
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

7-17-2003

Embedded Cryptography: An Analysis and
Evaluation of Performance and Code Optimization
Techniques for Encryption and Decryption in
Embedded Systems
Jayavardhan R. Kandi
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd
Part of the American Studies Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Kandi, Jayavardhan R., "Embedded Cryptography: An Analysis and Evaluation of Performance and Code Optimization Techniques
for Encryption and Decryption in Embedded Systems" (2003). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/1403

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

i

Embedded Cryptography:

An Analysis and Evaluation of Performance and Code Optimization Techniques for

Encryption and Decryption in Embedded Systems

by

Jayavardhan R. Kandi

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: Dr. Wilfrido Moreno, Ph.D.
Dr. James Leffew, Ph.D.

Dr. Kenneth Buckle, Ph.D.

Date of Approval:
July 17th, 2003

Keywords: AES, Rijndael, DSP, Co-synthesis, StarCore

© Copyright 2003, Jayavardhan R. Kandi

ii

DEDICATION
To

Dr. Wilfrido Moreno

iii

ACKNOWLEDGMENTS

 It gives me a great pleasure in acknowledging the persons who have helped me in

this endeavor. I would like to thank and express my sincere gratitude to my Major

Professor and advisor Dr. Wilfrido Moreno for all his support and the freedom he

provided me in my Masters career. I would also like to thank Dr. James Leffew and Dr.

Kenneth Buckle for their consent to be my committee members.

 I thank my colleagues Mr. Eduardo Zurek, Mr. Luis Navarrete and Mr. Jorge

Galvis for teaching me a lot about how things go about in this world. I thank my friends

Mr. Lolla, Mr. Barri and Mr. White Murthy for their moral support. I also thank my

roommates and the whole bunch of the Miguel Ct. Volley Ball team for their everlasting

trust and belief in my work. I thank my family, for whom my life and all my

achievements are dedicated.

 My final thanks to the inspiration I have been receiving from beyond this physical

realm.

i

TABLE OF CONTENTS

LIST OF TABLES v

LIST OF FIGURES vi

LIST OF CODE SAMPLES viii

ABSTRACT ix

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. EMBEDDED SYSTEMS 4

2.1 Hardware/Software Co-design 5

2.2 Structural Partitioning 5

2.3 Functional Partitioning 5

2.4 Classification 5

2.5 Programming Languages 6

CHAPTER 3. CRYPTOGRAPHY 8

3.1 Symmetric Algorithms 9

3.2 Asymmetric Algorithms 9

3.3 Building Blocks of an Algorithm 9

3.4 Key Length 10

3.5 Algorithm Modes 10

3.5.1 Electronic Code Book 10

3.5.2 Cipher Block Chaining 11

3.5.3 Cipher Feedback Mode 11

3.5.4 Output Feedback Mode 12

3.5.5 Counter Mode 13

ii

3.6 Selection of Algorithm 14

3.7 Hardware/Software Co-synthesis 15

3.7.1 Hardware Encryption 15

3.7.2 Software Encryption 15

3.7.3 Hardware/Software Encryption 15

3.8 Advanced Encryption Standard 15

CHAPTER 4. SYSTEM DESIGN 16

4.1 StarCore-Hardware Overview 16

4.1.1 SC140 Core 16

4.1.2 System Interface Unit 17

4.1.3 Communications Processor Module 18

4.1.4 Buses 18

4.2 Advanced Encryption Standard 18

4.2.1 Round Transformations 19

4.2.2 Key Expansion 19

4.2.3 SubBytes() Transformation 21

4.2.4 ShiftRows() Transformation 22

4.2.5 MixColumns() Transformation 22

4.2.6 AddRoundKey() Transformation 23

4.2.7 Inverse Cipher 24

CHAPTER 5. IMPLEMENTATION 25

5.1 Structure 25

5.2 Development Process 25

5.2.1 High-level Synthesis 26

5.2.2 Low-level Synthesis 26

5.2.3 Portability 27

5.2.4 Modularization 27

5.2.5 Compiler Exploitation 27

5.3 Optimizations 27

iii

5.3.1 Structural Partitioning 28

5.3.2 Critical Paths 28

5.3.3 Computational Complexity 28

5.3.4 Reusability and Functionality 29

5.3.5 Parallel Tasks 30

5.3.6 Instruction-level Parallelism 30

5.3.7 Recursive Tasks 30

5.3.8 Pipelining Tasks 31

5.3.9 Conditional Tasks 32

5.4 Critical Issues 34

5.4.1 Interrupt Service Management 34

5.4.2 Time-sliced Multi-tasking 35

5.4.3 I/O Queues Management 35

CHAPTER 6. ATTACKS AND COUNTER MEASURES 36

6.1 Implementation Attacks 36

6.2 Side-channel Cryptanalysis 37

6.2.1 Timing Attacks 37

6.2.2 Power Attacks 37

6.2.3 Probing Attacks 37

6.2.4 Fault Induction Attacks 38

6.3 Counter Measures 38

6.3.1 Constant-time Implementation 38

6.3.2 Power Attacks 38

6.3.3 Probing Attacks 38

6.3.4 Random Number and Unique Key Generators 38

CHAPTER 7. RESULTS AND DISCUSSION 40

7.1 Results 40

7.2 Discussion 52

7.2.1 8-bit Platforms 53

iv

7.2.2 32/64-bit Platforms 53

7.3.3 Optimization 53

CHAPTER 8. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 55

8.1 Conclusion 55

8.2 Recommendations for Future Work 55

REFERENCES 57

BIBLIOGRAPHY 59

APPENDICES 60

APPENDIX A. Optimized C Code for the AES 61

INDEX 70

v

LIST OF TABLES

Table 4.2.1: Different key lengths and corresponding number of rounds 19

Table 7.1.1: Execution time in clock cycles at various stages of code development 41

Table 7.1.2: Profiling information for ‘opt-g 3’ stage 42

Table 7.1.3: Speed performance of various modules 52

vi

LIST OF FIGURES

Figure 3.5.1: Block cipher encryption in electronic code book (ECB) mode 10

Figure 3.5.2: Block cipher encryption in cipher block chaining (CBC) mode 11

Figure 3.5.3: Stream cipher encryption in cipher feedback (CFB) mode 12

Figure 3.5.4: Stream cipher encryption in output feedback (OFB) mode 13

Figure 3.5.5: Stream cipher encryption in counter (CTR) mode 14

Figure 4.1.1: Block diagram of MSC8101 – courtesy of Motorola Inc. 16

Figure 4.2.1: Input data layout in a 2-D array 19

Figure 4.2.2: SubBytes() Transformation acts on the individual bytes 21

Figure 4.2.3: ShiftRows() transformation operating on individual rows 22

Figure 4.2.4: InvShiftRows() transformation operating on individual rows 22

Figure 4.2.5: MixColumns() operation on each column of the state 23

Figure 4.2.6: AddRoundKey() transformation 24

Figure 5.1.1: Encryption and decryption modules 25

Figure 5.2.1: Block diagram of the system development process 26

Figure 7.1.1: Graphical profile for encrypt() of ‘opt-g 3’ Stage 43

Figure 7.1.2: Functions main(), encrypt() and decrypt() from stages Level 0 to Opt-d

Space stages 43

Figure 7.1.3: Functions main(), encrypt() and decrypt() from stages Opt-e to Opt-h

Space stages 44

Figure 7.1.4: Cryptographic modules from Level 0 to Opt-d Space stages 44

Figure 7.1.5: Cryptographic modules from Opt-e 0 to Opt-h Space stages 44

vii

Figure 7.1.6: SubBytes() module at all stages 45

Figure 7.1.7: ShiftRows() module at all stages 46

Figure 7.1.8: AddRoundKey() module at all stages 46

Figure 7.1.9: MixColumns() module at all stages 47

Figure 7.1.10: Encrypt() module at all stages 47

Figure 7.1.11: Decrypt() module at all stages 47

Figure 7.1.12: Main() function for compiler optimization 48

Figure 7.1.13: Encrypt() function for compiler optimization 48

Figure 7.1.14: Decrypt() function for compiler optimization 49

Figure 7.1.15: SubBytes() function for compiler optimization 49

Figure 7.1.16: ShiftRows() function for compiler optimization 50

Figure 7.1.17: MixColumns() function for compiler optimization 50

Figure 7.1.18: AddRoundKey() function for compiler optimization 51

Figure 7.1.19: Speed performance of various modules 51

Figure A.1: Function call tree 69

viii

LIST OF CODE SAMPLES

Code Sample 4.2.1: Pseudo-code for an AES encrypt round transformation 20

Code Sample 4.2.2: Code for KeyExpansion() 20

Code Sample 4.2.3: Pseudo-code for AES decryption 24

Code Sample 5.1: Modification of MixColumns() 29

Code Sample 5.2: Loop unrolling for AddRoundKey() 31

Code Sample 5.3: Loop unrolling for SubBytes() 31

Code Sample 5.4: Loop unrolling and merging 32

Code Sample 5.5: Modification of InvMixColumns() 33

Code Sample 5.6: Removal of If-Then-Else Conditions from ShiftRows() 34

ix

EMBEDDED CRYPTOGRAPHY:

AN ANALYSIS AND EVALUATION OF PERFORMANCE AND CODE

OPTIMIZATION TECHNIQUES FOR ENCRYPTION AND DECRYPTION IN

EMBEDDED SYSTEMS

Jayavardhan R Kandi

ABSTRACT

It is clear that Cryptography is computationally intensive. It is also known that

embedded systems have slow clock rates and less memory. The idea for this thesis was

to study the possibilities for analysis of cryptography on embedded systems. The basic

approach was the implementation of cryptographic algorithms on high-end, state-of-the-

art, DSP chips in order to study the various parameters that optimize the performance of

the chip while keeping the overhead of encryption and decryption to a minimum.

Embedded systems are very resource sensitive. An embedded system is

composed of different components, which are implemented in both hardware and

software. Therefore, hardware-software co-synthesis is a crucial factor affecting the

performance of embedded systems. Encryption algorithms are generally classified as

data-dominated systems rather than ubiquitous control-dominated systems. Data-

dominated systems have a high degree of parallelism. Embedded systems populate the

x

new generation gadgets such as cell phones and Smartcards where the encryption

algorithms are obviously an integral part of the system. Due to the proliferation of

embedded systems in all the current areas, there is a need for the systematic study of

encryption techniques from the embedded systems point of view.

This thesis explored the different ways encryption algorithms can be made to run

faster with much less memory. Some of the issues investigated were overlapped

scheduling techniques for high-level synthesis, structural partitioning, real-time issues,

reusability and functionality, random number and unique key generators, seamless

integration of cryptographic code with other applications and architecture specific

optimization techniques.

1

CHAPTER 1

INTRODUCTION

Ever since man developed his communication skills, he has embarked on a

journey of technological developments. These communication skills have been

developed to such an extent that the information passed must, at times, be secret and

authenticable. The new conditions of secrecy, authenticity and integrity have given rise

to a new field of science called cryptology. Cryptology is divided into cryptography and

cryptanalysis. Cryptography, deals with the art and science of encoding and decoding

information, whereas, cryptanalysis deals with breaking the encoded information.

As the human race advanced, it developed machines to perform strenuous

physical tasks and computers to perform logical tasks. Presently, technology has

advanced to a level where computers have invaded all spheres of science and technology.

 In the future computing power will increase and become more pervasive through

transformations in the form of embedded systems. An embedded system can be defined

as a computing system assigned to a specific task, which is embedded in a larger

multifarious system. A typical example of an embedded system is a router in a local area

network.

As the need for secure data transmission grows, there is a major urgency of

integrating cryptography into the embedded systems, in order to enable secure and

reliable data transfer. This research explored the different factors that would enable a

propitious insertion of the cryptography into the embedded systems.

Embedded systems are comprised of microprocessors, microcontrollers, DSPs and

FPGAs. The software that runs on these hardware devices must be both concise and

precise. The cryptographic modules that help to encode and decode the data must be

designed and implemented in a transparent manner in order not to consume too much of

the memory and processing resources.

The basic structure of this research was to incorporate the advanced encryption

2

standard (AES) algorithm onto the network DSP, StarCore, of Motorola. The hardware-

software co-design formed the major breakthrough of this research. The AES algorithm

was divided into different sub-modules, which could be run in parallel and scheduled in

such a manner that processing resources were consumed only when needed. The

objective of this research was to run the AES algorithm fast enough to enable the

embedded system to work in a real-time environment without compromising either the

secure transfer of the data or incurring any data loss.

