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Abstract—Cascade Support Vector Machines (SVMs) are 

optimized to efficiently handle problems where the majority of 

data belongs to one of the two classes, such as image object 

classification, and hence can provide speedups over monolithic 

(single) SVM classifiers. However, SVM classification is a 

computationally demanding task and existing hardware 

architectures for SVMs consider only monolithic classifiers. This 

paper proposes the acceleration of cascade SVMs through a 

hybrid processing hardware architecture optimized for the 

cascade SVM classification flow, accompanied by a method to 

reduce the required hardware resources for its implementation, 

and a method to improve the classification speed by utilizing 

cascade information to further discard data samples. The 

proposed SVM cascade architecture is implemented on a Spartan 

6 FPGA platform and evaluated for object detection on 800×600 

(SVGA) resolution images. The proposed architecture, boosted 

by a neural network that processes cascade information, achieves 

a real-time processing rate of 40 frames-per-second for the 

benchmark face detection application. Furthermore, the 

hardware reduction method results in the utilization of 25% less 

FPGA custom-logic resources and 20% peak power reduction 

compared to a baseline implementation.  

 
Index Terms—Cascade classifier, field programmable gate 

array (FPGA), local binary pattern (LBP), neural networks, 

parallel architectures, real-time and embedded systems, support 

vector machines (SVMs) 

 

I. INTRODUCTION 

UPPORT VECTOR MACHINES (SVMs) [1] constitute a 
powerful set of machine learning algorithms, which have 

been utilized in a wide range of classification applications, 
demonstrating high classification accuracies [2], [3]. The 
classification complexity of SVMs is proportional to the 
number of training samples needed to specify the separating 
hyperplane between classes, referred to as support vectors 
(SVs). Hence, for large scale problems, the high  
classification accuracy rates demonstrated by SVMs come at 
the cost of increased computational complexity. As such, 
when considering embedded applications (e.g. embedded 
vision, automotive, and security) with real-time online 
classification requirements and power consumption constraints 
and limited resources and area, the design of SVM-based 
classification systems with hundreds of support vectors and a 

 
 

large number of instances that need to be classified becomes 
difficult. Previous works [4], [5], [6] proposed a cascaded 
classification scheme in order to speed-up the SVM 
classification process for a class of the aforementioned 
applications such as embedded object detection, where the 
majority of data that need to be classified belong to one of the 
two classes. Under this scheme multiple SVMs are arranged in 
stages of increasing computational complexity as well as 
accuracy. The early stages, which are computationally less 
demanding, are tasked with the removal of a large amount of 
negative class data, so that the latter stages, which have higher 
accuracy and thus higher computational complexity, only 
classify the samples that successfully pass the previous stages. 
Hence, using the cascade approach results in significant 
speedups over monolithic (single) SVM classification [4], [6]. 
However, on-line real-time classification on resource-
constraint embedded systems which need low-power operation 
is still challenging to achieve especially for large-scale 
streaming data problems such as video object detection [4]. 

This has motivated a lot of research towards accelerating 
SVMs using parallel computing platforms such as Graphics 
Processing Units (GPUs) [7], and Field Programmable Gate 
Arrays (FPGAs) [8], [9], [10]. Implementations of SVMs on 
GPU platforms have been proposed recently, however, GPUs 
face challenges with regards to power consumption [11] and 
thus it is difficult to deploy them in embedded environments. 
Hence, at present, FPGAs and customized hardware 
accelerators that consume less power and can be built into 
small systems, offer an attractive platform for embedded 
applications. Existing SVM hardware architectures consider 
monolithic SVM classifiers, which are not optimized to handle 
problems where the majority of data belong to one of the two 
classes. As such, designing hardware architectures for 
multistage cascade SVMs based on existing approaches is a 
challenging task due to the increase in the number of 
classifiers, and their different computational complexities. 

In this paper we propose a specialized hardware architecture 
and design approaches for embedded on-line cascade SVM 
classification applications, such as real-time video object 
detection where classification needs to be performed in real-
time, with low power, and often with limited available 
resources. The presented design methodologies extend and 
improve our preliminary research in [12] which showed the 
advantages of a cascade hardware SVM over a monolithic 
hardware SVM. In this work we provide further details on the 
optimized cascade hardware architecture which can facilitate 
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high frame-rates. We also show how to reduce hardware 
complexity of cascade SVMs which is based on rounding off 
the SVM training data to the nearest power of two values, in 
order to improve both area and power while maintaining the 
accuracy by replacing multiplication with shift operations. 
Moreover a novel approach is introduced that improves the 
frame-rate by reducing the number of samples that reach the 
more computationally demanding stages through a neural 
network that evaluates preceding cascade stage responses. 

The proposed architecture and methods are implemented as 
part of a complete on-line video classification system on a 
Spartan-6 FPGA platform. The system was evaluated on a 
larger test set and higher resolution images (800×600) than our 
prior work using face detection as the embedded benchmark 
application. The system achieves 40 frames-per-second (fps), 
which is capable for real-time processing, while processing 
more windows than other works, and an 80% detection 
accuracy, which is on par with cascade SVM software 
implementations for the targeted application. Furthermore, the 
hardware reduction method resulted in the utilization of 25% 
less FPGA logic resources and reduction of peak power by 
20%, with only a 1% reduction in classification accuracy. 

The paper is organized as follows. Section II provides the 
background on SVMs, cascade classifiers, and related work. 
Section III details the hardware architecture for cascade SVM 
processing, the hardware reduction method, as well as the 
cascade response evaluation process. Section IV presents 
FPGA-based experimental results as well as comparison with 
related works. Finally, Section V concludes the paper. 

II. BACKGROUND 

A. Support Vector Machines (SVMs) 

A Support Vector Machine (SVM) is a supervised binary 
classification algorithm which maps data into a high-
dimensional space where an optimal separating hyperplane is 
constructed [1]. SVMs are presented with a training set 
consisting of pairs of data samples 𝑥𝑖, and class labels 𝑦𝑖  (−1 
for negative and 1 for positive samples), and try to find a 
mapping function 𝑓, such that 𝑓(𝑥𝑖) = 𝑦𝑖 for sample 𝑖 in the 
training set. This function captures the relationship between 
the data samples and their respective class labels. An SVM 
separates the data samples of two different classes, by finding 
the hyperplane with the maximum margin from the data 
samples that lie at the boundary of each class (Fig. 1-a). The 
class samples that are on the boundary are called support 

vectors (SVs) and influence the formation of the hyperplane 
[1], [2]. The support vectors are obtained during the SVM 
training phase, and correspond to non-zero alpha coefficients 
derived from the training optimization problem [2], and 
constitute the SVM classification model with which to classify 
new input data. In many real-world applications the data 
samples may not be linearly separable. SVMs utilize a 
technique called the kernel trick [2], to project the data into 
higher dimensional space where linear separation is possible 
and then proceed to find the decision surface. This formulation 
allows projecting data into a higher dimensional space, where 

linear separation is possible (Fig. 1-b), though a kernel 

function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)𝜑(𝑥𝑗), without the need to 

explicitly use a mapping function 𝜑. Overall, the classification 
decision function (CDF) for SVMs is given in (1), where 𝑁𝑠𝑣 

is the number of support vectors obtained from training, 𝛼𝑖 are 
the alpha coefficients, yi are the class labels of each sample, 𝑠𝑖 
are the support vectors, 𝑧 is the input vector, 𝑘(𝑧, 𝑠𝑖) is the 
chosen kernel function, and 𝑏 is the bias.  𝐶𝐷𝐹(𝑧): 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑧, 𝑠𝑖)𝑁𝑆𝑉𝑖=1 + 𝑏) (1) 

