
1

Abstract—Cascade Support Vector Machines (SVMs) are

optimized to efficiently handle problems where the majority of

data belongs to one of the two classes, such as image object

classification, and hence can provide speedups over monolithic

(single) SVM classifiers. However, SVM classification is a

computationally demanding task and existing hardware

architectures for SVMs consider only monolithic classifiers. This

paper proposes the acceleration of cascade SVMs through a

hybrid processing hardware architecture optimized for the

cascade SVM classification flow, accompanied by a method to

reduce the required hardware resources for its implementation,

and a method to improve the classification speed by utilizing

cascade information to further discard data samples. The

proposed SVM cascade architecture is implemented on a Spartan

6 FPGA platform and evaluated for object detection on 800×600

(SVGA) resolution images. The proposed architecture, boosted

by a neural network that processes cascade information, achieves

a real-time processing rate of 40 frames-per-second for the

benchmark face detection application. Furthermore, the

hardware reduction method results in the utilization of 25% less

FPGA custom-logic resources and 20% peak power reduction

compared to a baseline implementation.

Index Terms—Cascade classifier, field programmable gate

array (FPGA), local binary pattern (LBP), neural networks,

parallel architectures, real-time and embedded systems, support

vector machines (SVMs)

I. INTRODUCTION

UPPORT VECTOR MACHINES (SVMs) [1] constitute a
powerful set of machine learning algorithms, which have

been utilized in a wide range of classification applications,
demonstrating high classification accuracies [2], [3]. The
classification complexity of SVMs is proportional to the
number of training samples needed to specify the separating
hyperplane between classes, referred to as support vectors
(SVs). Hence, for large scale problems, the high
classification accuracy rates demonstrated by SVMs come at
the cost of increased computational complexity. As such,
when considering embedded applications (e.g. embedded
vision, automotive, and security) with real-time online
classification requirements and power consumption constraints
and limited resources and area, the design of SVM-based
classification systems with hundreds of support vectors and a

large number of instances that need to be classified becomes
difficult. Previous works [4], [5], [6] proposed a cascaded
classification scheme in order to speed-up the SVM
classification process for a class of the aforementioned
applications such as embedded object detection, where the
majority of data that need to be classified belong to one of the
two classes. Under this scheme multiple SVMs are arranged in
stages of increasing computational complexity as well as
accuracy. The early stages, which are computationally less
demanding, are tasked with the removal of a large amount of
negative class data, so that the latter stages, which have higher
accuracy and thus higher computational complexity, only
classify the samples that successfully pass the previous stages.
Hence, using the cascade approach results in significant
speedups over monolithic (single) SVM classification [4], [6].
However, on-line real-time classification on resource-
constraint embedded systems which need low-power operation
is still challenging to achieve especially for large-scale
streaming data problems such as video object detection [4].

This has motivated a lot of research towards accelerating
SVMs using parallel computing platforms such as Graphics
Processing Units (GPUs) [7], and Field Programmable Gate
Arrays (FPGAs) [8], [9], [10]. Implementations of SVMs on
GPU platforms have been proposed recently, however, GPUs
face challenges with regards to power consumption [11] and
thus it is difficult to deploy them in embedded environments.
Hence, at present, FPGAs and customized hardware
accelerators that consume less power and can be built into
small systems, offer an attractive platform for embedded
applications. Existing SVM hardware architectures consider
monolithic SVM classifiers, which are not optimized to handle
problems where the majority of data belong to one of the two
classes. As such, designing hardware architectures for
multistage cascade SVMs based on existing approaches is a
challenging task due to the increase in the number of
classifiers, and their different computational complexities.

In this paper we propose a specialized hardware architecture
and design approaches for embedded on-line cascade SVM
classification applications, such as real-time video object
detection where classification needs to be performed in real-
time, with low power, and often with limited available
resources. The presented design methodologies extend and
improve our preliminary research in [12] which showed the
advantages of a cascade hardware SVM over a monolithic
hardware SVM. In this work we provide further details on the
optimized cascade hardware architecture which can facilitate

Christos Kyrkou, Member, IEEE, Christos-Savvas Bouganis, Member, IEEE, Theocharis
Theocharides, Senior Member, IEEE, Marios Polycarpou, Fellow, IEEE

Embedded Hardware-Efficient Real-Time Classification
with Cascade Support Vector Machines

S

2

high frame-rates. We also show how to reduce hardware
complexity of cascade SVMs which is based on rounding off
the SVM training data to the nearest power of two values, in
order to improve both area and power while maintaining the
accuracy by replacing multiplication with shift operations.
Moreover a novel approach is introduced that improves the
frame-rate by reducing the number of samples that reach the
more computationally demanding stages through a neural
network that evaluates preceding cascade stage responses.

The proposed architecture and methods are implemented as
part of a complete on-line video classification system on a
Spartan-6 FPGA platform. The system was evaluated on a
larger test set and higher resolution images (800×600) than our
prior work using face detection as the embedded benchmark
application. The system achieves 40 frames-per-second (fps),
which is capable for real-time processing, while processing
more windows than other works, and an 80% detection
accuracy, which is on par with cascade SVM software
implementations for the targeted application. Furthermore, the
hardware reduction method resulted in the utilization of 25%
less FPGA logic resources and reduction of peak power by
20%, with only a 1% reduction in classification accuracy.

The paper is organized as follows. Section II provides the
background on SVMs, cascade classifiers, and related work.
Section III details the hardware architecture for cascade SVM
processing, the hardware reduction method, as well as the
cascade response evaluation process. Section IV presents
FPGA-based experimental results as well as comparison with
related works. Finally, Section V concludes the paper.

II. BACKGROUND

A. Support Vector Machines (SVMs)

A Support Vector Machine (SVM) is a supervised binary
classification algorithm which maps data into a high-
dimensional space where an optimal separating hyperplane is
constructed [1]. SVMs are presented with a training set
consisting of pairs of data samples 𝑥𝑖, and class labels 𝑦𝑖 (−1
for negative and 1 for positive samples), and try to find a
mapping function 𝑓, such that 𝑓(𝑥𝑖) = 𝑦𝑖 for sample 𝑖 in the
training set. This function captures the relationship between
the data samples and their respective class labels. An SVM
separates the data samples of two different classes, by finding
the hyperplane with the maximum margin from the data
samples that lie at the boundary of each class (Fig. 1-a). The
class samples that are on the boundary are called support

vectors (SVs) and influence the formation of the hyperplane
[1], [2]. The support vectors are obtained during the SVM
training phase, and correspond to non-zero alpha coefficients
derived from the training optimization problem [2], and
constitute the SVM classification model with which to classify
new input data. In many real-world applications the data
samples may not be linearly separable. SVMs utilize a
technique called the kernel trick [2], to project the data into
higher dimensional space where linear separation is possible
and then proceed to find the decision surface. This formulation
allows projecting data into a higher dimensional space, where

linear separation is possible (Fig. 1-b), though a kernel

function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)𝜑(𝑥𝑗), without the need to

explicitly use a mapping function 𝜑. Overall, the classification
decision function (CDF) for SVMs is given in (1), where 𝑁𝑠𝑣

is the number of support vectors obtained from training, 𝛼𝑖 are
the alpha coefficients, yi are the class labels of each sample, 𝑠𝑖
are the support vectors, 𝑧 is the input vector, 𝑘(𝑧, 𝑠𝑖) is the
chosen kernel function, and 𝑏 is the bias. 𝐶𝐷𝐹(𝑧): 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑧, 𝑠𝑖)𝑁𝑆𝑉𝑖=1 + 𝑏) (1)