The current technology uses specialized ASICs running DES and 3-DES

algorithms for encryption. With the advent of AES, as successor to DES, and the

prospects of embedded systems, this research holds a prominent position in the

evaluation and analysis of the structure of the Rijndael algorithm (AES) from the

embedded systems point of view. Implementing a mere algorithm on hardware doesn’t

ensure that the system is secure. Most of the cryptographic systems on the market are not

as secure as they claim. This is due to the lack of importance given to the cryptography

since the programmers deal with it as just another component of the program. A system

cannot be made absolutely secure unless the cryptographic issues are kept in mind from

the conception to completion. Cryptographic systems are very much different than other

products. There is no outward difference between a strong cryptographic and a weak

cryptographic system. Even though both may use the same algorithm and the same

hardware, the secure system needs to consider all aspects of attacks and the means to

prevent them. After all, a cryptographic system is only as strong as its weakest point.

What makes implementing a cryptographic system challenging is that attackers do not

follow any rules. Attackers try to breach the security protocols and tamper with the

system in new ways that the designer might not even have thought about.

Many algorithms appear to be very strong from the mathematical point of view.

The most often neglected part is the implementation of these algorithms in a successful

manner. The first step for a secure system is to define the threat model. The threat

model should comprehensively consider how secure the data should be and what are the

motivations of the attackers. Consideration of how to detect an attack and prevent

system crashes is crucial. The threat model differs for different applications and roles. A

good cryptographer is one who is adept in areas such as number theory, complexity

3

theory, information theory, probability theory and abstract algebra. Implementing a good

cryptographic system entails far more than just understanding the algorithm. A simple

flaw like a poor random number generator or not discarding the key after its use can

render the system useless. Therefore, it was a major effort of this thesis to study the

aspects, which the programmers have to deal with when attempting to implement a better

cryptographic system.

4

CHAPTER 2

EMBEDDED SYSTEMS

An embedded device is a computing system that is part of a bigger system. The

major difference between embedded devices and computers is that, unlike computers,

embedded devices are designed and developed for fast and efficient execution of the

assigned specific task. Generally, a single embedded device is assigned a fixed specific

task for its lifetime.

An embedded device must be quick enough to respond to the high priority events.

 In order to do so care must be taken to reduce the functional overhead as much as

possible. The functions of the embedded device must be kept in mind from the hardware

design inception until the end of software execution [SJBW96]. There is a great deal of

hardware-software interaction involved in the sharing and execution of the algorithms to

be run over the embedded devices. Therefore, programming for an embedded device is

different from programming a conventional computer.

The application and the controllers of the embedded systems are integrated both

into the hardware and software. Therefore, the embedded systems programmer must

have a thorough knowledge of both the advantages and limitations of the hardware

architecture. An embedded system’s efficiency, [RL00], is invariably related to the

extent of the code. The efficiency of a program increases, as the code size decreases and

the execution speed increases. Therefore, implementation of programs with very tight

memory constraints is a challenge and a requirement for every embedded systems

programmer.

5

2.1 Hardware/Software Co-design

Some functions are better suited to run on hardware, and some others are suited to

run on software. Co-design considers both the abilities of the hardware and the

flexibility of the software so as to optimize the performance of the system. Some

functions are implemented on both hardware and software. Such seamless integration

forms the core of the type of programming required for embedded systems.

2.2 Structural Partitioning

Interfaces with the outside world are as important as the internal structure. Special

attention must be given to the interfaces and in almost all cases; they are kept outside the

internal processing. This kind of structural partitioning helps in uninterrupted execution

of assigned tasks, irrespective of possible overload in other structures.

2.3 Functional Partitioning

Some applications are better described by functionality rather than structure.

Such functional partitioning yields simpler hardware design and results in time

multiplexing of the signals. Digital Signal Processors are better suited for this type of

behavioral synthesis.

2.4 Classification

Embedded systems are mainly classified as follows:

 Microcontroller Design: These systems are principally used for control-

dominated systems. They have a rich set of instructions for efficient bit-level data

manipulation. They usually have Complex Instruction Set Computer, (CISC),

architectures.

 RISC Architecture Systems: These systems have Reduced Instruction Set

Computer, (RISC), architectures and are suited for fast execution. They usually

have a large number of registers in order to speed up instruction execution. The

instruction set is composed of a deliberately chosen set of instructions capable of

executing multiple tasks. In other words, a single RISC instruction is equivalent

to multiple CISC instructions.

6

 Digital Signal Processors: These kinds of systems are used for arithmetic-

intensive systems such as speech analysis, encryption and image processing. The

DSP architecture supports hardware multiplication, address generation units and

separate data and address buses.

 Field Programmable Gate Arrays: These kind of systems often run different

functions in parallel to maximize system performance. These systems are

reconfigurable in nature, which means that their functionality can be upgraded or

changed altogether when needed. This provides them with fault-tolerance ability

since they can be reconfigured to remove a hardware or software fault.

 Application Specific Processors: These kinds of systems are composed of

specially designed integrated circuits called Application Specific Integrated

Circuits or ASICs. ASICs are often specialized enough that they are used as

common of the shelf components. These systems do not have the capability of

being upgraded and are mostly hardware oriented.

2.5 Programming Languages

Programming of an embedded system is a very important task. Although assembly-

level programming gives the optimum level of performance, high-level programming is

still needed to design the program structure at higher abstract levels. Some of the

programming languages that have gained importance in the design of embedded systems

are as follows:

 C: The C language is a well-established and proven language in the programming

community. The main advantages of the C language are that it is very easy to

learn and offers an almost assembly like code to the processors. The strong point

of the C language is direct memory access through pointers.

 C++: C++ evolved from C. When applied to the programming of embedded

systems, C++ generates a considerable amount of overhead that is detrimental for

embedded programming. In order to increase the run-time efficiency and reduce

the code size, a new standard called EC++, which stands for Embedded C++, is

being developed.

7

 Java: Java is an object-oriented programming language that was designed for

Internet applications. However, it has become quite popular due its flexibility and

some enthusiasts are applying Java to embedded systems programming. A

modified version called embedded java is gaining popularity due to such features

as portability and software reuse.

8

CHAPTER 3

CRYPTOGRAPHY

Cryptography is the science and art of encoding and decoding data in order to

attribute the properties of secrecy to the data. The data to be encoded is termed as plain

text. The encoded data is known as cipher text. Thus, the process of encoding and

decoding can also be termed encryption and decryption respectively. The system for

encrypting or decrypting is called a cryptosystem and the persons who design such

systems are classified as cryptographers. The process of encryption involves an

algorithm for combining the plain text with a key resulting in the cipher. A key is a

selected number or string of characters that should be known only to the sender and the

recipient.

Cryptanalysis deals with the techniques of breaking the codes in order to extract

the plaintext from the cipher without the consent of the sender or recipient. The persons

who are adept at cryptanalysis are called as cryptanalysts. Both cryptography and

cryptanalysis fall under the broad science of cryptology.

The essence of using cryptography in this world is to validate the following three

conditions:

 Secrecy: The data transmitted must be secret and any eavesdropper should not be

able to understand it.

 Authenticity: The recipient must be guaranteed that the transmitted data is from

an authentic sender and is not from any other person.

 Integrity: The transmitted data must be tamper resistant and any eavesdropper

should not be able to meddle with the cipher.

The security of a cryptographic algorithm should be based on the key and not on

the secrecy of the algorithm. This means that the algorithm should be made public and

allowed for scrutiny by the intellectual community. The types of attacks it can withstand

9

are the only gauges of the strength of an algorithm. An ideal algorithm should be so

strong that it can only be cracked by knowing the key. This type of attack, which

exploits the different combinations of keys, is known as a bruteforce attack. The

classification of cryptographic algorithms is based on the keys and is discussed next.

3.1 Symmetric Algorithms

Symmetric algorithms, are those where the encryption key and the decryption key

are the same or are calculated from each other. If the algorithm uses a single key for both

encryption and decryption, then it is called as a single-key algorithm.

Symmetric algorithms can be divided into two types:

 Block algorithms: These algorithms operate on a block of data each time in order

to convert it into a block cipher. A typical block size would be 64 bytes.

 Stream algorithms: These algorithms operate on a stream of data at a single bit or

a single byte at a time.

3.2 Asymmetric Algorithms

Asymmetric algorithms are those that use different keys for encryption and

decryption and one key cannot be computed from the other key. They are also called

public-key algorithms due to the fact that the encryption key can be made public. The

recipient has the private key with which only she can decrypt the cipher.

3.3 Building Blocks of an Algorithm

The basic building blocks of an algorithm consist of activities such as:

 Substitution Cipher: This is a cipher where each character of the plain text is

substituted for a preconceived cipher character. Substitution falls under the

confusion scheme with the purpose of frustrating the eavesdropper.

 Transposition Cipher: This is a cipher where the order of the characters of a fixed

block plain text is shuffled in a predetermined fashion. Transposition falls under

the diffusion scheme, which removes the redundancies in the cipher.

 Exclusive-OR Cipher: This is a cipher formed by a simple bit-wise XOR

operation on the plain text and the keyword.

10

Encryption

Decryption

Plaintext block (P)

Encryption (E)

Cipher (C)

Decryption (D)

Plaintext block (P)

Key (K)

Cipher (C)

Key (K)

3.4 Key Length

A bruteforce attack should be made as complex as possible. This is achieved by

increasing the length of the key. If the key size is 60 bits, then there are 264 possible

keys, which would require considerable processing time in order to test all the keys. If

the key size is increased to 128 bits, then the number of possible keys is 2128 and this

huge figure makes it very difficult to find the right key. As technology grows, computing

power also increases. Therefore, care must be taken to consider the technological growth

and the key-size should be aptly decided so that the algorithm will remain strong into the

future.

3.5 Algorithm Modes

Even though a basic algorithm is designed to be efficient, different cipher modes

are implemented in order to make the algorithm efficient in concealing the patterns. The

different types of cipher modes are as follows:

3.5.1 Electronic Code Book

Electronic Code Book is a straightforward method of converting a block of

plaintext into cipher text. The advantage of this mode is asynchronous enciphering of the

data. However, this mode is vulnerable to attacks since the same plain text is always

converted to the same cipher text. Figure 3.5.1 presents the block diagram for the

Electronic Code Book (ECB) mode.

Figure 3.5.1: Block cipher encryption in electronic code book (ECB) mode

11

Encryption

P1

E

D

Initialization
Vector (IV)

C1

K

C1

K

IV

P1

P2

E

D

C2

K

C2

K

P2

P3

E

D

C3

K

C3

K

P3

Decryption

3.5.2 Cipher Block Chaining

In Cipher Block Chaining mode, the plain text is XORed with the previous cipher

text block before encryption. Thus, the encryption of each block depends on all the

previous blocks.

Figure 3.5.2: Block cipher encryption in cipher block chaining (CBC) mode

Figure 3.5.2 presents the block diagram for the Cipher Block Chaining (CBC)

mode. This mode removes the patterns when compared to the ECB mode. If a bit error

occurs during encryption, it will affect all the subsequent blocks. However, during

decryption, the effect is reversed and the recovered plain text will only have a single

error.

3.5.3 Cipher Feedback Mode

Cipher Feedback Mode is used when data must be transmitted in blocks smaller

than as a full block. The incoming byte, or a group of bytes, of plaintext is XORed with

the LSB of the self-synchronizing stream cipher. A self-synchronizing stream cipher has

12

IV

E

P1

C1

K

C1

C2

C2

P1

Encryption

Decryption

E

P2

K

C3

C3

E

P3

K

IV

K D

P2

K D

P3

K D

a key stream in which every bit is a function of a fixed number of previous cipher texts.

Figure 3.5.3 presents the block diagram for the Cipher Feedback (CFB) mode.

Figure 3.5.3: Stream cipher encryption in cipher feedback (CFB) mode

3.5.4 Output Feedback Mode

The Output Feedback Mode (OFB) also uses a synchronous stream cipher but the

feedback mechanism is independent of the plain text and the cipher text stream. Instead

of inserting the cipher text bits as feedback, the n bits of the output block are moved to

the right side of the shift register. Therefore, this mode provides ease of processing even

before the plain text arrives. When the plain text arrives, it is simply XORed with the

output bits of the algorithm in order to form the cipher text. Figure 3.5.4 presents the

block diagram for the Output Feedback mode.

13

E

P1

C1

K

C1

C2

C2

P1

Encryption

Decryption

E

P2

K

C3

C3

E

P3

K

IV

K D

P2

K D

P3

K D

Figure 3.5.4: Stream cipher encryption in output feedback (OFB) mode

3.5.5 Counter Mode

All the above modes were used in a pre-AES time. Except for the ECB mode, they all

involve feedback, which is comparatively insecure and performance delay are observed.

Therefore, a new type of mode was proposed, which is termed the counter mode. In this

mode, a counter is encrypted to generate a key stream, which is simply XORed with the

plain text in order to generate the cipher text. The advantage of counter mode is that

there is no feedback or chaining. Figure 3.5.5 presents the block diagram for the Counter

(CTR) mode.

