
  

  
Abstract—Telehealth systems and applications are extensively 

investigated nowadays to enhance the quality-of-care and, in 
particular, to detect emergency situations and to monitor the 
well-being of elderly people, allowing them to stay at home 
independently as long as possible. In this paper, an embedded 
telehealth system for continuous, automatic, and remote 
monitoring of real-time fall emergencies is presented and 
discussed. The system, consisting of a radar sensor and base 
station, represents a cost-effective and efficient healthcare 
solution. The implementation of the fall detection data processing 
technique, based on the Least-Square Support Vector Machines 
(LS-SVM), through a digital signal processor (DSP) and the 
management of the communication between radar sensor and 
base station are detailed. Experimental tests, for a total of 65 
mimicked fall incidents, recorded with 16 human subjects (14 
men and 2 women) that have been monitored for 320 minutes, 
have been used to validate the proposed system under real 
circumstances. The subjects’ weight is between 55 and 90 kg with 
heights between 1.65 and 1.82 m, while their age is between 25 
and 39 year. The experimental results have shown a sensitivity to 
detect the fall events in real-time of 100% without reporting false 
positives. The tests have been performed in an area where the 
radar’s operation was not limited by practical situations, namely 
signal power, coverage of the antennas, and presence of obstacles 
between the subject and the antennas. 
 

Index Terms—Contactless, DSP platform, fall detection, health 
monitoring, LS-SVM, movement classification, radar remote 
sensing, telehealth systems, Zigbee communication.  
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I. INTRODUCTION 

HE elderly population has been steadily increasing 
worldwide [1]. This situation, together with the shortage 

of nursing homes and the natural desire to stay at home, has 
resulted in a growing need for healthcare solutions to improve 
the quality of life for senior citizens and to increase the 
efficiency of systems for health and social care. Elderly people 
who live alone are usually exposed to health risks which in 
some cases may cause fatality. Moreover, in addition to 
chronic health problems, fall incidents are considered one of 
the major problems among the elderly worldwide. They often 
result in serious physical and psychological consequences [2]. 
The rapid detection of a fall event can reduce the mortality 
risk and increases the chance to survive the incident and return 
to independent living [3], [4]. For that reason, it is imperative 
to detect falls as soon as they occur such that immediate 
assistance may be provided. 

Current fall detection systems are based on a necklace or 
wristwatch with a button that is activated by the patient in case 
of an accident. Other devices involve accelerometers and 
gyroscopes attached to the body [5], [6]. However, in 
emergency situations, this imposes an important risk factor. In 
fact, the person may forget to wear the device, or likely may 
no longer be able to press the button. Moreover, these devices 
produce discomfort and false alarms. An academic 
investigation of an accelerometer-based fall detector system 
using a biocompatible and impermeable skin patch has been 
reported in [7]. It can be carried by the user with the added 
value that the subject does not have to remember to wear it. 
The ideal solution is therefore a contactless approach that 
avoids the need for actions by the elderly person. Systems 
under investigation in the latter category are based on video 
cameras [8]-[11], floor vibration [12], and acoustic sensors 
[13]. In the case of the video camera method, researchers are 
currently trying to address challenges related to low light, field 
of view, and image processing, but also privacy is a concern 
[8]-[11]. Floor vibration and acoustic sensors have limited 
success due to the environmental interference and background 
noise [12], [13].  

A novel and complementary investigation was presented by 
the authors in [14]-[16]. The resulted system, combining radar, 
wireless communication, and data-processing techniques, was 
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demonstrated in an in-door environment to detect fall 
emergencies and to localize persons without the need of 
radio-frequency identification (RFID) tags attached to the 
person [16]. The system consists of a radar sensor that detects 
the monitoring signals of a person and transmits this 
information to a base station for remote data processing. The 
described base station consists of a Zigbee module, a 
microcontroller, and laptop, resulting in a non-compact and 
energy-inefficient solution. Moreover, the system was not able 
to work in real-time. In fact, the speed signals, consisting of 
one single activity (i.e., falling, walking) with known starting 
and end time points, were collected, stored, and processed 
offline later. 