The computational demands of SVM classifiers depend on 
the choice of kernel function the most common of which are 
illustrated below:  𝐿𝑖𝑛𝑒𝑎𝑟 (𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡): 𝐾(𝑧, 𝑠) = (𝑧 • 𝑠) (2) 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙: 𝐾(𝑧, 𝑠) = ((𝑧 • 𝑠) + 𝑐𝑜𝑛𝑠𝑡)𝑑 , 𝑑 > 0 (3) 𝑅𝑎𝑑𝑖𝑎𝑙 𝐵𝑎𝑠𝑖𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐾(𝑧, 𝑠) = 𝑒𝑥𝑝 (−‖𝑧 − 𝑠‖2/2𝜎2) (4) 

The linear kernel (2) for SVMs corresponds to a dot-product 
operation between the input data and a feature vector 𝑤, which 
is the decision hyperplane normal vector (Fig. 1-a), and is 
computed directly from the support vectors using 𝑤 = ∑ 𝑦𝑖𝛼𝑖𝑠𝑖𝑁𝑠𝑣𝑖=1 . However, in the case of non-linear SVMs (3)-(4), 

the kernel is a more complex function and the feature vector 
cannot be directly obtained from the support vectors. Hence, 
the input vector needs to be processed with all support vectors, 
and the kernel-specific operations need to be performed, 
before a classification outcome can be obtained. To reduce the 
computational demands of non-linear kernels a number of 
techniques have been proposed. One such method is the 
reduced-set-method [13], which tries to find a smaller set of 
vectors, called reduced-set-vectors (RSVs), in order to 
approximate the decision function of the full SVM retaining 
most of the classification capabilities [6], which yields a 
reduced-set-vector-machine (RSVM).  

 
Fig. 1. (a ) SVM concepts : separating hyperplane , support vectors , 
normal vector w, bias , and margin (b) The kernel Trick visua liza tion 
(c) Cascade  clas s ifica tion scheme overview 
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B. Cascade Support Vector Machines 

In many real-world problems non-linear kernels are 
necessary in order to obtain accurate classification results on 
complex datasets. However, classification rates can be slow 
with such kernels as they produce many SVs that need to be 
processed per input sample. In this work we focus on the 
acceleration of SVM-based classification for a certain class of 
applications, such as image object classification, that exhibit 
the following characteristics: (a) the majority of the samples 
presented to the classifier belong to the negative class and (b) 
the majority of negative samples do not exhibit similar 
features to positive samples. Software implementations in the 
literature [14], [15] have tried to take advantage of these two 
observations by utilizing stages of SVMs of increasing 
complexity, which are sequentially applied to the input data 
(Fig. 1-c). Such structures mostly follow a cascade approach 
[4], [5], [6] where SVMs of increasing complexity are 
arranged in a hierarchy of stages. The SVM stages at the 
beginning of the hierarchy have lower computational 
complexity (i.e. need to process only a small number of SVs) 
and lower discrimination capabilities, and are tasked with 
removing the majority of samples from the negative class. The 
latter stages are then able to perform more accurate 
classification on the remaining samples. However, this incurs 
a higher computational cost as they need to process more SVs. 
Overall, an input sample needs to pass all stages to be 
classified as positive (Fig. 1-c). Under this scheme a large 
amount of input samples are discarded early in the 
classification process by the stages at the beginning of the 
cascade, resulting in significant speedups. In addition, it is 
possible to use the reduced-set-method [13], to reduce the 
number of support vectors required by the non-linear kernel 
stages in order to further improve classification times. 
Furthermore, since the latter stages need to better discriminate 
between positive and negative samples, feature extraction 

algorithms may be used to improve accuracy, which however, 
further increases computational demands. 

C. Related Work 

The speedups achieved by software implementations of 
cascade SVM classification schemes over monolithic, 
although significant, do not offer adequate performance for 
real-time resource-constrained applications [4,5,6,15,16]. This 
is because the latter stages become the bottleneck since they 
require processing an increased number of SVs and the 
requirement for parallel processing arises. Hence, hardware 
acceleration [17], [18] of SVM classification has been 
explored in order to take advantage of the inherit parallelism 
of the SVM computation flow in an attempt to provide real-
time and low-cost/low-power solutions.  

The majority of proposed hardware architectures attempt to 
improve performance by employing parallel processing 
modules which process the elements of the input vector in 
parallel on FPGA platforms. However, for such architectures 
the parallelism depends on the vector dimensionality for a 
given problem in terms of computational resources. When the 
vector dimensionality is high and the hardware resources for 

fully parallel processing are not available, the architecture can 
be folded to process the elements in groups. However, this 
increases the cycles needed to process a single vector. Hence, 
works that utilize such architectures have optimized it 
specifically for the vector dimensionality of the given problem 
and have been restricted to small scale data, with only a few 
hundred vectors and low dimensionality [9], [19], [20], and 
small-scale multiclass implementations [21] in order to be able 
to meet real-time constraints. In addition, these architectures 
cannot trade-off processing more SVs rather than vector 
elements, and hence, cannot efficiently deal with the different 
computational demands of the cascade SVM stages. 

Alternative approaches include FPGA coprocessors for 
parallel vector processing in order to speedup SVM 
computations [8], [22]. However, these architectures do not 
consider the kernel implementation and the FPGA is only used 
for the dot-product operations of the SVM classification flow. 
Furthermore, the parallel processing capabilities depend on 
parallel input through the PCI express and external DRAM 
which have high power consumption and are thus unsuitable 
for embedded applications. Another approach [23] is to 
dedicate a multiply-accumulate unit per SV to process them in 
parallel with a single input vector. However, such 
architectures are limited by the number of SVs and also cannot 
be used to parallelize the processing of a linear SVM.  

