 
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 The Data ALU performs the core’s arithmetic and logical operations on the data.  

It has sixteen 40-bit registers and four ALUs that execute in parallel.  This 

provides the flexibility of executing four Multiply Accumulate (MAC) 

instructions in a single clock cycle. 

Each ALU consists of a MAC sub-unit and a bit field sub-unit (BFU). 

- The MAC unit contains a high-speed adder and a multiplier that 

implement integer and fractional arithmetic instructions. 

- The BFU handles the logical operations for the ALU. 

 The AGU consists of two address arithmetic units (AAUs), two stack pointers, a 

bit mask unit (BMU) and sixteen 32-bit address registers. 

- An AAU calculates the effective address for memory access. 

- The AGU has two stack pointers.  One pointer for normal mode execution 

(NSP) and one pointer for exception mode processing (ESP). 

- The BMU performs the setting and resetting of the bits in any destination 

register. 

 The Program Sequencer fetches and executes the instructions. The PSEQ has a 

Program Counter, (PC), which has four pairs of 32-bit loop start address registers 

and four hardware-based loop counters. 

The StarCore has an on-chip memory bank of 512 KB, which helps in running longer 

programs without a need for external memory. 

The SC140 has two extended components: 

 The enhanced filter coprocessor (EFCOP) implements a real/complex adaptive 

filter machine in parallel with the SC140 core. 

 The HDI16 provides a 16-bit parallel interface that allows the device to 

interconnect with other microcontrollers, microprocessors and DSPs. 

4.1.2 System Interface Unit 

The system interface unit, (SIU), provides the control and data signals necessary 

for the processor to interact with other peripherals. 
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4.1.3 Communications Processor Module 

The communications processor module, (CPM), is a 32-bit RISC processor that 

controls and manages the external interfaces for the device.  The CPM controls the 

following modules: 

 155 Mbps ATM interface (including AAL 0/1/2/5) 

 10/100 Mbit Ethernet interface 

 Up to four E1/T1 interfaces or one E3/T3 interface and one E1/T1 interface 

 HDLC support up to T3 rates, or 256 channels 

4.1.4 Buses 

The buses of the SC140 perform the following functions: 
 The SC140 uses two different buses to access memory and data from the cache. 

 SC140 has one 128-bit Program bus and two 64-bit data buses. 

 An internal 64-bit PowerPC local bus moves data among the CPM, the DMA 

engine and the on-chip cache. 

 The 64-bit PowerPC system bus manages data transfers among external 

memory/peripherals, the DMA engine and the SC140 core. 

 A 128-bit QBus manages communications between the SC140 core and the 

extended core devices, EFCOP and HDI16.  The QBus is also the interface 

between the processor core and the PowerPC system bus. 

4.2 Advanced Encryption Standard 

The Advanced Encryption Standard,, or, (AES, ), operates on 128-bit data with 

variable key lengths of 128, 192 and 256 bits.  The input plain text of 128-bits is arranged 

in a rectangular array of bytes that is called a state.  A state has four rows and the 

number of columns is denoted by Nb, which is equal to the block length divided by 32 

[G99].  Let the plaintext block be denoted by  

p0p1p2p3…p4.Nb-1. 

Where p0 denotes the first byte and p4.Nb-1 denotes the last byte of the plaintext.  Figure 

4.2.1 presents the arrangement of the input bits in a two-dimensional array form.   
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p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

 

 

 

 

Figure 4.2.1:  Input data layout in a 2-D array 

Similarly, the key is arranged into a rectangular array of bytes in four rows and a 

subsequent number of columns.  The number of columns varies as the length of the key 

varies. 

Table 4.2.1:  Different key lengths and corresponding number of rounds 

 

 

 

 

 

 

4.2.1 Round Transformations 

The whole AES algorithm is divided into a fixed number of round 

transformations, which depends on the key length.  Table 4.2.1 shows the number of 

round transformations for different key lengths.  Each round transformation consists of 

four different transformations.  The final round is a bit different from the rest of the 

rounds.  Code Sample 4.2.1 presents the pseudo code for an AES encrypt round 

transformation. 

4.2.2 Key Expansion 

The KeyExpansion() function generates a key schedule for different rounds from 

the cipher key.  The Key Expansion generates a total of Nb(Nr + 1) words: the algorithm 

requires an initial set of Nb words, and each of the Nr rounds requires Nb words of key data. 

The resulting key schedule consists of a linear array of 4-byte words, denoted by W[i ], with 

i in the range 0 ≤ i < Nb(Nr + 1).  Code Sample 4.2.2 shows the code for 

KeyExpansion(). 

 

Block size 

(bits) 

Key Length  

(bits) 

Number of 

Rounds 

AES-128 128 128 10 

AES-192 128 192 12 

AES-256 128 256 14 
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Code Sample 4.2.1:  Pseudo-code for an AES encrypt round transformation 

 

Code Sample 4.2.2:  Code for KeyExpansion( ) 

Round(state, roundkey) 
{ 

  SubBytes (state); 
  ShiftRows(state); 
  MixColumns(state); 
  AddRoundKey(state,roundkey); 
 } 
/* Final round is special; there is no MixColumns  */ 
FinalRound(state, roundkey) 

{ 
SubBytes (state); 

  ShiftRows(state); 
  AddRoundKey(state, roundkey); 
 } 

 
KeyExpansion(word8 k[4][MAXKC], 
     word8 W[MAXROUNDS+1][4][MAXBC])  
{ 
int i, j, t=0, RCpointer = 1; 

word8 tk[4][MAXKC]; 
 
for(j=0; j< KC; j++) 
 for (i=0; i<4; i++) tk[i][j] = k[i][j]; 
 
for (j=0; (j<KC) && (t <(ROUNDS+1) * BC ); j++, t++) 
 for ( i=0; i<4; i++) W[t / BC][i][t % BC] = tk[i][j]; 
while (t < (ROUNDS + 1)*BC) 
 { 
 for(i=0; i<4; i++) 
  tk[i][0] ^= S[tk[(i+1)%4][KC-1]]; 
 tk[0][0] ^= RC[RCpointer++]; 
 if (KC <= 6 ) 
  for (j=1; j < KC; j++) 
   for(i=0; i<4; i++) tk[i][j] ^= tk[i][j-1]; 
 else { 
  for (j=1; j < 4; j++) 
   for(i=0; i<4; i++) tk[i][j] ^= tk[i][j-1]; 
    for(i=0; i<4; i++) tk[i][4] ^= S[tk[i][3]];
   for (j=5; j < KC; j++) 
    for(i=0; i<4; i++) tk[i][j] ^= tk[i][j-1]; 
  } 
  /* copy values into round key array */ 
 for (j=0; (j < KC) && (t<(ROUNDS+1)*BC); j++, t++) 
  for(i=0; i<4; i++) W[t/BC][i][t%BC] = tk[i][j]; 
 } 
} 
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4.2.3 SubBytes( ) Transformation 

This is a non-linear byte-wise substitution of all bytes in the state.  The 

substitution transformation is simply called as an S-box. This transformation acts on the 

individual bytes of the state.  Figure 4.2.2 presents the SubBytes() Transformation. 

 

 
Figure 4.2.2:  SubBytes() Transformation acts on the individual bytes 

The S-box can be implemented by a look-up table or by the following formula. 

 
The inverse of the S-box needs to be performed in decryption and is implemented by 

the following formula. 
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4.2.4 ShiftRows( ) Transformation 

In the ShiftRows()transformation, each row of the state is considered 

separately and the bytes in that row are cyclically shifted to the left based upon the key-

size of the algorithm.  For the 128-bit key, the first row is unchanged.  However, the 

second, third and fourth rows are shifted by 1, 2 and 3 bytes respectively.  Figure 4.2.3 

presents the ShiftRows() operation on the state. 

 
Figure 4.2.3:  ShiftRows( ) transformation operating on individual rows 

 
The inverse of ShiftRows is called InvShiftRows.  The bytes are shifted towards 

the right in a cyclic shift in the InvShiftRows transformation.  Figure 4.2.4 presents the 

InvShiftRows( ) operation on the state. 