14

Encryption

Decryption

E

CTR1

P1

C1

K

C1

C2

C2

P1

E

P2

K

C3

C3

E

P3

K

K D

P2

K D

P3

K D

CTR2 CTR3

CTR1 CTR2 CTR3

Figure 3.5.5: Stream cipher encryption in counter (CTR) mode

3.6 Selection of Algorithm

The strength of the algorithm is as important as the length of the key. Therefore,

selection of an algorithm to design a cryptosystem forms the first and most formidable

task. There are many aspects that require consideration in choosing a particular

algorithm, [BS96], such as:

 Relying on a published algorithm and hoping that the published algorithm is open

to public scrutiny and hasn’t been broken

 Relying on some commercial product

 Relying on the algorithms proposed as the standards

 Writing a new algorithm

The only way an algorithm can be considered reliable is when it has been

scrutinized thoroughly and the intellectual community finds no known attacks.

15

3.7 Hardware/Software Co-synthesis

3.7.1 Hardware Encryption

Until recently, encryption was performed through specialized hardware chips.

The inherent advantage of using hardware for encryption is speed. These hardware

devices were connected at the data transfer links in order to enable encryption and

decryption. Hardware is also preferred in order to make the encryption system tamper-

proof.

3.7.2 Software Encryption

Software encryption is currently being widely used due to the software features of

portability and flexibility. However, software encryption is very slow and is insecure in

many aspects of key management and program manipulation.

3.7.3 Hardware/Software Encryption

A new blend of hardware and software is currently being used for encryption in

order to combine the best features of both. This provides a considerable speed advantage

and security. Additionally, it provides for ease of programming. Future devices will

contain encryption modules along with other applications.

3.8 Advanced Encryption Standard

The National Institute of Standards and Technology has selected the Rijndael

algorithm, [DR01], as its current encryption standard. Henceforth this algorithm will be

called the Advanced Encryption Standard, (AES). The AES is supposed to be the current

encryption standard, which is deemed stronger than the old DES and triple-DES

standards. The Rijndael algorithm, which was invented by Vincent Rijmen and Joan

Daemen, consists of data block and key lengths of 128, 160, 192, 224 or 256 bits.

However, for the AES a fixed data block length of 128 bits was standardized with a

variation in key sizes of 128, 192 and 256 bits. Thus, the corresponding names are AES-

128, AES-192 and AES-256. A detailed analysis of the AES is provided in chapter 4.

16

CHAPTER 4

SYSTEM DESIGN

4.1 StarCore-Hardware Overview

The Motorola MSC8101 is a 16-bit digital signal processor. This is based on the

StarCore™ SC140 DSP core and is a fully static low-power CMOS device that operates

from 0 to 300MHz. Figure 4.1.1 presents the block diagram of the MSC8101 processor.

Figure 4.1.1: Block diagram of MSC8101 – courtesy of Motorola Inc.

4.1.1 SC140 Core

The SC140 core consists of the Data Arithmetic Logic Unit (Data ALU), the

Address Generation Unit (AGU) and the Program Sequencer (PSEQ).

17

 The Data ALU performs the core’s arithmetic and logical operations on the data.

It has sixteen 40-bit registers and four ALUs that execute in parallel. This

provides the flexibility of executing four Multiply Accumulate (MAC)

instructions in a single clock cycle.

Each ALU consists of a MAC sub-unit and a bit field sub-unit (BFU).

- The MAC unit contains a high-speed adder and a multiplier that

implement integer and fractional arithmetic instructions.

- The BFU handles the logical operations for the ALU.

 The AGU consists of two address arithmetic units (AAUs), two stack pointers, a

bit mask unit (BMU) and sixteen 32-bit address registers.

- An AAU calculates the effective address for memory access.

- The AGU has two stack pointers. One pointer for normal mode execution

(NSP) and one pointer for exception mode processing (ESP).

- The BMU performs the setting and resetting of the bits in any destination

register.

 The Program Sequencer fetches and executes the instructions. The PSEQ has a

Program Counter, (PC), which has four pairs of 32-bit loop start address registers

and four hardware-based loop counters.

The StarCore has an on-chip memory bank of 512 KB, which helps in running longer

programs without a need for external memory.

The SC140 has two extended components:

 The enhanced filter coprocessor (EFCOP) implements a real/complex adaptive

filter machine in parallel with the SC140 core.

 The HDI16 provides a 16-bit parallel interface that allows the device to

interconnect with other microcontrollers, microprocessors and DSPs.

4.1.2 System Interface Unit

The system interface unit, (SIU), provides the control and data signals necessary

for the processor to interact with other peripherals.

18

4.1.3 Communications Processor Module

The communications processor module, (CPM), is a 32-bit RISC processor that

controls and manages the external interfaces for the device. The CPM controls the

following modules:

 155 Mbps ATM interface (including AAL 0/1/2/5)

 10/100 Mbit Ethernet interface

 Up to four E1/T1 interfaces or one E3/T3 interface and one E1/T1 interface

 HDLC support up to T3 rates, or 256 channels

4.1.4 Buses

The buses of the SC140 perform the following functions:
 The SC140 uses two different buses to access memory and data from the cache.

 SC140 has one 128-bit Program bus and two 64-bit data buses.

 An internal 64-bit PowerPC local bus moves data among the CPM, the DMA

engine and the on-chip cache.

 The 64-bit PowerPC system bus manages data transfers among external

memory/peripherals, the DMA engine and the SC140 core.

 A 128-bit QBus manages communications between the SC140 core and the

extended core devices, EFCOP and HDI16. The QBus is also the interface

between the processor core and the PowerPC system bus.

4.2 Advanced Encryption Standard

The Advanced Encryption Standard,, or, (AES,), operates on 128-bit data with

variable key lengths of 128, 192 and 256 bits. The input plain text of 128-bits is arranged

in a rectangular array of bytes that is called a state. A state has four rows and the

number of columns is denoted by Nb, which is equal to the block length divided by 32

[G99]. Let the plaintext block be denoted by

p0p1p2p3…p4.Nb-1.

Where p0 denotes the first byte and p4.Nb-1 denotes the last byte of the plaintext. Figure

4.2.1 presents the arrangement of the input bits in a two-dimensional array form.

19

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

Figure 4.2.1: Input data layout in a 2-D array

Similarly, the key is arranged into a rectangular array of bytes in four rows and a

subsequent number of columns. The number of columns varies as the length of the key

varies.

Table 4.2.1: Different key lengths and corresponding number of rounds

4.2.1 Round Transformations

The whole AES algorithm is divided into a fixed number of round

transformations, which depends on the key length. Table 4.2.1 shows the number of

round transformations for different key lengths. Each round transformation consists of

four different transformations. The final round is a bit different from the rest of the

rounds. Code Sample 4.2.1 presents the pseudo code for an AES encrypt round

transformation.

4.2.2 Key Expansion

The KeyExpansion() function generates a key schedule for different rounds from

the cipher key. The Key Expansion generates a total of Nb(Nr + 1) words: the algorithm

requires an initial set of Nb words, and each of the Nr rounds requires Nb words of key data.

The resulting key schedule consists of a linear array of 4-byte words, denoted by W[i], with

i in the range 0 ≤ i < Nb(Nr + 1). Code Sample 4.2.2 shows the code for

KeyExpansion().

Block size

(bits)

Key Length

(bits)

Number of

Rounds

AES-128 128 128 10

AES-192 128 192 12

AES-256 128 256 14

20

Code Sample 4.2.1: Pseudo-code for an AES encrypt round transformation

Code Sample 4.2.2: Code for KeyExpansion()

Round(state, roundkey)
{

 SubBytes (state);
 ShiftRows(state);
 MixColumns(state);
 AddRoundKey(state,roundkey);
 }
/* Final round is special; there is no MixColumns */
FinalRound(state, roundkey)

{
SubBytes (state);

 ShiftRows(state);
 AddRoundKey(state, roundkey);
 }

KeyExpansion(word8 k[4][MAXKC],
 word8 W[MAXROUNDS+1][4][MAXBC])
{
int i, j, t=0, RCpointer = 1;

word8 tk[4][MAXKC];

for(j=0; j< KC; j++)
 for (i=0; i<4; i++) tk[i][j] = k[i][j];

for (j=0; (j<KC) && (t <(ROUNDS+1) * BC); j++, t++)
 for (i=0; i<4; i++) W[t / BC][i][t % BC] = tk[i][j];
while (t < (ROUNDS + 1)*BC)
 {
 for(i=0; i<4; i++)
 tk[i][0] ^= S[tk[(i+1)%4][KC-1]];
 tk[0][0] ^= RC[RCpointer++];
 if (KC <= 6)
 for (j=1; j < KC; j++)
 for(i=0; i<4; i++) tk[i][j] ^= tk[i][j-1];
 else {
 for (j=1; j < 4; j++)
 for(i=0; i<4; i++) tk[i][j] ^= tk[i][j-1];
 for(i=0; i<4; i++) tk[i][4] ^= S[tk[i][3]];
 for (j=5; j < KC; j++)
 for(i=0; i<4; i++) tk[i][j] ^= tk[i][j-1];
 }
 /* copy values into round key array */
 for (j=0; (j < KC) && (t<(ROUNDS+1)*BC); j++, t++)
 for(i=0; i<4; i++) W[t/BC][i][t%BC] = tk[i][j];
 }
}

21

4.2.3 SubBytes() Transformation

This is a non-linear byte-wise substitution of all bytes in the state. The

substitution transformation is simply called as an S-box. This transformation acts on the

individual bytes of the state. Figure 4.2.2 presents the SubBytes() Transformation.

Figure 4.2.2: SubBytes() Transformation acts on the individual bytes

The S-box can be implemented by a look-up table or by the following formula.

The inverse of the S-box needs to be performed in decryption and is implemented by

the following formula.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
1
0
0
0
1
1
0

10001111
11000111
11100011
11110001
11111000
01111100
00111110
00011111

'
'
'
'
'
'
'
'

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
0
1
0
0
0
0
0

'
'
'
'
'
'
'
'

00100101
10010010
01001001
10100100
01010010
00101001
10010100
01001010

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a'0,0 a'0,1 a'0,2 a'0,3

a'1,0 a'1,1 a'1,2 a'1,3

a'2,0 a'2,1 a'2,2 a'2,3

a'3,0 a'3,1 a'3,2 a'3,3

a’ = S[a]

22

4.2.4 ShiftRows() Transformation

In the ShiftRows()transformation, each row of the state is considered

separately and the bytes in that row are cyclically shifted to the left based upon the key-

size of the algorithm. For the 128-bit key, the first row is unchanged. However, the

second, third and fourth rows are shifted by 1, 2 and 3 bytes respectively. Figure 4.2.3

presents the ShiftRows() operation on the state.

Figure 4.2.3: ShiftRows() transformation operating on individual rows

The inverse of ShiftRows is called InvShiftRows. The bytes are shifted towards

the right in a cyclic shift in the InvShiftRows transformation. Figure 4.2.4 presents the

InvShiftRows() operation on the state.

Figure 4.2.4: InvShiftRows() transformation operating on individual rows

4.2.5 MixColumns() Transformation

The MixColumns() Transformation is a bricklayer permutation operating on each

column of the state. This operation is depicted in the Figure 4.2.5.

a b c d

e f g h
i j k l
m n o p

a b c d

e f g h e
i j k l i j

m n o p m n o

a b c d

f g h e
k l i j
p m n o

a b c d

e f g h e
i j k l i j
m n o p m n o

23

Figure 4.2.5: MixColumns() operation on each column of the state

The columns of the state are considered as polynomials over GF (28) and multiplied

modulo x4+1 with a fixed polynomial c(x). The polynomial c(x) is given by

The MixColumns operation is implemented by:

The inverse operation for MixColumns is called InvMixColumns. It is implemented

by the following formula:

4.2.6 AddRoundKey() Transformation

The AddRoundKey() Transformation is a simple bitwise XOR operation of the

state and the round key. A round key is a special key generated for a particular round

by the KeyExpansion(). The length of the round key is equal to the block length.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

3

2

1

0

02010103
03020101
01030201
01010302

'
'
'
'

a
a
a
a

a
a
a
a

)1)(mod().()(' 4 += xxaxcxa

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

3

2

1

0

'
'
'
'

00900
00090
00009
09000

a
a
a
a

EDB
BED
DBE

DBE

a
a
a
a

02.01.01.03)(23 +++= xxxxc

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a'0,0 a'0,1 a'0,2 a'0,3

a'1,0 a'1,1 a'1,2 a'1,3

a'2,0 a'2,1 a'2,2 a'2,3

a'3,0 a'3,1 a'3,2 a'3,3

MixColumns()

24

Figure 4.2.6 shows the AddRoundKey() Transformation. It performs bit-wise

XOR of the state with the roundkey. The AddRoundKey is its own inverse and

hence the same transformation is also used in decryption.

Figure 4.2.6: AddRoundKey() transformation

4.2.7 Inverse Cipher

Reversing the encryption steps through the use of their inverse transformations

performs decryption. Code Sample 4.2.3 presents the pseudo code for decryption round

transformations.