The computational demands of SVM classifiers depend on
the choice of kernel function the most common of which are
illustrated below: 𝐿𝑖𝑛𝑒𝑎𝑟 (𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡): 𝐾(𝑧, 𝑠) = (𝑧 • 𝑠) (2) 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙: 𝐾(𝑧, 𝑠) = ((𝑧 • 𝑠) + 𝑐𝑜𝑛𝑠𝑡)𝑑 , 𝑑 > 0 (3) 𝑅𝑎𝑑𝑖𝑎𝑙 𝐵𝑎𝑠𝑖𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐾(𝑧, 𝑠) = 𝑒𝑥𝑝 (−‖𝑧 − 𝑠‖2/2𝜎2) (4)

The linear kernel (2) for SVMs corresponds to a dot-product
operation between the input data and a feature vector 𝑤, which
is the decision hyperplane normal vector (Fig. 1-a), and is
computed directly from the support vectors using 𝑤 = ∑ 𝑦𝑖𝛼𝑖𝑠𝑖𝑁𝑠𝑣𝑖=1 . However, in the case of non-linear SVMs (3)-(4),

the kernel is a more complex function and the feature vector
cannot be directly obtained from the support vectors. Hence,
the input vector needs to be processed with all support vectors,
and the kernel-specific operations need to be performed,
before a classification outcome can be obtained. To reduce the
computational demands of non-linear kernels a number of
techniques have been proposed. One such method is the
reduced-set-method [13], which tries to find a smaller set of
vectors, called reduced-set-vectors (RSVs), in order to
approximate the decision function of the full SVM retaining
most of the classification capabilities [6], which yields a
reduced-set-vector-machine (RSVM).

Fig. 1. (a) SVM concepts : separating hyperplane , support vectors ,
normal vector w, bias , and margin (b) The kernel Trick visua liza tion
(c) Cascade clas s ifica tion scheme overview

3

B. Cascade Support Vector Machines

In many real-world problems non-linear kernels are
necessary in order to obtain accurate classification results on
complex datasets. However, classification rates can be slow
with such kernels as they produce many SVs that need to be
processed per input sample. In this work we focus on the
acceleration of SVM-based classification for a certain class of
applications, such as image object classification, that exhibit
the following characteristics: (a) the majority of the samples
presented to the classifier belong to the negative class and (b)
the majority of negative samples do not exhibit similar
features to positive samples. Software implementations in the
literature [14], [15] have tried to take advantage of these two
observations by utilizing stages of SVMs of increasing
complexity, which are sequentially applied to the input data
(Fig. 1-c). Such structures mostly follow a cascade approach
[4], [5], [6] where SVMs of increasing complexity are
arranged in a hierarchy of stages. The SVM stages at the
beginning of the hierarchy have lower computational
complexity (i.e. need to process only a small number of SVs)
and lower discrimination capabilities, and are tasked with
removing the majority of samples from the negative class. The
latter stages are then able to perform more accurate
classification on the remaining samples. However, this incurs
a higher computational cost as they need to process more SVs.
Overall, an input sample needs to pass all stages to be
classified as positive (Fig. 1-c). Under this scheme a large
amount of input samples are discarded early in the
classification process by the stages at the beginning of the
cascade, resulting in significant speedups. In addition, it is
possible to use the reduced-set-method [13], to reduce the
number of support vectors required by the non-linear kernel
stages in order to further improve classification times.
Furthermore, since the latter stages need to better discriminate
between positive and negative samples, feature extraction

algorithms may be used to improve accuracy, which however,
further increases computational demands.

C. Related Work

The speedups achieved by software implementations of
cascade SVM classification schemes over monolithic,
although significant, do not offer adequate performance for
real-time resource-constrained applications [4,5,6,15,16]. This
is because the latter stages become the bottleneck since they
require processing an increased number of SVs and the
requirement for parallel processing arises. Hence, hardware
acceleration [17], [18] of SVM classification has been
explored in order to take advantage of the inherit parallelism
of the SVM computation flow in an attempt to provide real-
time and low-cost/low-power solutions.

The majority of proposed hardware architectures attempt to
improve performance by employing parallel processing
modules which process the elements of the input vector in
parallel on FPGA platforms. However, for such architectures
the parallelism depends on the vector dimensionality for a
given problem in terms of computational resources. When the
vector dimensionality is high and the hardware resources for

fully parallel processing are not available, the architecture can
be folded to process the elements in groups. However, this
increases the cycles needed to process a single vector. Hence,
works that utilize such architectures have optimized it
specifically for the vector dimensionality of the given problem
and have been restricted to small scale data, with only a few
hundred vectors and low dimensionality [9], [19], [20], and
small-scale multiclass implementations [21] in order to be able
to meet real-time constraints. In addition, these architectures
cannot trade-off processing more SVs rather than vector
elements, and hence, cannot efficiently deal with the different
computational demands of the cascade SVM stages.

Alternative approaches include FPGA coprocessors for
parallel vector processing in order to speedup SVM
computations [8], [22]. However, these architectures do not
consider the kernel implementation and the FPGA is only used
for the dot-product operations of the SVM classification flow.
Furthermore, the parallel processing capabilities depend on
parallel input through the PCI express and external DRAM
which have high power consumption and are thus unsuitable
for embedded applications. Another approach [23] is to
dedicate a multiply-accumulate unit per SV to process them in
parallel with a single input vector. However, such
architectures are limited by the number of SVs and also cannot
be used to parallelize the processing of a linear SVM.

Research has also been conducted on potential
simplifications to make the SVM classification more suitable
for hardware implementation on devices with limited
computational resources. These approaches include using
CORDIC algorithms to compute the kernel functions [10],
[19], [24], [25]. However, low resource consuming
implementations of CORDIC algorithms have increased
latency [10]. Other works [26], [27] propose that computations
are done in the logarithmic number system, where
multiplications are replaced with additions, in order to reduce
the required processing resources. However, they only
consider a single processing module, hence, when adopting a
more parallel architecture, to facilitate real-time operation, the
additional cost from converting between the decimal number
system to the logarithmic one and back again for all inputs
increases. The works in [25], [28], [29] [30], have looked at
how the bitwidth precision impacts the classification error, in
an effort to find the best trade-off between hardware
resources, performance and classification rate. Although the
kernel operations still need to be implemented with multipliers
leading to high resource demands for parallel
implementations. A hardware friendly kernel was proposed in
[31], which operates in conjunction with a CORDIC algorithm
and addresses the resource requirements for SVM
implementation. However, this kernel does not address the
memory requirements of SVs. In contrast our approach also
reduces the memory demands for the storage of SVs and alpha
coefficients. Furthermore, as previously mentioned CORDIC-
like algorithms can have a negative impact for parallel
implementations targeting high performance.

NVidia's Compute Unified Device Architecture (CUDA)
has been used in [7], [32], [33] in order to speedup SVM

4

classification using the parallel computing resources of a
GPU, showing improved results compared to CPU
implementations. However, GPUs are power hungry devices
compared to FPGAs [22], [34], (FPGAs consume
approximately an order of magnitude less power as shown in
[11]) and as such they are not suitable for power-constrained
embedded applications such as image object classification. In
addition, existing GPU implementations do not translate well
to the more energy-efficient embedded GPUs due to less
available resources (less memory, registers, cache, cores) [35].

The above related works consider only monolithic SVM
classifiers. Only recently there has been some work in the
hardware implementation of cascade SVM classifiers. In [34]
the authors implement an architecture of cascade classifiers
with low and high precision bitwidth and exploit the dynamic
ranges of heterogeneous dataset problems to achieve an
efficient resource utilization. In contrast, in this work we
exploit the characteristic of a specific class of problems where
samples of one class appear more frequently than the other to
design an optimized hardware architecture.

Summarizing, in their majority, most of the previously
presented works are application specific, and efficient ways to
utilize the different computational demands of cascade SVMs
stages have not been sufficiently examined. Moving towards
large scale embedded applications and problems where
thousands of samples need to be classified in real-time, the
majority of which belong to one of the two classes, cascade
SVMs will need to be utilized to provide speedups. As such,
single SVM architectures, which do not exploit the properties
of the cascade classification scheme, are not suited for this
purpose. Hence, this paper is one of the first to explore the
potential of a flexible and parallel hardware architecture and
design methods that can be used to improve different aspects
of SVM hardware architectures.

