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Embedded Identification of Surface Based on
Multirate Sensor Fusion With Deep Neural Network

Semin Ryu

Abstract—In this letter, we propose a multivariate time-series
classification system that fuses multirate sensor measurements
within the latent space of a deep neural network. In our network,
the system identifies the surface category based on audio and
inertial measurements generated from the surface impact, each of
which has a different sampling rate and resolution in nature. We
investigate the feasibility of categorizing ten different everyday
surfaces using a proposed convolutional neural network, which is
trained in an end-to-end manner. To validate our approach, we
developed an embedded system and collected 60 000 data samples
under a variety of conditions. The experimental results obtained
exhibit a test accuracy for a blind test dataset of 93%, taking
less than 300 ms for end-to-end classification in an embedded
machine environment. We conclude this letter with a discussion
of the results and future direction of research.

Index Terms—Deep learning, latent space, multirate mea-
surements, multivariate measurement, sensor fusion, time-series
classification.

I. INTRODUCTION

N INTELLIGENT system that incorporates multiple sen-

sors for time-series classification purposes often requires
a sophisticated multisensor fusion method in that measure-
ments from each sensor are generally not sampled at the
same rate. Although multirate sensor measurements can be
fused using a conventional approach (e.g., a direct weighted
fusion), such methods often result in a limited applicabil-
ity owing to their simplicity [1]. Although a fusion can be
achieved by modeling the multirate sensor system [2], this type
of approach requires additional information on the complex
system dynamics.

Taking advantage of recent deep learning capabilities, a
recent study proposed a temporal binding approach that classi-
fies audio—visual information based on an efficient multimodal
fusion [3]. In this letter, a set of temporal information, includ-
ing the RGB flow and audio, is efficiently fused in a latent
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space of a convolutional neural network (CNN) such that
all modalities are trained simultaneously. To the best of
our knowledge, few studies have addressed the time-series
classification of multirate multivariate sensor measurements
that include heterogeneous time-series measurements, such as
accelerations and audio recordings.

Herein, we propose an intelligent system that identifies
various surfaces by hitting them autonomously and inter-
preting the resulting multivariate measurements. We used a
custom-built hardware setup comprising a solenoid actuator,
microphone, triaxial accelerometer, microcontroller, and an
embedded machine. The captured multirate sensor streams
were analyzed using a machine learning pipeline that fuses
multisensor measurements within the latent space. We con-
ducted a series of experiments, including those on the test
accuracy and inference time, to assess the feasibility of the
proposed approach. The results demonstrate that our system
can successfully classify various surface categories on an
embedded machine.

II. RELATED STUDIES

Several research groups have attempted to classify objects
based on their physical contact. Beatlt [4] used a smartwatch
to study the categorization of objects based on the sound gen-
erated when a user knocked on them. Cho et al. [5] enabled
smartphones to identify underlying objects by generating a
vibration and then interpreting the resulting linear acceler-
ations. These methods demonstrate the feasibility of object
recognition with a single sensor; however, the test accuracy
of approximately 80% that was achieved needs to be fur-
ther improved. One way to achieve a better performance
would be through the fusion of heterogeneous sensors. In
general, multimodal sensor fusion causes difficulties in the
analysis mainly owing to intrinsic differences among the
sensor data. Owing to the different data types and sample
rates applied, each modality is characterized by distinctive
statistical properties, representations, and correlation struc-
tures. Cross-modality relationships are highly nonlinear and
difficult to determine even by hand [6]. Using a samrt-
phone, Knocker [7] tried to identify various daily objects
using multisensor data generated when knocking on them.
They adopted a support vector machine (SVM) classifier, and
the classification latency (or inference time) was measured
at approximately 229 ms. Although their test accuracy for
real-world data, i.e., when using a blind test set, reached
approximately 83%, this rate can be further improved by
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Fig. 1. Custom-built prototype used to knock on underlying surfaces and
measure the resulting multisensor signals. The coordinate system shown in
the upper left part denotes the orientation of the accelerations.
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Fig. 2. Entire block diagram of the proposed system. The prototype is
controlled by an embedded machine through a microcontroller.

applying a deep learning approach instead of a shallow learn-
ing method. Meanwhile, Radu er al. [8] compared shallow
and deep learning approaches for several public multisensor
datasets. The results indicate that, in numerous cases, deep
learning outperforms shallow learning techniques.

Contrary to existing studies, our method achieves a high
accuracy by virtue of fusing multirate sensor data using a
deep learning architecture. By designing a compact network
structure, the inference time is sufficiently short even on an
embedded environment. Furthermore, the proposed system
does not require user intervention (e.g., a knocking action),
and can be incorporated into various smart devices, such as
an artificial intelligence (Al) speaker.