Research has also been conducted on potential 
simplifications to make the SVM classification more suitable 
for hardware implementation on devices with limited 
computational resources. These approaches include using 
CORDIC algorithms to compute the kernel functions [10], 
[19], [24], [25]. However, low resource consuming 
implementations of CORDIC algorithms have increased 
latency [10]. Other works [26], [27] propose that computations 
are done in the logarithmic number system, where 
multiplications are replaced with additions, in order to reduce 
the required processing resources. However, they only 
consider a single processing module, hence, when adopting a 
more parallel architecture, to facilitate real-time operation, the 
additional cost from converting between the decimal number 
system to the logarithmic one and back again for all inputs 
increases. The works in [25], [28], [29] [30], have looked at 
how the bitwidth precision impacts the classification error, in 
an effort to find the best trade-off between hardware 
resources, performance and classification rate. Although the 
kernel operations still need to be implemented with multipliers 
leading to high resource demands for parallel 
implementations. A hardware friendly kernel was proposed in 
[31], which operates in conjunction with a CORDIC algorithm 
and addresses the resource requirements for SVM 
implementation. However, this kernel does not address the 
memory requirements of SVs. In contrast our approach also 
reduces the memory demands for the storage of SVs and alpha 
coefficients. Furthermore, as previously mentioned CORDIC-
like algorithms can have a negative impact for parallel 
implementations targeting high performance. 

NVidia's Compute Unified Device Architecture (CUDA) 
has been used in [7], [32], [33] in order to speedup SVM 
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classification using the parallel computing resources of a 
GPU, showing improved results compared to CPU 
implementations. However, GPUs are power hungry devices 
compared to FPGAs [22], [34], (FPGAs consume 
approximately an order of magnitude less power as shown in 
[11]) and as such they are not suitable for power-constrained 
embedded applications such as image object classification. In 
addition, existing GPU implementations do not translate well 
to the more energy-efficient embedded GPUs due to less 
available resources (less memory, registers, cache, cores) [35]. 

The above related works consider only monolithic SVM 
classifiers. Only recently there has been some work in the 
hardware implementation of cascade SVM classifiers. In [34] 
the authors implement an architecture of cascade classifiers 
with low and high precision bitwidth and exploit the dynamic 
ranges of heterogeneous dataset problems to achieve an 
efficient resource utilization. In contrast, in this work we 
exploit the characteristic of a specific class of problems where 
samples of one class appear more frequently than the other to 
design an optimized hardware architecture. 

Summarizing, in their majority, most of the previously 
presented works are application specific, and efficient ways to 
utilize the different computational demands of cascade SVMs 
stages have not been sufficiently examined. Moving towards 
large scale embedded applications and problems where 
thousands of samples need to be classified in real-time, the 
majority of which belong to one of the two classes, cascade 
SVMs will need to be utilized to provide speedups. As such, 
single SVM architectures, which do not exploit the properties 
of the cascade classification scheme, are not suited for this 
purpose. Hence, this paper is one of the first to explore the 
potential of a flexible and parallel hardware architecture and 
design methods that can be used to improve different aspects 
of SVM hardware architectures. 

III. PROPOSED HARDWARE ARCHITECTURE AND METHODS 

Cascade SVMs have demonstrated improvements over 
conventional SVM models (i.e. monolithic) in terms of 
classification speed [4]. However, it is still challenging to 
achieve real-time performance, especially as the amount of 
input samples that need to be classified increases. Hence, we 
propose a parallel hardware architecture to provide higher 
classification throughput and a hardware reduction method 
leading to a more compact hardware implementation suitable 
for embedded system applications. In addition, this work also 
develops a novel method to improve classification speed by 
taking advantage of cascade classification information to 
reduce the amount of input samples that reach the more 
computationally-intensive latter cascade stages. Finally, in 
many classification problems some form of feature 
extraction/preprocessing method needs to take place in order 
to deal with different variations and improve detection 
accuracy. Hence, the architecture also incorporates a feature 
extraction algorithm based on local binary pattern (LBP) 
descriptors, targeting object detection applications. 

A. Cascade SVM Hardware Reduction Method 

The proposed hardware reduction method exploits the fact 
that early stages in an SVM cascade are non-optimal 
classifiers in order to reduce the resources needed for their 
hardware implementation, by adapting their parameters (SVs 
and alpha coefficients), while maintaining their ability to 
discard a large amount of negative samples. The proposed 
hardware reduction method is to modify the SVs and alpha 
values of the low complexity SVMs by rounding them to the 
nearest power of two values instead of using the conventional 
fixed-point representation approach. Consequently, all 
multiplication operations in the SVM classification phase (the 
kernel dot-product calculations and computations related to 
the alpha coefficients) will become shift operations which 
require less resources to be implemented in hardware. 
Additionally, since the support vectors and alpha coefficients 
are now power of two values there is no need to store the 
binary representations of decimal numbers but only shift data 
(shift amount, shift direction, and number sign). This will 
result in an adapted cascade SVM with reduced storage and 
computational demands. However, the expense from 
approximating the support vectors and alpha coefficients with 
powers of two comes with the modified resulting classification 
accuracy will be different from that of the initial SVM 

cascade. The receiver-operating-characteristic (ROC) curve of 
each cascade stage whose parameters have been rounded off to 
the nearest power of two is used to adjust its accuracy to 
similar rates of that of the initial cascade stages. The ROC 
curve shows the performance of a binary classifier by 
illustrating the corresponding true positive and false positive 
rates, given a test set. As such, by setting the appropriate 
threshold the performance of the adapted stages in the SVM 
cascade can be adjusted to match the true positive rate of the 
initial SVM cascade stages. This is necessary since we are 
interested in maintaining the true positive rate. There are 
trade-offs which stem from changing the original classification 
model. Specifically, the reduced computational and storage 
requirements come at a cost of an increase in the false positive 

 
Fig. 2. (a ) Hardware  Reduction Method (b) Response Evaluation 
Method 
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rate of the adapted classifiers as shown in Fig. 10 in Section 
IV. However, the overall accuracy tends to meet the accuracy 
of the final classification stage and hence the increase is not 
significant (only a 1% drop as shown in Section IV). Adapted 
stages, which do not yield the targeted accuracy, are reverted 
back to the initial model. The process is shown in Fig. 2-a. 

The hardware reduction process takes place after the 
cascade structure is decided, meaning that the kernel function, 
and number of support vectors or reduced-set-vectors for each 
SVM cascade stage are determined. As such, the proposed 
method can easily be used with different SVM training 
frameworks. Furthermore, the method does not depend on the 
specific hardware architecture used for the implementation of 
the cascade and as such can be optimized to different 
architecture requirements. 