III. PROPOSED HARDWARE ARCHITECTURE AND METHODS

Cascade SVMs have demonstrated improvements over
conventional SVM models (i.e. monolithic) in terms of
classification speed [4]. However, it is still challenging to
achieve real-time performance, especially as the amount of
input samples that need to be classified increases. Hence, we
propose a parallel hardware architecture to provide higher
classification throughput and a hardware reduction method
leading to a more compact hardware implementation suitable
for embedded system applications. In addition, this work also
develops a novel method to improve classification speed by
taking advantage of cascade classification information to
reduce the amount of input samples that reach the more
computationally-intensive latter cascade stages. Finally, in
many classification problems some form of feature
extraction/preprocessing method needs to take place in order
to deal with different variations and improve detection
accuracy. Hence, the architecture also incorporates a feature
extraction algorithm based on local binary pattern (LBP)
descriptors, targeting object detection applications.

A. Cascade SVM Hardware Reduction Method

The proposed hardware reduction method exploits the fact
that early stages in an SVM cascade are non-optimal
classifiers in order to reduce the resources needed for their
hardware implementation, by adapting their parameters (SVs
and alpha coefficients), while maintaining their ability to
discard a large amount of negative samples. The proposed
hardware reduction method is to modify the SVs and alpha
values of the low complexity SVMs by rounding them to the
nearest power of two values instead of using the conventional
fixed-point representation approach. Consequently, all
multiplication operations in the SVM classification phase (the
kernel dot-product calculations and computations related to
the alpha coefficients) will become shift operations which
require less resources to be implemented in hardware.
Additionally, since the support vectors and alpha coefficients
are now power of two values there is no need to store the
binary representations of decimal numbers but only shift data
(shift amount, shift direction, and number sign). This will
result in an adapted cascade SVM with reduced storage and
computational demands. However, the expense from
approximating the support vectors and alpha coefficients with
powers of two comes with the modified resulting classification
accuracy will be different from that of the initial SVM

cascade. The receiver-operating-characteristic (ROC) curve of
each cascade stage whose parameters have been rounded off to
the nearest power of two is used to adjust its accuracy to
similar rates of that of the initial cascade stages. The ROC
curve shows the performance of a binary classifier by
illustrating the corresponding true positive and false positive
rates, given a test set. As such, by setting the appropriate
threshold the performance of the adapted stages in the SVM
cascade can be adjusted to match the true positive rate of the
initial SVM cascade stages. This is necessary since we are
interested in maintaining the true positive rate. There are
trade-offs which stem from changing the original classification
model. Specifically, the reduced computational and storage
requirements come at a cost of an increase in the false positive

Fig. 2. (a) Hardware Reduction Method (b) Response Evaluation
Method

5

rate of the adapted classifiers as shown in Fig. 10 in Section
IV. However, the overall accuracy tends to meet the accuracy
of the final classification stage and hence the increase is not
significant (only a 1% drop as shown in Section IV). Adapted
stages, which do not yield the targeted accuracy, are reverted
back to the initial model. The process is shown in Fig. 2-a.

The hardware reduction process takes place after the
cascade structure is decided, meaning that the kernel function,
and number of support vectors or reduced-set-vectors for each
SVM cascade stage are determined. As such, the proposed
method can easily be used with different SVM training
frameworks. Furthermore, the method does not depend on the
specific hardware architecture used for the implementation of
the cascade and as such can be optimized to different
architecture requirements.

B. Cascade Response Evaluation Method

Exploiting cascade information is a common technique used
to speed up the training phase of cascade classifiers by
eliminating samples from the training set. However, so far
only a few works have attempted to do something similar in
the classification phase. These methods [36] perform a joint
logical operation (AND-OR) on the outcome of the cascade
stages in order to correct/reevaluate the detection result. Such
methods are usually used to improve detection and require that
all the stages process the input data in order to reach a
decision. However, this means that the overall detection speed
is reduced. In order to improve performance there is a need for
a mechanism that can indicate whether an input sample needs
to move on to the more computationally demanding stages. In
this work we propose to do this by examining the responses of
early cascade stages in order to rapidly eliminate data samples
prior to reaching the latter stages. It is based on the
observation that when looked at collectively, the responses of
the individual cascade stages can exhibit patterns which can
help in discriminating between samples belonging to different
classes. This adds an additional dimension to the cascade
classification phase that amongst others can be used to
speedup the overall process.

Such a response processing mechanism can be constructed
by following the process shown in Fig. 2-b. An integral part of
this process is the construction of the training and test sets.

Examples of positive and negative samples not used in the
training phase of the SVM cascade are collected. Then these
are fed to the selected cascade stages in order to collect the
response of each stage and construct a corresponding response
feature vector. Next, we select the response vectors of the
samples which are predicted to belong to the positive class
(i.e. have pass ed all stages) to form the set of response vectors
which will be used to construct the response classifier. We
then separate this set into the training and test sets both of
which must contain responses obtained from true negative and
positive samples. Using this new training set a machine
learning algorithm, which will act as a response evaluator, can
be trained to discriminate between different responses. Of
course, the positive and negative samples can often have
similar cascade responses. Hence, the training goal for the
machine learning algorithm is to make sure that the positive
responses will be correctly classified so that the true positive
accuracy of the whole cascade is not affected. With regards to
responses corresponding to negative classes, any correct
classification is beneficial since those samples will not need to
be classified by the final stage. The desired true positive rate
can be adjusted experimentally by setting an appropriate
threshold value. This is a general approach of handling the
cascade responses and thus can be used similarly to benefit
both software and hardware implementations. With regards to
software implementations the additional computations
necessary for the latter cascade stages are eliminated, while
for hardware implementations, the reduced workload can
result in more compact architecture implementations for the
latter stages. In this work we focus on the hardware aspects of
this approach and the benefits of using this mechanism are
outlined by the results in Section IV.

C. Hardware Architecture

The proposed architecture (Fig. 3) consists of cascade
processing components as well as additional components
which relate to the targeted benchmark application of object
detection, an embedded application where samples of one
class (non-object class) appear more frequently than the other
(object class) [4]. The presented architecture is comprised of
flexible and generic components and the parameters of each
one can be adjusted to meet given requirements such as

Fig. 3. SVM cascade sys tem architecture comprised of the sequentia l process ing module (SPM), the para lle l process ing module (PPM), the
regis te r a rray, frame buffer memory, the LBP processor and the response process ing unit (RPU).

6

different data sizes and image dimensions. Thus facilitating
the design of an optimized hardware accelerator that is
tailored-made for a specific application. Furthermore, the
modular design means that the architecture can support
different processing modules which allows it to implement the
operations required by each SVM in the cascade.

1) Cascade SVM Hardware Architecture

The proposed hardware architecture takes into consideration
the throughput and processing needs of each stage in the
cascade. Accordingly, the proposed hardware architecture for
the cascaded SVM classifier consists of two main processing
modules, which provide different parallelism with respect to
the input data and SVs in order to meet the different demands
of the cascade SVM models, and also the amount of input data
that each will need to process. The first is a parallel processing
module (PPM) which performs the processing necessary for
all the adapted SVM stages (Fig. 4). The second is a sequential
processing module (SPM), shown in Fig. 5, optimized for the
high complexity SVM stages The cascade response processing
is implemented with a low-resource consuming neural
network architecture to minimize hardware overheads while
boosting performance.

a) Parallel Processing Module (PPM)

The parallel processing module (PPM) handles the
processing of the low complexity SVM stages which have
been adapted using the proposed hardware reduction method.
Specifically, the proposed architecture can process linear and
2nd degree polynomial kernels, but the plug-and-play approach
of the architecture means that other kernel modules
implementing different kernel functions can be used instead
[37]. The characteristic of the early cascade stages is that they
require processing only a few SVs per input vector, while
having to process the majority of input vectors. As such,
parallelism focuses on processing vector elements in parallel
to reduce the processing time per vector.