Figure 4.2.4:  InvShiftRows( ) transformation operating on individual rows 

4.2.5 MixColumns( ) Transformation 

The MixColumns() Transformation is a bricklayer permutation operating on each 

column of the state. This operation is depicted in the Figure 4.2.5. 
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Figure 4.2.5:  MixColumns() operation on each column of the state 

 
The columns of the state are considered as polynomials over GF (28) and multiplied 

modulo x4+1 with a fixed polynomial c(x).  The polynomial c(x) is given by 

 

The MixColumns operation is implemented by: 

 
 
 
 
 
 
 
 
 
 
The inverse operation for MixColumns is called InvMixColumns.  It is implemented 

by the following formula: 
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The AddRoundKey( ) Transformation is a simple bitwise XOR operation of the 

state and the round key.  A round key is a special key generated for a particular round 

by the KeyExpansion( ).  The length of the round key is equal to the block length.  
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Figure 4.2.6 shows the AddRoundKey() Transformation.  It performs bit-wise 

XOR of the state with the roundkey.  The AddRoundKey is its own inverse and 

hence the same transformation is also used in decryption. 

 
Figure 4.2.6:  AddRoundKey() transformation 

4.2.7 Inverse Cipher 

Reversing the encryption steps through the use of their inverse transformations 

performs decryption.  Code Sample 4.2.3 presents the pseudo code for decryption round 

transformations. 

 
Code Sample 4.2.3:  Pseudo-code for AES decryption 

 

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a'0,0 a'0,1 a'0,2 a'0,3

a'1,0 a'1,1 a'1,2 a'1,3

a'2,0 a'2,1 a'2,2 a'2,3

a'3,0 a'3,1 a'3,2 a'3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

⊕ =

int Decrypt (word8 a[4][MAXBC], 
 word8 rk[MAXROUNDS+1][4][MAXBC]) 

{ 
 int r; 
 
 AddRoundKey(a, rk[ROUNDS]); 
 InvSubBytes(a); 
 InvShiftRows(a); 
 
 for ( r=ROUNDS-1; r > 0; r--)  

{ 
  AddRoundKey(a,rk[r]); 
  InvMixColumns(a); 
  InvSubBytes (a); 
  InvShiftRows(a);   
 } 
 AddRoundKey(a,rk[0]); 
} 
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CHAPTER 5 
 

IMPLEMENTATION 

5.1 Structure 

Any embedded system has a set of specific tasks to perform.  The objective here 

is to study the implementation issues of including the cryptographic modules into the 

embedded system. 

An embedded system possesses various functions.  At some point of its execution, 

it may need to use the cryptographic module, either for encryption or decryption of the 

data. Figure 5.1.1 presents the cryptographic module that was developed and analyzed.  

The inputs from other modules were taken into the cryptographic module in fixed block 

sizes.  The encryption or decryption was performed on the data and then given back to 

the host function through the output buffer. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1.1:  Encryption and decryption modules 

5.2 Development Process 

The coding of the program was performed in the C language, which is a high-

level language defined at higher abstract levels and is programmer-friendly.  The high-

level language needs to be compiled into a low-level language before execution.  A low-
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level language is defined at the register level in order to achieve optimum performance in 

terms of processing speed, low-memory requirements or both.  Figure 5.2.1 presents the 

development process of the cryptographic system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.2.1:  Block diagram of the system development process 

 
The AES algorithm was implemented and compiled in C.  Then the code was 

linked using the CodeWarrior Integrated Development Environment. 

5.2.1 High-level Synthesis 

The AES was implemented in C rather than assembly due to the high-level nature 

of the C language.  High-level programming gives the programmer a higher level of 

flexibility in terms of defining the objective of the code.  A compiler that generated the 

machine code compiled the high-level language.  High-level synthesis helped in realizing 

the project objectives in a lesser amount of time.  The main advantage of using a high-

level language is code portability. 

5.2.2 Low-level Synthesis 

Low-level programming involves coding in machine-level instructions.  This 

requires a thorough knowledge at the register levels of the hardware system.  Since low-
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level synthesis does not support the portability feature, it was not used in this 

implementation.  In terms of very high levels of optimizations, it is advisable to code the 

program in low-level architecture-specific instructions. 

5.2.3 Portability 

Portability is the ability of the code to be transferred to a different system or 

environment with minimal amounts of modification and redevelopment.  Since the 

competition for quick release of products is so tremendous, rapid prototyping and timely 

marketing defines the success of a product.  Therefore, portability aspects were strictly 

adhered to while developing the system. 

5.2.4 Modularization 

Modularization is the technique of splitting a large program into smaller modules. 

 The advantage of modularization is the ease of maintenance and code debugging.  

Modularization helps in code-reuse, which reduces run-time memory.  A cryptographic 

system is developed as a separate module with sub-modules implementing the details.  In 

the C language, modularization is achieved by dividing the code into various functions.  

When the embedded system needs to encrypt or decrypt data it invokes the corresponding 

module, which executes its tasks and then returns the output to the host function.  The 

main program was divided into different modules termed encrypt(), decrypt() 

and KeyExpansion() functions. 

5.2.5 Compiler Exploitation 

The coding of the program in a high-level language should be such that the compiler 

would be able to optimize the code to the highest levels possible.  Care must be taken to 

consider the abilities and the limitations of the compiler when the program is being 

optimized.  The StarCore architecture has four ALUs, which can perform four operations 

in parallel.  Thus, the algorithm coding was modified to take advantage of the four ALUs. 

5.3 Optimizations 

The AES algorithm was implemented in C for generalized key lengths of 128, 196 

and 256-bits.  The length of the key can be changed by the input parameter 
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specifications.  For optimization purposes, the key length was fixed for 128-bits and the 

various optimization techniques were applied and analyzed.  The main aspects that were 

considered for optimization were: 

 Exploring parallelism in the algorithm 

 Multi sample processing and split summation 

 Speed optimization at the expense of increasing the code size 

 Function call; argument passing increases overhead 

 Compiler may use inline functions 

 Task priority 

 Interrupt service management 

 Time-sliced multi-tasking 

 I/O queues management 

 Interrupt disable while generating the key 

5.3.1 Structural Partitioning 

Input and output buffers were kept aside so that the core could be processed 

without any interrupts.  The external tasks must not be allowed to enter the critical path. 

5.3.2 Critical Paths 

In many cases, programs have a high-cost critical path that needs to be optimized. 

 It makes sense to optimize the critical paths to a higher extent than the less critical paths. 

 The MixColumns() function takes much longer than other sub-modules.  This is due 

to the mul() function that needs to be called numerous times.  The optimization for the 

MixColumns() function is presented in Code Sample 5.1. 

5.3.3 Computational Complexity 

Many programs need to perform highly complex sets of arithmetic functions.  

Such complex functions can be made simpler by exploring other alternatives such as 

look-up tables and bit-manipulation.  The SubBytes() can be implemented by using 

the formula but it consumes lot of processor cycles.  So, SubBytes() was implemented 

by using a look-up table. 
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Initial code: 
 word8 b[4][MAXBC]; 

int i, j; 
 for(j=0; j<BC; j++) 
  for(i=0; i<4; i++) 
   b[i][j] = mul(2,a[i][j]) 
    ^ mul(3,a[(i+1)%4][j]) 
    ^ a[(i+2) % 4][j] 
    ^ a[(i+3) % 4][j]; 
  for(i=0; i<4; i++) 
   for(j=0; j< BC; j++) a[i][j] = b[i][j]; 
Modified code: 

word8 b[4];  
 word8 temp1[4], temp2[4];  
 int  j; 
 for(j=0; j< BC; j++) 
 {  
  b[0]  =  mul(2,a[0][j]); 
  temp1[0] =  mul(3,a[1][j]); 
  temp2[0] =  a[2][j] ^ a[3][j]; 
  temp2[0] ^= temp1[0]; 
  b[0]     ^= temp2[0]; 
   
  b[1]  =  a[0][j] ^ a[3][j]; 
  temp1[1] =  mul(2,a[1][j]); 
  temp2[1] =  mul(3,a[2][j]); 
  temp2[1] ^= temp1[1]; 
  b[1]  ^= temp2[1]; 
 
  b[2]     =  a[0][j] ^ a[1][j]; 
  temp1[2] =  mul(2,a[2][j]); 
  temp2[2] =  mul(3,a[3][j]); 
  temp2[2] ^= temp1[2]; 
  b[2]    ^= temp2[2]; 
 
  b[3]     =  mul(3,a[0][j]); 
  temp1[3] =  a[1][j] ^ a[2][j]; 
  temp2[3] =  mul(2,a[3][j]); 
  temp2[3] ^= temp1[3]; 
  b[3]    ^= temp2[3];  
 
  a[0][j]  =  b[0]   ; 
  a[1][j]  =  b[1]   ; 
  a[2][j]  =  b[2]   ; 
  a[3][j]  =  b[3]   ; 
 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Code Sample 5.1:  Modification of MixColumns( ) 

5.3.4 Reusability and Functionality 

Programming should be performed in such a way that the program modules are 

flexible so they can be used again in the application.  The mul() function was made 

common to both MixColumns() and InvMixColumns().  Since the mul() 

function is just one line code, it was optimized as an inline function by the compiler. 
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5.3.5 Parallel Tasks 

Hardware devices typically have a high-level of parallelism when compared to 

software devices.  Design of an embedded device should include consideration of such 

parallelism found in the hardware.  ShiftRows() operates on each individual row at a 

time.  So parallel implementation of four subsequent ShiftRows() was feasible. 