Code Sample 4.2.3: Pseudo-code for AES decryption

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a'0,0 a'0,1 a'0,2 a'0,3

a'1,0 a'1,1 a'1,2 a'1,3

a'2,0 a'2,1 a'2,2 a'2,3

a'3,0 a'3,1 a'3,2 a'3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

⊕ =

int Decrypt (word8 a[4][MAXBC],
 word8 rk[MAXROUNDS+1][4][MAXBC])

{
 int r;

 AddRoundKey(a, rk[ROUNDS]);
 InvSubBytes(a);
 InvShiftRows(a);

 for (r=ROUNDS-1; r > 0; r--)

{
 AddRoundKey(a,rk[r]);
 InvMixColumns(a);
 InvSubBytes (a);
 InvShiftRows(a);
 }
 AddRoundKey(a,rk[0]);
}

25

CHAPTER 5

IMPLEMENTATION

5.1 Structure

Any embedded system has a set of specific tasks to perform. The objective here

is to study the implementation issues of including the cryptographic modules into the

embedded system.

An embedded system possesses various functions. At some point of its execution,

it may need to use the cryptographic module, either for encryption or decryption of the

data. Figure 5.1.1 presents the cryptographic module that was developed and analyzed.

The inputs from other modules were taken into the cryptographic module in fixed block

sizes. The encryption or decryption was performed on the data and then given back to

the host function through the output buffer.

Figure 5.1.1: Encryption and decryption modules

5.2 Development Process

The coding of the program was performed in the C language, which is a high-

level language defined at higher abstract levels and is programmer-friendly. The high-

level language needs to be compiled into a low-level language before execution. A low-

Input buffer

Output buffer

Encryption Decryption

SubBytes ShiftRows

MixColumns InvMixColumns

InvShiftRows

Key Scheduling

26

C Source
Code

Assembly
Code

Libraries

Assembler

Linker

Debugger

Compiler

Hardware Simulator and
Profiler

Optimization

level language is defined at the register level in order to achieve optimum performance in

terms of processing speed, low-memory requirements or both. Figure 5.2.1 presents the

development process of the cryptographic system.

Figure 5.2.1: Block diagram of the system development process

The AES algorithm was implemented and compiled in C. Then the code was

linked using the CodeWarrior Integrated Development Environment.

5.2.1 High-level Synthesis

The AES was implemented in C rather than assembly due to the high-level nature

of the C language. High-level programming gives the programmer a higher level of

flexibility in terms of defining the objective of the code. A compiler that generated the

machine code compiled the high-level language. High-level synthesis helped in realizing

the project objectives in a lesser amount of time. The main advantage of using a high-

level language is code portability.

5.2.2 Low-level Synthesis

Low-level programming involves coding in machine-level instructions. This

requires a thorough knowledge at the register levels of the hardware system. Since low-

27

level synthesis does not support the portability feature, it was not used in this

implementation. In terms of very high levels of optimizations, it is advisable to code the

program in low-level architecture-specific instructions.

5.2.3 Portability

Portability is the ability of the code to be transferred to a different system or

environment with minimal amounts of modification and redevelopment. Since the

competition for quick release of products is so tremendous, rapid prototyping and timely

marketing defines the success of a product. Therefore, portability aspects were strictly

adhered to while developing the system.

5.2.4 Modularization

Modularization is the technique of splitting a large program into smaller modules.

 The advantage of modularization is the ease of maintenance and code debugging.

Modularization helps in code-reuse, which reduces run-time memory. A cryptographic

system is developed as a separate module with sub-modules implementing the details. In

the C language, modularization is achieved by dividing the code into various functions.

When the embedded system needs to encrypt or decrypt data it invokes the corresponding

module, which executes its tasks and then returns the output to the host function. The

main program was divided into different modules termed encrypt(), decrypt()

and KeyExpansion() functions.

5.2.5 Compiler Exploitation

The coding of the program in a high-level language should be such that the compiler

would be able to optimize the code to the highest levels possible. Care must be taken to

consider the abilities and the limitations of the compiler when the program is being

optimized. The StarCore architecture has four ALUs, which can perform four operations

in parallel. Thus, the algorithm coding was modified to take advantage of the four ALUs.

5.3 Optimizations

The AES algorithm was implemented in C for generalized key lengths of 128, 196

and 256-bits. The length of the key can be changed by the input parameter

28

specifications. For optimization purposes, the key length was fixed for 128-bits and the

various optimization techniques were applied and analyzed. The main aspects that were

considered for optimization were:

 Exploring parallelism in the algorithm

 Multi sample processing and split summation

 Speed optimization at the expense of increasing the code size

 Function call; argument passing increases overhead

 Compiler may use inline functions

 Task priority

 Interrupt service management

 Time-sliced multi-tasking

 I/O queues management

 Interrupt disable while generating the key

5.3.1 Structural Partitioning

Input and output buffers were kept aside so that the core could be processed

without any interrupts. The external tasks must not be allowed to enter the critical path.

5.3.2 Critical Paths

In many cases, programs have a high-cost critical path that needs to be optimized.

 It makes sense to optimize the critical paths to a higher extent than the less critical paths.

 The MixColumns() function takes much longer than other sub-modules. This is due

to the mul() function that needs to be called numerous times. The optimization for the

MixColumns() function is presented in Code Sample 5.1.

5.3.3 Computational Complexity

Many programs need to perform highly complex sets of arithmetic functions.

Such complex functions can be made simpler by exploring other alternatives such as

look-up tables and bit-manipulation. The SubBytes() can be implemented by using

the formula but it consumes lot of processor cycles. So, SubBytes() was implemented

by using a look-up table.

29

Initial code:
 word8 b[4][MAXBC];

int i, j;
 for(j=0; j<BC; j++)
 for(i=0; i<4; i++)
 b[i][j] = mul(2,a[i][j])
 ^ mul(3,a[(i+1)%4][j])
 ^ a[(i+2) % 4][j]
 ^ a[(i+3) % 4][j];
 for(i=0; i<4; i++)
 for(j=0; j< BC; j++) a[i][j] = b[i][j];
Modified code:

word8 b[4];
 word8 temp1[4], temp2[4];
 int j;
 for(j=0; j< BC; j++)
 {
 b[0] = mul(2,a[0][j]);
 temp1[0] = mul(3,a[1][j]);
 temp2[0] = a[2][j] ^ a[3][j];
 temp2[0] ^= temp1[0];
 b[0] ^= temp2[0];

 b[1] = a[0][j] ^ a[3][j];
 temp1[1] = mul(2,a[1][j]);
 temp2[1] = mul(3,a[2][j]);
 temp2[1] ^= temp1[1];
 b[1] ^= temp2[1];

 b[2] = a[0][j] ^ a[1][j];
 temp1[2] = mul(2,a[2][j]);
 temp2[2] = mul(3,a[3][j]);
 temp2[2] ^= temp1[2];
 b[2] ^= temp2[2];

 b[3] = mul(3,a[0][j]);
 temp1[3] = a[1][j] ^ a[2][j];
 temp2[3] = mul(2,a[3][j]);
 temp2[3] ^= temp1[3];
 b[3] ^= temp2[3];

 a[0][j] = b[0] ;
 a[1][j] = b[1] ;
 a[2][j] = b[2] ;
 a[3][j] = b[3] ;
 }

Code Sample 5.1: Modification of MixColumns()

5.3.4 Reusability and Functionality

Programming should be performed in such a way that the program modules are

flexible so they can be used again in the application. The mul() function was made

common to both MixColumns() and InvMixColumns(). Since the mul()

function is just one line code, it was optimized as an inline function by the compiler.

30

5.3.5 Parallel Tasks

Hardware devices typically have a high-level of parallelism when compared to

software devices. Design of an embedded device should include consideration of such

parallelism found in the hardware. ShiftRows() operates on each individual row at a

time. So parallel implementation of four subsequent ShiftRows() was feasible.

5.3.6 Instruction-level Parallelism

In the MixColumns() function, each byte of the column is a function of four

bytes of that column. A matrix multiplication was performed to get the result. The

single instruction was broken into different instructions capable of being executed in

parallel. The result was the XOR of the individual multiplications. Different register sets

were used to perform individual instruction, which resulted in instruction-level

parallelism that made the code efficient for multi-processors.

5.3.7 Recursive Tasks

Some tasks in a program need to be executed a finite number of times. Such tasks

are called as recursive tasks. Recursive tasks have an overhead that needs to be checked

when the instruction sequence should jump out of the loop.

 Loop Unrolling: For a small number of repetitions, the overhead could be

removed altogether by replacing the loop with the code components for that fixed

number of times. This technique is called loop unrolling. Code Sample 5.2

presents the loop unrolling for AddRoundKey() and Code Sample 5.3 presents

loop unrolling for SubBytes().

31

Initial code:
int i, j;

 for (i=0; i<4; i++)
for(j=0; j<4; j++) a[i][j] ^= rk[i][j];

Modified code:

int i;
 for (i=0; i<4; i++)

{
 a[i][0] ^= rk[i][0];
 a[i][1] ^= rk[i][1];
 a[i][2] ^= rk[i][2];
 a[i][3] ^= rk[i][3];

}

Code Sample 5.2: Loop unrolling for AddRoundKey()

Code Sample 5.3: Loop unrolling for SubBytes()

 Loop Merging: When two loops are being executed with similar tasks that can be

sequentially adjusted, it is better to combine the two loops into a single loop.

This technique is called loop merging. This reduces the total overhead time of

executing multiple loops to the overhead of a single loop. Code Sample 5.4

presents the loop unrolling and merging with constants substitution for
ShiftRows().

5.3.8 Pipelining Tasks

Two pipelining tasks were considered in order to reduce code execution time.

 Multi-sample Processing: Sometimes, different samples can be executed

simultaneously when there is no inter-dependency among them. This helps in

conserving valuable clock cycles.

Initial code:
int i, j;
for (i=0; i<4; i++)

 for(j=0; j< BC; j++)
a[i][j] = box[a[i][j]];

Modified code:

int i;
 for (i=0; i<4; i++)
 {
 a[i][0] = box[a[i][0]];
 a[i][1] = box[a[i][1]];
 a[i][2] = box[a[i][2]];
 a[i][3] = box[a[i][3]];

}

32

Code Sample 5.4: Loop unrolling and merging

 Split Summation: A complex equation can be made simple by dividing it into

smaller components so that they can be executed in parallel. Another advantage

is that by dividing into smaller components, different registers can be used. This

minimizes the number of memory transfers, which consume more cycles than

simple register calls. Split summation was performed on MixColumns() and

InvMixColumns(). Code Sample 5.5 presents the modifications in

InvMixColumns().

5.3.9 Conditional Tasks

Some tasks use conditional statements like if-then-else, which consume a lot of

cycles. A better way is to remove the conditional statements as much as possible. Code

Sample 5.6 presents the removal of the if-then-else statement from ShiftRows().

Initial code:
int i, j;
for (i=0; i<4; i++)
{
 for(j=0; j< BC; j++)
 tmp[j] = a[i][(j + shifts[BC-4][i]) % BC];
 for(j=0; j< BC; j++) a[i][j] = tmp[j];
}

Modified code:

int i;
for (i=1; i<4; i++)
{
 tmp[0] = a[i][(0 + i) % BC];
 tmp[1] = a[i][(1 + i) % BC];
 tmp[2] = a[i][(2 + i) % BC];
 tmp[3] = a[i][(3 + i) % BC];

 a[i][0] = tmp[0];
 a[i][1] = tmp[1];
 a[i][2] = tmp[2];
 a[i][3] = tmp[3];
}

33

Code Sample 5.5: Modification of InvMixColumns()

Initial code:
 word8 b[4][MAXBC];
 int i, j;

 for(j=0; j<BC; j++)
 for(i=0; i<4; i++)
 b[i][j] = mul(0xe,a[i][j])
 ^ mul(0xb,a[(i+1) % 4][j])
 ^ mul(0xd,a[(i+2) % 4][j])
 ^ mul(0x9,a[(i+3) % 4][j]);
 for(i=0; i<4; i++)
 for(j=0; j< BC; j++) a[i][j] = b[i][j];

Modified code:

word8 b[4];
 word8 temp0[3], temp1[3], temp2[3], temp3[3];
 int j;
 for(j=0; j< BC; j++)
 {
 b[0] = mul(0xe,a[0][j]);
 temp0[0]= mul(0xb,a[1][j]);
 temp0[1]= mul(0xd,a[2][j]);
 temp0[2]= mul(0x9,a[3][j]);
 temp0[1]^=temp0[0];
 b[0] ^=temp0[2];
 b[0] ^=temp0[1];

 b[1] = mul(0x9,a[0][j]);
 temp1[0]= mul(0xe,a[1][j]);
 temp1[1]= mul(0xb,a[2][j]);
 temp1[2]= mul(0xd,a[3][j]);
 temp1[1]^=temp1[0];
 b[1] ^=temp1[2];
 b[1] ^=temp1[1];

 b[2] = mul(0xd,a[0][j]);
 temp2[0]= mul(0x9,a[1][j]);
 temp2[1]= mul(0xe,a[2][j]);
 temp2[2]= mul(0xb,a[3][j]);
 temp2[1]^=temp2[0];
 b[2] ^=temp2[2];
 b[2] ^=temp2[1];

 b[3] = mul(0xb,a[0][j]);
 temp3[0]= mul(0xd,a[1][j]);
 temp3[1]= mul(0x9,a[2][j]);
 temp3[2]= mul(0xe,a[3][j]);
 temp3[1]^=temp3[0];
 b[3] ^=temp3[2];
 b[3] ^=temp3[1];

 a[0][j] = b[0] ;
 a[1][j] = b[1] ;
 a[2][j] = b[2] ;
 a[3][j] = b[3] ;
 }

34

Code Sample 5.6: Removal of If-Then-Else Conditions from ShiftRows()

5.4 Critical Issues

5.4.1 Interrupt Service Management

The cryptographic related modules should be given the highest priority. If the

case arises to perform some other critical task, then an interrupt routine should be

programmed to check whether any cryptographic module is running at that time. If so,

then all cryptic data should be deleted until completion of the interrupt routine. Then the

Initial code:
ShiftRows(a,0); // for ShiftRows
ShiftRows(a,1); // for InvShiftRows

void ShiftRows(word8 a[4][MAXBC], word8 d)
{

word8 tmp[MAXBC];
 int i, j;

 if (d==0) // for ShiftRows-encryption

{
...
...