The architecture of the PPM (Fig. 4) is comprised of three
main regions: SVM shift operations, adder tree pipeline and
kernel computation. The first region is comprised of parallel
SV data memories, arithmetic shifters, and parallel sign
conversion units. The second region is comprised of a tree of
adders that sum the results of the previous stage in order to

calculate the dot-product scalar value. The final region is
dedicated to kernel processing and is also mostly implemented
using arithmetic shift units. The operation of the parallel
processing module begins with the processing of the input
vector elements by the sign conversion units which are used to
preserve the sign of the initial multiplication operation. The
signed numbers are then processed by arithmetic shift units
which perform the shift according to the data that they receive
from the memories. The shift data are fetched in parallel from
small memory units, and include the sign of the support
vector, the shift amount, and the direction of the shift
operation. The partial results are added together using a
pipelined tree of adders so that the dot-product outcome can
be obtained. The depth of the adder tree impacts the latency of
the PPM and depends on the number of operands of individual
adders used and the vector dimensionality, as well as the
targeted frequency and amount of parallelism. The latency of
the adder tree is given by (5):

𝑎𝑑𝑑𝑒𝑟_𝑡𝑟𝑒𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 = ⎾ 𝑙𝑜𝑔(𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)𝑙𝑜𝑔(𝑎𝑑𝑑𝑒𝑟_𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒) ⏋ (5)

Once the dot-product scalar value becomes available the
kernel computation follows. In the case of linear kernels (Eq.
2), adding a bias value to the dot-product outcome will suffice
in order to obtain the classification result. However, for 2nd
degree polynomial kernels, as well as other kernels, the kernel
computation module handles the latter steps of the
classification phase. Only one multiplier is used in the parallel
processing module and is used to perform the square
operation. The processing of the alpha coefficients is done
with a sign conversion unit and an arithmetic shift unit
similarly to the processing of the SVs. An accumulator is used
to accumulate the result of each SV processing, and once all
SVs are processed, an adder is used to process the bias with
the accumulated result. The PPM stages are pipelined, so one
SV enters the pipeline every cycle. Hence, the total number of
cycles needed to process the input vector at stage 𝑛 is given by
equation (6), where 𝑁𝑆𝑉(𝑖) is the number of support vectors
that need to be processed by stage 𝑖.

(∑ 𝑁𝑆𝑉(𝑖) + 𝑎𝑑𝑑𝑒𝑟_𝑡𝑟𝑒𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 + 1𝑛
𝑖=1)

(6)

Fig. 4. Para lle l P rocess ing Module (PPM) Architecture

Fig. 5. Sequentia l P rocess ing Module (SPM) Architecture

7

The PPM architecture describes a fully unrolled
implementation and allows for all vector elements to be
processed in parallel, thus providing higher detection speeds.
In cases where the resources are not available or the vector
elements cannot be accessed in parallel due to limited I/O or
memory access, the PPM architecture can be implemented
using fewer resources by reducing the unrolling factor. Of
course this will have a negative impact on performance which
becomes more apparent as the number of SVs increases, as the
time needed to process a single vector also increases.

b) Sequential Processing Module (SPM)

The sequential processing module (SPM) is responsible for
performing the computations necessary for the final SVM
stage which requires processing of hundreds of high-
dimensional SVs. Hence, as the dimensionality of the vector
increases it becomes prohibitive in terms of resources and
power to have multiple units in parallel for processing of a
single vector, as the wiring and memory management
complexities also increase. In addition, processing less vector
elements while having to also process hundreds of SVs leads
to decreased performance. Hence, it is more efficient to use an
alternative architecture, to that of the PPM, that will offer
parallel processing tailored to the requirements of the more
demanding SVMs [37]. Also, since this module will be used
less frequently a flexible yet compact architecture is required.

This is achieved with the architecture shown in Fig. 5,
which is comprised of a series of pipelined processing and
memory elements [37]. The majority of the units in the
module are vector processing units (VUs) and each unit
handles the dot-product for one support vector with the input
vector. They are comprised of a multiply-accumulate unit, and
also a Block RAM which acts as ROM and contains the data
for one or more support vectors, along with register and
multiplexer logic for data transfer between vector units. The
final unit in the pipeline is the kernel processing unit which is
equipped with multipliers and accumulators to carry out the
scalar operations of the SVM processing flow. Multiple PPMs
can be arranged in an array as in [37] to increase parallelism.

The input vector is processed with a group of support
vectors at a time, and each vector processing unit handles the
processing of one support vector. Once a group of support
vectors is processed the next group follows. In total depending
on the number of groups a total of 𝑁𝑆𝑉/𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠⏋processing repetitions are necessary. Hence,
the size of the pipeline can be adjusted to fit the available
resources and processing requirements by adjusting the
number of support vector groups. Each vector processing unit
in the pipeline processes one support vector with the input
vector at a time. The data in the SPM flows in different
directions through dedicated transfer mechanisms. The input
vector values and VU results are propagated from the first unit
to the next through a register pipeline, while the SV data are
fed to the VUs through parallel memories. When the
processing of the input vector with the group of SVs is done,
after 𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚 cycles, the multiplexers and registers in
each vector unit are used to switch from propagating input

vector values to scalar results. The scalar values are
transferred sequentially through the pipeline and it takes 𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 cycles for them to be processed by the kernel
processing unit (with a 2 cycle initial delay due to the pipeline
stages). In this way the kernel processing unit is shared
between the units, reducing hardware requirements and also
making it easy for the designer to substitute it with the desired
kernel without having to change much of the system
functionality. Each scalar value that enters the kernel unit is
processed by the kernel operation and the alpha coefficient. In
the case of the kernel described by (3), the operation involves
a multiplier to find the square of the value and multiply-
accumulate units to process the alpha coefficients. Once all
scalar values are processed, the final classification result is
obtained by adding the bias to the accumulated result. Overall,
the number of cycles needed to process an input vector is
given by equation (7). ⎾𝑁𝑆𝑉/𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠⏋×(𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚 + 𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 + 2) (7)

c) Response Processing Unit (RPU)

As previously described, the objective of the cascade
response evaluation process is to remove samples prior to the
final SVM classification in order to improve processing speed.
As such, it acts as a complementary stage to the overall
cascade structure and can be used with any number of cascade
stages. However, this needs to be done in a hardware efficient
manner in order to maintain performance and keep low
resource utilization. Hence, computationally and memory
intensive algorithms are not the desired choice. For this reason
a computationally efficient feed-forward neural network (NN)
model is selected to perform the response evaluation process,
which as shown in Section IV, leads to a low-resource
consuming architecture that can sufficiently differentiate
between responses.

The neural network model, shown in Fig. 6-a, has a two
layer structure with one neuron in each layer in order to keep
the resource requirements low. The first neuron receives the
responses from the cascade stages, multiplies them with their
respective weights, and accumulates the products. Then it adds
the bias value and sends it through a hyperbolic tangent
activation function to the output neuron, which performs the
same process and generates the classification outcome.