5.3.6 Instruction-level Parallelism 

In the MixColumns() function, each byte of the column is a function of four 

bytes of that column.  A matrix multiplication was performed to get the result.  The 

single instruction was broken into different instructions capable of being executed in 

parallel.  The result was the XOR of the individual multiplications.  Different register sets 

were used to perform individual instruction, which resulted in instruction-level 

parallelism that made the code efficient for multi-processors. 

5.3.7 Recursive Tasks 

Some tasks in a program need to be executed a finite number of times.  Such tasks 

are called as recursive tasks.  Recursive tasks have an overhead that needs to be checked 

when the instruction sequence should jump out of the loop. 

 Loop Unrolling: For a small number of repetitions, the overhead could be 

removed altogether by replacing the loop with the code components for that fixed 

number of times.  This technique is called loop unrolling.  Code Sample 5.2 

presents the loop unrolling for AddRoundKey() and Code Sample 5.3 presents 

loop unrolling for SubBytes(). 
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Initial code: 
int i, j; 

 for (i=0; i<4; i++) 
for(j=0; j<4; j++) a[i][j] ^= rk[i][j]; 

 
Modified code: 

int i; 
 for (i=0; i<4; i++) 

{  
  a[i][0] ^= rk[i][0]; 
  a[i][1] ^= rk[i][1]; 
  a[i][2] ^= rk[i][2]; 
  a[i][3] ^= rk[i][3]; 

} 

 

 

 

 

 

 

 

 

Code Sample 5.2:  Loop unrolling for AddRoundKey( ) 

Code Sample 5.3:  Loop unrolling for SubBytes( ) 

 Loop Merging:  When two loops are being executed with similar tasks that can be 

sequentially adjusted, it is better to combine the two loops into a single loop.  

This technique is called loop merging.  This reduces the total overhead time of 

executing multiple loops to the overhead of a single loop.  Code Sample 5.4 

presents the loop unrolling and merging with constants substitution for 
ShiftRows( ). 

5.3.8 Pipelining Tasks 

Two pipelining tasks were considered in order to reduce code execution time. 

 Multi-sample Processing:  Sometimes, different samples can be executed 

simultaneously when there is no inter-dependency among them.  This helps in 

conserving valuable clock cycles. 

Initial code: 
int i, j; 
for (i=0; i<4; i++) 

   for(j=0; j< BC; j++)  
a[i][j] = box[a[i][j]]; 

 
Modified code: 

int i; 
 for (i=0; i<4; i++) 
 { 
  a[i][0] = box[a[i][0]]; 
  a[i][1] = box[a[i][1]]; 
  a[i][2] = box[a[i][2]]; 
  a[i][3] = box[a[i][3]]; 

}    
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Code Sample 5.4:  Loop unrolling and merging 

 Split Summation:  A complex equation can be made simple by dividing it into 

smaller components so that they can be executed in parallel.  Another advantage 

is that by dividing into smaller components, different registers can be used.  This 

minimizes the number of memory transfers, which consume more cycles than 

simple register calls.  Split summation was performed on MixColumns() and 

InvMixColumns().  Code Sample 5.5 presents the modifications in 

InvMixColumns(). 

5.3.9 Conditional Tasks 

Some tasks use conditional statements like if-then-else, which consume a lot of 

cycles.  A better way is to remove the conditional statements as much as possible.  Code 

Sample 5.6 presents the removal of the if-then-else statement from ShiftRows(). 

Initial code: 
int i, j; 
for (i=0; i<4; i++)  
{ 
 for(j=0; j< BC; j++) 
 tmp[j] = a[i][(j + shifts[BC-4][i]) % BC]; 
 for(j=0; j< BC; j++) a[i][j] = tmp[j]; 
} 

 
Modified code: 

int i; 
for (i=1; i<4; i++)  
{ 
 tmp[0] = a[i][(0 + i) % BC]; 
 tmp[1] = a[i][(1 + i) % BC]; 
 tmp[2] = a[i][(2 + i) % BC]; 
 tmp[3] = a[i][(3 + i) % BC]; 
 
 a[i][0] = tmp[0]; 
 a[i][1] = tmp[1]; 
 a[i][2] = tmp[2]; 
 a[i][3] = tmp[3]; 
} 
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Code Sample 5.5:  Modification of InvMixColumns( ) 

Initial code: 
 word8 b[4][MAXBC]; 
 int i, j; 
 
 for(j=0; j<BC; j++) 
  for(i=0; i<4; i++) 
   b[i][j] = mul(0xe,a[i][j]) 
    ^ mul(0xb,a[(i+1) % 4][j]) 
    ^ mul(0xd,a[(i+2) % 4][j]) 
    ^ mul(0x9,a[(i+3) % 4][j]); 
  for(i=0; i<4; i++) 
   for(j=0; j< BC; j++) a[i][j] = b[i][j]; 
 
Modified code: 

word8 b[4]; 
 word8 temp0[3], temp1[3], temp2[3], temp3[3]; 
 int  j; 
 for(j=0; j< BC; j++) 
 {  
  b[0]    = mul(0xe,a[0][j]); 
  temp0[0]= mul(0xb,a[1][j]); 
  temp0[1]= mul(0xd,a[2][j]); 
  temp0[2]= mul(0x9,a[3][j]); 
  temp0[1]^=temp0[0]; 
  b[0]    ^=temp0[2]; 
  b[0]    ^=temp0[1]; 
  
  b[1]    = mul(0x9,a[0][j]); 
  temp1[0]= mul(0xe,a[1][j]); 
  temp1[1]= mul(0xb,a[2][j]); 
  temp1[2]= mul(0xd,a[3][j]); 
  temp1[1]^=temp1[0]; 
  b[1]    ^=temp1[2]; 
  b[1]    ^=temp1[1]; 
  
  b[2]    = mul(0xd,a[0][j]); 
  temp2[0]= mul(0x9,a[1][j]); 
  temp2[1]= mul(0xe,a[2][j]); 
  temp2[2]= mul(0xb,a[3][j]); 
  temp2[1]^=temp2[0]; 
  b[2]    ^=temp2[2]; 
  b[2]    ^=temp2[1]; 
  
  b[3]    = mul(0xb,a[0][j]); 
  temp3[0]= mul(0xd,a[1][j]); 
  temp3[1]= mul(0x9,a[2][j]); 
  temp3[2]= mul(0xe,a[3][j]); 
  temp3[1]^=temp3[0]; 
  b[3]    ^=temp3[2]; 
  b[3]    ^=temp3[1]; 
 
  a[0][j] = b[0]   ; 
  a[1][j] = b[1]   ; 
  a[2][j] = b[2]   ; 
  a[3][j] = b[3]   ; 
 } 
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Code Sample 5.6:  Removal of If-Then-Else Conditions from ShiftRows( ) 

 

5.4 Critical Issues 

5.4.1 Interrupt Service Management 

The cryptographic related modules should be given the highest priority.  If the 

case arises to perform some other critical task, then an interrupt routine should be 

programmed to check whether any cryptographic module is running at that time.  If so, 

then all cryptic data should be deleted until completion of the interrupt routine.  Then the 

Initial code: 
ShiftRows(a,0);   // for ShiftRows 
ShiftRows(a,1);   // for InvShiftRows 
 
void ShiftRows(word8 a[4][MAXBC], word8 d)  
{ 

word8 tmp[MAXBC]; 
 int i, j; 

 
 if ( d==0)  // for ShiftRows-encryption 

{ 
... 
... 