In comparison to the previous work [16], a cost-effective 
and energy-efficient base station based on a DSP embedded 
platform has been developed to detect fall emergencies in 
real-time. The implementation of the data processing 
technique to operate in real-time, the management of the 
communication between radar sensor and base station, 
together with design challenges, practical limitations, and their 
solutions, are presented and discussed. 

Other interesting works on contactless fall detection using 
radar techniques were reported also in [17]-[19]. In these 
papers, a sequence of feature vectors, as a result of the STFT 
(Short Time Fourier Transformer), is transformed to a single 
feature vector of fixed length per segment. Hence, each 
activity can be represented by a single feature vector which 
can be the basis for standard machine learning methods such 
as Least Squares Support Vector Machines (LS SVM). 
However, in this proposed work an activity is represented by a 
sequence of vectors (with possibly different lengths). Within 
the LS-SVM framework it is feasible to work on such data by 
choosing a specific kernel function that is suited to process 
varying-length sequences of vectors. For this purpose, the 
Global Alignment (GA) kernel [20] was used in this work. 

More specifically, the sequences of vectors are computed 
using the STFT. Therefore, each vector containing the spectral 
information of a single time window, considers a radar signal 
segment with a movement activity at some position 
(beginning, middle, end). The use of the GA kernel allows to 
correctly compare two segments with the, to be detected, 
movement positioned differently. This without relying on 
some energy selection criterion that select small parts of the 
segment to construct a fixed length vector but by comparing 
the frequency signatures. The details of our classification 
strategy are described in [15]. Moreover, in [17]-[19] the radar 
data were collected and processed offline, and nothing was 
mentioned about full radar-based telehealth system, where the 
monitoring signals are transmitted wirelessly to a base station 
unit to process them in real-time.  

The telehealth monitoring system is introduced in Section 
II. The implementation of the data processing technique by 
means of a DSP platform is detailed in Section III, while the 
experimental results are described in Section IV. 

II. FALL DETECTION TELEHEALTH SYSTEM 

In this section, the telehealth system described in [16], is 
briefly introduced to better understand the novelty of this work 
which will be detailed in the next section. However, as 
opposed to [16], where the base station consists of a Zigbee 
module, a microcontroller, and a laptop, a DSP-based base 
station has been developed and used in this work. 

The telehealth system consists of a sensor, combining radar, 
computational, and wireless communication capabilities, and a 
base station for data processing (Fig.1). A Continuous Wave 
(CW) waveform at 5.8 GHz is generated and transmitted 
toward a human target to detect its speed produced during 
daily activities, such as falling, walking, random movements. 
In fact, by the Doppler effect, a radio wave reflected by a 
moving target undergoes a frequency shift proportional to its 

 
Fig. 1.  Block diagram of the fall detection telehealth system. 



  

velocity. The reflected echo, containing the person’s speed 
information, is collected by the receiver. The resulting 
baseband signals are digitized and transmitted to the base 
station to distinguish fall events from normal movements.  

The sensor architecture and the DSP-based base station are 
described in Subsection II.A and in Subsection II.B, 
respectively. Moreover, the technique to distinguish fall events 
from normal movements is described in Subsection II.C. 

A. Sensor Architecture  

The radar sensor is composed of a radar module, a 
microcontroller, and a Zigbee module (Fig. 2). It also mounts 
a two-element bow-tie antenna to support both the wireless 
communication between the sensor and the base station and 
the radar working frequency. The antenna was optimized to 
reduce the backscattering and crosstalk effects, presenting also 
a semispherical radiation pattern to cover a whole room [21]. 

The radar module integrates a Fractional-N Phase-Locked 
Loop (PLL), a power divider, a radio frequency (RF) switch, a 
low noise amplifier (LNA), a gain block, an In-Phase and 
Quadrature (IQ) mixer, baseband filters and amplifiers.  