Fig. 6. Response Process ing Unit (RPU): (a) Neura l Network model
(b) NN-based RPU Hardware Architecture

8

The neural network hardware architecture (Fig. 6-b)
processes different number of inputs depending on the number
of cascade responses produced by the desired stages. Since
each response is generated at different time intervals, it can be
processed sequentially once it becomes available by the PPM.
Multiplexers are utilized to select the output of the desired
classifier and its corresponding weight value, which is
represented in a fixed point format. The two values are
multiplied and accumulated. Once all the cascade responses
are accumulated the bias is processed. A Look-Up Table
(LUT) memory is used to implement the hyperbolic tangent
function. We exploit the facts that this function is symmetric
with respect to negative and positive inputs, and that its results
range from [−1. .1]. Consequently, only the results for
positive numbers are stored with the input being processed to
obtain its absolute value. This leads to a more compact and
efficient implementation. The sign of weighted accumulated
sum is used to adjust the result of the hyperbolic function
memory after the appropriate value is loaded since it is the
same for negative and positive values. Then it is processed
with the output layer weight which is implemented using an
arithmetic shift unit. Finally, the bias is added and the final
outcome is computed. It is not necessary to use a hyperbolic
function for the output layer neuron since it does not change
the sign of the result which determines the class. The RPU
takes (𝑁𝑁_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 + 2) cycles to process the
response vector that is generated from the PPM.

d) Cascade Processing Flow

The architecture processes a single input vector at a time
starting from the early stages implemented using the PPM.
The RPU follows next to classify the responses of preceding
stages if the input vector has been classified as positive. If the
response evaluation predicts a positive sample, the RPU
informs the SPM which in turn proceeds to classify that
sample to obtain the final classification result. The different
throughput requirements of the cascade SVM processing
modules require an I/O mechanism that can adjust for parallel
as well as sequential data transfer depending on the needs of
each module. It should also take advantage of the application-
specific characteristics to facilitate data reuse and reduce
memory accesses. Furthermore, the cascade I/O structure
should be able to handle classifier demands for different data
points and data access patterns. Such architecture can be
designed using a register array (Fig. 3) where data can be
loaded to the array and outputted in parallel for the PPM and
sequentially for the SPM.

2) I/O and Preprocessing for Object Detection

Additional components are incorporated into the
architecture in order to handle the data flow and preprocessing
for object detection, which requires processing data from the
input image in a sliding window fashion to classify them as
object or not. As such, the register array structure (Fig. 3) is
also optimized for the object detection data flow so that it does
not only provide sequential and parallel data access to the two
processing modules but also to take advantage of potential

data overlap and reduce memory I/O. A frame buffer is
employed to hold part of the image for fast local access.
Finally, the architecture incorporates a specialized processor
that performs local binary pattern (LBP) histogram extraction
which is used as features for object detection classification.

a) Object Detection Processing Flow and I/O

An optimized I/O mechanism for object detection can be
developed based on register array structure (Fig. 3) that
provides different access patterns and window data selection
for the image segment that is currently being processed. The

register array has a size of size 𝐻𝑚𝑎𝑥 × 𝑊𝑏𝑢𝑓_𝑠𝑖𝑧𝑒, where 𝐻𝑚𝑎𝑥

is the height of the window, and 𝑊𝑏𝑢𝑓_𝑠𝑖𝑧𝑒 corresponds to the

width of the array (i.e. how may additional image columns are
stored). The input image pixels enter the register array and are
propagated row-wise into the structure. The image region that
resides at the right-most part of the register array corresponds
to a single 𝐻𝑚𝑎𝑥 × 𝑊𝑚𝑎𝑥 window which is the active window
that feeds the processing units with data. In this data flow the
image region is processed in a window-by-window fashion.
Once a window has been processed a part of it is shifted out of
the array, while new pixels are shifted in. Thus a new window
is formed at the rightmost region of the scanline buffer and is
ready to be processed next. The data flow of the right-most
registers changes depending on whether the data are used for
parallel or sequential processing. In the case of the parallel
processing module, window data are outputted and processed
in parallel. In the case of sequential processing, which happens
when the LBP features are generated, the registers form a
chain so that data are outputted sequentially.

b) Local Binary Pattern (LBP) Processing Unit

Local Binary Patterns (LBPs) describe the relationship
between a pixel and its neighborhood, and have been used in a
wide range of computer vision applications [38]. Their major
advantage is their low computational complexity [39] which
makes them suitable for embedded applications. Generating
the LBP descriptor [38] consists of the following steps (Fig. 7-

a): 1) Compare the values in a 3×3 neighborhood against a
threshold (the center pixel or the window mean value) placing
1 where the value is greater or equal, and 0 otherwise. 2)
Multiply the resulting binary map with a powers of two mask.

3) Sum the values to obtain the LBP Code. 4) Divide the LBP-

based image into 𝑘 blocks of 𝑖 × 𝑗 pixels (e.g. 4×4, 8×8) and

construct a local histogram of 𝑙 bins for each block. 5)
Concatenate the local histograms to form a single global
histogram descriptor. The LBP descriptors can be used as
features by the latter SVM stages which require better
discrimination capabilities. Since only a fraction of input data
will be processed using LBP, it is more efficient to explore a
low area overhead architecture.

 Accordingly, the developed LBP processor architecture,

shown in Fig. 7-b, processes a single 3×3 image neighborhood
from the input image at a time, to reduce processing
requirements. It receives the values of that window in parallel
every cycle from the register array structure. Each window

9

Fig. 8. Block diagram of the FPGA system

Fig. 9. Cascade SVM Structure .

value is compared against the center window value in parallel
through dedicated comparators and the results are
concatenated to generate the LBP code. The number of
transitions in the LBP code is found next in order to identify it
as uniform (which has 2 or less transitions e.g. 11110000) or
non-uniform (which have more than 2 transitions e.g.
10100101) [38]. The local histogram computation, which
counts the uniform LBP codes against the non-uniform,
follows next for each block in the LBP image. Since the bin of
each LBP code is predetermined [38], a LUT is used to map
the code to one of 59 possible histogram bins. Multiple local
histograms are stored in the same central memory (of size 𝑘 ×𝑙), hence, the hardware architecture needs to know the position
of each LBP code in the image in order to determine the local
histogram it belongs to. This is achieved by counting the row
and column of each LBP code and monitoring the most
significant bits (MSBs) of the row and column coordinates to
indicate its corresponding block. Then by setting the
appropriate address offset the corresponding local histogram
region is selected and updated. To facilitate fast histogram
update and reset a dual ported memory is utilized. The updated
histogram bin is read from one port and written to the other
the following cycle so no delays are observed. Second, this
allows for an immediate reset to be performed right after the
value is read from the SVM classification module to prepare
the memory for the next histogram.

IV. EXPERIMENTAL PLATFORM AND RESULTS

The proposed hardware architecture and methods were
evaluated using the popular embedded application of face
detection, which has also been used by software
implementations of cascade SVMs. The cascade structure was
trained using MATLAB and was used for evaluation of the
architecture and proposed methods, on 800×600 (SVGA)
resolution images, in terms of frame-rate, detection accuracy,
power consumption, as well as requirements in terms of
computing resources. Additionally, the proposed hardware

architecture, which will be referred to as the adapted cascade,
is compared against a baseline system which implements the
same cascade SVM structure including the RPU (Stage 4), but
without applying the hardware reduction method, and thus the
parallel processing module is implemented using multipliers.
Both implementations were evaluated and compared using a
Xilinx Spartan-6 Industrial Video Processing board equipped
with a Spartan-6 XC6SLX150T FPGA (Fig. 8). A Microblaze-
based system was used for I/O and verification purposes,
while for both systems an on-chip buffer is used to store the
input image and a register array for data loading and
processing which was experimentally found to provide an
adequate balancing between I/O delays and hardware
resources. The following sections detail the evaluation process
and the results.

A. SVM Cascade Training and Accuracy

The training of the SVMs and neural network was
conducted off-line using MATLAB with kernels and parameters
similar to what has been used in the literature [4], [5], [6]. The
resulting classification models were used to evaluate the
proposed hardware architecture and approaches for on-line
classification on an FPGA. We performed experiments with
all possible LBP histogram parameters and selected those
which provided the best accuracy results. The used parameter
values are shown in Table I.