}
else // for ShiftRows-decryption
{
 ...

...
 }
}

Modified code:
ShiftRows(a); // for ShiftRows
InvShiftRows(a); // for InvShiftRows

void ShiftRows(word8 a[4][MAXBC]) // for ShiftRows-encryption
{
 ...
 ...
}

void InvShiftRows(word8 a[4][MAXBC]) // for InvShiftRows
{
 ...
 ...
}

35

cryptographic module should be executed again. Under no circumstances should the

cryptographic data be sent to the stacks in order to perform interrupt routines.

5.4.2 Time-sliced Multi-tasking

Time-sliced multitasking of a cryptographic module with other applications also

presents vulnerability to attacks. Time slicing could help the attacker to read the data of

the registers in order to obtain crucial information, which could lead to knowledge of the

key.

5.4.3 I/O Queues Management

In order to run the cryptographic modules efficiently, the input and output

modules should be structurally separated. When the embedded device has multi-

processor capability, separate processing should be catered for I/O data management.

36

CHAPTER 6

ATTACKS AND COUNTER MEASURES

A deliberate Cryptanalysis to break a cryptosystem is called an attack. While

developing a system, cryptography should not be thought of as the final task. Care

should be taken to consider the cryptographic issues from the conception to the

completion of the system. An insecure system is no different than a secure system when

the system functionalities are considered.

Security is the foremost priority in a cryptosystem. The evaluation of security

cannot be made by the system functionality. Security is different than functionality. Any

designer can design a system with specified functionalities. For a cryptographic system,

functionality is necessary but not sufficient. A cryptographic system should be designed

with a view to the kind of attacks it might face and the countermeasures to defeat the

attacks. A good algorithm is only the starting point.

6.1 Implementation Attacks

Attacks that rely on the flaws in implementation procedure are termed

Implementation Attacks. In the process of code optimization for optimum speed and

memory, programmers often neglect the transfer of variables and the deletion of trace

elements. Care must be taken to delete the round keys and the main key when the

encryption or decryption process is complete. It is also to the best advantage if only the

specific authorized modules have access to the cryptographic modules. If any attack or

discrepancy is detected in the run-time environment, a specific data log must be created

or appended and key scheduling must be executed again. Key scheduling takes care of

deleting the prior keys and generating or obtaining a new set of keys.

37

6.2 Side-channel Cryptanalysis

Attacks based on implementation flaws rather than algorithms are called as side-

channel attacks [K01]. These attacks rely upon the leaking of side-channel information

such as execution time and power consumption.

6.2.1 Timing Attacks

Timing attacks exploit the execution times of the application. The execution time

of the algorithm is measured in order to obtain information about the key. In the

MixColumns() of AES, there are different multiplication sequences that might take

different times to execute depending upon the key. Such an attack is very powerful and

will often compromise the security of the whole system.

6.2.2 Power Attacks

Power analysis attacks explore the power intake of the system and can obtain vital

information of the inner working [GLIPV03]. The power consumption of the device is

measured to obtain information about the key.

 Simple Power Analysis: This deals with analyzing the recorded power data and

the data sets.

 Differential Power Analysis: This deals with the statistical analysis of the power

data by comparing different plain texts and ciphers.

Since power analysis attacks are non-invasive, they are virtually non-detectable.

This poses a considerable threat to the security of the system since the damage caused

cannot be assessed.

6.2.3 Probing Attacks

A probing attack is a direct physical attack where probes are inserted onto the

hardware to examine the memory content and the data transfers on the buses. This can be

avoided by physical shielding of the device. Optical probing is the newest technique for

probing attacks. Apart from physical shielding, other methods of attack detection must

be incorporated in case the attacker breaks the physical shield.

38

6.2.4 Fault Induction Attacks

Faults or errors are introduced into the device by crude means like exposure to

radiation [GLIPV02]. Errors are introduced into the system and the outcomes are

analyzed. With a statistical induction of errors, relevant information may be extracted.

6.3 Counter Measures

6.3.1 Constant-time Implementation

Encryption time should be made independent of the value of the key. This can be

accomplished by careful implementation of instructions by making them time-

independent. One way of achieving this is to use a look-up table that should take a fixed

amount of time for every execution.

6.3.2 Power Attacks

Preventing Power attacks can be accomplished in the following ways:

 Physical shielding of the device so that the leaking signal size is reduced.

 Adding noise to the power measurements. This ensures that the attacker will

require more samples for analysis.

 Temporal obfuscation of the instructions. This is achieved by randomizing the

execution of the instructions. This model controls the power attacks if

implemented effectively. If the randomization is not spread properly, it might

even aid the attacker in obtaining the relevant information. Temporal obfuscation

can also be achieved by randomized clock signals.

6.3.3 Probing Attacks

The system must have the hardware architecture designed in such a way that

optical probing shouldn’t reveal the state of a bit. A bit should be made as ‘HL’ or ‘LH’

instead of a single ‘H’ or ‘L’.

6.3.4 Random Number and Unique Key Generators

Random number generation forms a formidable task in cryptosystems. To state

the truth, no finite machine could ever produce a true random number. Any number

39

generated, which seems to be a random number is called as pseudo-random number. One

way of generating pseudo-random numbers is through the use of an algorithm utilizing

the linear feedback shift registers. Another concept of generating random numbers is to

use a conventional cryptographic algorithm. As input to the cryptographic algorithm, a

user-generated number is used and this number is called the seed to the pseudo-random

number generator. The seed should be carefully selected to prevent any malicious user

from guessing it or reproducing it by any other means [KSWH98]. The keys for

cryptosystems should be based on random numbers and care must be taken that such

numbers pass the random number tests. The unique key generator for the cryptosystem

should carefully perform the task of generating the session keys. The longer the session

key is in use, the more vulnerable is the cryptosystem to the attacks. The registers that

hold the keys should be volatile and the key should be deleted when it is no longer

needed.

40

CHAPTER 7

RESULTS AND DISCUSSION

7.1 Results

The Advanced Encryption Standard (AES) was implemented in C and various

optimization techniques were applied without compromising for the security issues. The

initial program is called by the name ‘opt-a’ and different code optimizations were

performed at different stages and the different stages of the code are named as ‘opt-c’,

‘opt-d’...‘opt-h’. The suffix to the code name indicates the compiler optimization level.

The suffix ‘0’ indicates that no compiler optimizations have been performed. For

instance, ‘LEVEL 3’ indicates that compiler optimizations of scheduling, pipelining and

bundling are performed on the code. The suffix ‘space’ indicates that space

optimizations were performed rather than speed optimizations. The objective was to

optimize the code in terms of speed without degrading the space parameter. The

compiler option of space optimization was considered to show how the space

optimization techniques affect the speed optimization process.

The original unoptimized code was conceived into ‘Opt a’. The program was

compiled using the CodeWarrior IDE. The profiler of the CodeWarrior aided in

obtaining the statistical information about the program execution.

Table 7.1.1 presents the different stages of the code development and the

corresponding execution time in clock cycles.

41

Table 7.1.1: Execution time in clock cycles at various stages of code development

Stages main() encrypt() decrypt()
LEVEL 0 453897 112706 153576
LEVEL 3 217617 33057 52721
LEVEL 3 Space 265766 43019 66184

Opt-a 0 630850 111987 154316
Opt-a 3 231068 38040 54457

Opt-c 3 215032 34238 50244

Opt-d 0 599351 106537 143926
Opt-d 3 215032 34238 50244
Opt-d 3 Space 260780 42738 63989
Opt-d Space 271728 44693 67367

Opt-e 0 557991 96577 133206
Opt-e 3 211002 32801 49684
Opt-e 3 Space 258734 42146 63558
Opt-e Space 268471 43926 66504

Opt-f 0 536111 91134 127709
Opt-f 3 207203 31761 48802
Opt-f 3 Space 254034 41069 62291
Opt-f Space 265502 43189 65758

Opt-g 0 516591 86264 122819
Opt-g 3 194268 28676 45432
Opt-g 3 Space 242633 38223 59405
Opt-g Space 252066 39813 62432

Opt-h 0 523464 85133 127651
Opt-h 3 197996 29125 46882
Opt-h 3 Space 246797 37966 61774
Opt-h Space 253263 39656 63186

42

Table 7.1.2 presents the profiling information for the ‘opt-g 3’ stage. The table

depicts the function (F) and descendent (D) time in clock cycles of various functions.

Table 7.1.2: Profiling information for ‘opt-g 3’ stage

The CodeWarrior profiler also displays a graphical representation of the function

and its descendents. Figure 7.1.1 presents the graphical display of the encrypt() of

the ‘opt-g 3’ stage. It can be deduced that the encrypt() is consuming 57352 cycles

per two calls, which means the average execution time for encrypt() is 28676 clock

cycles. The main metrics for this thesis is the execution time defined in terms of the

number of clock cycles taken by the hardware to execute a particular function

43

0
100000
200000
300000
400000
500000
600000
700000

LE
VEL 0

LE
VEL 3

LE
VEL 3

 S
pa

ce

Opt-
a 0

Opt-
a 3

Opt-
c 3

Opt-
d 0

Opt-
d 3

Opt-
d 3

 S
pa

ce

Opt-
d

 S
pa

ce

C
lo

ck
 C

yc
le

s

main()
encrypt()
decrypt()

Figure 7.1.1: Graphical profile for encrypt() of ‘opt-g 3’ Stage

Figure 7.1.2: Functions main(), encrypt() and decrypt() from stages Level 0

to Opt-d Space stages

44

0
100000
200000
300000
400000
500000
600000

O
pt

-e
 0

O
pt

-e
 3

O
pt

-e
 3

 S
pa

ce

O
pt

-e
 S

pa
ce

O
pt

-f
0

O
pt

-f
3

O
pt

-f
3

S
pa

ce

O
pt

-f
 S

pa
ce

O
pt

-g
 0

O
pt

-g
 3

O
pt

-g
 3

 S
pa

ce

O
pt

-g
 S

pa
ce

O
pt

-h
 0

O
pt

-h
 3

O
pt

-h
 3

 S
pa

ce

O
pt

-h
 S

pa
ce

C
lo

ck
 C

yc
le

s
main()
encrypt()
decrypt()

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

LE
VEL 0

LE
VEL 3

LE
VEL 3

 S
pa

ce

Opt-
a 0

Opt-
a 3

Opt-
c 3

Opt-
d 0

Opt-
d 3

Opt-
d 3

 S
pa

ce

Opt-
d

 S
pa

ce

C
lo

ck
 C

yc
le

s SubBytes()
ShiftRows()
MixColumns
AddRoundKey()

0
1000
2000
3000
4000
5000
6000
7000

O
pt

-e
 0

O
pt

-e
 3

O
pt

-e
 3

 S
pa

ce

O
pt

-e
 S

pa
ce

O
pt

-f
0

O
pt

-f
3

O
pt

-f
3

S
pa

ce

O
pt

-f
 S

pa
ce

O
pt

-g
 0

O
pt

-g
 3

O
pt

-g
 3

 S
pa

ce

O
pt

-g
 S

pa
ce

O
pt

-h
 0

O
pt

-h
 3

O
pt

-h
 3

 S
pa

ce

O
pt

-h
 S

pa
ce

C
lo

ck
 C

yc
le

s

SubBytes()
ShiftRows()
MixColumns
AddRoundKey()

Figure 7.1.3: Functions main(), encrypt() and decrypt() from stages Opt-e to

Opt-h Space stages

Figure 7.1.4: Cryptographic modules from Level 0 to Opt-d Space stages

Figure 7.1.5: Cryptographic modules from Opt-e 0 to Opt-h Space stages

45

SubBytes()

0
500

1000
1500
2000
2500

LE
V

EL
 0

LE
V

EL
 3

LE
V

EL
 3

 S
pa

ce

O
pt

-a
 0

O
pt

-a
 3

O
pt

-c
 3

O
pt

-d
 0

O
pt

-d
 3

O
pt

-d
 3

 S
pa

ce
O

pt
-d

S

pa
ce

O
pt

-e
 0

O
pt

-e
 3

O
pt

-e
 3

 S
pa

ce
O

pt
-e

 S
pa

ce

O
pt

-f
0

O
pt

-f
3

O
pt

-f
3

S
pa

ce
O

pt
-f

 S
pa

ce

O
pt

-g
 0

O
pt

-g
 3

O
pt

-g
 3

 S
pa

ce
O

pt
-g

 S
pa

ce

O
pt

-h
 0

O
pt

-h
 3

O
pt

-h
 3

 S
pa

ce
O

pt
-h

 S
pa

ce

C
lo

ck
 C

yc
le

s

SubBytes()

The encrypt()function is divided into four sub-functions: SubBytes(),

ShiftRows(), MixColumns() and AddRoundKey(). The function and

descendent times of various functions are depicted in Figure 7.1.2 through Figure 7.1.5.