} 
else  // for ShiftRows-decryption 
{ 
 ... 

... 
 } 
} 

 
 

Modified code: 
ShiftRows(a);  // for ShiftRows 
InvShiftRows(a);  // for InvShiftRows 
 
void ShiftRows(word8 a[4][MAXBC]) // for ShiftRows-encryption 
{ 
 ... 
 ... 
} 
 
void InvShiftRows(word8 a[4][MAXBC]) // for InvShiftRows 
{ 
 ... 
 ... 
} 
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cryptographic module should be executed again.  Under no circumstances should the 

cryptographic data be sent to the stacks in order to perform interrupt routines. 

5.4.2 Time-sliced Multi-tasking 

Time-sliced multitasking of a cryptographic module with other applications also 

presents vulnerability to attacks.  Time slicing could help the attacker to read the data of 

the registers in order to obtain crucial information, which could lead to knowledge of the 

key. 

5.4.3 I/O Queues Management 

In order to run the cryptographic modules efficiently, the input and output 

modules should be structurally separated.  When the embedded device has multi-

processor capability, separate processing should be catered for I/O data management. 
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CHAPTER 6 
 

ATTACKS AND COUNTER MEASURES 

 

A deliberate Cryptanalysis to break a cryptosystem is called an attack.  While 

developing a system, cryptography should not be thought of as the final task.  Care 

should be taken to consider the cryptographic issues from the conception to the 

completion of the system.  An insecure system is no different than a secure system when 

the system functionalities are considered. 

 

Security is the foremost priority in a cryptosystem.  The evaluation of security 

cannot be made by the system functionality.  Security is different than functionality.  Any 

designer can design a system with specified functionalities.  For a cryptographic system, 

functionality is necessary but not sufficient.  A cryptographic system should be designed 

with a view to the kind of attacks it might face and the countermeasures to defeat the 

attacks.  A good algorithm is only the starting point. 

6.1 Implementation Attacks 

Attacks that rely on the flaws in implementation procedure are termed 

Implementation Attacks.  In the process of code optimization for optimum speed and 

memory, programmers often neglect the transfer of variables and the deletion of trace 

elements.  Care must be taken to delete the round keys and the main key when the 

encryption or decryption process is complete.  It is also to the best advantage if only the 

specific authorized modules have access to the cryptographic modules.  If any attack or 

discrepancy is detected in the run-time environment, a specific data log must be created 

or appended and key scheduling must be executed again.  Key scheduling takes care of 

deleting the prior keys and generating or obtaining a new set of keys. 
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6.2 Side-channel Cryptanalysis 

Attacks based on implementation flaws rather than algorithms are called as side-

channel attacks [K01].  These attacks rely upon the leaking of side-channel information 

such as execution time and power consumption. 

6.2.1 Timing Attacks 

Timing attacks exploit the execution times of the application.  The execution time 

of the algorithm is measured in order to obtain information about the key.  In the 

MixColumns() of AES, there are different multiplication sequences that might take 

different times to execute depending upon the key.  Such an attack is very powerful and 

will often compromise the security of the whole system. 

6.2.2 Power Attacks 

Power analysis attacks explore the power intake of the system and can obtain vital 

information of the inner working [GLIPV03].  The power consumption of the device is 

measured to obtain information about the key. 

 Simple Power Analysis:  This deals with analyzing the recorded power data and 

the data sets. 

 Differential Power Analysis:  This deals with the statistical analysis of the power 

data by comparing different plain texts and ciphers. 

Since power analysis attacks are non-invasive, they are virtually non-detectable.  

This poses a considerable threat to the security of the system since the damage caused 

cannot be assessed. 

6.2.3 Probing Attacks 

A probing attack is a direct physical attack where probes are inserted onto the 

hardware to examine the memory content and the data transfers on the buses.  This can be 

avoided by physical shielding of the device.  Optical probing is the newest technique for 

probing attacks.  Apart from physical shielding, other methods of attack detection must 

be incorporated in case the attacker breaks the physical shield. 
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6.2.4 Fault Induction Attacks 

Faults or errors are introduced into the device by crude means like exposure to 

radiation [GLIPV02].  Errors are introduced into the system and the outcomes are 

analyzed. With a statistical induction of errors, relevant information may be extracted. 

6.3 Counter Measures 

6.3.1 Constant-time Implementation 

Encryption time should be made independent of the value of the key.  This can be 

accomplished by careful implementation of instructions by making them time-

independent.  One way of achieving this is to use a look-up table that should take a fixed 

amount of time for every execution. 

6.3.2 Power Attacks 

Preventing Power attacks can be accomplished in the following ways: 

 Physical shielding of the device so that the leaking signal size is reduced. 

 Adding noise to the power measurements.  This ensures that the attacker will 

require more samples for analysis. 

 Temporal obfuscation of the instructions.  This is achieved by randomizing the 

execution of the instructions.  This model controls the power attacks if 

implemented effectively.  If the randomization is not spread properly, it might 

even aid the attacker in obtaining the relevant information.  Temporal obfuscation 

can also be achieved by randomized clock signals. 

6.3.3 Probing Attacks 

The system must have the hardware architecture designed in such a way that 

optical probing shouldn’t reveal the state of a bit.  A bit should be made as ‘HL’ or ‘LH’ 

instead of a single ‘H’ or ‘L’. 

6.3.4 Random Number and Unique Key Generators 

Random number generation forms a formidable task in cryptosystems.  To state 

the truth, no finite machine could ever produce a true random number.  Any number 
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generated, which seems to be a random number is called as pseudo-random number.  One 

way of generating pseudo-random numbers is through the use of an algorithm utilizing 

the linear feedback shift registers.  Another concept of generating random numbers is to 

use a conventional cryptographic algorithm.  As input to the cryptographic algorithm, a 

user-generated number is used and this number is called the seed to the pseudo-random 

number generator.  The seed should be carefully selected to prevent any malicious user 

from guessing it or reproducing it by any other means [KSWH98].  The keys for 

cryptosystems should be based on random numbers and care must be taken that such 

numbers pass the random number tests.  The unique key generator for the cryptosystem 

should carefully perform the task of generating the session keys.  The longer the session 

key is in use, the more vulnerable is the cryptosystem to the attacks.  The registers that 

hold the keys should be volatile and the key should be deleted when it is no longer 

needed. 
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CHAPTER 7 
 

RESULTS AND DISCUSSION 

7.1 Results 

The Advanced Encryption Standard (AES) was implemented in C and various 

optimization techniques were applied without compromising for the security issues.  The 

initial program is called by the name ‘opt-a’ and different code optimizations were 

performed at different stages and the different stages of the code are named as ‘opt-c’, 

‘opt-d’...‘opt-h’.  The suffix to the code name indicates the compiler optimization level.  

The suffix ‘0’ indicates that no compiler optimizations have been performed.  For 

instance, ‘LEVEL 3’ indicates that compiler optimizations of scheduling, pipelining and 

bundling are performed on the code.  The suffix ‘space’ indicates that space 

optimizations were performed rather than speed optimizations.  The objective was to 

optimize the code in terms of speed without degrading the space parameter.  The 

compiler option of space optimization was considered to show how the space 

optimization techniques affect the speed optimization process. 

The original unoptimized code was conceived into ‘Opt a’.  The program was 

compiled using the CodeWarrior IDE.  The profiler of the CodeWarrior aided in 

obtaining the statistical information about the program execution.   