Positive and negative samples from [40] were used to setup
an initial training set which was later enhanced with additional
samples. The first three cascade stages were trained in
incremental fashion [4], [6], [15]. The final SVM stage was
excluded from the process and was trained using the complete
training set which was first processed using the LBP feature
extraction. The first polynomial SVM (Stage 3, Fig. 9) was
reduced to 20 RSVs which was the smaller number of reduced
vectors needed to maintain the original accuracy. In contrast,
100 RSVs where needed to maintain the accuracy [6], [15], for
the final stage (Stage 5, Fig. 9). The first three stages retained
similar accuracy level after being rounded-off to the nearest

Fig. 7. (a) LBP descriptor (b) LBP Process ing Unit Architecture

10

power of two as shown in Fig. 10, and hence were
implemented on the PPM. However, for the final stage there
was a significant discrepancy between the classification
accuracies of the adapted and original models. Hence it was
not approximated and the original model was used.

After the SVM cascade, the training of the NN-based RPU
followed using the process described in Fig. 2. The feed-
forward NN consisted of 1 neuron for each of the 2 layers and
was trained using the gradient descent with momentum and
learning rate backpropagation algorithm in MATLAB. For this
purpose 30515 positive and 329383 negative window
samples, not used in the SVM training phase, where extracted
from various images and were passed through the first three
adapted SVM cascade stages to collect their responses. This

resulted in a three dimensional response vector per sample.
The response vectors of the samples classified as positive by
the cascade (which also include truly negative samples) were
selected to form a new set (29117 response vectors for
positive samples and 8803 response vectors for negative
samples). This new pool of response vectors was then
partitioned in a training and test set, both containing responses
from negative and positive samples, in order to train and
evaluate the NN-based PRU. A subset of cascade responses
for the training set are shown in Fig. 11, where it is evident
that the responses of the early stages exhibit different patterns
for positive and negative class samples. The NN-based RPU
training resulted in a correct classification rate of 99% for
positive and 60% for negative cascade responses using the
constructed responses test set.

B. FPGA Implementation & Logic Resource Utilization

The two cascade implementations (baseline and adapted)
have the same basic architecture (Fig. 3) and data flow. The
PPM architecture was based on a fully unrolled
implementation, while the SPM was implemented with 50
DSP units (𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 = 50) meaning that the input data to
the SPM is processed two times with different SV groups. The
NN-based RPU was mapped on the FPGA LUTs with a Block
RAM used for the hyperbolic tangent implementation. The
only difference between the two implementations is that in the
adapted cascade case the PPM was optimized using the
hardware reduction method from Section III.A. Consequently,
the multiplication units were replaced with shift units and the
SV data stored in the training data ROMs corresponded to
shift values instead of real number values. Each ROM holds
the support vector data for the first three cascade SVM stages
for the specific vector elements. Finally, a single BRAM was
used to implement the hyperbolic tangent function of the NN-
based RPU. Both implementations on the Xilinx Spartan-6
XC6SLX150T FPGA have the same critical path, the SPM
kernel unit mapped on the DSPs, and as such have the same
operating frequency of 70 MHz. The implementation of the
adapted PPM requires 40% fewer FPGA logic resources
compared to the baseline PPM. This is reflected with a 25%
reduction in the utilized resources when considering full
system implementations, as shown in Table II. Overall, the
proposed approaches can be used to meet different constraints
in the design space for different FPGAs from low-end to high-
end. For low-end devices the immediate impact is a method to
better fit the design to limited resources, while for high-end
with enough resources, power consumption can be reduced by
changing the multiplication units to shift units. Furthermore,
for both cases the architecture components can be optimized to
meet the available FPGAs resources.

C. Classification System Accuracy and Frame Rate

TABLE I
CASCADE DETECTION S YSTEM PARAMETERS

Search
Window Size

20×20 (𝐻𝑚𝑎𝑥 × 𝑊max)
LBP Block Size

𝑖 = 3,𝑗 = 6

Downsampling
Rate

1.2
(18 scales)

Number of LBP
Blocks

𝑘 = 18

Window
Step

5 pixels
LBP

Histogram Bins
𝑙 = 59

Image
Resolution

800×600
(SVGA)

Number of
Windows

56984

TABLE II
FPGA RESOURCE REQUIREMENTS P ER UNIT AND S YSTEM

FPGA
Resources

Registers
(184304)

LUTs
(92152)

BRAMs
(268)

DSPs
(180)

SPM 1736 (1%) 2241 (2%) 51(19%) 50 (27%)

Adapted PPM 2679 (1%)
19006
(20%)

1 (<1%) ---
Baseline PPM 3724 (2%)

30791
(33%)

NN-based RPU 82 (<1%) 379 (<1%) 2 (<1%) 6 (3%)

LBP Processor 32 (<1%) 94 (<1%) 2 (<1%) ---

Memory & I/O
Units

1831
(1%)

1200
(1%)

180
(67%)

Microblaze
Video Pipeline

10780
(5%)

9891
(10%)

20
(7%)

3
(2%)

Baseline Cascade
System

21214
(11%)

47396
(51%) 256

(96%)
59

(32%) Adapted
Cascade System

20153
(11%)

35532
(38%)

TABLE III
S TATISTICS FOR EACH CASCADE S TAGE

Cascade
Stages

Stage 1
(PPM)

Stage 2
(PPM)

Stage 3
(PPM)

Stage 4
(RPU)

Stage 5
(LBP &
SPM)

Windows
Processed

56984
(100%)

3025
(5%)

2334
(4%)

713
(1,2%)

228
(0,4%)

Rejection
Rate

94,6% 22,8% 69,4% 76,4% ---

Cumulative
Cycles

9 10 30 35 2697

Vectors per
stage 𝑵𝑺𝑽(𝒊)

1 1 20 --- 100

11

This section outlines results related to accuracy and frame-
rate, two important metrics in object detection, and also
highlights the overall impact of the LBP processor and RPU.
The accuracy of the adapted cascade SVM was evaluated on
the widely used CMU-MIT database of faces [41]. In addition

images from the dataset were cropped and resized to 800×600

(SVGA) resolution and used to evaluate the frame-rate of the
cascade SVM implementation. Some full frame detection
results are shown in Fig. 12. Each 800×600 image generates a

total of 56984 20×20 search windows for 18 scales and a

window step of 5 pixels. Each frame requires a different time
to be processed, by the cascade implementations, depending
on how many windows reach each stage, and by how many
cycles it takes a stage to process an input. All windows are
processed by the first SVM stage, however, only ~1% of them
reach the final SVM stage, as shown in Table III. In addition
to the actual processing time, the I/O delays per frame also
negatively impact classification speed. In order to achieve
higher detection rates, I/O and memory operations overlap
with processing.

As shown in Fig. 10, the adapted cascade SVM stages have
similar accuracy to that of the initial SVMs in terms of true
positive detection accuracy. However, the false positive rate
has increased between 4%-15%. This is to be expected since

the approximations introduced a discrepancy between the
initial and adapted SVM models. However, the final detection
accuracy (see Fig. 13) of the adapted cascade is determined by
the latter stages, and so any discrepancies are effectively
masked. Hence, both implementations are expected to have a
similar overall accuracy (~80%). For more details on the
effects of the approximations on the accuracy we refer the
readers to [12].

Results for different system configurations of the adapted
SVM cascade, with and without the LBP and RPU, are shown
in Fig. 13. The cascade SVM boosted by the NN-based RPU
was able to achieve an accuracy of 80% which was only 1%
less than the same system without the RPU, which suggests
that with additional training and enhancement of the data sets
it would be possible to achieve the same accuracy.
Nevertheless, the minimal drop in accuracy, when using the
RPU, is offset by a 2× increase in performance. It allows the
cascade system to operate at ~40 fps instead of ~20 fps,
making the system capable of real-time operation. This
happens because even though most windows are discarded by
the first two cascade stages, the NN-based RPU manages to
reduce the number of windows (~230 instead of ~715, Table
III) that reach the slower SPM. Furthermore, the introduction
of the LBP feature extraction process helped improve both the
true positive (TP) rate as well as the false positive (FP) rate,
the latter by an order of magnitude. In addition since the LBP
features are only extracted during the final stage the improved
accuracy has only a small impact on the frame-rate (40 instead
of 45 fps). The results also indicate that in cases where the
frame-rate is of much higher importance than accuracy (e.g.
when processing videos from a static environment) the
optimized SVM cascade without the LBP and RPU can also
be used to offer higher performance. Overall, through the use
of LBP features to improve accuracy, and the RPU to boost
the frame-rate, we achieve an adequate trade-off between
frame-rate and detection accuracy to meet application
requirements.