The 5.8 GHz single tone is generated by the PLL that is 
configured by the microcontroller. This signal is sent to the 
power divider that splits it in two branches. The first output is 
connected to the RF switch. The latter is controlled by the 
microcontroller to alternatively connect the radar transmitter 
and the Zigbee module to the transmitter antenna. The signal 
reflected from the target is received, amplified, and then 
mixed with a copy of the transmitting signal. On the receiving 
path, the signal is amplified by the LNA and the gain block, 
for a total gain of 30 dB. The output of the gain stage is 
connected to the RF input of the mixer. The local oscillator 
(LO) input of the mixer is connected to the second output of 
the power divider. The IQ baseband signals produced by the 
mixer are amplified, filtered, and adapted to the ADC’s 
dynamic range. The 10-bit ADC is integrated into the 
microcontroller and works with a sampling frequency of 250 
Hz, such that every 4 ms an IQ sample pair is acquired and 
digitized. Since the Zigbee module transmits only frames 
organized in bytes, each IQ sample pair is mapped in 3 bytes. 
These samples are packed in a frame of 75 bytes and then 
transmitted wirelessly to the base station through the Zigbee 
module every 100 ms. This transmission requires about 3 ms 
and is performed in between sampling instants. This 
guarantees both that the sampling rate is always constant and 
that the person is continuously monitored. 

B. DSP-based Base Station Architecture 

The developed base station consists of a Zigbee module and 
the TMS320C6678 DSP platform (Fig. 3). This processor 
implements an SIMD (Single Instruction, Multiple Data) 
approach in floating point instructions in single (32 bits) and 
double (64 bits) precision, allowing to maintain the same data 
format of Matlab scripts. It integrates 8 DSP cores that run at 1 
GHz each, and it has shared integrated static random access 
memory (SRAM) of 4 MB. It also has a high speed external 
memory controller, which supports DDR3 up to 1600 MT/s, 

together with a data bus width of 64 bits that is capable of 12.8 
GB/s. For this particular DSP, mathematic and signal 
processing hand assembly optimized libraries are also 
available, to speed up the process of optimizing signal 
processing algorithms. 

The DSP is connected through a Serial Peripheral Interface 
(SPI) to the Zigbee IC. The latter acts as a slave in the SPI 
interface while the DSP is the master. There are also 3 control 
lines, namely RST (active low reset), SLP (sleep), and IRQ 
(Interrupt ReQuest). The latter is the interrupt pin that is set 
every time a complete frame is received. This pin in connected 
to a DSP GPIO (General-Purpose Input/Output) port that 
triggers the routine for receiving the transmitted frame from 
the Zigbee module. 

C. Data Processing Technique 

In this Subsection the technique to distinguish fall events 
from normal movements, which was already explained in [16], 
is briefly introduced for completeness to understand how the 

 
Fig. 2.  Developed radar sensor. 

 

 
Fig. 3.  DSP-based base station. 
 
 



  

system has been extended to work in real-time. In [16], in fact, 
the speed signals, consisting of one single activity with known 
starting and end time points, were collected, stored, and 
processed offline later. Moreover, in [16] the validation was 
performed considering only falling and walking movements.   

The digitized speed baseband signals are processed offline 
in Matlab. A movement classification based on a LS-SVM 
approach combined with a GA kernel [15] is applied to 
analyze the digitized baseband speed signals in order to 
distinguish fall events from the other activities. The fall 
detector aims at assessing the changes in speed experienced 
during a fall or a normal movement. The developed algorithm 
consists of two stages of data analysis, namely the training 
phase and the testing phase.  

The training phase consists of event detection and 
segmentation, preprocessing, and model estimation. For each 
collected signal, consisting of one single activity, the energy’s 
peak is first detected and then the signal is cut around it to 
create a segment of 2 seconds, considered sufficient to cover 
the details of the activities and mainly of a fall event. Those 
segments are used to build a data set. After that, the data is 
preprocessed (or standardized) such that each dimension has 
zero mean and unit standard deviation. Next it is transformed 
using the STFT from which only the magnitude spectrum is 
retained. The resulting data is standardized again and the 
learning process is started. The model is then created and 
stored in a memory to be used in the testing stage. In the 
model, the activities are divided in two groups, namely fall 
events and normal movements. 

In order to validate it, an independent test set, with data not 
used in the training phase, is needed. It is built, acquiring test 
signals, consisting of one activity, that undergone the same 
operations of event detection, segmentation, and preprocessing 
described for the training phase. The resulting test set is then 
compared to the model. 

