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Abstract: Mapping flash flood susceptibility is effective for mitigating the negative impacts of flash
floods. However, a variety of conditioning factors have been used to generate susceptibility maps in
various studies. In this study, we proposed combining logistic regression (LR) and random forest (RF)
models with embedded feature selection (EFS) to filter specific feature sets for the two models and
map flash flood susceptibility in the mainstream basin of the Songhua River. According to the EFS
results, the optimized feature sets included 32 and 28 features for the LR and RF models, respectively,
and the composition of the two optimal feature sets was similar and distinct. Overall, the relevant
vegetation cover and river features exhibit relatively high effects overall for flash floods in the study
area. The LR and RF models provided accurate and reliable flash flood susceptibility maps (FFSMs).
The RF model (accuracy = 0.8834, area under the curve (AUC) = 0.9486) provided a better prediction
capacity than the LR model (accuracy = 0.8634, AUC = 0.9277). Flash flood-prone areas are mainly
distributed in the south and southwest and areas close to rivers. The results obtained in this study is
useful for flash flood prevention and control projects.

Keywords: flash flood; susceptibility mapping; feature selection; random forest; logistic regression

1. Introduction

Floods are one of the most frequent natural disasters on Earth [1]. In recent years,
flood risk has increased with global climate change [2,3]. Flash floods, characterized by the
rapid formation of flood conditions, often result in severe life and property losses due to
their strong suddenness and high flow rates [4,5]. Flash floods are the active exhibitions of
surface runoff on slopes and are caused by heavy rainfall that lasts only a few hours [6].
Rapid flash flood outbreaks pose a challenge for risk management in basins and make
timely communication and decision-making difficult [7]. Therefore, the key subjects related
to the assessment and warning of flash floods have been widely studied by the research
community at various catchment and regional scales [8].

Flash flood susceptibility maps (FFSMs) play an essential role in risk mitigation and
are considered effective tools for alleviating the harmful effects and risks associated with
flash floods [9]. An FFSM generally defines areas in which the likelihood of a flash flood
occurring ranges from very low to very high; this likelihood is related to the physical
and geographical characteristics of the corresponding areas [6,10]. This method can be
used over large areas, such as entire river basins, because it provides useful guidance for
decision-makers to effectively manage locations that are at risk of flash flood disasters [1].
Hence, it is essential to produce reliable and accurate FFSMs for flash flood-prone basins.
FFSMs are spatially predicted using the assumption that future floods could occur under
circumstances similar to those that caused previous flash floods [9]. In recent years, the
hazard susceptibility assessment methods applied over large areas globally have mainly
focused on the use of machine learning algorithms, such as logistic regression (LR) [11,12],
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frequency ratios [13,14], decision trees [15,16], support vector machines [14,17], random
forests (RFs) [12,18], and artificial neural networks [10,12]. Promising results have been
achieved using these methods by inputting many conditioning factors. However, models
are paid more attentions by studies, with little attention to how the factors inputted into
the model are selected.

Conditioning factor datasets containing different numbers and compositions of fac-
tors have been selected and applied to map flash flood susceptibility in multiple studies,
namely, nine factors were used for developing FFSM in the northwest mountainous re-
gion of Vietnam [19], and fifteen factors were selected as independent variables for flash
flood susceptibility modeling in Iran [9]. In China, twelve geographic, meteorological,
and hydrological explanatory factors were selected for mapping flood susceptibility on a
national scale [20], and eleven flood related variables were used for construction of a flood
susceptibility map in Poyang County [21]. Generally, these conditioning factors are chosen
based on the results of previous studies, expert knowledge, and the availability of data.
There are currently no criteria for selecting conditioning factors for susceptibility mapping.
However, previous studies have suggested that it is important to choose an effective set
of conditioning factors in the process of modeling flash flood susceptibility [22]. Factors
that are uncorrelated with flash flood phenomena, i.e., factors with very low predictive
capabilities, may generate noisy input data, which may result in the applied models having
decreased predictive capabilities [6]. In general, all candidate conditioning factors have
certain predictive capabilities for flash flood modeling. However, selecting the most rele-
vant conditioning factors may be suboptimal when building a predictor, especially if some
factors are redundant. In contrast, the selection of a subset of useful features may remove
many relevant but redundant features [23]. Various machine learning models have specific
feature-learning characteristics, and the choice of a proper feature selection method can
maximize the classification ability of these models [1]. Therefore, the present paper focuses
on constructing and selecting feature subsets that are useful for constructing high-accuracy
susceptibility maps.