Observations from the various stages of the code optimizations revealed that the

MixColumns() function was consuming more time than other sub-modules combined

in the encrypt() function. This was due to the mul()function in the

MixColumns() function, which was used to perform the Galois Field (GF)

multiplication on the data operands. GF multiplication was performed by implementing a

look-up table to defeat any timing attacks. Figure 7.1.2 reveals that decrypt()takes

more time than encrypt(). This is due to the added complexity of the GF

multiplication in InvMixColumns() of decrypt(). The InvMixColumns()

needs to perform four multiplications while the MixColumns() needs to perform only

two multiplications per each byte of the state.

Figure 7.1.6: SubBytes() module at all stages

The SubBytes()initial function consumed 927 cycles without compiler optimization

and 93 cycles with compiler-optimization. After optimization techniques were applied,

the function required 684 clock cycles without compiler optimization and 49 cycles with

compiler optimization. Thus SubBytes()showed a performance gain of 26% without-

compiler optimization and 47% with-compiler optimization in terms of execution speed.

Figure 7.1.6 presents the execution time of SubBytes() at all stages of code

optimization.

The ShiftRows()initial function consumed 2974 cycles without compiler

optimization and 1354 cycles with compiler-optimization. After optimization techniques

46

ShiftRows()

0
1000
2000
3000
4000

LE
V

EL
 0

LE
V

EL
 3

LE
V

EL
 3

 S
pa

ce

O
pt

-a
 0

O
pt

-a
 3

O
pt

-c
 3

O
pt

-d
 0

O
pt

-d
 3

O
pt

-d
 3

 S
pa

ce
O

pt
-d

S

pa
ce

O
pt

-e
 0

O
pt

-e
 3

O
pt

-e
 3

 S
pa

ce
O

pt
-e

 S
pa

ce

O
pt

-f
0

O
pt

-f
3

O
pt

-f
3

S
pa

ce
O

pt
-f

 S
pa

ce

O
pt

-g
 0

O
pt

-g
 3

O
pt

-g
 3

 S
pa

ce
O

pt
-g

 S
pa

ce

O
pt

-h
 0

O
pt

-h
 3

O
pt

-h
 3

 S
pa

ce
O

pt
-h

 S
pa

ce

C
lo

ck
 C

yc
le

s

ShiftRows()

AddRoundKey()

0
200
400
600
800

1000
1200
1400

LE
V

EL
 0

LE
V

EL
 3

LE
V

EL
 3

 S
pa

ce

O
pt

-a
 0

O
pt

-a
 3

O
pt

-c
 3

O
pt

-d
 0

O
pt

-d
 3

O
pt

-d
 3

 S
pa

ce
O

pt
-d

S

pa
ce

O
pt

-e
 0

O
pt

-e
 3

O
pt

-e
 3

 S
pa

ce
O

pt
-e

 S
pa

ce

O
pt

-f
0

O
pt

-f
3

O
pt

-f
3

S
pa

ce
O

pt
-f

 S
pa

ce

O
pt

-g
 0

O
pt

-g
 3

O
pt

-g
 3

 S
pa

ce
O

pt
-g

 S
pa

ce

O
pt

-h
 0

O
pt

-h
 3

O
pt

-h
 3

 S
pa

ce
O

pt
-h

 S
pa

ce

C
lo

ck
 C

yc
le

s

AddRoundKey()

were applied, the function required 1453 clock cycles without compiler optimization and

945 cycles with compiler optimization. Thus ShiftRows() displayed a performance

gain of 51% without-compiler optimization and 30% with-compiler optimization in terms

of execution speed. Figure 7.1.7 presents the execution time of ShiftRows()at all

stages of code optimization.

Figure 7.1.7: ShiftRows() module at all stages

The AddRoundKey()initial function consumed 975 cycles without compiler

optimization and 83 cycles with compiler-optimization. After optimization techniques

were applied, the function required 705 clock cycles without compiler optimization and

52 cycles with compiler optimization. Thus AddRoundKey() displayed a performance

gain of 27% without-compiler optimization and 37% with-compiler optimization in terms

of execution speed. Figure 7.1.8 presents the execution time of AddRoundKey()at all

stages of code optimization.

Figure 7.1.8: AddRoundKey() module at all stages

47

decrypt()

0
50000

100000
150000
200000

LE
V

EL
 0

LE
V

EL
 3

LE
V

EL
 3

 S
pa

ce

O
pt

-a
 0

O
pt

-a
 3

O
pt

-c
 3

O
pt

-d
 0

O
pt

-d
 3

O
pt

-d
 3

 S
pa

ce
O

pt
-d

S

pa
ce

O
pt

-e
 0

O
pt

-e
 3

O
pt

-e
 3

 S
pa

ce
O

pt
-e

 S
pa

ce

O
pt

-f
0

O
pt

-f
3

O
pt

-f
3

S
pa

ce
O

pt
-f

 S
pa

ce

O
pt

-g
 0

O
pt

-g
 3

O
pt

-g
 3

 S
pa

ce
O

pt
-g

 S
pa

ce

O
pt

-h
 0

O
pt

-h
 3

O
pt

-h
 3

 S
pa

ce
O

pt
-h

 S
pa

ce

C
lo

ck
 C

yc
le

s

decrypt()

MixColumns

0
2000
4000
6000
8000

10000

LE
V

EL
 0

LE
V

EL
 3

LE
V

EL
 3

 S
pa

ce

O
pt

-a
 0

O
pt

-a
 3

O
pt

-c
 3

O
pt

-d
 0

O
pt

-d
 3

O
pt

-d
 3

 S
pa

ce
O

pt
-d

S

pa
ce

O
pt

-e
 0

O
pt

-e
 3

O
pt

-e
 3

 S
pa

ce
O

pt
-e

 S
pa

ce

O
pt

-f
0

O
pt

-f
3

O
pt

-f
3

S
pa

ce
O

pt
-f

 S
pa

ce

O
pt

-g
 0

O
pt

-g
 3

O
pt

-g
 3

 S
pa

ce
O

pt
-g

 S
pa

ce

O
pt

-h
 0

O
pt

-h
 3

O
pt

-h
 3

 S
pa

ce
O

pt
-h

 S
pa

ce

C
lo

ck
 C

yc
le

s

MixColumns

Figure 7.1.9 presents execution times of MixColumns() at all stages of code

optimization.

Figure 7.1.9: MixColumns() module at all stages

Figure 7.1.10 presents the execution time of encrypt()at all stages of code

optimization.

Figure 7.1.10: Encrypt() module at all stages

Figure 7.1.11 shows the execution time of decrypt()at all stages of code

optimization.

Figure 7.1.11: Decrypt() module at all stages

encrypt()

0
20000
40000
60000
80000

100000
120000

LE
V

EL
 0

LE
V

EL
 3

LE
V

EL
 3

 S
pa

ce

O
pt

-a
 0

O
pt

-a
 3

O
pt

-c
 3

O
pt

-d
 0

O
pt

-d
 3

O
pt

-d
 3

 S
pa

ce
O

pt
-d

S

pa
ce

O
pt

-e
 0

O
pt

-e
 3

O
pt

-e
 3

 S
pa

ce
O

pt
-e

 S
pa

ce

O
pt

-f
0

O
pt

-f
3

O
pt

-f
3

Sp
ac

e
O

pt
-f

 S
pa

ce

O
pt

-g
 0

O
pt

-g
 3

O
pt

-g
 3

 S
pa

ce
O

pt
-g

 S
pa

ce

O
pt

-h
 0

O
pt

-h
 3

O
pt

-h
 3

 S
pa

ce
O

pt
-h

 S
pa

ce

C
lo

ck
 C

yc
le

s

encrypt()

48

main()

170000
180000
190000
200000
210000
220000
230000
240000

LE
VEL 3

Opt-
a 3

Opt-
c 3

Opt-
d 3

Opt-
e 3

Opt-
f 3

Opt-
g 3

Opt-
h 3

C
lo

ck
 C

yc
le

s

main()

encrypt()

0
5000

10000
15000
20000
25000
30000
35000
40000

LE
VEL 3

Opt-
a 3

Opt-
c 3

Opt-
d 3

Opt-
e 3

Opt-
f 3

Opt-
g 3

Opt-
h 3

C
lo

ck
 C

yc
le

s

encrypt()

The stages that were optimized by the compiler are illustrated in Figure 7.1.12

through Figure 7.1.18.

Figure 7.1.12: Main() function for compiler optimization

Figure 7.1.13: Encrypt() function for compiler optimization

49

decrypt()

40000
42000
44000
46000
48000
50000
52000
54000
56000

LE
VEL 3

Opt-
a 3

Opt-
c 3

Opt-
d 3

Opt-
e 3

Opt-
f 3

Opt-
g 3

Opt-
h 3

C
lo

ck
 C

yc
le

s

decrypt()

SubBytes()

0
20
40
60
80

100
120
140

LE
VEL 3

Opt-
a 3

Opt-
c 3

Opt-
d 3

Opt-
e 3

Opt-
f 3

Opt-
g 3

Opt-
h 3

C
lo

ck
 C

yc
le

s

SubBytes()

Figure 7.1.14: Decrypt() function for compiler optimization

Figure 7.1.15: SubBytes() function for compiler optimization

50

MixColumns

0
500

1000
1500
2000
2500

LE
VEL 3

Opt-
a 3

Opt-
c 3

Opt-
d 3

Opt-
e 3

Opt-
f 3

Opt-
g 3

Opt-
h 3

C
lo

ck
 C

yc
le

s

MixColumns

ShiftRows()

0
500

1000
1500
2000

LE
VEL 3

Opt-
a 3

Opt-
c 3

Opt-
d 3

Opt-
e 3

Opt-
f 3

Opt-
g 3

Opt-
h 3

C
lo

ck
 C

yc
le

s

ShiftRows()

Figure 7.1.16: ShiftRows() function for compiler optimization

Figure 7.1.17: MixColumns() function for compiler optimization

51

AddRoundKey()

0
20
40
60
80

100
120

LE
VEL 3

Opt-
a 3

Opt-
c 3

Opt-
d 3

Opt-
e 3

Opt-
f 3

Opt-
g 3

Opt-
h 3

C
lo

ck
 C

yc
le

s
AddRoundKey()

Percentage Speed Performance

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

main
()

en
cry

pt(
)

de
cry

pt(
)

Sub
Byte

s(
)

Shif
tR

ows(
)

MixC
olu

mns

Add
Rou

nd
Key

()

C
lo

ck
 C

yc
le

s

0
3
Space
3-Space

Figure 7.1.18: AddRoundKey() function for compiler optimization

Figure 7.1.19: Speed performance of various modules

Figure 7.1.19 shows the speed performance gained for the AES for different compiler

options. This shows that a 20% performance gain was obtained by optimizations for

52

encrypt() and an 11% performance gain by optimizations for decrypt().

ShiftRows() was optimized better than all other sub-functions. MixColumns() was

the critical path in the code and it was the least optimized function. This was due to the

implementation of a look-up table for the GF multiplication. The MixColumns() data for

‘Space’ and ‘3-Space’ was not obtained due to the compiler’s option of inline functioning for

better optimization. Table 7.1.3 presents the speed performance gain in percentage for each

function.