III. PROPOSED APPROACH
A. Dataset

A custom hardware setup was constructed to collect the
dataset. Fig. 1 shows the prototype hardware used to gener-
ate the physical impact and measure the resulting audio and
acceleration signals, and Fig. 2 shows the overall structure
of the constructed setup. The solenoid actuator (JF-0826B,
Yeuqing Gangbei Electric) inside the housing impulsively con-
tacts the surface of interest through a push—pull operation.
The microphone (CMO001-USB, Comsonic) and accelerometer
(ADXL343, Analog Devices) mounted on top of the proto-
type measure the audio and triaxial acceleration signals. As
shown in Fig. 2, the embedded machine (Raspberry Pi 4
Model B) controls the overall system through a microcon-
troller (ATmega328P, Arduino Nano). The resulting audio and
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Fig. 3. Proposed late fusion CNN architecture. The network utilizes a split
architecture with separate branches for each of two modalities, which are then
merged into the cross-sensor layer.

acceleration signals are recorded while the solenoid actuator
hits the surface.

We considered the following ten surfaces found in our daily
surroundings: 1) a softwood table; 2) a synthetic wood table;
3) a plywood table; 4) a polyurethane chair; 5) a rubber cut-
ting mat; 6) a granite tiled floor; 7) a porcelain tiled floor; 8) a
metal plate; 9) an acrylonitrile butadiene styrene (ABS) plas-
tic table; and 10) a laminate table. For each category, 100
data samples were collected at each of ten randomly chosen
locations of the surfaces (including near the center, edges, and
corners for the tables) with three different impact intensities.
The intensity was controlled in three steps by restricting the
stroke of the metal slug using rubber damping stoppers. The
entire collection process was repeated one more time for dif-
ferent objects. Hence, in total, 6000 data samples (100 samples
x 10 locations x 3 impact intensities X 2 objects) were col-
lected for each surface. During the data collection, background
noise (auditory and vibratory), such as music and machinery
noise were randomly played. Each sample was approximately
2.4 s long, and the sampling frequencies were 44.1 kHz and
250 Hz for the audio and acceleration signals, respectively. The
trimmed signal (0.4 s), which includes the impact motion, was
used as a raw input signal. We separated the dataset into two
independent sets. 70% of the dataset was used as a training
set and the remainder was applied for the validation set.

B. Machine Learning Pipeline

In Fig. 3, a schematic of the proposed approach toward
multimodal learning using a feature concatenation is shown.
First, the hardware is used to knock on the surface, and the
resulting audio and acceleration signals are captured. Second,
the features from each modality are extracted individually.
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TABLE I
FEATURES EXPLORED IN THIS LETTER

Modality Extracted features

MFCCs, zero crossing rate

Spectral rolloff, spectral centroid
Spectral contrast, spectral bandwidth
Arithmetic mean (average), median
Minimum, maximum, ratio of max and min
Standard deviation, sample skewness
Minimum of absolute value
Maximum of absolute value
Arithmetic mean of absolute value
Standard deviation of absolute value
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Fig. 4. Proposed network architecture of multimodal deep learning approach.

Finally, the extracted features are combined into a single fea-
ture vector presented to a classifier for identification across
all features. We can implement this strategy in two ways:
through a shallow learning approach, i.e., using a random for-
est (RF), and by applying a deep learning approach, i.e., using
a CNN.

C. Shallow Learning Approach

As a baseline, we employed an RF classifier owing to its
robustness against an overfitting [9]. For the audio signals,
mel-frequency cepstral coefficients (MFCCs) and spectral fea-
tures were calculated as a feature set. For the acceleration
signals, we used a statistical feature set. These feature sets
were determined after exploring different feature sets, includ-
ing the spectral features (magnitude spectrum, log magnitude
spectrum, etc.) However, they only slightly improved the test
accuracy at the expense of further computational burden or
worsened the accuracy. In Table I, all features used in this
letter are summarized. The RF classifier was implemented in
Python 3.6 using scikit-learn (scikit-learn.org).

TABLE II
EXPERIMENTAL RESULTS: TEST ACCURACY FOR THE BLIND TEST SET.
THE SAMPLING RATE OF THE ACCELERATION SIGNAL WAS 250 Hz

Audio Sampling Rate

Method 8,000 Hz | 22,050 Hz | 44,100 Hz
Audio only (RE) | 0.6170 0.6385 07421
Audio only (CNN) | 0.8630 0.8680 0.8981
Acc. only (RF) 0.5087
Acc. only (CNN) 0.7997
Multimodal (RF) | 0.6517 0.6443 0.7953
Multmodal (CNN) | 0.9298 0.9347 0.9357

D. Deep Learning Approach

Among the various deep learning techniques, we adopted a
CNN owing to its considerable time-series classification capa-
bility with a relatively low computational cost compared with a
recurrent neural network (RNN) [10]. For audio feature extrac-
tion, a 64 x 64 melspectrogram image was generated from a
raw signal and used as an input representation for the 2D-CNN
model. To extract the acceleration features, a normalized signal
was used as an input representation for the 1D-CNN model.
The feature volumes from each modality were then concate-
nated followed by a fully connected (dense) layer. The detailed
architecture of the network is shown in Fig. 4. To reduce the
computational cost, we applied as simple a network structure
as possible, ensuring a reasonable accuracy. The CNN was
implemented in Python 3.6 using Keras (keras.io).