B. Cascade Response Evaluation Method  

Exploiting cascade information is a common technique used 
to speed up the training phase of cascade classifiers by 
eliminating samples from the training set. However, so far 
only a few works have attempted to do something similar in 
the classification phase. These methods [36] perform a joint 
logical operation (AND-OR) on the outcome of the cascade 
stages in order to correct/reevaluate the detection result. Such 
methods are usually used to improve detection and require that 
all the stages process the input data in order to reach a 
decision. However, this means that the overall detection speed 
is reduced. In order to improve performance there is a need for 
a mechanism that can indicate whether an input sample needs 
to move on to the more computationally demanding stages. In 
this work we propose to do this by examining the responses of 
early cascade stages in order to rapidly eliminate data samples 
prior to reaching the latter stages. It is based on the 
observation that when looked at collectively, the responses of 
the individual cascade stages can exhibit patterns which can 
help in discriminating between samples belonging to different 
classes. This adds an additional dimension to the cascade 
classification phase that amongst others can be used to 
speedup the overall process.  

Such a response processing mechanism can be constructed 
by following the process shown in Fig. 2-b. An integral part of 
this process is the construction of the training and test sets. 

Examples of positive and negative samples not used in the 
training phase of the SVM cascade are collected. Then these 
are fed to the selected cascade stages in order to collect the 
response of each stage and construct a corresponding response 
feature vector. Next, we select the response vectors of the 
samples which are predicted to belong to the positive class 
(i.e. have pass ed all stages) to form the set of response vectors 
which will be used to construct the response classifier. We 
then separate this set into the training and test sets  both of 
which must contain responses obtained from true negative and 
positive samples. Using this new training set a machine 
learning algorithm, which will act as a response evaluator, can 
be trained to discriminate between different responses. Of 
course, the positive and negative samples can often have 
similar cascade responses. Hence, the training goal for the 
machine learning algorithm is to make sure that the positive 
responses will be correctly classified so that the true positive 
accuracy of the whole cascade is not affected. With regards to 
responses corresponding to negative classes, any correct 
classification is beneficial since those samples will not need to 
be classified by the final stage. The desired true positive rate 
can be adjusted experimentally by setting an appropriate 
threshold value. This is a general approach of handling the 
cascade responses and thus can be used similarly to benefit 
both software and hardware implementations. With regards to 
software implementations the additional computations 
necessary for the latter cascade stages are eliminated, while 
for hardware implementations, the reduced workload can 
result in more compact architecture implementations for the 
latter stages. In this work we focus on the hardware aspects of 
this approach and the benefits of using this mechanism are 
outlined by the results in Section IV. 

C. Hardware Architecture 

The proposed architecture (Fig. 3) consists of cascade 
processing components as well as additional components 
which relate to the targeted benchmark application of object 
detection, an embedded application where samples of one 
class (non-object class) appear more frequently than the other 
(object class) [4]. The presented architecture is comprised of 
flexible and generic components and the parameters of each 
one can be adjusted to meet given requirements such as 

 

Fig. 3. SVM cascade sys tem architecture  comprised of the sequentia l process ing module (SPM), the para lle l process ing module (PPM), the 
regis te r a rray, frame buffer memory, the  LBP processor and the response  process ing unit (RPU).  
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different data sizes and image dimensions. Thus facilitating 
the design of an optimized hardware accelerator that is 
tailored-made for a specific application. Furthermore, the 
modular design means that the architecture can support 
different processing modules which allows it to implement the 
operations required by each SVM in the cascade.  

1) Cascade SVM Hardware Architecture 

The proposed hardware architecture takes into consideration 
the throughput and processing needs of each stage in the 
cascade. Accordingly, the proposed hardware architecture for 
the cascaded SVM classifier consists of two main processing 
modules, which provide different parallelism with respect to 
the input data and SVs in order to meet the different demands 
of the cascade SVM models, and also the amount of input data 
that each will need to process. The first is a parallel processing 
module (PPM) which performs the processing necessary for 
all the adapted SVM stages (Fig. 4). The second is a sequential 
processing module (SPM), shown in Fig. 5, optimized for the 
high complexity SVM stages The cascade response processing 
is implemented with a low-resource consuming neural 
network architecture to minimize hardware overheads while 
boosting performance. 

a) Parallel Processing Module (PPM) 

The parallel processing module (PPM) handles the 
processing of the low complexity SVM stages which have 
been adapted using the proposed hardware reduction method. 
Specifically, the proposed architecture can process linear and 
2nd degree polynomial kernels, but the plug-and-play approach 
of the architecture means that other kernel modules 
implementing different kernel functions can be used instead 
[37]. The characteristic of the early cascade stages is that they 
require processing only a few SVs per input vector, while 
having to process the majority of input vectors. As such, 
parallelism focuses on processing vector elements in parallel 
to reduce the processing time per vector. 

The architecture of the PPM (Fig. 4) is comprised of three 
main regions: SVM shift operations, adder tree pipeline and 
kernel computation. The first region is comprised of parallel 
SV data memories, arithmetic shifters, and parallel sign 
conversion units. The second region is comprised of a tree of 
adders that sum the results of the previous stage in order to 

calculate the dot-product scalar value. The final region is 
dedicated to kernel processing and is also mostly implemented 
using arithmetic shift units. The operation of the parallel 
processing module begins with the processing of the input 
vector elements by the sign conversion units which are used to 
preserve the sign of the initial multiplication operation. The 
signed numbers are then processed by arithmetic shift units 
which perform the shift according to the data that they receive 
from the memories. The shift data are fetched in parallel from 
small memory units, and include the sign of the support 
vector, the shift amount, and the direction of the shift 
operation. The partial results are added together using a 
pipelined tree of adders so that the dot-product outcome can 
be obtained. The depth of the adder tree impacts the latency of 
the PPM and depends on the number of operands of individual 
adders used and the vector dimensionality, as well as the 
targeted frequency and amount of parallelism. The latency of 
the adder tree is given by (5):  

𝑎𝑑𝑑𝑒𝑟_𝑡𝑟𝑒𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 = ⎾ 𝑙𝑜𝑔(𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)𝑙𝑜𝑔(𝑎𝑑𝑑𝑒𝑟_𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒) ⏋ (5) 

Once the dot-product scalar value becomes available the 
kernel computation follows. In the case of linear kernels (Eq. 
2), adding a bias value to the dot-product outcome will suffice 
in order to obtain the classification result. However, for 2nd 
degree polynomial kernels, as well as other kernels, the kernel 
computation module handles the latter steps of the 
classification phase. Only one multiplier is used in the parallel 
processing module and is used to perform the square 
operation. The processing of the alpha coefficients is done 
with a sign conversion unit and an arithmetic shift unit 
similarly to the processing of the SVs. An accumulator is used 
to accumulate the result of each SV processing, and once all 
SVs are processed, an adder is used to process the bias with 
the accumulated result. The PPM stages are pipelined, so one 
SV enters the pipeline every cycle. Hence, the total number of 
cycles needed to process the input vector at stage 𝑛 is given by 
equation (6), where 𝑁𝑆𝑉(𝑖) is the number of support vectors 
that need to be processed by stage 𝑖. 