Table 7.1.1 presents the different stages of the code development and the 

corresponding execution time in clock cycles. 
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Table 7.1.1:  Execution time in clock cycles at various stages of code development 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Stages main( ) encrypt( ) decrypt( ) 
LEVEL 0 453897 112706 153576 
LEVEL 3 217617 33057 52721 
LEVEL 3 Space 265766 43019 66184 
    
Opt-a 0 630850 111987 154316 
Opt-a 3 231068 38040 54457 
    
Opt-c 3 215032 34238 50244 
    
Opt-d 0 599351 106537 143926 
Opt-d 3 215032 34238 50244 
Opt-d 3 Space 260780 42738 63989 
Opt-d   Space 271728 44693 67367 
    
Opt-e 0 557991 96577 133206 
Opt-e 3 211002 32801 49684 
Opt-e 3 Space 258734 42146 63558 
Opt-e  Space 268471 43926 66504 
    
Opt-f 0 536111 91134 127709 
Opt-f 3 207203 31761 48802 
Opt-f 3 Space 254034 41069 62291 
Opt-f  Space 265502 43189 65758 
    
Opt-g 0 516591 86264 122819 
Opt-g 3 194268 28676 45432 
Opt-g 3 Space 242633 38223 59405 
Opt-g  Space 252066 39813 62432 
    
Opt-h 0 523464 85133 127651 
Opt-h 3 197996 29125 46882 
Opt-h 3 Space 246797 37966 61774 
Opt-h  Space 253263 39656 63186 
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Table 7.1.2 presents the profiling information for the ‘opt-g 3’ stage.  The table 

depicts the function (F) and descendent (D) time in clock cycles of various functions. 

 
Table 7.1.2:  Profiling information for ‘opt-g 3’ stage 

 
The CodeWarrior profiler also displays a graphical representation of the function 

and its descendents.  Figure 7.1.1 presents the graphical display of the encrypt() of 

the ‘opt-g 3’ stage. It can be deduced that the encrypt() is consuming 57352 cycles 

per two calls, which means the average execution time for encrypt() is 28676 clock 

cycles. The main metrics for this thesis is the execution time defined in terms of the 

number of clock cycles taken by the hardware to execute a particular function 
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Figure 7.1.1:  Graphical profile for encrypt() of ‘opt-g 3’ Stage 
 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 7.1.2:  Functions main(), encrypt() and decrypt() from stages Level 0 

to Opt-d Space stages 
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Figure 7.1.3:  Functions main(), encrypt() and decrypt() from stages Opt-e to 

Opt-h Space stages 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1.4:  Cryptographic modules from Level 0 to Opt-d Space stages 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.1.5:  Cryptographic modules from Opt-e 0 to Opt-h Space stages 
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The encrypt()function is divided into four sub-functions:  SubBytes(), 

ShiftRows(), MixColumns() and AddRoundKey().  The function and 

descendent times of various functions are depicted in Figure 7.1.2 through Figure 7.1.5. 

Observations from the various stages of the code optimizations revealed that the 

MixColumns() function was consuming more time than other sub-modules combined 

in the encrypt() function.  This was due to the mul()function in the 

MixColumns() function, which was used to perform the Galois Field (GF) 

multiplication on the data operands.  GF multiplication was performed by implementing a 

look-up table to defeat any timing attacks. Figure 7.1.2 reveals that decrypt()takes 

more time than encrypt().  This is due to the added complexity of the GF 

multiplication in InvMixColumns() of decrypt().  The InvMixColumns() 

needs to perform four multiplications while the MixColumns() needs to perform only 

two multiplications per each byte of the state. 

 

 

 

 

 

 

 

 
Figure 7.1.6:  SubBytes() module at all stages 

The SubBytes()initial function consumed 927 cycles without compiler optimization 

and 93 cycles with compiler-optimization.  After optimization techniques were applied, 

the function required 684 clock cycles without compiler optimization and 49 cycles with 

compiler optimization.  Thus SubBytes()showed a performance gain of 26% without-

compiler optimization and 47% with-compiler optimization in terms of execution speed.  

Figure 7.1.6 presents the execution time of SubBytes() at all stages of code 

optimization. 

The ShiftRows()initial function consumed 2974 cycles without compiler 

optimization and 1354 cycles with compiler-optimization.  After optimization techniques 
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were applied, the function required 1453 clock cycles without compiler optimization and 

945 cycles with compiler optimization.  Thus ShiftRows() displayed a performance 

gain of 51% without-compiler optimization and 30% with-compiler optimization in terms 

of execution speed.  Figure 7.1.7 presents the execution time of ShiftRows()at all 

stages of code optimization. 

 

 

 

 

 

 

 

 

Figure 7.1.7:  ShiftRows() module at all stages 

 

The AddRoundKey()initial function consumed 975 cycles without compiler 

optimization and 83 cycles with compiler-optimization.  After optimization techniques 

were applied, the function required 705 clock cycles without compiler optimization and 

52 cycles with compiler optimization.  Thus AddRoundKey() displayed a performance 

gain of 27% without-compiler optimization and 37% with-compiler optimization in terms 

of execution speed.  Figure 7.1.8 presents the execution time of AddRoundKey()at all 

stages of code optimization. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.1.8:  AddRoundKey() module at all stages 
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Figure 7.1.9 presents execution times of MixColumns() at all stages of code 

optimization. 

 

 

 

 

 

 

 

Figure 7.1.9:  MixColumns() module at all stages 

Figure 7.1.10 presents the execution time of encrypt()at all stages of code 

optimization. 

Figure 7.1.10:  Encrypt() module at all stages 
 

Figure 7.1.11 shows the execution time of decrypt()at all stages of code 

optimization. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.1.11:  Decrypt() module at all stages 
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The stages that were optimized by the compiler are illustrated in Figure 7.1.12 

through Figure 7.1.18. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1.12:  Main() function for compiler optimization 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7.1.13:  Encrypt() function for compiler optimization 
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Figure 7.1.14:  Decrypt() function for compiler optimization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.1.15:  SubBytes() function for compiler optimization 
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Figure 7.1.16:  ShiftRows() function for compiler optimization 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7.1.17:  MixColumns() function for compiler optimization 
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Figure 7.1.18:  AddRoundKey() function for compiler optimization 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.19:  Speed performance of various modules 

 
Figure 7.1.19 shows the speed performance gained for the AES for different compiler 

options.  This shows that a 20% performance gain was obtained by optimizations for 
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encrypt() and an 11% performance gain by optimizations for decrypt().  

ShiftRows() was optimized better than all other sub-functions.  MixColumns() was 

the critical path in the code and it was the least optimized function.  This was due to the 

implementation of a look-up table for the GF multiplication.  The MixColumns() data for 

‘Space’ and ‘3-Space’ was not obtained due to the compiler’s option of inline functioning for 

better optimization.  Table 7.1.3 presents the speed performance gain in percentage for each 

function. 

Table 7.1.3:  Speed performance of various modules 
 

 
 
 
 
 
 
 
 
 
 

7.2 Discussion 

This research started with an idea of implementing a cryptographic algorithm on a 

DSP chip.  The idea expanded from the initial concept of a data encryption standard 

(DES) [SASR01] on the DSP 56824 to the present form of an AES on the StarCore.  The 

AES was implemented on the StarCore using the CodeWarrior IDE.  The initial 

inclination was to put the code into the DSP memory.  Since the idea of a secure and 

reliable system was maintained and thrived from the beginning of this endeavor, care was 

taken about certain situations where the system might be attacked.  Different ways of 

side-channel attacks were studied and the system was made robust to such attacks by 

taking care of details such as constant-time implementation and key deletion after the 

session.  Even though the system was made strong, it cannot be denied that successful 

attacks can be made on it. 

In the context of smart attacks, the following security issues should be kept in 

mind while implementing a cryptographic system. 

 Formulate the system to detect various types of attacks. 

Percentage Speed Performance ( in % ) 
 0 3 Space 3-Space 
main( ) 12.66153 9.656237 6.958739 7.235912 
encrypt( ) 20.09067 16.24511 10.56437 10.91894 
decrypt( ) 11.30789 9.575368 7.163731 7.325545 

 
SubBytes( ) 26.21359 47.31183 21.36752 22.68908 
ShiftRows( ) 51.14324 30.20679 28.47025 29.64213 
MixColumns 1.405526 3.65209 NA NA 
AddRoundKey( ) 27.69231 37.48634 22.3301 23.80952 
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 Turn off the power to the internal RAM when system tampering is detected. 

 The keys should always be stored in volatile memory. 

 Change the keys for every session. 

 Metal shield the device to prevent the leakage of high-frequency pulses. 

 Implement constant-time algorithms. 

 Use double sized blocks with complement data to defeat power attacks. 