Feature selection techniques can assist in removing irrelevant variables with low pre-
dictive power [24], and these techniques can be roughly grouped into three main categories,
namely filter, wrapper, and embedded methods [25]. Filter methods preprocess features
to remove the features that are unlikely to be useful for the model without considering
the employed model [26]. For instance, the predictive ability of the factors was assessed
for selection using information gain ratio [6,22]; correlation-based feature selection was
filtered by finding relevant factors [27]. The disadvantages of filtering methods are that
they ignore the interaction with the classifier and each feature is considered separately, thus
ignoring feature dependencies [28]. Wrapper methods use the predictor as a black box to
test each subset of potential features and select the subset that maximizes performance [29].
Generally, widely-used wrapper-based feature selection methods include genetic algo-
rithms [24] and sequential forward selection [30]. However, this kind of method has a
higher risk of overfitting and is very computationally intensive, requiring a considerable
training time [28,31]. Furthermore, the order in which subsets are input in wrapper meth-
ods directly impacts the feature selection results [32,33]. Compared to the two types of
methods described above, embedded methods incorporate feature selection as part of
the model-training process and can select features that are most suitable for a certain
model [23,34]. Embedded methods have the advantage of including interaction with the
classification model while being significantly less computationally intensive than wrapper
methods [28]. Consequently, we select machine learning algorithms that allow the use of
embedded feature selection (EFS), namely, LR and RF models, to analyze and map flash
flood susceptibility in this study.

China is among the countries plagued by flash floods, which seriously threaten the
safety of people’s lives and property [35]. The Songhua River Basin is the main flood-
affected area and an important river basin in Northeast China. In this context, the main
purpose of the present study is to employ two classical machine learning algorithms,
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namely, LR and RF, in combination with an EFS method to assess flash flood susceptibility
in the mainstream basin of the Songhua River. We compare the results obtained from the
two algorithms in terms of (1) the identification of features that considerably influence
the flash flood occurrence in the study area following the use of EFS and (2) the ability
of the models to simulate flash flood susceptibility. The predictive results of the models
and the importance of the selected features are discussed, with a particular focus on their
commonalities and differences between the two models. FFSMs of the study area are also
generated using each method considering the selected variables.

2. Study Area

The study area is the mainstream basin of the Songhua River in Northeast China;
this region spans Jilin and Heilongjiang Provinces (Figure 1). It lies between 124◦39′E
and 132◦31′E and between 43◦01′N and 48◦39′N, with a total area of approximately
1.93 × 105 km2. The orographic conditions manifest in a clear contrast between moun-
tainous areas and plains. Approximately 45% of the land surface is mountainous, and the
highest peak reaches an elevation of 1694 m. The Mudan, Lalin, and Hulan Rivers are
the dominant tributaries of the Songhua River in this region. The study area has a conti-
nental monsoon climate in a middle temperate zone, with cold winters and hot summers.
The mean annual precipitation is approximately 526.8 mm. However, the precipitation
distribution is uneven throughout the seasons due to monsoon conditions. Almost 70%
of the annual precipitation falls from June to September; this period is regarded as the
flood season in the study area. Moreover, this area is sensitive to intense rainfall making it
difficult to provide warning in advance for flash flood protection. Flash flood mitigation
in the mainstream basin of the Songhua River is a key component of emergency manage-
ment. Hence, the accurate identification of flash flood-prone areas in this region has been
highlighted by the government and discussed in the “Songhua River Basin Comprehensive
Plan (2012–2030)” [36].
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3. Data Preparation
3.1. Flash Flood Inventory

The basic idea of susceptibility modeling is that the factors that caused flash floods
in the past will affect the likelihood of flash floods in the future [19]. Therefore, historical
flash flood records are very important for susceptibility mapping. There are 915 events in
the study area, which were extracted from the digital inventory of Chinese flash flood [37]
(Figure 1). This dataset was generated by historical records and field surveys.

3.2. Flash Flood Conditioning Factors

According to published lectures, a number of conditioning factors have been employed
to model the spatial patterns of flash flooding [5,9,16,35,38]. Various conditioning factors
have been selected to map flash flood susceptibility in different regions. Some conditioning
factors may contribute to the occurrence of flash floods in a particular area; however, the
same factors may have less effect on flash floods in other regions [39]. Thus, the occurrence
regime of flash floods is very complicated. In the present study, 19 potential conditioning
factors were selected based on expert opinions, previous studies and the availability of data.
These conditioning factors included the elevation [14], slope [40], aspect [13], curvature [41],
plan curvature [21], profile curvature [21], landform, terrain ruggedness index (TRI) [42],
convergence index (CI) [43], topographic wetness index (TWI) [44], stream power index
(SPI) [14], distance to rivers [17], stream density [45], land use [13], normalized difference
vegetation index (NDVI) [5], lithology [46], soil type [15], mean summer precipitation
(MSP), and mean annual precipitation (MAP) [47].