III.  FALL DETECTOR 

In this Section the implementation of the data processing 
technique to operate in real-time is detailed. In particular, the 
synchronization and the communication between radar sensor 
and base station are explained in Subsection III.A. The 
training phase and the testing phase described in Subsection 
III.B and in Subsection III.C, respectively. The classification 
implementation is detailed in Subsection III.D. 

A. Sensor-Base Station Communication 

In order to synchronize the system, the Zigbee modules of 
the sensor node and of the base station are set at power-on as 
receiver and transmitter, respectively. The sensor node will 
stay in this modality until it receives a frame of two fixed 
bytes (coins) from the base station, meaning that it is ready to 
process the monitoring signals. The base station sends the 
coins to the sensor. The latter checks whether the received 
bytes are equal to a copy of the coins saved in its memory. If 
that condition is verified, the sensor is changed immediately to 
transmission mode and it sends back the received coins to the 
base station that in the meanwhile has set itself as receiver. 
Once they have been received, the base station checks whether 

the received coins are equals to the initial token sent at the 
beginning of the synchronization process. In the case this 
procedure is correct, a message, meaning that the 
synchronization has been achieved, is printed out to the debug 
monitor. On the other hand, if this procedure is not correct or 
the coins are not received within one second, an error message 
is printed out and the system must be rebooted to restart the 

 

 
Fig. 4.  Block diagram of the implemented LS-SVM with GA kernel 
technique. 
 

 

Fig. 5.  Fall detection testing phase flow chart. 
 
 



  

synchronization process.  
The Zigbee module in the base station receives the speed 

frames every 100 ms. Every time a new frame is received, the 
IRQ pin of the Zigbee module is set. This triggers an interrupt 
to the DSP, such that the data can be read. 

B. Training Phase 

The simplified block diagram of the training phase is shown 
in Fig. 4. In order to create the model, a routine has been 
implemented to acquire the signal activities. In particular, it 
allows acquiring signals of 8 seconds. During this time a 
subject should perform only one activity (i.e., falling, walking, 
random movement). Moreover, in between successive 
acquisitions, there is a time slot of 30 sec. such that the person 
can prepare himself/herself to mimic another activity. 

After the acquisition, the activity energy’s peak of each 
signal is extracted such that the signal is cut around this peak 
to produce a segment of 2 seconds. All these segments are 
arranged in a matrix and the preprocessing is performed, 
where the STFT is involved, such that the segments are first 
cut into 50% overlapping frames that are multiplied with a 
Hamming window, and then the Fast Fourier Transformer 
(FFT) is computed on each of these frames.  

The result of the preprocessing is sent to a laptop for the 
model estimation, where an off-the-shelf algorithm 
implemented in a Matlab script was involved. The generated 
model is saved as a three-dimensional matrix in a C header file 
and is then stored in the internal SRAM of the DSP.  

The operations of event detection, segmentation, and 
preprocessing could be directly run in Matlab. However, in 
order to perform the FFT, the DSP uses assembly optimized 
libraries that produces results slightly different from Matlab. 
The differences would have resulted in classification errors 
during the testing phase that is performed by the DSP. 

C. Testing Phase 

The testing phase consists of signal concatenation, 
preprocessing, and classification (Fig. 4). In order to process a 
continuous stream of radar signals consisting of multiple 
activities invoked at unknown instants, a signal concatenation 
technique has been investigated in the testing phase. More 
precisely, every time a new frame is available (i.e., 100 ms of 
new speed signals), the relative I/Q samples are concatenated 
with the last 1.9 sec. of the previous signals to create a 
segment of 2 sec., that is preprocessed and classified. The 
system manages also the power-on situation. In fact, when it is 
powered on, it accumulates 2 sec. of signals (i.e., 20 frames of 
25 I/Q sample pairs). After this first segment is processed, 
every new frame will be concatenated to the previous 19. This 
procedure involves an overlap of 95% among segments. This 
large overlap is used to improve the performance of the 
system. In fact, a larger overlap involves a higher number of 
classifications such that a fall event will be considered over 
multiple segments. This makes the system more immune to 
the noise that could generate a false positive in a single 
segment classification. An alarm is activated if a fall event has 
been detected. The flow chart of the testing phase is shown in 
Fig. 5. 