(∑ 𝑁𝑆𝑉(𝑖) + 𝑎𝑑𝑑𝑒𝑟_𝑡𝑟𝑒𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 + 1𝑛
𝑖=1 ) 

(6) 

 
Fig. 4. Para lle l P rocess ing Module  (PPM) Architecture  

 
Fig. 5. Sequentia l P rocess ing Module  (SPM) Architecture  

 



7 
 

The PPM architecture describes a fully unrolled 
implementation and allows for all vector elements to be 
processed in parallel, thus providing higher detection speeds.  
In cases where the resources are not available or the vector 
elements cannot be accessed in parallel due to limited I/O or 
memory access, the PPM architecture can be implemented 
using fewer resources by reducing the unrolling factor. Of 
course this will have a negative impact on performance which 
becomes more apparent as the number of SVs increases, as the 
time needed to process a single vector also increases. 

b) Sequential Processing Module (SPM) 

The sequential processing module (SPM) is responsible for 
performing the computations necessary for the final SVM 
stage which requires processing of hundreds of high-
dimensional SVs. Hence, as the dimensionality of the vector 
increases it becomes prohibitive in terms of resources and 
power to have multiple units in parallel for processing of a 
single vector, as the wiring and memory management 
complexities also increase. In addition, processing less vector 
elements while having to also process hundreds of SVs leads 
to decreased performance. Hence, it is more efficient to use an 
alternative architecture, to that of the PPM, that will offer 
parallel processing tailored to the requirements of the more 
demanding SVMs [37]. Also, since this module will be used 
less frequently a flexible yet compact architecture is required.  

This is achieved with the architecture shown in Fig. 5, 
which is comprised of a series of pipelined processing and 
memory elements [37]. The majority of the units in the 
module are vector processing units (VUs) and each unit 
handles the dot-product for one support vector with the input 
vector. They are comprised of a multiply-accumulate unit, and 
also a Block RAM which acts as ROM and contains the data 
for one or more support vectors, along with register and 
multiplexer logic for data transfer between vector units. The 
final unit in the pipeline is the kernel processing unit which is 
equipped with multipliers and accumulators to carry out the 
scalar operations of the SVM processing flow. Multiple PPMs 
can be arranged in an array as in [37] to increase parallelism. 

The input vector is processed with a group of support 
vectors at a time, and each vector processing unit handles the 
processing of one support vector. Once a group of support 
vectors is processed the next group follows. In total depending 
on the number of groups a total of 𝑁𝑆𝑉/𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠⏋processing repetitions are necessary. Hence, 
the size of the pipeline can be adjusted to fit the available 
resources and processing requirements by adjusting the 
number of support vector groups. Each vector processing unit 
in the pipeline processes one support vector with the input 
vector at a time. The data in the SPM flows in different 
directions through dedicated transfer mechanisms. The input 
vector values and VU results are propagated from the first unit 
to the next through a register pipeline, while the SV data are 
fed to the VUs through parallel memories. When the 
processing of the input vector with the group of SVs is done, 
after 𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚 cycles, the multiplexers and registers in 
each vector unit are used to switch from propagating input 

vector values to scalar results. The scalar values are 
transferred sequentially through the pipeline and it takes 𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 cycles for them to be processed by the kernel 
processing unit (with a 2 cycle initial delay due to the pipeline 
stages). In this way the kernel processing unit is shared 
between the units, reducing hardware requirements and also 
making it easy for the designer to substitute it with the desired 
kernel without having to change much of the system 
functionality. Each scalar value that enters the kernel unit is 
processed by the kernel operation and the alpha coefficient. In 
the case of the kernel described by (3), the operation involves 
a multiplier to find the square of the value and multiply-
accumulate units to process the alpha coefficients. Once all 
scalar values are processed, the final classification result is 
obtained by adding the bias to the accumulated result. Overall, 
the number of cycles needed to process an input vector is 
given by equation (7).  ⎾𝑁𝑆𝑉/𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠⏋×(𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚 + 𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 + 2)  (7) 

c) Response Processing Unit (RPU) 

As previously described, the objective of the cascade 
response evaluation process is to remove samples prior to the 
final SVM classification in order to improve processing speed. 
As such, it acts as a complementary stage to the overall 
cascade structure and can be used with any number of cascade 
stages. However, this needs to be done in a hardware efficient 
manner in order to maintain performance and keep low 
resource utilization. Hence, computationally and memory 
intensive algorithms are not the desired choice. For this reason 
a computationally efficient feed-forward neural network (NN) 
model is selected to perform the response evaluation process, 
which as shown in Section IV, leads to a low-resource 
consuming architecture that can sufficiently differentiate 
between responses.  

The neural network model, shown in Fig. 6-a, has a two 
layer structure with one neuron in each layer in order to keep 
the resource requirements low. The first neuron receives the 
responses from the cascade stages, multiplies them with their 
respective weights, and accumulates the products. Then it adds 
the bias value and sends it through a hyperbolic tangent 
activation function to the output neuron, which performs the 
same process and generates the classification outcome. 

 
Fig. 6. Response  Process ing Unit (RPU): (a ) Neura l Network model 
(b) NN-based RPU Hardware  Architecture  
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The neural network hardware architecture (Fig. 6-b) 
processes different number of inputs depending on the number 
of cascade responses produced by the desired stages. Since 
each response is generated at different time intervals, it can be 
processed sequentially once it becomes available by the PPM. 
Multiplexers are utilized to select the output of the desired 
classifier and its corresponding weight value, which is 
represented in a fixed point format. The two values are 
multiplied and accumulated. Once all the cascade responses 
are accumulated the bias is processed. A Look-Up Table 
(LUT) memory is used to implement the hyperbolic tangent 
function. We exploit the facts that this function is symmetric 
with respect to negative and positive inputs, and that its results 
range from [−1. .1]. Consequently, only the results for 
positive numbers are stored with the input being processed to 
obtain its absolute value. This leads to a more compact and 
efficient implementation. The sign of weighted accumulated 
sum is used to adjust the result of the hyperbolic function 
memory after the appropriate value is loaded since it is the 
same for negative and positive values. Then it is processed 
with the output layer weight which is implemented using an 
arithmetic shift unit. Finally, the bias is added and the final 
outcome is computed. It is not necessary to use a hyperbolic 
function for the output layer neuron since it does not change 
the sign of the result which determines the class. The RPU 
takes (𝑁𝑁_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 +  2) cycles to process the 
response vector that is generated from the PPM.  

d) Cascade Processing Flow 

The architecture processes a single input vector at a time 
starting from the early stages implemented using the PPM. 
The RPU follows next to classify the responses of preceding 
stages if the input vector has been classified as positive. If the 
response evaluation predicts a positive sample, the RPU 
informs the SPM which in turn proceeds to classify that 
sample to obtain the final classification result. The different 
throughput requirements of the cascade SVM processing 
modules require an I/O mechanism that can adjust for parallel 
as well as sequential data transfer depending on the needs of 
each module. It should also take advantage of the application-
specific characteristics to facilitate data reuse and reduce 
memory accesses. Furthermore, the cascade I/O structure 
should be able to handle classifier demands for different data 
points and data access patterns. Such architecture can be 
designed using a register array (Fig. 3) where data can be 
loaded to the array and outputted in parallel for the PPM and 
sequentially for the SPM.  