The elevation, slope, aspect, curvature, plan curvature, profile curvature, CI, TRI, SPI,
and TWI information were extracted from the Shuttle Radar Topography Mission (STRM)
digital elevation model (DEM) product at a 90-m resolution (Figure 2). Because water flows
from high elevations to low elevations, low-elevation areas are prone to flash floods [14,40].
The slope directly influences surface runoff fluidity and vertical seepage. Aspect is defined
as the direction of the maximum slope of the topographic surface faces; this factor affects
both the soil moisture content and local climatic conditions [13]. The curvature of an area
reflects the concavity of the ground surface and affects flooding in a given area [41], and
the plan curvature is perpendicular to the direction of the maximum slope and is related
to the convergence and divergence of water flows across the land surface [21]. The profile
curvature is parallel to the direction of the maximum slope and affects the acceleration or
deceleration of water flowing across the land surface [21]. The CI gives a measure of how
the water flowing in a cell diverges (CI < 0) or converges (CI > 0). The TRI is calculated as
the sum of the elevation changes between a grid cell and its eight neighboring grid cells
and can be used to objectively and quantitatively measure the topographic heterogeneity
in the study region [42]. The TWI describes the humidity of the studied terrain and reveals
spatial variations in the wetness of a basin. The SPI is related to erosion processes and is an
indicator of the capability of flowing water to generate net erosion. The TWI and SPI are
defined by the following equations:

TWI = ln(As/tanβ) (1)

SPI = As tanβ (2)

where AS represents the specific catchment area and β (radians) is the slope gradient [48].
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A river represents the main discharge route for a flood. The distance from rivers and
the stream density of the basin play a major role in the distribution and magnitude of flash
floods [17,45]. Linear river data were obtained from the National Geomatics Center of
China and used to calculate the stream density and distance to rivers data (Figure 3a,b).
Land use controls the amount of infiltration and surface runoff and critically influences the
runoff speed, interception, infiltration, and evapotranspiration associated with flash floods
(Figure 3c) [13]. The GlobeLand30 dataset with a resolution of 30 m was used in this study.
The NDVI is an important indicator of vegetation coverage. Areas with high vegetation
and high forest densities have reduced surface runoff. The NDVI can be calculated using
Equation (3):

NDVI =
RNIR − RR
RNIR + RR

(3)

where RNIR is the reflectance in the infrared portion of the electromagnetic spectrum and
RR is the reflectance in the red portion. Based on the SPOT/VEGETATION NDVI dataset,
an annual NDVI dataset since 1998 was generated by maximum value composition. Then,
the NDVI values were obtained by taking the mean values of multiyear data (Figure 3d).
Different lithological units have different sensitivities to floods [46]. The lithology and soil
in an area control the occurrence of flooding in the corresponding watershed by controlling
runoff and infiltration [16]. The lithologic classification of the study area was extracted
from a 1:2.5 million geological map of the People’s Republic of China (Figure 3e). Moreover,
a soil type map with 28 categories was extracted from the national soil type distribution
map at the scale of 1:4 million (Figure 3f and Figure S1) [49]. The landform refers to the
variations in terrain, and the data were obtained from “The Atlas of Geomorphology of
the People’s Republic of China” (Figure 3g). Precipitation is considered an essential factor
because flash floods are often triggered by high-intensity and short-term heavy rainfall.
In our study, two precipitation factors, MAP and MSP, were selected according to the
precipitation characteristics in the study area (Figure 3h,i). The precipitation data were
derived from annual and monthly datasets of land surface data collected in China.
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4. Methods

In this study, two popular machine learning algorithms, LR and RF, were employed
to evaluate the spatial flash flood susceptibility pattern in the study area. Moreover, two
embedded approaches were tested for feature selection. L1 and tree-based methods were
used for feature selection with the LR and RF models, respectively. A flowchart of the
methodology adopted in this study is shown in Figure 4, and the methodology consists of
the following steps: i. data preprocessing, ii. building predictive flash flood susceptibility
models, and iii. validating and comparing the constructed models.

The main content of the data-preprocessing step involves preparing a conditioning
factor database and constructing a flash flood inventory map. There are no essential criteria
for the resolution of susceptibility mapping. We followed common practice by transforming
all factors to 90 × 90 m resolution which was up to DEM resolution [50]. Some of the
conditioning factors selected herein are categorical variables, such as the aspect, landform,
land use, lithology, and soil type. These variables are discrete and disordered and thus not
suitable for machine learning algorithms. Therefore, we used one-hot encoding to process
categorical features. One-hot encoding creates one binary attribute per variable category,
with the attribute being equal to 1 when belonging to the category and equal to 0 otherwise.
In the current study, the five categorical variables were converted to 52 features through
one-hot encoding. Thus, the resulting conditioning factor database contained 66 features.
Moreover, 915 non-flood points were randomly generated in the study area and combined
with the flash flood data to construct the flash flood inventory map. Finally, the flash flood
inventory map was randomly divided into two datasets, namely, training (70%) and test
(30%) datasets.
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4.1. Machine Learning Algorithms

The present study was performed to produce FFSMs of the mainstream basin of the
Songhua River using LR and RF models. The proposed methods were implemented with
the scikit-learn package based on the Python language environment. The package is an
efficient and open-source data-mining and analysis tool [51].