Table 7.1.3: Speed performance of various modules

7.2 Discussion

This research started with an idea of implementing a cryptographic algorithm on a

DSP chip. The idea expanded from the initial concept of a data encryption standard

(DES) [SASR01] on the DSP 56824 to the present form of an AES on the StarCore. The

AES was implemented on the StarCore using the CodeWarrior IDE. The initial

inclination was to put the code into the DSP memory. Since the idea of a secure and

reliable system was maintained and thrived from the beginning of this endeavor, care was

taken about certain situations where the system might be attacked. Different ways of

side-channel attacks were studied and the system was made robust to such attacks by

taking care of details such as constant-time implementation and key deletion after the

session. Even though the system was made strong, it cannot be denied that successful

attacks can be made on it.

In the context of smart attacks, the following security issues should be kept in

mind while implementing a cryptographic system.

 Formulate the system to detect various types of attacks.

Percentage Speed Performance (in %)
 0 3 Space 3-Space
main() 12.66153 9.656237 6.958739 7.235912
encrypt() 20.09067 16.24511 10.56437 10.91894
decrypt() 11.30789 9.575368 7.163731 7.325545

SubBytes() 26.21359 47.31183 21.36752 22.68908
ShiftRows() 51.14324 30.20679 28.47025 29.64213
MixColumns 1.405526 3.65209 NA NA
AddRoundKey() 27.69231 37.48634 22.3301 23.80952

53

 Turn off the power to the internal RAM when system tampering is detected.

 The keys should always be stored in volatile memory.

 Change the keys for every session.

 Metal shield the device to prevent the leakage of high-frequency pulses.

 Implement constant-time algorithms.

 Use double sized blocks with complement data to defeat power attacks.

7.2.1 8-bit Platforms

The use of AES is imminent on the 8-bit platforms like smart cards. Smart cards

are very vulnerable to side-channel cryptanalysis. This is due to their inherent

weaknesses such as dependence on the external clock and their susceptibility to optical

probing. In order to reduce the memory size of the 8-bit platforms, key expansion should

be performed every time encryption or decryption is performed. This is due to the fact

that these devices are generally asynchronous in nature. Since the encryption or

decryption is performed only on a relatively small amount of data, the key should be

generated and expanded each time the cryptographic module is called.

Look-up tables consume a lot of memory. Therefore, they should be generated by

suitable algorithms before encryption or decryption is performed. This might increase

the code size but it definitely improves the overall system performance by decreasing the

dormant memory occupation.

7.2.2 32/64-bit Platforms

The devices with larger data-bus lengths and processing word lengths are

generally synchronous in nature. If the data to be encrypted or decrypted is continuous,

the key scheduling should be performed outside the encryption and decryption modules.

This saves the repetitive task of key scheduling by moving it out of the continuous

routines.

7.3.3 Optimization

There are many optimization metrics concerned with embedded systems such as:

 Production cost

 Execution speed

54

 Memory size

 Data throughput

 Power consumption

 Robustness

When dealing with cryptosystems, the added issues of security affect all the above

metrics. The security issues become the top priority in the metrics to evaluate the

system. The difference between a poorly designed and perfectly designed cryptographic

system cannot be assessed until an attack is made on both of them. The only way to

make the systems more robust is to learn from the previous attacks and explore the

weaknesses in the present systems by performing new kinds of attacks. Thus, the ideal

way of summarizing this concept is ‘the real security of a system cannot be assessed until

it is broken’.

55

CHAPTER 8

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

8.1 Conclusion

The AES was implemented on the StarCore using the CodeWarrior IDE.

Additionally, various speed optimization techniques were applied. A study of different

side-channel attacks was performed and proposals were made to counter such attacks.

The system’s security was given greater importance than speed optimization. The

programming was divided into different stages and the results were observed at each

stage. Each sub-module of encrypt() was optimized and the clock cycles were

observed. Relevant observations of this research are:

 The compiler was able to effectively optimize a simple code.

 Code optimization techniques boosted the compiler’s ability to further optimize

the code.

 In-line functions are better suited for smaller functions.

 Function call parameters should be replaced by memory pointers.

 Deletion of the round keys and the main key at the termination of the program

improves security.

 Critical paths should be optimized more than the less critical paths.

 Probing attacks should be defeated by physical and radiation shielding.

 Constant-time implementations should be considered to avoid timing and power

attacks.

8.2 Recommendations for Future Work

The study and analysis of cryptosystems is an ongoing effort in which new attacks are

constantly discovered. Future study to this research should be in the following topics:

 An extensive study must be made of side-channel attacks.

 Architectural advantages must be explored with a consideration for portability.

56

 Experiments should be conducted to study the effects of various types of attacks.

 New methods such as algorithm switching must be implemented. Key scheduling

must be made more robust.

 Attack detection must be incorporated into the system.

 Interrupt priorities should be assigned appropriately with the highest concern for

the security of the system.

57

REFERENCES

[BS96] Bruce Schneier: Applied Cryptography, Protocols, Algorithms and

Source Code in C, John Wiley & Sons, Inc, 1996.

[DR01] J. Daemen and V. Rijmen: AES Proposal Rijndael. National Institute of

Standards and Technology, July 2001.

[G99] B. Gladman: Input and Output Block Conventions for AES Encryption

Algorithms, AES Round 2 public comment, June 6, 1999.

[GLIPV02] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, Vincenzo

Piuri: On the Propagation of Faults and Their Detection in a Hardware
Implementation of the Advanced Encryption Standard, The IEEE
International Conference on Application-Specific Systems, Architectures,
and Processors (ASAP'02) July 17 - 19, 2002 San Jose, California.

[GLIPV03] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, Vincenzo
Piuri: Error Analysis and Detection Procedures for a Hardware
Implementation of the Advanced Encryption Standard, IEEE Transactions
on Computers 52(4), 492-505 (2003).

[K01] F. Koeune: Careful design and integration of cryptographic primitives

with contributions to timing attack, padding schemes and random number
generators, Ph.D. thesis, UCL, July 2001.

[KSWH98] J. Kelsey, B. Schneier, D. Wagner, and C. Hall: Cryptanalytic Attacks on

Pseudorandom Number Generators, Fast Software Encryption, Fifth
International Workshop Proceedings (March 1998), Springer-Verlag,
1998, pp. 168-188.

[RL00] Rainer Leupers: Code Optimization Techniques for Embedded Processors

–Methods, Algorithms, and Tools, Kluwer Academic Publishers, 2000.

[SASR01] C. Sanchez-Avila and R. Sanchez-Reillo: The Rijndael Block Cipher

(AES Proposal): A Comparison with DES, 35th IEEE International
Conference on Security Technology. London (Reino Unido), 19-16
Octubre, 2001. pps. 229-234.

58

[SJBW96] Sanjaya Kumar, James H. Aylor, Barry W. Johnson, Wm. A. Wulf: The
Codesign of Embedded Systems-A Unified Hardware/Software
Representation, Kluwer Academic Publishers, 1996.

59

BIBLIOGRAPHY

Krishnendu Chakrabarty, Vikram Iyengar, Anshuman Chandra: Test Resource
Partitioning for System-on-a-chip, Kluwer Academic Publishers, 2002.

Juan Carlos Lopez, Roman Hermida and Walter Geisselhardt: Advanced Techniques for
Embedded Systems Design and Test, Kluwer Academic Publishers, 1998.

Keith Tizzard: C for Professional Programmers, Ellis Horwood Limited, 1986.

60

APPENDICES

61

APPENDIX A

Optimized C Code for the AES

/*
 * Code Optimization techniques for encryption and decryption
 */

#include <stdio.h>

typedef unsigned char word8;
typedef unsigned int word32;

/* The tables Logtable and Alogtable are used to perform
 * multiplications in GF(256)
 */
word8 Logtable[256] = {
 0, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51, 238, 223, 3,
100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8, 200, 248, 105, 28, 193,
125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166, 114, 154, 201, 9, 120,
101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69, 53, 147, 218, 142,
150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210, 241, 64, 70, 131, 56,
102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226, 152, 34, 136, 145, 16,
126, 110, 72, 195, 163, 182, 30, 66, 58, 107, 40, 84, 250, 133, 61, 186,
 43, 121, 10, 21, 155, 159, 94, 202, 78, 212, 172, 229, 243, 115, 167, 87,
175, 88, 168, 80, 244, 234, 214, 116, 79, 174, 233, 213, 231, 230, 173, 232,
 44, 215, 117, 122, 235, 22, 11, 245, 89, 203, 95, 176, 156, 169, 81, 160,
127, 12, 246, 111, 23, 196, 73, 236, 216, 67, 31, 45, 164, 118, 123, 183,
204, 187, 62, 90, 251, 96, 177, 134, 59, 82, 161, 108, 170, 85, 41, 157,
151, 178, 135, 144, 97, 190, 220, 252, 188, 149, 207, 205, 55, 63, 91, 209,
 83, 57, 132, 60, 65, 162, 109, 71, 20, 42, 158, 93, 86, 242, 211, 171,
 68, 17, 146, 217, 35, 32, 46, 137, 180, 124, 184, 38, 119, 153, 227, 165,
103, 74, 237, 222, 197, 49, 254, 24, 13, 99, 140, 128, 192, 247, 112, 7,
};

word8 Alogtable[256] = {
 1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 161, 248, 19, 53,
 95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 30, 34, 102, 170,
229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 112, 144, 171, 230, 49,
 83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184, 211, 110, 178, 205,
 76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241, 8, 24, 40, 120, 136,
131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206, 73, 219, 118, 154,
181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39, 105, 187, 214, 97, 163,
254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147, 174, 233, 32, 96, 160,
251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50, 86, 250, 21, 63, 65,
195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44, 116, 156, 191, 218, 117,
159, 186, 213, 100, 172, 239, 42, 126, 130, 157, 188, 223, 122, 142, 137, 128,
155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111, 177, 200, 67, 197, 84,
252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153, 176, 203, 70, 202,
 69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62, 66, 198, 81, 243, 14,
 18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 148, 167, 242, 13, 23,
 57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 180, 199, 82, 246, 1,
};

word8 S[256] = {
 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118,
202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192,
183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21,
 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117,
 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132,
 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207,
208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168,
 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210,

62

APPENDIX A (Continued)

205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115,
 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219,
224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121,
231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8,
186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138,
112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158,
225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22,
};

word8 Si[256] = {
 82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, 251,
124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, 233, 203,
 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, 250, 195, 78,
 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, 109, 139, 209, 37,
114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, 204, 93, 101, 182, 146,
108, 112, 72, 80, 253, 237, 185, 218, 94, 21, 70, 87, 167, 141, 157, 132,
144, 216, 171, 0, 140, 188, 211, 10, 247, 228, 88, 5, 184, 179, 69, 6,
208, 44, 30, 143, 202, 63, 15, 2, 193, 175, 189, 3, 1, 19, 138, 107,
 58, 145, 17, 65, 79, 103, 220, 234, 151, 242, 207, 206, 240, 180, 230, 115,
150, 172, 116, 34, 231, 173, 53, 133, 226, 249, 55, 232, 28, 117, 223, 110,
 71, 241, 26, 113, 29, 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27,
252, 86, 62, 75, 198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244,
 31, 221, 168, 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95,
 96, 81, 127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239,
160, 224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97,
 23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, 125,
};

word32 RC[30] = {
 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e,
 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
 0xfa, 0xef, 0xc5};

#define MAXBC 8
#define MAXKC 8
#define MAXROUNDS 14

static word8 shifts[5][4] = {

 0, 1, 2, 3,
 0, 1, 2, 3,
 0, 1, 2, 3,
 0, 1, 2, 4,
 0, 1, 3, 4};

static int numrounds[5][5] = {
 10, 11, 12, 13, 14,
 11, 11, 12, 13, 14,
 12, 12, 12, 13, 14,
 13, 13, 13, 13, 14,
 14, 14, 14, 14, 14};

int BC, KC, ROUNDS;

word8 mul(word8 a, word8 b) {
 /* multiply two elements of GF(256)
 * required for MixColumns and InvMixColumns
 */

 if (a && b)

63

APPENDIX A (Continued)

 return Alogtable[(Logtable[a] + Logtable[b])%255];
 else return 0;
}

void AddRoundKey(word8 a[4][MAXBC], word8 rk[4][MAXBC]) {
 /* XOR corresponding text input and round key input bytes
 */
 int i;
 for (i=0; i<4; i++)
 {
 a[i][0] ^= rk[i][0];
 a[i][1] ^= rk[i][1];
 a[i][2] ^= rk[i][2];
 a[i][3] ^= rk[i][3];
 }
}

void SubBytes(word8 a[4][MAXBC], word8 box[256]) {
 /* Replace every byte of the input by the byte at that place
 * in the non-linear S-box
 */
 int i;

 for (i=0; i<4; i++)
 { a[i][0] = box[a[i][0]];
 a[i][1] = box[a[i][1]];
 a[i][2] = box[a[i][2]];
 a[i][3] = box[a[i][3]];
 }
}

void ShiftRows(word8 a[4][MAXBC]) {
 /* Row 0 remains unchanged
 * The other three rows are shifted a variable amount
 */
 word8 tmp[MAXBC];
 int i;
 for (i=1; i<4; i++) {

 tmp[0] = a[i][(0 + i) % BC];
 tmp[1] = a[i][(1 + i) % BC];
 tmp[2] = a[i][(2 + i) % BC];
 tmp[3] = a[i][(3 + i) % BC];

 a[i][0] = tmp[0];
 a[i][1] = tmp[1];
 a[i][2] = tmp[2];
 a[i][3] = tmp[3];
 }

}

void InvShiftRows(word8 a[4][MAXBC]) {
 /* Row 0 remains unchanged
 * The other three rows are shifted a variable amount
 */

 word8 tmp[MAXBC];
 int i;

 for (i=1; i<4; i++) {

 tmp[0] = a[i][(0 + 4 - i) % BC];