7.2.1 8-bit Platforms 

The use of AES is imminent on the 8-bit platforms like smart cards.  Smart cards 

are very vulnerable to side-channel cryptanalysis.  This is due to their inherent 

weaknesses such as dependence on the external clock and their susceptibility to optical 

probing.  In order to reduce the memory size of the 8-bit platforms, key expansion should 

be performed every time encryption or decryption is performed.  This is due to the fact 

that these devices are generally asynchronous in nature.  Since the encryption or 

decryption is performed only on a relatively small amount of data, the key should be 

generated and expanded each time the cryptographic module is called. 

Look-up tables consume a lot of memory.  Therefore, they should be generated by 

suitable algorithms before encryption or decryption is performed.  This might increase 

the code size but it definitely improves the overall system performance by decreasing the 

dormant memory occupation. 

7.2.2 32/64-bit Platforms 

The devices with larger data-bus lengths and processing word lengths are 

generally synchronous in nature.  If the data to be encrypted or decrypted is continuous, 

the key scheduling should be performed outside the encryption and decryption modules.  

This saves the repetitive task of key scheduling by moving it out of the continuous 

routines. 

7.3.3 Optimization 

There are many optimization metrics concerned with embedded systems such as: 

 Production cost 

 Execution speed 
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 Memory size 

 Data throughput 

 Power consumption 

 Robustness 

When dealing with cryptosystems, the added issues of security affect all the above 

metrics.  The security issues become the top priority in the metrics to evaluate the 

system.  The difference between a poorly designed and perfectly designed cryptographic 

system cannot be assessed until an attack is made on both of them.  The only way to 

make the systems more robust is to learn from the previous attacks and explore the 

weaknesses in the present systems by performing new kinds of attacks.  Thus, the ideal 

way of summarizing this concept is ‘the real security of a system cannot be assessed until 

it is broken’. 
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CHAPTER 8 
 

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

8.1 Conclusion 

The AES was implemented on the StarCore using the CodeWarrior IDE.  

Additionally, various speed optimization techniques were applied.  A study of different 

side-channel attacks was performed and proposals were made to counter such attacks.  

The system’s security was given greater importance than speed optimization.  The 

programming was divided into different stages and the results were observed at each 

stage.  Each sub-module of encrypt() was optimized and the clock cycles were 

observed.  Relevant observations of this research are: 

 The compiler was able to effectively optimize a simple code. 

 Code optimization techniques boosted the compiler’s ability to further optimize 

the code. 

 In-line functions are better suited for smaller functions. 

 Function call parameters should be replaced by memory pointers. 

 Deletion of the round keys and the main key at the termination of the program 

improves security. 

 Critical paths should be optimized more than the less critical paths. 

 Probing attacks should be defeated by physical and radiation shielding. 

 Constant-time implementations should be considered to avoid timing and power 

attacks. 

8.2  Recommendations for Future Work 

The study and analysis of cryptosystems is an ongoing effort in which new attacks are 

constantly discovered.  Future study to this research should be in the following topics: 

 An extensive study must be made of side-channel attacks. 

 Architectural advantages must be explored with a consideration for portability. 
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 Experiments should be conducted to study the effects of various types of attacks. 

 New methods such as algorithm switching must be implemented.  Key scheduling 

must be made more robust. 

 Attack detection must be incorporated into the system. 

 Interrupt priorities should be assigned appropriately with the highest concern for 

the security of the system. 
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APPENDIX A 
 
 

Optimized C Code for the AES 
 

/*  
 * Code Optimization techniques for encryption and decryption 
 */ 
 
#include <stdio.h> 
 
typedef unsigned char word8; 
typedef unsigned int word32; 
 
/* The tables Logtable and Alogtable are used to perform 
 * multiplications in GF(256) 
 */ 
word8 Logtable[256] = { 
  0,   0,  25,   1,  50,   2,  26, 198,  75, 199,  27, 104,  51, 238, 223,   3,  
100,   4, 224,  14,  52, 141, 129, 239,  76, 113,   8, 200, 248, 105,  28, 193,  
125, 194,  29, 181, 249, 185,  39, 106,  77, 228, 166, 114, 154, 201,   9, 120,  
101,  47, 138,   5,  33,  15, 225,  36,  18, 240, 130,  69,  53, 147, 218, 142,  
150, 143, 219, 189,  54, 208, 206, 148,  19,  92, 210, 241,  64,  70, 131,  56,  
102, 221, 253,  48, 191,   6, 139,  98, 179,  37, 226, 152,  34, 136, 145,  16,  
126, 110,  72, 195, 163, 182,  30,  66,  58, 107,  40,  84, 250, 133,  61, 186,  
 43, 121,  10,  21, 155, 159,  94, 202,  78, 212, 172, 229, 243, 115, 167,  87,  
175,  88, 168,  80, 244, 234, 214, 116,  79, 174, 233, 213, 231, 230, 173, 232,  
 44, 215, 117, 122, 235,  22,  11, 245,  89, 203,  95, 176, 156, 169,  81, 160,  
127,  12, 246, 111,  23, 196,  73, 236, 216,  67,  31,  45, 164, 118, 123, 183,  
204, 187,  62,  90, 251,  96, 177, 134,  59,  82, 161, 108, 170,  85,  41, 157,  
151, 178, 135, 144,  97, 190, 220, 252, 188, 149, 207, 205,  55,  63,  91, 209,  
 83,  57, 132,  60,  65, 162, 109,  71,  20,  42, 158,  93,  86, 242, 211, 171,  
 68,  17, 146, 217,  35,  32,  46, 137, 180, 124, 184,  38, 119, 153, 227, 165,  
103,  74, 237, 222, 197,  49, 254,  24,  13,  99, 140, 128, 192, 247, 112,   7,  
}; 
 
word8 Alogtable[256] = { 
  1,   3,   5,  15,  17,  51,  85, 255,  26,  46, 114, 150, 161, 248,  19,  53,  
 95, 225,  56,  72, 216, 115, 149, 164, 247,   2,   6,  10,  30,  34, 102, 170,  
229,  52,  92, 228,  55,  89, 235,  38, 106, 190, 217, 112, 144, 171, 230,  49,  
 83, 245,   4,  12,  20,  60,  68, 204,  79, 209, 104, 184, 211, 110, 178, 205,  
 76, 212, 103, 169, 224,  59,  77, 215,  98, 166, 241,   8,  24,  40, 120, 136,  
131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206,  73, 219, 118, 154,  
181, 196,  87, 249,  16,  48,  80, 240,  11,  29,  39, 105, 187, 214,  97, 163,  
254,  25,  43, 125, 135, 146, 173, 236,  47, 113, 147, 174, 233,  32,  96, 160,  
251,  22,  58,  78, 210, 109, 183, 194,  93, 231,  50,  86, 250,  21,  63,  65,  
195,  94, 226,  61,  71, 201,  64, 192,  91, 237,  44, 116, 156, 191, 218, 117,  
159, 186, 213, 100, 172, 239,  42, 126, 130, 157, 188, 223, 122, 142, 137, 128,  
155, 182, 193,  88, 232,  35, 101, 175, 234,  37, 111, 177, 200,  67, 197,  84,  
252,  31,  33,  99, 165, 244,   7,   9,  27,  45, 119, 153, 176, 203,  70, 202,  
 69, 207,  74, 222, 121, 139, 134, 145, 168, 227,  62,  66, 198,  81, 243,  14,  
 18,  54,  90, 238,  41, 123, 141, 140, 143, 138, 133, 148, 167, 242,  13,  23,  
 57,  75, 221, 124, 132, 151, 162, 253,  28,  36, 108, 180, 199,  82, 246,   1,  
}; 
 
 
word8 S[256] = { 
 99, 124, 119, 123, 242, 107, 111, 197,  48,   1, 103,  43, 254, 215, 171, 118,  
202, 130, 201, 125, 250,  89,  71, 240, 173, 212, 162, 175, 156, 164, 114, 192,  
183, 253, 147,  38,  54,  63, 247, 204,  52, 165, 229, 241, 113, 216,  49,  21,  
  4, 199,  35, 195,  24, 150,   5, 154,   7,  18, 128, 226, 235,  39, 178, 117,  
  9, 131,  44,  26,  27, 110,  90, 160,  82,  59, 214, 179,  41, 227,  47, 132,  
 83, 209,   0, 237,  32, 252, 177,  91, 106, 203, 190,  57,  74,  76,  88, 207,  
208, 239, 170, 251,  67,  77,  51, 133,  69, 249,   2, 127,  80,  60, 159, 168,  
 81, 163,  64, 143, 146, 157,  56, 245, 188, 182, 218,  33,  16, 255, 243, 210,  
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APPENDIX A (Continued) 
 