2) I/O and Preprocessing for Object Detection 

Additional components are incorporated into the 
architecture in order to handle the data flow and preprocessing 
for object detection, which requires processing data from the 
input image in a sliding window fashion to classify them as 
object or not. As such, the register array structure (Fig. 3) is 
also optimized for the object detection data flow so that it does 
not only provide sequential and parallel data access to the two 
processing modules but also to take advantage of potential 

data overlap and reduce memory I/O. A frame buffer is 
employed to hold part of the image for fast local access. 
Finally, the architecture incorporates a specialized processor 
that performs local binary pattern (LBP) histogram extraction 
which is used as features for object detection classification.  

a) Object Detection Processing Flow and I/O 

An optimized I/O mechanism for object detection can be 
developed based on register array structure (Fig. 3) that 
provides different access patterns and window data selection 
for the image segment that is currently being processed. The 

register array has a size of size 𝐻𝑚𝑎𝑥 × 𝑊𝑏𝑢𝑓_𝑠𝑖𝑧𝑒, where 𝐻𝑚𝑎𝑥 

is the height of the window, and 𝑊𝑏𝑢𝑓_𝑠𝑖𝑧𝑒 corresponds to the 

width of the array (i.e. how may additional image columns are 
stored). The input image pixels enter the register array and are 
propagated row-wise into the structure. The image region that 
resides at the right-most part of the register array corresponds 
to a single 𝐻𝑚𝑎𝑥 × 𝑊𝑚𝑎𝑥  window which is the active window 
that feeds the processing units with data. In this data flow the 
image region is processed in a window-by-window fashion. 
Once a window has been processed a part of it is shifted out of 
the array, while new pixels are shifted in. Thus a new window 
is formed at the rightmost region of the scanline buffer and is 
ready to be processed next. The data flow of the right-most 
registers changes depending on whether the data are used for 
parallel or sequential processing. In the case of the parallel 
processing module, window data are outputted and processed 
in parallel. In the case of sequential processing, which happens 
when the LBP features are generated, the registers form a 
chain so that data are outputted sequentially.  

b) Local Binary Pattern (LBP) Processing Unit 

Local Binary Patterns (LBPs) describe the relationship 
between a pixel and its neighborhood, and have been used in a 
wide range of computer vision applications [38]. Their major 
advantage is their low computational complexity [39] which 
makes them suitable for embedded applications. Generating 
the LBP descriptor [38] consists of the following steps (Fig. 7-

a): 1) Compare the values in a 3×3 neighborhood against a 
threshold (the center pixel or the window mean value) placing 
1 where the value is greater or equal, and 0 otherwise. 2) 
Multiply the resulting binary map with a powers of two mask. 

3) Sum the values to obtain the LBP Code. 4) Divide the LBP-

based image into 𝑘 blocks of 𝑖 × 𝑗 pixels (e.g. 4×4, 8×8) and 

construct a local histogram of 𝑙 bins for each block. 5) 
Concatenate the local histograms to form a single global 
histogram descriptor. The LBP descriptors can be used as 
features by the latter SVM stages which require better 
discrimination capabilities. Since only a fraction of input data 
will be processed using LBP, it is more efficient to explore a 
low area overhead architecture. 

 Accordingly, the developed LBP processor architecture, 

shown in Fig. 7-b, processes a single 3×3 image neighborhood  
from the input image at a time, to reduce processing 
requirements. It receives the values of that window in parallel 
every cycle from the register array structure. Each window 
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Fig. 8. Block diagram of the  FPGA system 
 

 

Fig.  9. Cascade  SVM Structure . 

value is compared against the center window value in parallel 
through dedicated comparators and the results are 
concatenated to generate the LBP code. The number of 
transitions in the LBP code is found next in order to identify it 
as uniform (which has 2 or less transitions e.g. 11110000) or 
non-uniform (which have more than 2 transitions e.g. 
10100101) [38]. The local histogram computation, which 
counts the uniform LBP codes against the non-uniform, 
follows next for each block in the LBP image. Since the bin of 
each LBP code is predetermined [38], a LUT is used to map 
the code to one of 59 possible histogram bins. Multiple local 
histograms are stored in the same central memory (of size 𝑘 ×𝑙), hence, the hardware architecture needs to know the position 
of each LBP code in the image in order to determine the local 
histogram it belongs to. This is achieved by counting the row 
and column of each LBP code and monitoring the most 
significant bits (MSBs) of the row and column coordinates to 
indicate its corresponding block. Then by setting the 
appropriate address offset the corresponding local histogram 
region is selected and updated. To facilitate fast histogram 
update and reset a dual ported memory is utilized. The updated 
histogram bin is read from one port and written to the other 
the following cycle so no delays are observed. Second, this 
allows for an immediate reset to be performed right after the 
value is read from the SVM classification module to prepare 
the memory for the next histogram.  

IV. EXPERIMENTAL PLATFORM AND RESULTS 

The proposed hardware architecture and methods were 
evaluated using the popular embedded application of face 
detection, which has also been used by software 
implementations of cascade SVMs. The cascade structure was 
trained using MATLAB and was used for evaluation of the 
architecture and proposed methods, on 800×600 (SVGA) 
resolution images, in terms of frame-rate, detection accuracy, 
power consumption, as well as requirements in terms of 
computing resources. Additionally, the proposed hardware 

architecture, which will be referred to as the adapted cascade, 
is compared against a baseline system which implements the 
same cascade SVM structure including the RPU (Stage 4), but 
without applying the hardware reduction method, and thus the 
parallel processing module is implemented using multipliers. 
Both implementations were evaluated and compared using a 
Xilinx Spartan-6 Industrial Video Processing board equipped 
with a Spartan-6 XC6SLX150T FPGA (Fig. 8). A Microblaze-
based system was used for I/O and verification purposes, 
while for both systems an on-chip buffer is used to store the 
input image and a register array for data loading and 
processing which was experimentally found to provide an 
adequate balancing between I/O delays and hardware 
resources. The following sections detail the evaluation process 
and the results. 

A. SVM Cascade Training and Accuracy 

The training of the SVMs and neural network was 
conducted off-line using MATLAB with kernels and parameters 
similar to what has been used in the literature [4], [5], [6]. The 
resulting classification models were used to evaluate the 
proposed hardware architecture and approaches for on-line 
classification on an FPGA. We performed experiments with 
all possible LBP histogram parameters and selected those 
which provided the best accuracy results. The used parameter 
values are shown in Table I.  