4.1.1. Logistic Regression (LR)

LR is a popular multivariate statistical model used to obtain spatial predictions of various
natural hazards; this model is capable of exploring the relationships between a binary response
variable coded as 0/1 and an array of explanatory variables [12,43,52]. In flash flood suscep-
tibility mapping, LR is used to identify statistical relationships between flash flood events
(dependent variable) and conditioning factors (independent variables) based on the presence
or absence of flash floods. The basic form of LR, which uses a logistic function to model a
binary dependent variable, can be expressed with the following equation:

p =
1

1 + e−z (4)

where p is the flash flood occurrence probability at a particular pixel and ranges from 0 to 1.
z is a value that ranges from −∞ to + ∞. The term z is defined by the following equation:

z = θ0 + θ1x1 + θ2x2 + · · ·+ θnxn (5)
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where θ0 is the intercept of the model, n is the number of independent variables, θ1, θ2, . . . ,
θn are the regression coefficients of each independent variable, and x1, x2, . . . , xn are the
independent variables.

4.1.2. Random Forest (RF)

The RF method is a powerful and flexible ensemble-learning approach that was
systematically proposed by Breiman [53]. This method can be applied for classification,
regression and unsupervised learning based on decision trees [18,54]. Each individual
decision tree in the ensemble is built using bootstrap sampling based on the original
training dataset. Furthermore, when each node is split during the construction of a tree,
the best split is obtained from a randomly selected subset of input features. The final
flash flood probability is determined by obtaining the average prediction output by all
decision trees using the scikit-learn package. Moreover, two main hyperparameters must
be defined: the number of decision trees in the forest and the maximum depth of each tree;
these parameters are referred to as n_estimators and max_depth, respectively.

4.2. Embedded Feature Selection (EFS)

In this study, the feature selection approach is primarily used to remove noninforma-
tive or redundant features for constructing FFSMs. There are three general feature selection
algorithms: filter, wrapper and embedded methods. Embedded methods are more efficient
than wrapper methods and more accurate than filtering methods; in embedded methods,
feature selection is performed during the training process. The most common types of EFS
method are regularization and tree methods.

4.2.1. L1-Based Feature Selection for LR

Regularization is a common method used in machine learning. This method can
limit the complexity of a model and prevent the occurrence of overfitting problems. In
the current study, L1 regularization terms were introduced into the loss function of LR to
implement EFS. The corresponding mathematical expression is as follows:

J(θ)L1 = C ∗ J(θ) + ‖θ‖1 (6)

where C is the hyperparameter used to control the degree of regularization, J(θ) is the loss
function of LR, and ‖θ‖1 is the L1 norm, namely, the penalty term. The L1 norm can be
expressed as follows:

‖θ‖1 =
n

∑
j=1

∣∣θj
∣∣ (j ≥ 1) (7)

where n is the total number of features in the equation and θj represents each regression
coefficient. The term j must have a value ≥1 because θ0, the intercept, is not involved in
regularization. The L1 regularization term can be used to effectively reduce the coefficients
of some features to zero to allow features to be screened. The stronger the L1 regularization
is, the fewer the number of features that are selected. In other words, the learning method
based on L1 regularization is an EFS method. In this study, LR is used to filter the input
features based on L1 regularization and to predict the occurrence of flash floods.

4.2.2. Tree-Based Feature Selection for RF

Feature selection is an inherent function of decision trees, as it selects one feature
with which to split the tree at each training step [25]. The “splitting” feature is selected
according to its corresponding importance in the classification task [34]. The RF feature
importance evaluation performed in this study was proposed by Breiman [53]. In this
method, the importance of the variable Xj for predicting Y is evaluated by summing the
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weighted impurity decreases, p(t)∆i(st, t), for all nodes t where Xj is used, and averaged
over all trees ϕm (for m = 1, . . . , M) in the forest:

Imp
(
Xj

)
=

1
M

M

∑
m=1

∑
t∈ϕm

1(jt = j)[p(t)∆i(st, t)] (8)

where p (t) is the proportion Nt/N of samples reaching t and jt represents the identifier of
the variable used to split node t [55]. Equation (8) gives the expression of the mean decrease
impurity importance (MDI). Based on the feature importance evaluation, features can be
screened to realize EFS. EFS was combined with the RF model for the first time to evaluate
flash flood susceptibility in our study.

4.3. Model Evaluation

Evaluation is the most important component in modeling; without evaluation results,
model outputs lack scientific significance. In this study, receiver operating characteristic
(ROC) curves and the area under the curve (AUC) were used to assess the predictive power
of the LR and RF models. The global performance of these models was evaluated using
an ROC curve that was constructed based on the true positive rate (sensitivity) and false
positive rate (specificity):

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

where TP (true positive) and TN (true negative) represent correctly classified samples in
the training and validation datasets; FP (false positive) and FN (false negative) represent
incorrectly classified samples in the training and validation datasets. To quantify the global
performance of the model, an AUC between 0.5 and 1 was also used. A high AUC value
indicates that the model displays good predictive capability.