D. Power Consumption

Power analysis tools from Xilinx were used to measure
power consumption demands of the adapted and baseline
cascade SVM FPGA implementations. The characteristic of
the cascade architectures is that the PPM and SPM are not
used at the same time since they implement different cascade
stages. Hence, the dynamic power consumption ranges
depending on which module is active. The total power budget,
including the Microblaze I/O system, for the adapted cascade
SVM system ranges from 4,1 W to 8 W while for the baseline
cascade system it ranges from 4,1 to 9,9 W. These figures
correspond to a worst case scenario where all signals change
every cycle. However, it is anticipated that on average the
power consumption will be lower. The peak power
consumption happens when the PPM module is used. The
lowest consumption happens when the NN-based RPU is used
when the SPM and LBP cores are used power consumption
reaches 4,9W. Overall, the utilization of less LUT resources
by the adapted PPM results in reducing the peak power needed

Fig. 10. Res tore accuracy us ing the ROC curves: (top) Part of ROC
curves (bottom) Accuracies and error a fte r adapta tion

Fig. 11. Response vectors produced by the firs t three SVM cascade
s tages for negative (square) and pos itive (filled circle) samples .

Fig. 12. Detection results on CMU-MIT images

Fig. 13. Compara tive results for different configura tions

12

for the adapted cascade system by ~20%.

E. Related Work Comparison

Related works for object detection applications are shown
in Table IV along with information regarding parameters and
performance. These works use different algorithms, training
and test sets, and benchmark applications and so it is difficult
to make a direct comparison between implementations.
However, since the SVM classification flow treats all data as
vectors the number of samples and SVs processed, along with
vector dimensionality can provide an indication to the
processing performance for each work.

A head-shoulder detection system is presented in [39]. It
utilizes a linear SVM and LBP descriptors to classify 19200

windows from 640×480 images from an already known

environment. It sacrifices accuracy for performance by using a
single linear SVM (with a clock frequency of 120 MHz) and
processes only a few elements of the SV feature vector in
parallel to keep the resource utilization low. In addition
foreground detection is used to compensate for the linear

SVM. The implementation in [23] scans a 512×512 image in

non-overlapping blocks to perform bar-code detection. It
performs the dot-product operations in 352 cycles for one
window. However, the scalar operations are not included. It
processes around 1024 16×16 window samples, corresponding
to 256-dimensional vectors, per image, without downscaling
the input image which simplifies the I/O and memory
accesses. The hybrid FPGA-GPU pedestrian detection system
[33] for 800×600 images is able to classify around 1000
windows. The lower throughput can be attributed to the larger
feature size. However, the number of processed windows is an
order of magnitude less than our work. In addition, the use of
GPU may prohibit such implementations to be used in
embedded applications due to power consumption constraints.
Overall, in order to achieve real-time performance existing
works rely on processing a few window samples, smaller
image resolutions, or process a few SVs. Through the
proposed architecture and methods it is possible to process
higher resolution images which generate more windows, with

a higher number of SVs in real-time (~56000 per frame for
~40 fps) while also reducing the implementation requirements.

The SVM hardware implementations target different
applications and thus accuracy is difficult to compare directly.
On the other hand, software based implementations [4], [5],
[6] have utilized cascade SVMs for face detection with
accuracies that range between 78-80% with similar training set
sizes and cascade structure to our work. The proposed
optimized SVM cascade system achieves a detection rate of
80% which is on par with these works while processing higher
resolution images in real-time.

V. CONCLUDING REMARKS

The work presented in this paper considers the efficient
hardware implementation of cascade SVMs which can be used
to design intelligent embedded systems for on-line real-time
classification applications. The hybrid processing architecture
takes advantage of the nature of the cascade classification
structure and in conjunction with the hardware reduction
method and the novel response evaluation method, it manages
to achieve adequate trade-off between accuracy, performance,
power, and resource utilization. The proposed architecture and
methods can be used to design low-cost parallel SVM
coprocessors to accelerate more demanding monolithic SVM
classifiers, or optimize cascade SVM classifiers for embedded
classification applications. Thus allowing SVM architectures
to tackle larger scale problems (e.g. classification on higher
resolution images) to what has been addressed in the literature.

REFERENCES
[1] Corinna Cortes and Vladimir Vapnik, "Support-Vector Networks," Journal of

Machine Learning, vol. 20, no. 3, pp. 273-297, September 1995.

[2] Christopher J. C. Burges, "A tutorial on support vector machines for pattern
recognition," Data Mining and Knowledge Discovery, vol. 2, pp. 121-167,
1998.

[3] E. Osuna, R. Freund, and F. Firosi, "Training support vector machines: an
application to face detection," in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 1997, pp. 130-136.

[4] Bernd Heisele, Thomas Serre, Sam Prentice, and Tomaso Poggio,
"Hierarchical classification and feature reduction for fast face detection with

TABLE IV
COMPARISON OF RELATED WORKS FOR SVM FPGA-BASED HARDWARE IMPLEMENTATIONS OF OBJECT DETECTION S YSTEMS

Related Works Rojas [23] a Kryjak [39] Bauer [33] b Presented Work

Application Barcode Detection Head-Shoulder Detection Pedestrian Detection Face Detection

Method Polynomial SVM, 88 SVs Linear SVM & LBP SVM (GPU) & HOG (FPGA) Cascade SVM & LBP

Platform Xilinx Virtex II Pro XCV3000 Xilinx Virtex 6 XC6VLX240T Xilinx Spartan 3/NVIDIA GPU Xilinx Spartan 6 XC6SLX150T

F
P

G
A

R

es
o
u
rc

e LUT 22938/28672 12068/150720 28616/62208 c 35532/92152

REG N/P 15893/301440 N/P c 20153/184304

BRAM 160KB 124/416 100 c 256/268

DSP N/P 66/768 18/96 c 59/180

Image Size 512×512 640×480 800×600 800×600

Search Window Size 16×16 32×24 48×96 20×20

Feature Vector Size 256 1440 1980 400 & 1062

Number of SVs 88 1 N/P 122

Frequency 166 MHz 120 MHz 63 MHz c 70 MHz

Detection Accuracy TP: 91.8% | FP: 4.2% TP: 83% TP: 95.4% | FP: 0.1% TP ~80% | FP: ~0.001%

Detection Speed N/P a 60 FPS 10 FPS 40 FPS

a Performance is 352 cycles per sample just for the vector operations. No I/O delays are included.
b A hybrid system where the GPU implements the SVM and the feature extraction based on HOG is implemented on the FPGA.
c These correspond only to the HOG implementation on the FPGA.
N/P – Not Provided | TP - True Positive | FP - False Positive

13

support vector machines," Pattern Recognition, pp. 2007-2017, 2003.

[5] I. Kukenys and B. McCane, "Classifier cascades for support vector machines,"
in International Conference on Image and Vision Computing, 2008, pp. 1-6.

[6] Yong Ma and Xiaoqing Ding, "Face Detection Based on Cost-Sensitive
Support Vector Machines," in First International Workshop on Pattern

Recognition with Support Vector Machines, 2002, pp. 260-267.

[7] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer, "Fast support
vector machine training and classification on graphics processors," in
International conference on Machine learning, 2009, pp. 104-111.