D. Parallelization Classification Technique 

A custom parallelization technique involving the 8 cores of 
the TMDS320C6678 DSP has been implemented to perform 
real-time classification. The strict requirement is that a 
segment classification must be performed before a new Zigbee 
communication occurs, that means in a time shorter that 100 
ms. In this work a fall event is detected when 3 consecutive 
segments have been classified as a fall. This involves that the 
maximum time to detect a fall should be shorter than 400 ms. 

The pseudo-code of the classification is shown in Fig. 6. 
The core of the algorithm is to determine the Kernel array K, 
whose elements are calculated by the function 
computeGAK(Test, Training), that is an off-the-shelf C code 
that computes the Global Alignment Kernel for the LS-SVM 
algorithm [15], [20]. The K array is generated starting from 
the Training matrix and the Test matrix, which are 
multidimensional arrays, resulting from the model estimation 
and the preprocessing in the testing phase respectively. The 
Training matrix, consisting of Ntrain elements, contains the 
result of the preprocessing performed in the training phase. In 
particular, each activity is segmented into sequences of 2 
seconds (i.e., 500 samples), on which the STFT is applied. 
Since the latter involves 32-sample windowing with 50% 
overlap, 30 sequences of 32 samples are generated. The 
meaningful information for the classification resides in the 
first 8 samples of the STFT, meaning that, for each activity, 30 
non-redundant sequences of 8 samples are produced. These 
sequences are then organized into a two-dimensional (2-D) 
array of dimension 30 x 8. This means that the Training 
matrix consists of Ntrain elements, where each element is a 30 x 
8 matrix. This makes the Training matrix a three-dimensional 
(3-D) array of dimension Ntrain x 30 x 8. Similar considerations 
are valid for the Test matrix. Since in the real-time 
implementation only a single 2-sec. segment of signal is 
classified each time, the resulting Test matrix is a 2-D array of 
dimension 30 x 8.  

For each iteration of the loop (Fig. 6), 8 elements of the 
Kernel array K are computed at the same time by the 8 cores 
of the DSP. Each core invokes the function computeGAK() 
independently. Finally, the function f(K) returns a number that, 
compared to a threshold, determines whether the segment 
contains a fall or normal movement data. 

In order to generate the K array, a fork/join method, based 
on an Inter Processor Communication (IPC) technique, has 
been designed. It exploits the internal shared memory of an 
architecture to synchronize and exchange data among 
processing units. In doing this operation, a master/slave 
approach has been chosen, where core0 is the master core that 
manages the fork/join processes and also computes Kernel 
elements. In particular, during the fork process, the arguments 
for the function computeGAK(Test, Training) are passed to the 
8 cores, while in the join process, the results of each core are 
collected. More precisely, during the fork phase, the master 
core core0 passes to each slave core both the address of one 
element of the Training matrix and the address of the Test 
matrix. Each core therefore compares each time the j-th 30 x 8 
element of the Training matrix with the 30 x 8 Test matrix. 



  

The result of the comparison is a double precision float that is 
saved, during the join phase, into the Kernel array K at the j-th 
position. This operation is possible because the elements of 
the Training matrix are independent from each other.  

A Finite State Machine (FSM) has been designed to control 
the 7 slave cores (Fig. 7). It consists of two states, namely 
STATE0 and STATE1, and two flags, Status and Idle. 
Initially, all the slave cores are in STATE0, meaning that they 
are in idle mode, with Idle flag set to 1.  They remain in this 
state until the master sets the Status flag after having passed 
them the computeGAK() arguments. When this happens, the 
slave cores clear their Idle flags and go to STATE1. In this 
state, the slave cores call the function computeGAK(). When 
all the cores have cleared the Idle flag, the master core can 
also call the computeGAK() function. After the results are 
computed, each slave core sets the Idle flag and waits for 
Status flag to be cleared by the master core, meaning it has 
received the results. When this happens, the slave cores return 
to STATE0, waiting for new data to be processed. 