In addition, the model accuracy is widely used to evaluate the predictive abilities of
various models; this metric is defined as the ratio of the number of correctly simulated
samples (TP and TN) to the total number of samples. The corresponding formula is
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

The closer the accuracy is to 1, the better the model performance is.

5. Results
5.1. Selection of Conditioning Factors Based on the Embedded Method

The utilized embedded method selects important features while the model is being
trained. To perform EFS, the machine learning algorithms were preliminarily modeled,
and the EFS process was implemented using only the training dataset. The models were
trained using a 10-fold cross-validation technique that fully utilized the available data. In
LR, the data should be standardized before modeling so that the regression coefficients can
be compared. The key to EFS with the LR and RF models involved the determination of a
threshold, and the features below this threshold value were discarded. The threshold was
derived from the coefficients in LR and the feature importance in RF. We obtain the optimal
threshold by drawing a learning curve that represents the change in the mean accuracy
obtained after 10-fold cross-validation with different threshold values. The learning curve
represents the variation in the results obtained by cross-validating the models with different
quantitative features. The LR and RF learning curves are shown in Figure 5. The threshold
ranges from 0 to the maximum coefficient or feature importance value. The feature selection
results obtained with LR correspond to a threshold range of 0 to 0.25, showing better results
than those obtained using all features; similarly, the RF feature selection results correspond
to a threshold range of 0 to 0.01. The optimal threshold value for LR was found to be 0.11,
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and 32 features were selected. The mean accuracy of the features obtained by EFS (0.8844)
was obviously higher than that for all features (0.8719). In addition, the RF model was
determined to have an optimal threshold value of 0.004, and 28 features were selected.
EFS likewise provided a higher mean accuracy (0.8961) than obtained when using all
features (0.8891).
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We also compared the model performance obtained using all features and EFS by
analyzing the mean AUC. The ROC curves derived after the 10-fold cross-validation of
the LR and RF models are shown in Figure 6. For LR, the mean AUC of EFS (0.9366) was
higher than that obtained using all features (0.9312). Likewise, for the RF model, the mean
AUC of EFS (0.9474) was also higher than that using all features (0.9466).Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 20 
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5.2. Model Validation and Comparison

The test datasets were used to estimate the predictive abilities of the two models. The
ROC curves of the two models combining EFS illustrate the prediction rates (Figure 7).
The ROC assessment of the LR model revealed an AUC value of 0.9277 for the prediction
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rate, and the accuracy of the LR model was 0.8634. The RF model exhibited better overall
performance than the LR model, as reflected in its AUC and accuracy values of 0.9486
and 0.8834, respectively. In addition, the performance of the two models after feature
selection was compared on the training set for ten-fold cross-validation versus on the test
set (Table 1). The evaluation metrics of both the training and test sets were close. This
means that the model not only fits the training set, but also successfully generalizes to
the test set and achieves similar precision. Therefore, the model was not overfitted to the
training set resulting in poor precision in the test set. Meanwhile, the model can maintain a
stable performance under different data sets, indicating that the model is more tolerant to
data variations with robustness.
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Table 1. Classification performance of training and test sets of LR and RF models.

LR RF

Accuracy AUC Accuracy AUC

Train data

Fold 1 0.9147 0.9726 0.9302 0.9790
Fold 2 0.9140 0.9604 0.9218 0.9614
Fold 3 0.8828 0.9304 0.8906 0.9552
Fold 4 0.8593 0.9270 0.8593 0.9181
Fold 5 0.8671 0.9372 0.8593 0.9407
Fold 6 0.8437 0.9131 0.8984 0.9471
Fold 7 0.9062 0.9270 0.9218 0.9603
Fold 8 0.8828 0.9433 0.875 0.9501
Fold 9 0.8281 0.9140 0.8515 0.9162
Fold 10 0.9453 0.9626 0.9531 0.9698
Mean 0.8844 0.9366 0.8961 0.9474

Test data 0.8634 0.9277 0.8834 0.9486

The conditioning factor datasets obtained by EFS for the two models and the impor-
tance of the selected features are shown in Figure 8. Here, 32 features were screened for
the LR model, and 28 features were screened for the RF model based on the chosen EFS
approaches. The importance of the features selected in the LR model was measured by
the coefficient of each feature, and the importance of the features selected in the RF model
was determined using the contribution of the feature to the trees in the model. The results
indicate that the features selected in the LR model are similar to those selected in the RF
model. Continuous features, such as the elevation, slope, plan curvature, profile curvature,