64

APPENDIX A (Continued)

tmp[1] = a[i][(1 + 4 - i) % BC];

tmp[2] = a[i][(2 + 4 - i) % BC];
 tmp[3] = a[i][(3 + 4 - i) % BC];

 a[i][0] = tmp[0];
 a[i][1] = tmp[1];
 a[i][2] = tmp[2];
 a[i][3] = tmp[3];
 }
}

void MixColumns(word8 a[4][MAXBC]) {
 /* Mix the four bytes of every column in a linear way
 */
 word8 b[4];
 word8 temp1[4], temp2[4];
 int j;

 for(j=0; j< BC; j++)
 {

 b[0] = mul(2,a[0][j]);
 temp1[0]= mul(3,a[1][j]);
 temp2[0]= a[2][j] ^ a[3][j];
 temp2[0]^= temp1[0];
 b[0] ^= temp2[0];

 b[1] = a[0][j] ^ a[3][j];
 temp1[1]= mul(2,a[1][j]);
 temp2[1]= mul(3,a[2][j]);
 temp2[1]^= temp1[1];
 b[1] ^= temp2[1];

 b[2] = a[0][j] ^ a[1][j];
 temp1[2]= mul(2,a[2][j]);
 temp2[2]= mul(3,a[3][j]);
 temp2[2]^= temp1[2];
 b[2] ^= temp2[2];

 b[3] = mul(3,a[0][j]);
 temp1[3]= a[1][j] ^ a[2][j];
 temp2[3]= mul(2,a[3][j]);
 temp2[3]^= temp1[3];
 b[3] ^= temp2[3];

 a[0][j] = b[0] ;
 a[1][j] = b[1] ;
 a[2][j] = b[2] ;
 a[3][j] = b[3] ;
 }
}

void InvMixColumns(word8 a[4][MAXBC]) {
 /* Mix the four bytes of every column in a linear way
 * This is the opposite operation of MixColumns
 */

65

APPENDIX A (Continued)

word8 b[4];//[MAXBC];

 word8 temp0[3], temp1[3], temp2[3], temp3[3];
 int j;

 for(j=0; j< BC; j++)
 {

 b[0] = mul(0xe,a[0][j]);
 temp0[0]= mul(0xb,a[1][j]);
 temp0[1]= mul(0xd,a[2][j]);
 temp0[2]= mul(0x9,a[3][j]);
 temp0[1]^=temp0[0];
 b[0] ^=temp0[2];
 b[0] ^=temp0[1];

 b[1] = mul(0x9,a[0][j]);
 temp1[0]= mul(0xe,a[1][j]);
 temp1[1]= mul(0xb,a[2][j]);
 temp1[2]= mul(0xd,a[3][j]);
 temp1[1]^=temp1[0];
 b[1] ^=temp1[2];
 b[1] ^=temp1[1];

 b[2] = mul(0xd,a[0][j]);
 temp2[0]= mul(0x9,a[1][j]);
 temp2[1]= mul(0xe,a[2][j]);
 temp2[2]= mul(0xb,a[3][j]);
 temp2[1]^=temp2[0];
 b[2] ^=temp2[2];
 b[2] ^=temp2[1];

 b[3] = mul(0xb,a[0][j]);
 temp3[0]= mul(0xd,a[1][j]);
 temp3[1]= mul(0x9,a[2][j]);
 temp3[2]= mul(0xe,a[3][j]);
 temp3[1]^=temp3[0];
 b[3] ^=temp3[2];
 b[3] ^=temp3[1];

 a[0][j] = b[0] ;
 a[1][j] = b[1] ;
 a[2][j] = b[2] ;
 a[3][j] = b[3] ;

 }

}

int KeyExpansion (word8 k[4][MAXKC],
 word8 W[MAXROUNDS+1][4][MAXBC]) {
 /* Calculate the required round keys
 */
 int i, j, t, RCpointer = 1;
 word8 tk[4][MAXKC];

 for(j=0; j< KC; j++)
 for (i=0; i<4; i++)
 tk[i][j] = k[i][j];
 t=0;
 /* Copy values into round key array */

66

APPENDIX A (Continued)

for (j=0; (j<KC) && (t <(ROUNDS+1) * BC); j++, t++)
 for (i=0; i<4; i++) W[t / BC][i][t % BC] = tk[i][j];

 while (t < (ROUNDS + 1)*BC) {
 /* while not enough round key material calculated,
 * calculate new values
 */

 for(i=0; i<4; i++)
 tk[i][0] ^= S[tk[(i+1)%4][KC-1]];
 tk[0][0] ^= RC[RCpointer++];

 if (KC <= 6)
 for (j=1; j < KC; j++)
 for(i=0; i<4; i++)
 tk[i][j] ^= tk[i][j-1];
 else {
 for (j=1; j < 4; j++)
 for(i=0; i<4; i++)
 tk[i][j] ^= tk[i][j-1];
 for(i=0; i<4; i++) tk[i][4] ^= S[tk[i][3]];
 for (j=5; j < KC; j++)
 for(i=0; i<4; i++)
 tk[i][j] ^= tk[i][j-1];
 }
 /* copy values into round key array */
 for (j=0; (j < KC) && (t<(ROUNDS+1)*BC); j++, t++)
 for(i=0; i<4; i++) W[t/BC][i][t%BC] = tk[i][j];
 }

 return 0;
}

int Encrypt (word8 a[4][MAXBC], word8 rk[MAXROUNDS+1][4][MAXBC])
{
 /* Encryption of one blockl
 */

 int r;

 /* begin with a key addition
 */

 AddRoundKey(a, rk[0]);

 /* ROUNDS-1 ordinary rounds
 */

 for (r=1; r < ROUNDS; r++) {
 SubBytes (a,S);
 ShiftRows(a);
 MixColumns(a);
 AddRoundKey(a,rk[r]);
 }

 /* Last round is special; there is no MixColumns
 */
 SubBytes (a,S);
 ShiftRows(a);
 AddRoundKey(a,rk[ROUNDS]);

67

APPENDIX A (Continued)

 return 0;
}

int Decrypt (word8 a[4][MAXBC], word8 rk[MAXROUNDS+1][4][MAXBC])
{

 int r;

 /* To decrypt:
 * apply the inverse operations of the encrypt routine,
 * in opposite order
 *
 * - AddRoundKey is equal to its inverse)
 * - the inverse of SubBytes with table S is

 * SubBytes with the inverse table of S)
 * - the inverse of Shiftrows is Shiftrows over
 * a suitable distance)
 */

 /* First the special round:
 * without InvMixColumns
 * with extra AddRoundKey
 */

 AddRoundKey(a, rk[ROUNDS]);
 SubBytes(a, Si);
 InvShiftRows(a);

 // ROUNDS-1 ordinary rounds

 for (r=ROUNDS-1; r > 0; r--) {
 AddRoundKey(a,rk[r]);
 InvMixColumns(a);
 SubBytes (a,Si);
 InvShiftRows(a);
 }

 // End with the extra key addition

 AddRoundKey(a,rk[0]);

 return 0;
}

int main()
{
 int i, j;
 word8 a[4][MAXBC], rk[MAXROUNDS+1][4][MAXBC], sk[4][MAXKC];

 // AES block length allowed is 128
 // BC=4 for 128-bit plaintext

 BC = 4;

 /* The KC value is changed to set the key length.
 KC=4 for 128-bit key,
 KC=6 for 192-bit key
 KC=8 for 256-bit key
 */

68

 APPENDIX A (Continued)

KC = 4;

 {
 ROUNDS = numrounds[KC-4][BC-4];

 // For the real system plaintext and
 // key is given by an external application

 for (j=0; j<BC; j++)
 for (i=0; i < 4; i++)
 a[i][j] = 0; // plaintext
 for (j=0; j<KC; j++)
 for (i=0; i < 4; i++)
 sk[i][j] = 0; // key

 KeyExpansion (sk, rk);

 // Encrpyption is performed twice and
 // decryption is performed twice

 Encrypt(a, rk);
 printf("Encrypt 1:");

 for(j=0; j< BC; j ++)
 for (i=0; i<4; i++)
 printf("%02X", a[i][j]);

 printf("\n");

 Encrypt(a, rk);
 printf("Encrypt 2:");

 for(j=0; j< BC; j ++)
 for (i=0; i<4; i++)
 printf("%02X", a[i][j]);

 printf("\n");printf("\n");

 Decrypt(a, rk);
 printf("Decrypt 2:");

 for(j=0; j< BC; j ++)
 for (i=0; i<4; i++)
 printf("%02X", a[i][j]);
 printf("\n");

 Decrypt(a, rk);
 printf("Decrypt 1:");

 for(j=0; j< BC; j ++)
 for (i=0; i<4; i++)
 printf("%02X", a[i][j]);
 printf("\n");printf("\n");

 }

 printf("\n\n\t\t End of the program\n\n");
 return 0;
}

69

APPENDIX A (Continued)

Figure A.1: Function call tree

70

INDEX

3-DES, 2
Address Generation Unit, 16
AddRoundKey(), 23
AddRoundKey(), 46
Advanced Encryption Standard, 15, 18
AES, 15, 18
AES-128, 15
AES-192, 15
AES-256, 15
AGU, 16
algorithm switching, 56
ASIC, 6
Asymmetric algorithm, 9
Attacks, 36
Authenticity, 8
Block algorithm, 9
bruteforce attack, 9
buffer, 25
C, 6
C++, 6
CBC, 11
CFB, 12
cipher, 8
Cipher Block Chaining, 11
Cipher Feedback Mode, 11
CodeWarrior, 26
CodeWarrior profiler, 42
Compiler Exploitation, 27
confusion, 9
Constant-time Implementation, 38
Co-synthesis, 15
Counter Measures, 38
Counter Mode, 13
Critical Paths, 28
cryptanalysis, 1
cryptographer, 8
Cryptography, 1, 8
Cryptology, 1
cryptosystem, 8
CTR, 13
Data ALU, 16
Data Arithmetic Logic Unit, 16
Data throughput, 54
decrypt(), 45, 47
decryption, 8
DES, 2
Differential Power Analysis, 37
diffusion, 9
ECB, 10
Electronic Code Book, 10
embedded java, 7
embedded system, 1
encrypt(), 45, 47
encryption, 8
Exclusive-OR Cipher, 9
Fault induction attacks, 38

Field Programmable Gate Arrays, 6
GF, 23
High-level Synthesis, 26
I/O Queues Management, 35
Instruction-level Parallelism, 30
Integrity, 8
Inverse Cipher, 24
InvShiftRows(), 22
Java, 7
KeyExpansion(), 19
linear feedback shift register, 39
loop merging, 31
loop unrolling, 30
Memory size, 54
Metal shielding, 53
Microcontroller, 5
MixColumns(), 22
modularization, 27
mul(), 45
Multi-sample Processing, 31
OFB, 12
Optical probing, 37
optimization metrics, 53
optimization techniques, 28
Output Feedback Mode, 12
physical shielding, 37
pipelining, 31
plaintext, 8
Portability, 27
Power Attacks, 37
Power consumption, 54
Probing attacks, 37
Production cost, 53
Program Sequencer, 16
PSEQ, 16
pseudo code, 19
pseudo-random number, 39
public-key algorithm, 9
Random number generation, 38
Rijndael, 15
RISC, 5
Robustness, 54
S-box, 21
Secrecy, 8
ShiftRows(), 22, 45
Side-channel Cryptanalysis, 37
Simple Power Analysis, 37
smart cards, 53
Split Summation, 32
state, 18
Stream algorithm, 9
Structural Partitioning, 5
SubBytes(), 21, 45
Substitution Cipher, 9
Symmetric algorithm, 9
Temporal obfuscation, 38

71

Time-sliced multitasking, 35
Timing attacks, 37

Transposition Cipher, 9
XOR, 9

	University of South Florida
	Scholar Commons
	7-17-2003

	Embedded Cryptography: An Analysis and Evaluation of Performance and Code Optimization Techniques for Encryption and Decryption in Embedded Systems
	Jayavardhan R. Kandi
	Scholar Commons Citation

	Microsoft Word - THESIS-Jay16.doc