In order to exchange arguments and to control the FSM 
properly, 8 shared memory messages have been designed for 
the 8 cores. Each message has the format of a C structure as 
shown in Fig. 8, where: 
‒ status is the control flag that is used to trigger the start of 

the slave core operation; 
‒ idle is the flag that indicates whether a slave core is 

processing data or is waiting to receive new data (i.e., idle 
state); 

‒ *seq1 is the pointer to the j-th 30 x 8 element of the 
Training matrix that needs to be processed; 

‒ *seq2 is the pointer to the 30 x 8 Test matrix that needs to 
be processed; 

‒ nX is the first dimension of each element of the Training 
matrix (i.e., 30 in this work); 

‒ nY is the first dimension of each element of the Test matrix 
(i.e., 30 in this work); 

‒ dimvect is the second dimension of each element both of 
the Test matrix and of the Training matrix (i.e., 8 in this 
work); 

‒ sigma and triangular are two parameters generated in the 
training phase of the classification. The values of these 
parameter are evaluated in order to minimize the cost 
function of the LS SVM formulation [15], [20]; 

‒ return_value is the result of the comparison between one 
element of the Test matrix and one element of the Training 
matrix. 

When all the elements of the Kernel matrix K are 
calculated, the master core calculates the values f(K) and 
establishes whether the event is a fall or a normal movement.  

The implemented parallelization technique together with the 
signal reception, managed by interrupts, represents a flexible 
solution even if multiple sensors are used. In fact, the DSP is 
able to receive frames from the Zigbee module even if the 
classification is running, meaning that a sensor can transmit 
data at any time, without requiring a complex synchronization 
of the whole network. In fact, the interrupt service routine 
(ISR) is served only by the master core, that reads and stores 

the new data in a buffer, while the slave cores can continue to 
perform their operation without interruption. This means that 
the maximum number of sensors that can be managed by the 
base station is limited only by the number of classifications 
that can be performed within 100 ms. 

 

Fig. 6.  Classification pseudo-code. Ntrain represents the number of 
matrices in the Training structure. The vector α and the constant b are 
variables estimated in the training phase.  
 

 

 

Fig. 7.  FSM of the slave cores. 
 

 

 

Fig. 8.  Example of message used in the Shared Memory IPC technique. 
 



  

Fig. 9.  Real room environment. 

IV. EXPERIMENTAL RESULTS 

Experimental tests have been performed with human 
volunteers in a room of 5 x 5 m2 (Fig. 9). Furniture, a metal 
shelf, tables, a sofa, PCs, and chairs were positioned to mimic 
a real room setting. The sensor was fixed to the wall at a 
height of 1.25 m while the base station was positioned on a 
desk about 4 m away the sensor. 

The classification model has been created on signals 
acquired on three volunteers in different positions in the room 
who did not participate in the testing phase. It includes 40 
random walking activities, 30 activities of sitting down and 
standing up, 40 fall activities, considering both hard falls, 
where the person falls directly to the ground, and soft falls, by 
which the person tries to avoid the incident by grabbing 
objects. In addition, 20 random movements, such as opening 
the window, moving a chair, have been also considered. 

In order to validate the real-time fall detector, 64 tests, for a 
total of 65 simulated fall events, have been performed on 16 
volunteers (14 men and 2 women) that have been continuously 
monitored for five minutes each. This means that this 
validation considered 320 minutes of measurements. 
Therefore, considering that a segment of signal is processed 
every 100 ms and also the power-on condition (namely the 
system should first accumulate 2 s of signals), this validation 
has been performed over 190784 testing segments of radar 
signal. The subjects were allowed to move without restrictions 
within the antenna’s beamwidth, meaning that they could 
mimic all the typical movements that are normally achieved in 
a domestic environment (i.e., walking, talking at the cellular 
while walking in the room, dropping object or even a chair, 
walking with a cane and with a walker, sweeping, working at 
the pc, watching films, resting on the sofa, eating, open 
windows, drinking water, etc.). One single volunteer was 
present in the room at a time and performed only one fall 
during the monitored period. Only in one test, the volunteer 
was invited to mimic two consecutive falls where the subject 
experiences a first fall, then tries to gets up, and then falls 

again. The mimicked fall incidents included both hard falls 
and soft falls. Other simulations consider situations where the 
person falls from a chair, loses the equilibrium while walking 
with a cane or with a walker, sits and misses the chair, loses 
the equilibrium and falls on a chair, is bent over and tries to 
get up. To this end, videos recorded in nursery homes with 
real fall incidents have been watched in order to mimic real 
life situations. The subjects’ weight is between 55 and 90 kg 
with heights between 1.65 and 1.82 m, while their age is 
between 25 and 39. The experimental results have shown a 
sensitivity in detecting the mimicked fall events in real-time of 
100%. Moreover, no false positives have been reported. 