Remote Sens. 2022, 14, 5523 12 of 19

TRI, CI, TWI, distance to rivers, stream density, NDVI, and MSP, were selected in both
models. The curvature, SPI, and MAP were considered to make major contributions in the
RF model but not in the LR model. In terms of categorical features, the landform, land use,
lithology, and soil type were selected for the two models. The southeastern slope class was
selected in the LR model, and no aspect classes were used for the RF model. Although
the selected features in the two models are similar, the importance of these features to
the models is quite different. The LR model is partial to the binary features generated
by one-hot encoding; in contrast, the RF model considers continuous features to be more
important. Eight of the top-ten features listed in the feature importance indices of the
LR model were binary features, while the opposite was true for the RF model (Figure 8).
Among the factors screened by EFS in the LR model, tundra and the artificial surface land
use class are the most important. However, the RF model results indicate that the NDVI
and MAP are the most important factors.
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Figure 8. Importance of the selected conditioning factors based on EFS for the LR (a) and RF
(b) models. The names of the conditioning factors are based on the following notation: cultivated
land (land use 10); forest (land use 20); wetland (land use 50); water body (land use 60); tundra (land
use 70); artificial surface (land use 80); sedimentary rock (lithology 1); intrusive rock (lithology 2);
volcanic rock (lithology 3); melange (lithology 4); dark brown soil (soil type 31); bleaching dark brown
soil (soil type 33); whitish soil (soil type 51); black soil (soil type 231); chernozem (soil type 241);
moisture chernozem (soil type 245); hydragric paddy soil (soil type 512); fluvial soil (soil type 561);
water (soil type 910); alkaline alluvial soil (soil type 3510); low-elevation plain (landform 11); low-
elevation platform (landform 21); small undulating low mountain (landform 41); small undulating
middle mountain (landform 42); and medium undulating middle mountain (landform 52).

5.3. Generating FFSMs

The flash flood susceptibility indices were calculated using the LR and RF models,
and subsequently, FFSMs were generated in a geographic information system (GIS) envi-
ronment. The flash flood susceptibility indices ranged from 0 to 1; high values indicate
high flash flood probabilities. It is necessary to categorize susceptibility maps using appro-
priate classification methods to intuitively display flash flood susceptibility results. We
divided the final susceptibility maps into five classes based on an approach used in other
studies [10,44]: very low, low, moderate, high and very high susceptibility. Among the
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many existing classification methods, the quantile method [14,41,56,57] and natural breaks
method [9,24,58] are the most popular. We tested both methods to classify into susceptibil-
ity maps of LR and RF separately. In general, it is more reasonable for considerable flash
flood points falling into high or very high susceptibility areas. Table 2 shows that fewer
flash flood points are classified into the very low and low susceptibility classes by quantile
method either in the LR or RF models. Hence, the quantile method is considered more
accurate than the natural breaks method for the data used in this study. Figure 9 shows the
final susceptibility maps obtained using the two models. There are obvious and large flash
flood-prone areas in the southern and southwestern regions of the study area, and areas
close to rivers also display high flash flood susceptibility.

Table 2. Numbers of historical flash flood events that occurred in regions with various susceptibil-
ity classes.

Susceptibility
Classes

LR RF

Quantile Nature Breaks Quantile Nature Breaks

Very low 3 3 3 5
Low 8 11 2 3

Moderate 21 23 1 16
High 52 50 11 63

Very high 831 828 898 828
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Moreover, the pixel-level statistics for the FFSMs obtained with the two models were
calculated (Figure 10). The statistical results of the two models differ to some extent.
Compared with that of the LR model, the FFSM of the RF model exhibited more fluctuating
pixel distributions for all classes. Extreme susceptibility classes, such as the very low
and very high susceptibility classes, included fewer pixels, while the moderate and low
susceptibility classes had the most pixels. However, the pixel counts of the two models
were similar for the high-susceptibility class.
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Furthermore, the classification results for the two susceptibility maps were statistically
analyzed, and a heatmap and spatial distribution map were constructed (Figure 11). The
cross-statistics among the susceptibility classes were used to obtain the corresponding pixel
proportions, which were displayed in the heatmap. The percentage of pixels with consistent
susceptibility classification in the two models was 41.82%, and the results obtained for
the very-high-susceptibility class exhibited the highest consistency between the two maps.
More classification differences were obtained between neighboring grades, and the larger
the discrepancy between grades was, the smaller the classification difference was. To
compare the spatial discrepancies between the results output by the two models, the
two FFSMs were superimposed. There were 25 correspondences, and the colors in the
heatmap were assigned accordingly. Because many pixels fall within the same or adjacent
susceptibility classes, the color near the diagonal line in the heatmap is darkest. Similarly,
the darker the color area in the spatial distribution map is, the higher the consistency
between the results of the two models. The spatial distribution map is dark overall. There
are obvious light-colored areas along the mainstream of the Songhua River in the middle of
the study area and in the southernmost area, and in the west, central and south regions,
dark-colored areas can be observed.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