Positive and negative samples from [40] were used to setup 
an initial training set which was later enhanced with additional 
samples. The first three cascade stages were trained in 
incremental fashion [4], [6], [15]. The final SVM stage was 
excluded from the process and was trained using the complete 
training set which was first processed using the LBP feature 
extraction. The first polynomial SVM (Stage 3, Fig. 9) was 
reduced to 20 RSVs which was the smaller number of reduced 
vectors needed to maintain the original accuracy. In contrast, 
100 RSVs where needed to maintain the accuracy [6], [15], for 
the final stage (Stage 5, Fig. 9). The first three stages retained 
similar accuracy level after being rounded-off to the nearest 

 

 
Fig. 7. (a ) LBP descriptor (b) LBP Process ing Unit Architecture  
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power of two as shown in Fig. 10, and hence were 
implemented on the PPM. However, for the final stage there 
was a significant discrepancy between the classification 
accuracies of the adapted and original models. Hence it was 
not approximated and the original model was used.  

After the SVM cascade, the training of the NN-based RPU 
followed using the process described in Fig. 2. The feed-
forward NN consisted of 1 neuron for each of the 2 layers and 
was trained using the gradient descent with momentum and 
learning rate backpropagation algorithm in MATLAB. For this 
purpose 30515 positive and 329383 negative window 
samples, not used in the SVM training phase, where extracted 
from various images and were passed through the first three 
adapted SVM cascade stages to collect their responses. This 

resulted in a three dimensional response vector per sample. 
The response vectors of the samples classified as positive by 
the cascade (which also include truly negative samples) were 
selected to form a new set (29117 response vectors for 
positive samples and 8803 response vectors for negative 
samples). This new pool of response vectors was then 
partitioned in a training and test set, both containing responses 
from negative and positive samples, in order to train and 
evaluate the NN-based PRU. A subset of cascade responses 
for the training set are shown in Fig. 11, where it is evident 
that the responses of the early stages exhibit different patterns 
for positive and negative class samples. The NN-based RPU 
training resulted in a correct classification rate of 99% for 
positive and 60% for negative cascade responses using the 
constructed responses test set. 

B. FPGA Implementation & Logic Resource Utilization 

The two cascade implementations (baseline and adapted) 
have the same basic architecture (Fig. 3) and data flow. The 
PPM architecture was based on a fully unrolled 
implementation, while the SPM was implemented with 50 
DSP units (𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 = 50) meaning that the input data to 
the SPM is processed two times with different SV groups. The 
NN-based RPU was mapped on the FPGA LUTs with a Block 
RAM used for the hyperbolic tangent implementation. The 
only difference between the two implementations is that in the 
adapted cascade case the PPM was optimized using the 
hardware reduction method from Section III.A. Consequently, 
the multiplication units were replaced with shift units and the 
SV data stored in the training data ROMs corresponded to 
shift values instead of real number values. Each ROM holds 
the support vector data for the first three cascade SVM stages 
for the specific vector elements. Finally, a single BRAM was 
used to implement the hyperbolic tangent function of the NN-
based RPU. Both implementations on the Xilinx Spartan-6 
XC6SLX150T FPGA have the same critical path, the SPM 
kernel unit mapped on the DSPs, and as such have the same 
operating frequency of 70 MHz. The implementation of the 
adapted PPM requires 40% fewer FPGA logic resources 
compared to the baseline PPM. This is reflected with a 25% 
reduction in the utilized resources when considering full 
system implementations, as shown in Table II. Overall, the 
proposed approaches can be used to meet different constraints 
in the design space for different FPGAs from low-end to high-
end. For low-end devices the immediate impact is a method to 
better fit the design to limited resources, while for high-end 
with enough resources, power consumption can be reduced by 
changing the multiplication units to shift units. Furthermore, 
for both cases the architecture components can be optimized to 
meet the available FPGAs resources. 

C. Classification System Accuracy and Frame Rate 

TABLE  I 
CASCADE DETECTION S YSTEM PARAMETERS  

Search  
Window Size 

20×20 (𝐻𝑚𝑎𝑥 × 𝑊max) 
LBP Block Size 

𝑖 = 3,𝑗 = 6 

Downsampling 
Rate 

1.2 
(18 scales) 

Number of LBP 
Blocks 

𝑘 = 18 

Window 
Step 

5 pixels 
LBP  

Histogram Bins 
𝑙 = 59 

Image  
Resolution 

800×600 
(SVGA) 

Number of 
Windows 

56984 

TABLE  II 
FPGA RESOURCE REQUIREMENTS P ER UNIT AND S YSTEM 

FPGA 
Resources 

Registers 
(184304) 

LUTs 
(92152) 

BRAMs 
(268) 

DSPs 
(180) 

SPM 1736 (1%) 2241 (2%) 51(19%) 50 (27%) 

Adapted PPM 2679 (1%) 
19006 
(20%) 

1 (<1%) --- 
Baseline PPM 3724 (2%) 

30791 
(33%) 

NN-based RPU 82 (<1%) 379 (<1%) 2 (<1%) 6 (3%) 

LBP Processor 32 (<1%) 94 (<1%) 2 (<1%) --- 

Memory & I/O 
Units 

1831 
(1%) 

1200 
(1%) 

180 
(67%) 

--- 

Microblaze 
Video Pipeline 

10780 
(5%) 

9891 
(10%) 

20 
(7%) 

3 
(2%) 

Baseline Cascade 
System 

21214 
(11%) 

47396 
(51%) 256 

(96%) 
59 

(32%) Adapted 
Cascade System 

20153 
(11%) 

35532 
(38%) 

TABLE  III 
S TATISTICS FOR EACH CASCADE S TAGE 

Cascade 
Stages 

Stage 1 
(PPM) 

Stage 2 
(PPM) 

Stage 3 
(PPM) 

Stage 4 
(RPU) 

Stage 5 
(LBP & 
SPM) 

Windows 
Processed 

56984 
(100%) 

3025 
(5%) 

2334 
(4%) 

713 
(1,2%) 

228 
(0,4%) 

Rejection 
Rate 

94,6% 22,8% 69,4% 76,4% --- 

Cumulative 
Cycles 

9 10 30 35 2697 

Vectors per 
stage 𝑵𝑺𝑽(𝒊) 

1 1 20 --- 100 
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This section outlines results related to accuracy and frame-
rate, two important metrics in object detection, and also 
highlights the overall impact of the LBP processor and RPU. 
The accuracy of the adapted cascade SVM was evaluated on 
the widely used CMU-MIT database of faces [41]. In addition 

images from the dataset were cropped and resized to 800×600 

(SVGA) resolution and used to evaluate the frame-rate of the 
cascade SVM implementation. Some full frame detection 
results are shown in Fig. 12. Each 800×600 image generates a 

total of 56984 20×20 search windows for 18 scales and a 

window step of 5 pixels. Each frame requires a different time 
to be processed, by the cascade implementations, depending 
on how many windows reach each stage, and by how many 
cycles it takes a stage to process an input. All windows are 
processed by the first SVM stage, however, only ~1% of them 
reach the final SVM stage, as shown in Table III. In addition 
to the actual processing time, the I/O delays per frame also 
negatively impact classification speed. In order to achieve 
higher detection rates, I/O and memory operations overlap 
with processing.  