It should be noted that this validation considers only falls 
where the volunteers are located at angles between 0 and 
about 45 degrees from the line of sight (LoS) of the antenna, 
otherwise the related radial speeds would produce lower 
Doppler frequencies such that fall incidents will be classified 
as normal movements. Other possible limitations of the radar 
system are when the person is in a position outside of the 
antenna beamwidth and when his/her reflection is obstructed 
by furniture. Also the target absolute distance could represent 
a limitation. In fact, the longer the distance is, the weaker is 
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Fig. 10.  Classification results (a) of a signal containing multiple activities and (b) zoom of the related fall event. In this example, the results of the classification 



  

the target’s reflection, such that it may no longer lie within the 
radar dynamic range and then it will be buried in the noise. 
This problem can be mitigated both by increasing the output 
power and by increasing the receiver’s gain. However, the 
maximum transmitted power is limited by the spectral masks 
of the standards (i.e., maximum allowable power in in-door 
environments), while the receiver’s gain is limited by the 
unwanted reflections generated by the radar itself (i.e., 
crosstalk, backscattering, isolation between transmitter and 
receiver). However, the radar dynamic range does not 
represent a serious problem in a typical room of 5 x 5 m2. 
Obviously, these limitations could be avoided by using 
multiple sensors. 

Fig. 10 shows the classification results on a small portion of 
a signal containing multiple random activities and a fall event 
invoked at about 58 seconds. Each dot represents the class 
where a segment of 2 sec. of signal has been assigned. The 
event was classified as fall for seven consecutive segments.  

The measured time to process a segment of 2 sec. of signal 
is about 16 ms. This means that, considering Zigbee 
transmissions every 100 ms, with the developed approach, it is 
possible to process signals coming from six sensors without 
loss of information. Since an alarm is activated when three 
consecutive segments are classified as a fall, the maximum 
time to detect the incident is about 316 ms. 

Figures 11.a, 11.b represent the resulting speed signals of a 
walking movement and of a fall event, respectively. The 
frequency of the signals is proportional to the radial velocity 
of the person during the movement. Figs. 11.c, 11.d show the 
two spectrograms corresponding to the movement activities of 

Figs. 11.a, 11.b, respectively. The horizontal axis represents 
time, the vertical axis frequency, a third dimension indicating 
the amplitude of a particular frequency at a particular time is 
represented by different shades of gray. In this example a 
sliding window size of 64 samples with 50% overlap is 
adopted.  In case of a fall an increase in dominant frequency 
over time is observed while for the walking activity the 
dominant frequency per time window remain within a small 
specific band. 
 

V. CONCLUSION 

In this paper, a telehealth system aiming at remote fall 
detection in an in-door environment has been presented. It 
consists of a microwave radar sensor and a wirelessly 
connected base station for data processing. The 
implementation of the fall detection algorithm by means of a 
DSP platform has been presented. Experimental results 
conducted with human subjects under real circumstances have 
shown a sensitivity to detect fall events in real-time of 100%, 
without reporting any false positives, with a maximum delay 
of about 316 ms. The tests have been performed in an area 
where the radar’s operation was not limited by practical 
situations, namely signal power, coverage of the antennas, and 
presence of obstacles between the subject and the antennas. 
Moreover, the proposed approach would allow to process at 
the same time up to six sensors without loss of information. 
This system is the result of the convergence of information, 
wireless technologies, and radar techniques, and is in-line with 
the growing need for health technologies and applications to 
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enhance the quality-of-care for elderly people both in home 
and clinical environment. Next step is to integrate multiple 
sensors in a wireless sensor network to detect fall incidents in 
all the directions and to perform in-door positioning by 
implementing a trilateration technique. 
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