 
205,  12,  19, 236,  95, 151,  68,  23, 196, 167, 126,  61, 100,  93,  25, 115,  
 96, 129,  79, 220,  34,  42, 144, 136,  70, 238, 184,  20, 222,  94,  11, 219,  
224,  50,  58,  10,  73,   6,  36,  92, 194, 211, 172,  98, 145, 149, 228, 121,  
231, 200,  55, 109, 141, 213,  78, 169, 108,  86, 244, 234, 101, 122, 174,   8,  
186, 120,  37,  46,  28, 166, 180, 198, 232, 221, 116,  31,  75, 189, 139, 138,  
112,  62, 181, 102,  72,   3, 246,  14,  97,  53,  87, 185, 134, 193,  29, 158,  
225, 248, 152,  17, 105, 217, 142, 148, 155,  30, 135, 233, 206,  85,  40, 223,  
140, 161, 137,  13, 191, 230,  66, 104,  65, 153,  45,  15, 176,  84, 187,  22,  
}; 
 
word8 Si[256] = { 
 82,   9, 106, 213,  48,  54, 165,  56, 191,  64, 163, 158, 129, 243, 215, 251,  
124, 227,  57, 130, 155,  47, 255, 135,  52, 142,  67,  68, 196, 222, 233, 203,  
 84, 123, 148,  50, 166, 194,  35,  61, 238,  76, 149,  11,  66, 250, 195,  78,  
  8,  46, 161, 102,  40, 217,  36, 178, 118,  91, 162,  73, 109, 139, 209,  37,  
114, 248, 246, 100, 134, 104, 152,  22, 212, 164,  92, 204,  93, 101, 182, 146,  
108, 112,  72,  80, 253, 237, 185, 218,  94,  21,  70,  87, 167, 141, 157, 132,  
144, 216, 171,   0, 140, 188, 211,  10, 247, 228,  88,   5, 184, 179,  69,   6,  
208,  44,  30, 143, 202,  63,  15,   2, 193, 175, 189,   3,   1,  19, 138, 107,  
 58, 145,  17,  65,  79, 103, 220, 234, 151, 242, 207, 206, 240, 180, 230, 115,  
150, 172, 116,  34, 231, 173,  53, 133, 226, 249,  55, 232,  28, 117, 223, 110,  
 71, 241,  26, 113,  29,  41, 197, 137, 111, 183,  98,  14, 170,  24, 190,  27,  
252,  86,  62,  75, 198, 210, 121,  32, 154, 219, 192, 254, 120, 205,  90, 244,  
 31, 221, 168,  51, 136,   7, 199,  49, 177,  18,  16,  89,  39, 128, 236,  95,  
 96,  81, 127, 169,  25, 181,  74,  13,  45, 229, 122, 159, 147, 201, 156, 239,  
160, 224,  59,  77, 174,  42, 245, 176, 200, 235, 187,  60, 131,  83, 153,  97,  
 23,  43,   4, 126, 186, 119, 214,  38, 225, 105,  20,  99,  85,  33,  12, 125,  
}; 
 
 
word32 RC[30] = {  
  0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 
  0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 
  0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 
  0xfa, 0xef, 0xc5}; 
 
 
#define MAXBC  8 
#define MAXKC  8 
#define MAXROUNDS 14 
 
static word8 shifts[5][4] = { 
    
 0, 1, 2, 3, 
 0, 1, 2, 3,  
 0, 1, 2, 3, 
 0, 1, 2, 4, 
 0, 1, 3, 4}; 
 
static int numrounds[5][5] = { 
 10, 11, 12, 13, 14, 
 11, 11, 12, 13, 14, 
 12, 12, 12, 13, 14, 
 13, 13, 13, 13, 14, 
 14, 14, 14, 14, 14}; 
  
int BC, KC, ROUNDS; 
 
word8 mul(word8 a, word8 b) { 
 /* multiply two elements of GF(256) 
  * required for MixColumns and InvMixColumns 
  */ 
  
 if (a && b)  
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 return Alogtable[(Logtable[a] + Logtable[b])%255]; 
 else return 0; 
} 
 
 
void AddRoundKey(word8 a[4][MAXBC], word8 rk[4][MAXBC]) { 
 /* XOR corresponding text input and round key input bytes 
  */ 
 int i; 
 for (i=0; i<4; i++) 
 {  
  a[i][0] ^= rk[i][0]; 
  a[i][1] ^= rk[i][1]; 
  a[i][2] ^= rk[i][2]; 
  a[i][3] ^= rk[i][3]; 
 } 
} 
 
void SubBytes(word8 a[4][MAXBC], word8 box[256]) { 
 /* Replace every byte of the input by the byte at that place 
  * in the non-linear S-box 
  */ 
 int i; 
 
 for (i=0; i<4; i++) 
 {  a[i][0] = box[a[i][0]]; 
   a[i][1] = box[a[i][1]]; 
   a[i][2] = box[a[i][2]]; 
   a[i][3] = box[a[i][3]]; 
    }     
} 
 
void ShiftRows(word8 a[4][MAXBC]) { 
 /* Row 0 remains unchanged 
  * The other three rows are shifted a variable amount 
  */ 
 word8 tmp[MAXBC]; 
 int i; 
  for (i=1; i<4; i++) { 
    
   tmp[0] = a[i][(0 + i) % BC]; 
   tmp[1] = a[i][(1 + i) % BC]; 
   tmp[2] = a[i][(2 + i) % BC]; 
   tmp[3] = a[i][(3 + i) % BC]; 
 
   a[i][0] = tmp[0]; 
   a[i][1] = tmp[1]; 
   a[i][2] = tmp[2]; 
   a[i][3] = tmp[3]; 
  } 
  
} 
 
void InvShiftRows(word8 a[4][MAXBC]) { 
 /* Row 0 remains unchanged 
  * The other three rows are shifted a variable amount 
  */ 
 
 word8 tmp[MAXBC]; 
 int i; 
  
  for (i=1; i<4; i++) { 
   
   tmp[0] = a[i][(0 + 4 - i) % BC]; 
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tmp[1] = a[i][(1 + 4 - i) % BC]; 

 
 
tmp[2] = a[i][(2 + 4 - i) % BC]; 
   tmp[3] = a[i][(3 + 4 - i) % BC]; 
 
   a[i][0] = tmp[0]; 
   a[i][1] = tmp[1]; 
   a[i][2] = tmp[2]; 
   a[i][3] = tmp[3]; 
  } 
} 
 
 
void MixColumns(word8 a[4][MAXBC]) { 
 /* Mix the four bytes of every column in a linear way 
  */ 
 word8 b[4];  
 word8 temp1[4], temp2[4];  
 int  j; 
 
 for(j=0; j< BC; j++) 
 {  
   
  b[0]  = mul(2,a[0][j]); 
  temp1[0]= mul(3,a[1][j]); 
  temp2[0]=  a[2][j] ^ a[3][j]; 
  temp2[0]^= temp1[0]; 
  b[0]    ^= temp2[0]; 
 
   
  b[1]  =       a[0][j] ^ a[3][j]; 
  temp1[1]= mul(2,a[1][j]); 
  temp2[1]= mul(3,a[2][j]); 
  temp2[1]^= temp1[1]; 
  b[1] ^= temp2[1]; 
   
 
  b[2]    =       a[0][j] ^ a[1][j]; 
  temp1[2]= mul(2,a[2][j]); 
  temp2[2]= mul(3,a[3][j]); 
  temp2[2]^= temp1[2]; 
  b[2]   ^= temp2[2]; 
 
  b[3]    = mul(3,a[0][j]); 
  temp1[3]=       a[1][j] ^ a[2][j]; 
  temp2[3]= mul(2,a[3][j]); 
  temp2[3]^= temp1[3]; 
  b[3]   ^= temp2[3];  
 