Furthermore, the classification results for the two susceptibility maps were statisti-
cally analyzed, and a heatmap and spatial distribution map were constructed (Figure 11). 
The cross-statistics among the susceptibility classes were used to obtain the corresponding 
pixel proportions, which were displayed in the heatmap. The percentage of pixels with 
consistent susceptibility classification in the two models was 41.82%, and the results ob-
tained for the very-high-susceptibility class exhibited the highest consistency between the 
two maps. More classification differences were obtained between neighboring grades, and 
the larger the discrepancy between grades was, the smaller the classification difference 
was. To compare the spatial discrepancies between the results output by the two models, 
the two FFSMs were superimposed. There were 25 correspondences, and the colors in the 
heatmap were assigned accordingly. Because many pixels fall within the same or adjacent 
susceptibility classes, the color near the diagonal line in the heatmap is darkest. Similarly, 
the darker the color area in the spatial distribution map is, the higher the consistency be-
tween the results of the two models. The spatial distribution map is dark overall. There 
are obvious light-colored areas along the mainstream of the Songhua River in the middle 
of the study area and in the southernmost area, and in the west, central and south regions, 
dark-colored areas can be observed. 

 
Figure 11. The susceptibility classes in the two susceptibility maps were cross-counted to obtain the 
corresponding pixel proportions, and the corresponding colors were assigned to the superimposed 
susceptibility maps to derive the spatial distribution. 

6. Discussion 
At present, flash flood susceptibility research has received extensive attention, and 

various models have been applied in the field. However, no uniform standard has been 
established regarding the method for selecting the features input into models. The prepa-
ration of a large number of features is conducive to obtaining predictions using machine 
learning algorithms; thus, we integrated features selected in other studies and used more 
features for the calculations performed in this study. However, the inclusion of redundant 
features reduces the prediction efficiency; therefore, feature selection is necessary, espe-
cially when many features are present. In this study, EFS was adopted to select feature 
sets for LR and RF models. The results show that EFS can remove features that contribute 
less to the predictions while maintaining or even improving the model results. Simulta-
neously, embedded methods select features from original factor datasets that are specific 
to the utilized models. Unlike in previous studies [5,9,16], in this study, the LR and RF 
models were run using different feature sets. 

Figure 11. The susceptibility classes in the two susceptibility maps were cross-counted to obtain the
corresponding pixel proportions, and the corresponding colors were assigned to the superimposed
susceptibility maps to derive the spatial distribution.



Remote Sens. 2022, 14, 5523 15 of 19

6. Discussion

At present, flash flood susceptibility research has received extensive attention, and
various models have been applied in the field. However, no uniform standard has been
established regarding the method for selecting the features input into models. The prepa-
ration of a large number of features is conducive to obtaining predictions using machine
learning algorithms; thus, we integrated features selected in other studies and used more
features for the calculations performed in this study. However, the inclusion of redundant
features reduces the prediction efficiency; therefore, feature selection is necessary, especially
when many features are present. In this study, EFS was adopted to select feature sets for
LR and RF models. The results show that EFS can remove features that contribute less to
the predictions while maintaining or even improving the model results. Simultaneously,
embedded methods select features from original factor datasets that are specific to the
utilized models. Unlike in previous studies [5,9,16], in this study, the LR and RF models
were run using different feature sets.

The primary objective of the present study was to generate reliable FFSMs of the
mainstream basin of the Songhua River using two machine learning approaches. The
applied LR and RF approaches have been widely used in flash flood susceptibility as-
sessments [20,56,59]. The performance of the two models was evaluated and compared
using accuracy and AUC values in this study. The AUC values indicated that both the LR
and RF models were accurate for estimating flash flood susceptibility in the study area,
and these results were supported by those reported in similar studies. At the national
scale, Zhao et al. [20] reported AUC values of approximately 0.84 and 0.76 for training and
testing datasets, respectively, in mountainous areas of China. Chen et al. [59] obtained AUC
values of 0.951 and 0.925 in their model construction and validation processes, respectively,
using the RF method in Quannan County, China. RF methods have also been shown to
display good learning and predictive abilities in other studies [12,57,60]. Similarly, the
results obtained in this study ultimately indicate that the RF model was superior to the LR
model when modeling flash flood susceptibility in the study area. However, in contrast
to the results of other studies [12,61], the AUC and accuracy values of the two models
did not differ extensively in this study, and all values could be considered acceptable for
predicting flash flood susceptibility. This result may be related to the specific optimal
feature sets of the two models. Instead of using the same feature set for multiple models,
more appropriate feature sets were selected for the two models individually to improve the
model accuracies. By combining previous research with the results of the present study,
RF modeling is found to have application potential for assessing flash flood susceptibility
using biophysical characteristics. The clear drawback of the RF method is that it is a “black
box” model because individual classification trees are difficult to examine separately [62].
Moreover, it is difficult to provide confidence intervals and regression coefficients for the
RF model [63]. This method could thus cause complications if applied by basin managers
who are not specifically trained in nonparametric techniques.