As shown in Fig. 10, the adapted cascade SVM stages have 
similar accuracy to that of the initial SVMs in terms of true 
positive detection accuracy. However, the false positive rate 
has increased between 4%-15%. This is to be expected since 

the approximations introduced a discrepancy between the 
initial and adapted SVM models. However, the final detection 
accuracy (see Fig. 13) of the adapted cascade is determined by 
the latter stages, and so any discrepancies are effectively 
masked. Hence, both implementations are expected to have a 
similar overall accuracy (~80%). For more details on the 
effects of the approximations on the accuracy we refer the 
readers to [12]. 

Results for different system configurations of the adapted 
SVM cascade, with and without the LBP and RPU, are shown 
in Fig. 13. The cascade SVM boosted by the NN-based RPU 
was able to achieve an accuracy of 80% which was only 1% 
less than the same system without the RPU, which suggests 
that with additional training and enhancement of the data sets 
it would be possible to achieve the same accuracy. 
Nevertheless, the minimal drop in accuracy, when using the 
RPU, is offset by a 2× increase in performance. It allows the 
cascade system to operate at ~40 fps instead of ~20 fps, 
making the system capable of real-time operation. This 
happens because even though most windows are discarded by 
the first two cascade stages, the NN-based RPU manages to 
reduce the number of windows (~230 instead of ~715, Table 
III) that reach the slower SPM. Furthermore, the introduction 
of the LBP feature extraction process helped improve both the 
true positive (TP) rate as well as the false positive (FP) rate, 
the latter by an order of magnitude. In addition since the LBP 
features are only extracted during the final stage the improved 
accuracy has only a small impact on the frame-rate (40 instead 
of 45 fps). The results also indicate that in cases where the 
frame-rate is of much higher importance than accuracy (e.g. 
when processing videos from a static environment) the 
optimized SVM cascade without the LBP and RPU can also 
be used to offer higher performance. Overall, through the use 
of LBP features to improve accuracy, and the RPU to boost 
the frame-rate, we achieve an adequate trade-off between 
frame-rate and detection accuracy to meet application 
requirements. 

D. Power Consumption 

Power analysis tools from Xilinx were used to measure 
power consumption demands of the adapted and baseline 
cascade SVM FPGA implementations. The characteristic of 
the cascade architectures is that the PPM and SPM are not 
used at the same time since they implement different cascade 
stages. Hence, the dynamic power consumption ranges 
depending on which module is active. The total power budget, 
including the Microblaze I/O system, for the adapted cascade 
SVM system ranges from 4,1 W to 8 W while for the baseline 
cascade system it ranges from 4,1 to 9,9 W.  These figures 
correspond to a worst case scenario where all signals change 
every cycle. However, it is anticipated that on average the 
power consumption will be lower. The peak power 
consumption happens when the PPM module is used. The 
lowest consumption happens when the NN-based RPU is used 
when the SPM and LBP cores are used power consumption 
reaches 4,9W. Overall, the utilization of less LUT resources 
by the adapted PPM results in reducing the peak power needed 

 
Fig. 10. Res tore  accuracy us ing the  ROC curves: (top) Part of ROC 
curves  (bottom) Accuracies   and error a fte r adapta tion 

 
Fig. 11. Response  vectors  produced by the firs t three  SVM cascade  
s tages  for negative  (square) and pos itive  (filled circle ) samples . 

Fig. 12. Detection results  on CMU-MIT images  

 
Fig. 13. Compara tive  results  for different configura tions  
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for the adapted cascade system by ~20%. 

E. Related Work Comparison 

Related works for object detection applications are shown 
in Table IV along with information regarding parameters and 
performance. These works use different algorithms, training 
and test sets, and benchmark applications and so it is difficult 
to make a direct comparison between implementations. 
However, since the SVM classification flow treats all data as 
vectors the number of samples and SVs processed, along with 
vector dimensionality can provide an indication to the 
processing performance for each work.  

A head-shoulder detection system is presented in [39]. It 
utilizes a linear SVM and LBP descriptors to classify 19200 

windows from 640×480 images from an already known 

environment. It sacrifices accuracy for performance by using a 
single linear SVM (with a clock frequency of 120 MHz) and 
processes only a few elements of the SV feature vector in 
parallel to keep the resource utilization low. In addition 
foreground detection is used to compensate for the linear 

SVM. The implementation in [23] scans a 512×512 image in 

non-overlapping blocks to perform bar-code detection. It 
performs the dot-product operations in 352 cycles for one 
window. However, the scalar operations are not included. It 
processes around 1024 16×16 window samples, corresponding 
to 256-dimensional vectors, per image, without downscaling 
the input image which simplifies the I/O and memory 
accesses. The hybrid FPGA-GPU pedestrian detection system 
[33] for 800×600 images is able to classify around 1000 
windows. The lower throughput can be attributed to the larger 
feature size. However, the number of processed windows is an 
order of magnitude less than our work. In addition, the use of 
GPU may prohibit such implementations to be used in 
embedded applications due to power consumption constraints. 
Overall, in order to achieve real-time performance existing 
works rely on processing a few window samples, smaller 
image resolutions, or process a few SVs. Through the 
proposed architecture and methods it is possible to process 
higher resolution images which generate more windows, with 

a higher number of SVs in real-time (~56000 per frame for 
~40 fps) while also reducing the implementation requirements.  

The SVM hardware implementations target different 
applications and thus accuracy is difficult to compare directly. 
On the other hand, software based implementations [4], [5], 
[6] have utilized cascade SVMs for face detection with 
accuracies that range between 78-80% with similar training set 
sizes and cascade structure to our work. The proposed 
optimized SVM cascade system achieves a detection rate of 
80% which is on par with these works while processing higher 
resolution images in real-time. 

V. CONCLUDING REMARKS 

The work presented in this paper considers the efficient 
hardware implementation of cascade SVMs which can be used 
to design intelligent embedded systems for on-line real-time 
classification applications. The hybrid processing architecture 
takes advantage of the nature of the cascade classification 
structure and in conjunction with the hardware reduction 
method and the novel response evaluation method, it manages 
to achieve adequate trade-off between accuracy, performance, 
power, and resource utilization. The proposed architecture and 
methods can be used to design low-cost parallel SVM 
coprocessors to accelerate more demanding monolithic SVM 
classifiers, or optimize cascade SVM classifiers for embedded 
classification applications. Thus allowing SVM architectures 
to tackle larger scale problems (e.g. classification on higher 
resolution images) to what has been addressed in the literature.  
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