  a[0][j] = b[0]   ; 
  a[1][j] = b[1]   ; 
  a[2][j] = b[2]   ; 
  a[3][j] = b[3]   ; 
 } 
} 
 
 
void InvMixColumns(word8 a[4][MAXBC]) { 
 /* Mix the four bytes of every column in a linear way 
  * This is the opposite operation of MixColumns 
  */ 
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word8 b[4];//[MAXBC]; 

 word8 temp0[3], temp1[3], temp2[3], temp3[3]; 
 int  j; 
 
 for(j=0; j< BC; j++) 
 {  
 
  b[0]    = mul(0xe,a[0][j]); 
  temp0[0]= mul(0xb,a[1][j]); 
  temp0[1]= mul(0xd,a[2][j]); 
  temp0[2]= mul(0x9,a[3][j]); 
  temp0[1]^=temp0[0]; 
  b[0]    ^=temp0[2]; 
  b[0]    ^=temp0[1]; 
  
  b[1]    = mul(0x9,a[0][j]); 
  temp1[0]= mul(0xe,a[1][j]); 
  temp1[1]= mul(0xb,a[2][j]); 
  temp1[2]= mul(0xd,a[3][j]); 
  temp1[1]^=temp1[0]; 
  b[1]    ^=temp1[2]; 
  b[1]    ^=temp1[1]; 
  
  b[2]    = mul(0xd,a[0][j]); 
  temp2[0]= mul(0x9,a[1][j]); 
  temp2[1]= mul(0xe,a[2][j]); 
  temp2[2]= mul(0xb,a[3][j]); 
  temp2[1]^=temp2[0]; 
  b[2]    ^=temp2[2]; 
  b[2]    ^=temp2[1]; 
  
  b[3]    = mul(0xb,a[0][j]); 
  temp3[0]= mul(0xd,a[1][j]); 
  temp3[1]= mul(0x9,a[2][j]); 
  temp3[2]= mul(0xe,a[3][j]); 
  temp3[1]^=temp3[0]; 
  b[3]    ^=temp3[2]; 
  b[3]    ^=temp3[1]; 
 
  a[0][j] = b[0]   ; 
  a[1][j] = b[1]   ; 
  a[2][j] = b[2]   ; 
  a[3][j] = b[3]   ; 
 
 } 
   
} 
 
 
int KeyExpansion (word8 k[4][MAXKC], 
      word8 W[MAXROUNDS+1][4][MAXBC]) { 
 /* Calculate the required round keys 
  */ 
 int i, j, t, RCpointer = 1; 
 word8 tk[4][MAXKC]; 
 
 for(j=0; j< KC; j++) 
  for (i=0; i<4; i++) 
   tk[i][j] = k[i][j]; 
  t=0; 
  /* Copy values into round key array */ 
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for (j=0; (j<KC) && (t <(ROUNDS+1) * BC ); j++, t++) 
   for ( i=0; i<4; i++) W[t / BC][i][t % BC] = tk[i][j]; 
 
   while (t < (ROUNDS + 1)*BC) { 
    /* while not enough round key material calculated, 
     * calculate new values 
     */ 
 
    for(i=0; i<4; i++) 
     tk[i][0] ^= S[tk[(i+1)%4][KC-1]]; 
    tk[0][0] ^= RC[RCpointer++]; 
 
 
    if (KC <= 6 ) 
     for (j=1; j < KC; j++) 
      for(i=0; i<4; i++)  
       tk[i][j] ^= tk[i][j-1]; 
    else { 
     for (j=1; j < 4; j++) 
      for(i=0; i<4; i++)  
       tk[i][j] ^= tk[i][j-1]; 
     for(i=0; i<4; i++) tk[i][4] ^= S[tk[i][3]]; 
     for (j=5; j < KC; j++) 
      for(i=0; i<4; i++)  
       tk[i][j] ^= tk[i][j-1]; 
   } 
   /* copy values into round key array */ 
   for (j=0; (j < KC) && (t<(ROUNDS+1)*BC); j++, t++) 
    for(i=0; i<4; i++) W[t/BC][i][t%BC] = tk[i][j]; 
   } 
 
   return 0; 
} 
 
 
int Encrypt (word8 a[4][MAXBC], word8 rk[MAXROUNDS+1][4][MAXBC]) 
{ 
 /* Encryption of one blockl 
  */ 
 
 int r; 
 
 /* begin with a key addition 
  */ 
 
 AddRoundKey(a, rk[0]); 
 
 /* ROUNDS-1 ordinary rounds 
  */ 
 
 for ( r=1; r < ROUNDS; r++) { 
  SubBytes (a,S); 
  ShiftRows(a); 
  MixColumns(a); 
  AddRoundKey(a,rk[r]); 
 } 
 
 /* Last round is special; there is no MixColumns 
  */ 
 SubBytes (a,S); 
 ShiftRows(a); 
 AddRoundKey(a,rk[ROUNDS]); 
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 return 0; 
} 
 
int Decrypt (word8 a[4][MAXBC], word8 rk[MAXROUNDS+1][4][MAXBC]) 
{ 
  
 int r; 
 
 /* To decrypt: 
  *  apply the inverse operations of the encrypt routine, 
  *  in opposite order 
  *  
  * - AddRoundKey is equal to its inverse) 
  * - the inverse of SubBytes with table S is  
 
  *              SubBytes with the inverse table of S) 
  * - the inverse of Shiftrows is Shiftrows over 
  *              a suitable distance) 
  */ 
 
 /* First the special round: 
  *   without InvMixColumns 
  *   with extra AddRoundKey 
  */ 
 
 AddRoundKey(a, rk[ROUNDS]); 
 SubBytes(a, Si); 
 InvShiftRows(a); 
 
 // ROUNDS-1 ordinary rounds 
   
 
 for ( r=ROUNDS-1; r > 0; r--) { 
  AddRoundKey(a,rk[r]); 
  InvMixColumns(a); 
  SubBytes (a,Si); 
  InvShiftRows(a);   
 } 
 
 // End with the extra key addition 
  
 AddRoundKey(a,rk[0]); 
 
 return 0; 
} 
 
 
int main()  
{ 
 int i, j; 
 word8 a[4][MAXBC], rk[MAXROUNDS+1][4][MAXBC], sk[4][MAXKC]; 
 
 //  AES block length allowed is 128 
 //   BC=4 for 128-bit plaintext 
 
 BC = 4; 
  
 /*  The KC value is changed to set the key length. 
     KC=4 for 128-bit key,  
    KC=6 for 192-bit key 
    KC=8 for 256-bit key 
     */ 
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KC = 4;  
  
  { 
   ROUNDS = numrounds[KC-4][BC-4]; 
  
 //  For the real system plaintext and 
 //  key is given by an external application 
  
   for ( j=0; j<BC; j++) 
    for ( i=0; i < 4; i++)  
     a[i][j] = 0; // plaintext 
   for ( j=0; j<KC; j++)   
    for ( i=0; i < 4; i++)    
     sk[i][j] = 0; // key 
 
   KeyExpansion (sk, rk); 
 
 //  Encrpyption is performed twice and 
 //  decryption is performed twice 
   
   Encrypt(a, rk);    
   printf("Encrypt 1:"); 
    
   for(j=0; j< BC; j ++) 
    for ( i=0; i<4; i++)          
     printf("%02X", a[i][j]); 
    
   printf("\n"); 
 
   Encrypt(a, rk);    
   printf("Encrypt 2:"); 
    
   for(j=0; j< BC; j ++) 
    for ( i=0; i<4; i++)          
     printf("%02X", a[i][j]); 
    
   printf("\n");printf("\n"); 
 
 
   Decrypt(a, rk); 
   printf("Decrypt 2:"); 
    
   for(j=0; j< BC; j ++) 
    for ( i=0; i<4; i++)          
     printf("%02X", a[i][j]); 
   printf("\n"); 
 
   Decrypt(a, rk); 
   printf("Decrypt 1:"); 
    
   for(j=0; j< BC; j ++) 
    for ( i=0; i<4; i++)      
     printf("%02X", a[i][j]); 
   printf("\n");printf("\n"); 
    
  } 
 
  
 printf("\n\n\t\t End of the program\n\n"); 
  return 0; 
} 
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Figure A.1:  Function call tree 
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