The strength and direction of the relationships among flash flood factors may vary
as a function of the chosen model. In other words, the same biophysical variable may
make different contributions depending on the utilized model, and our study supports this
result. To further compare the feature preference differences between the two models used
in this study, the importance parameters of each model were used to evaluate the feature
importance after modeling. The linear model, LR, and nonlinear model, RF, exhibited very
different feature requirements. As LR is a generalized linear model, it more easily calculates
and expresses binary features. Therefore, the binary features generated by one-hot encoding
had a certain influence on the feature importance evaluation results. Significantly, compared
to the RF model, binary features ranked higher in feature importance of the LR model.
However, we also found some similarities between the two models; for example, the
feature sets selected for the two models shared 21 common features. Among the continuous
features, the NDVI and distance to rivers were of high importance to the two models, as
were forest (land use 20) and tundra (land use 70) variables among the binary features. The
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NDVI, forest (land use 20), and tundra (land use 70) features all indicate that vegetation
cover is an important factor that affects flash floods in this study area, mainly because dense
vegetation cover enhances interception and reduces splash erosion and infiltration [22].
Features that affect certain hydrological processes, such as infiltration, evapotranspiration,
and runoff generation, may increase the risk of flash floods. Artificial surfaces (land
use 80), which are often composed of impervious surfaces, increase storm runoff and
flooding [13,15]. The distance to rivers was identified as another key factor in the models,
and this result was consistent with the findings of many other studies [14,16,56]. The
susceptibility maps obtained for the studied basin also confirmed this result; notably,
higher susceptibility was identified near rivers (Figure 9). MAP and MSP play important
roles in model prediction because flash floods are usually driven by high-intensity and
short-duration storms [5,64]. Although a more in-depth analysis could be conducted to
identify the variables that fluctuate the most between these two models, the small predictive
differences obtained for the two models suggest that the influence of the conditioning
factors used to estimate the flash flood probability is spatially stable.

Susceptibility is an important scientific topic that has been researched by scholars.
The construction of FFSMs is a crucial step in the management of flood disasters in river
basins. Through the analysis of the two FFSMs obtained in this study and the resulting
spatial distribution map, which display overall dark colors, the results of the two mod-
els can be considered consistent overall, and the differences in susceptibility classes are
mainly reflected in the adjacent levels. The differences displayed in the map resulted from
differences in the model preferences and feature importance assessments. For example, in
areas along rivers, the obvious light colors indicate that the prediction results of the LR and
RF models are quite different here. This result was likely obtained because the distance to
rivers was considered more important by the RF model than by the LR model. Differences
in obtained susceptibility maps exist in many susceptibility studies, even when the same
feature set is used [9,10,24]. Therefore, the FFSMs obtained from different models should
be applied synergistically. In our study area, areas that are highly susceptible to flash
floods are concentrated near rivers and in some regions in the southwestern part of the
region. This is also consistent with the spatial distribution of historical flash flood events
(Figure 1). The susceptibility is predicted based on the information provided by historical
flash flood events, and regions with frequent flash floods in the past usually present high
susceptibility rank on the susceptibility map. The generated FFSMs quantitatively assesses
the susceptibility level of the study area, which can provide a reference for flood control
and disaster management in the study area. Areas with high and very high susceptibility
should be given more attention than other areas. In addition, the conditioning factor
datasets obtained for the two models used in this study can provide data references for
future related studies conducted in this region to simplify data collection.

7. Conclusions

In this study, we presented a comparison of the FFSMs obtained using the LR and RF
models and focused on the demand for input features in their modeling process, as the
selection of features generally has a significant impact on the modeling results but has not
received much attention in this field. The impact here includes the precision of the model,
the contribution of each factor to the model, the distribution of the final FFSM, and so on.
Embedded methods were successfully used to identify the subset of features that contribute
the most to the occurrence of flash floods and to improve the accuracy of the FFSMs
obtained using LR and RF models to some extent in this study. The two models exhibit
similarities as well as differences in terms of feature selection. The similarities resulted
from the stability of the regional factors that affect flash floods, and the differences were
related to the unique mechanisms of the two models. The binary features implemented in
the LR model were considered favorable factors for the construction of the corresponding
FFSM. Moreover, the RF model results indicated that interval features play major roles in
affecting the susceptibility of an area to flash floods. In fact, the differences between the
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two models analyzed herein can motivate modelers to consider the available data when
selecting a specific model to obtain an FFSM. Moreover, the construction of FFSMs is an
urgent task that needs to be accomplished in the main river basin of the Songhua River
in Northeast China. This region is a representative region that is highly prone to flash
floods. According to the ROC curves and AUC values, both models exhibited accurate and
reliable performance in constructing FFSMs; however, the RF model provided a higher
predictive capability than the LR model. This study may provide useful information for
risk management in flash flood-prone basins and provide a reference for model feature
selection in susceptibility studies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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