[8] S. Cadambi et al., "A Massively Parallel FPGA-Based Coprocessor for
Support Vector Machines," in IEEE International Symposium on Field

Programmable Custom Computing Machines (FCCM), 2009, pp. 115-122.

[9] O. Pina-Ramirez, R. Valdes-Cristerna, and O. Yanez-Suarez, "An FPGA
implementation of linear kernel support vector machines," in IEEE Int. Conf.

on Reconfigurable Computing and FPGA's, 2006, pp. 1-6.

[10] M. Ruiz-Llata, G. Guarnizo, and M. Yébenes-Calvino, "FPGA
implementation of a support vector machine for classification and regression,"
in International Conference on Neural Networks, 2010, pp. 1-5.

[11] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt, "A performance
and energy comparison of FPGAs, GPUs, and multicores for sliding-window
applications," in ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays

(FPGA '12), 2012, pp. 47-56.

[12] Christos Kyrkou, Christos Savvas Bouganis, and Theocharis Theocharides,
"An Embedded Hardware-Efficient Architecture for Real-Time Cascade
Support Vector Machine Classification," in International Conference on

Embedded Computer Systems (SAMOS), Samos, 15-18 July 2013, pp. 129-
136.

[13] Christopher J.C. Burges, "Simplified support vector decision rules," in Int.

Conf. on Machine Learning, 1996, pp. 71-77.

[14] Hichem Sahbi, Donald Geman, and Nozha Boujemaa, "Face detection using
coarse-to-fine support vector classifiers," in International Conference on

Image Processing, 2001, pp. 925-928.

[15] Sami Romdhani, Philip Torr, Bernhard Schölkopf, and Andrew Blake,
"Efficient face detection by a cascaded support-vector machine expansion,"
Royal Society of London Proceedings Series A, vol. 460, no. 2051, pp. 3283-
3297, November 2004.

[16] Hai-Xiang Zhao and Frederic Magoules, "Parallel Support Vector Machines
on Multi-core and Multiprocessor Systems," in International Conference on

Artificial Intelligence and Applications, 2010.

[17] D. Anguita, A. Boni, and S. Ridella, "A Digital Architecture for Support
Vector Machines: Theory, Algorithm, and FPGA Implementation," IEEE

Transactions on Neural Networks, vol. 14, no. 5, pp. 993-1009, September
2003.

[18] R. Genov and G. Gauwengerghs, "Kerneltron: Support VectorMachine'in
Silicon," IEEE Transactions on Neural Networks, vol. 14, pp. 1426-1434,
2003.

[19] Davood Mahmoodi, Ali Soleimani, Hossein Khosravi, and Mehdi Taghizadeh,
"FPGA Simulation of Linear and Nolinear Support Vector Machine," Joutnal

of Software Engineering and Applications, pp. 320-328, 2011.

[20] I. Biasi, A. Boni, and A. Zorat, "A reconfigurable parallel architecture for
SVM classification," in IEEE International Joint Conference on Neural

Networks, 2005, pp. 2867-2872.

[21] T. Groleat, M. Arzel, and S. Vaton, "Harware Acceleration of SVM-based
traffic classification on FPGA," in International Conference on Wireless

Communications and Mobile Computing, 2012, pp. 443-449.

[22] H. P. Graf et al., "A Massively Parallel Digital Learning Processor," in Annual

Conference on Neural Information Processing Systems (NIPS), 2008, pp. 529-
536.

[23] Roberto Reyna-Rojas, Dominique Houzet, Daniela Dragomirescu, Florent
Carlier, and Salim Ouadjaout, "Object Recognition System-on-Chip Using the
Support Vector Machines," EURASIP Journal on Advances in Signal

Processing, pp. 993-1004, 2005.

[24] Marta Ruiz-Llata and Mar Yebenes-Calvino, "FPGA Implementation of
Support Vector Machines for 3D Object Identification," in International

Conference on Artificial Neural Networks, 2009, pp. 467-474.

[25] A. Boni, F. Pianegiani, and D. Petri, "Low-Power and Low-Cost
Implementation of SVMs for Smart Sensors," IEEE Transactions on

Instrumentation and Measurement, vol. 56, no. 1, pp. 39-44, February 2007.

[26] F.M. Khan, M.G. Arnold, and W.M. Pottenger, "Hardware-based support
vector machine classification in logarithmic number systems," in IEEE

International Symposium on circuirs and systems, 2005, p. 5154.

[27] A. Boni and A. Zorat, "FPGA Implementation of Support Vector Machines
with Pseudo-Logarithmic Number Representation," in International Joint

Conference on Neural Networks, 2006, pp. 618-624.

[28] D. Anguita, A. Ghio, S. Pischiutta, and S. Ridella, "A Hardware-friendly
Support Vector Machine for Embedded Automotive Applications," in
International Joint Conference on Neural Networks, 2007, pp. 1360-1364.

[29] D. Anguita, A. Ghio, and S. Pischiutta, "A learning machine for resource-
limited adaptive hardware," in Second NASA/ESA Conference on Adaptive

Hardware and Systems, 2007, pp. 571-576.

[30] Alessandro Ghio and Stefano Pischiutta, "A Support Vector Machine based
pedestrian recognition system on resource-limited hardware architectures," in
Research in Microelectronics and Electronics Conference, 2007, pp. 161-163.

[31] D. Anguita, S. Pischiutta, S. Ridella, and D. Sterpi, "Feed-forward support
vector machine without multipliers," IEEE Transactions on Neural Networks,
vol. 17, p. 1328, 2006.

[32] Austin Carpenter. (2009) CUSVM: A CUDA Implementation of Support
Vector Machines. Report. [Online]. http://patternsonascreen.net/cuSVM.html

[33] Sebastian Bauer, Sebastian Kohler, Konrad Doll, and Ulrich Brunsmann,
"FPGA-GPU Architecture for Kernel SVM Pedestrian Detection," in
Computer Vision and Pattern Recognition Workshops, 2010, pp. 61-68.

[34] Markos Papadonikolakis and Christos Savvas Bouganis, "Novel Cascade
FPGA Accelerator for Support Vector Machines Classification," Transactions

on Neural Networks and Learning Systems, vol. 23, no. 7, pp. 1040-1052,
2012.

[35] Arian Maghazeh, Unmesh Bordoloi, Petru Eles, and Zebo Peng, "General
Purpose Computing on Low-Power Embedded GPUs : Has It Come of Age?,"
in Int. Conf. on Embedded Computer Systems (SAMOS XIII), Samos, 15-18
July 2013, pp. 1-10.

[36] M. Murat Dundar and Jumbo Bi, "Joint optimization of cascaded classifiers
for computer aided detection," in Conf. on Computer Vision and Pattern

Recognition, 2007, pp. 1-8.

[37] Christos Kyrkou and Theocharis Theocharides, "A Parallel Hardware
Architecture for Real-Time Object Detection with Support Vector Machines,"
IEEE Transactions on Computers, vol. 61, no. 6, pp. 831-842, June 2012.

[38] Matti Pietikainen, Hadid Abdenour, Guoying Zhao, and Timo Ahonen,
Computer Vision Using Local Binary Patterns.: Springer, 2011.

[39] T. Kryjak, M. Komorkiewicz, and M. Gorgon, "FPGA implementation of real-
time head-shoulder detection using local binary patterns, SVM and foreground
object detection," in Conf. on Design and Architectures for Signal and Image

Processing, 2012, pp. 1-8.

[40] CBCL Face Database #1, MIT Center for Biological and Computation
Learning. [Online]. http://cbcl.mit.edu/software-datasets/FaceData2.html

[41] CMU and MIT Face Database. [Online].
http://vasc.ri.cmu.edu/idb/html/face/frontal_images/

http://patternsonascreen.net/cuSVM.html
http://cbcl.mit.edu/software-datasets/FaceData2.html
http://vasc.ri.cmu.edu/idb/html/face/frontal_images/