IV. EXPERIMENTS AND RESULTS
A. Accuracy for the Blind Test Set

To assess the performance of the proposed approach in a
real-world situation, we collected additional data, namely, a
blind test set. A total of 300 samples per class were collected
for the same ten classes but for different objects with dif-
ferent ambient noises. We compared the test accuracy of the
unimodal and multimodal approaches by varying the machine
learning method and the sampling rate of the audio signal. The
sampling rate of the audio signal was originally 44 100 Hz and
then converted through a downsampling technique. Table II
summarizes the results obtained. The training and testing were
conducted using a personal computer (PC) with an NVIDIA
GPU (Titan XP), running on the Linux (Ubuntu 18.04.3 LTS)
operating system. Overall, it tended to achieve a higher test
accuracy when using multimodality rather than unimodality,
and when using a deep learning method rather than a shal-
low learning approach. The deep learning approach (CNN)
demonstrated a better performance than the shallow learning
method (RF). Despite being a sophisticated feature engineer-
ing process, the RF classifier was unable to achieve a high
accuracy on the blind test set. Meanwhile, the test accuracy
tended to increase as the sampling rate increased, but not
significantly for the multimodal CNN approach. Overall, the
proposed machine learning pipeline, i.e., multisensor fusion,
outperformed the unimodality-based results. In particular, the
test accuracy approached 93% even with the lower sampling
rate of the audio signal (8000 Hz), indicating that the proposed
method can be implemented on low-cost systems.
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Fig. 5. Confusion matrices for the multimodal CNN approach using an audio
sampling frequency of 44 100 Hz. Rows and columns denote the actual and
predicted class labels, respectively.

Granite tiled floor

- ﬂ
G PO F R, Softwood tables

Porcelain tiled floor

Plywood tables Rubber Cutting mats

Polyurethane chairs
Synthetic wood tables
N

ABS plastic tables

Metal plates

Fig. 6. t-SNE visualization of the last hidden layer representations in the
multimodal CNN approach using the blind test set.

TABLE III
EXPERIMENTAL RESULTS: MEAN AND STANDARD
DEVIATION OF THE MEASURED INFERENCE TIME

Machine | Audio Sampling Rate Inference Time
Personal 8000 Hz 36.83 £+ 0.48 ms
Computer 22050 Hz 38.53 £ 0.35 ms
44100 Hz 41.96 + 0.32 ms
8000 Hz 297.73 £+ 3.64 ms
Frabedded 22050 Hz 30133 £ 28T ms
44100 Hz 320.38 £+ 2.49 ms

In Fig. 5, the confusion matrices when using a deep learn-
ing approach with an audio sampling at 44 100 Hz are shown.
In terms of the audio system, classes C (plywood table), G
(porcelain tiled floor), and J (laminate table) were difficult
to discriminate, and classes B (synthetic wood table) and G
(porcelain tiled floor) achieved a lower accuracy for the iner-
tial system. The multisensor fusion architecture was able to
achieve a high accuracy by complementing the misclassifi-
cations in each modality. We examined the internal features
learned by the CNN using t-distributed stochastic neighbor
embedding (t-SNE) [11], as shown in Fig. 6. Each point rep-
resents an input signal projected from the 128-D output of the
last hidden layer of the CNN into two dimensions. We can
see clusters of points of the same surface classes. In summary,
all surface classes were well classified based on the proposed
multimodal approach.

B. Implementation on Embedded Machine

To assess the practicality of the proposed method, we mea-
sured the inference time on an embedded environment. We
duplicated the trained model (multimodal CNN) on an embed-
ded machine, i.e., a Raspberry Pi 4 Model B. The measured
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time includes the following processes: the preprocessing of
raw data, conversion into an input representation, feature
extraction, and classification. Table III summarizes the mean
and standard deviation of 100 repeated measures of the infer-
ence time. The inference time measured on a PC is also shown
for comparison. The time increased as the audio sampling rate
increased. The fastest time was approximately 298 ms with
an audio sampling rate of 8000 Hz. Because the proposed
system does not require a consecutive inference in a real-time
manner, it can be successfully applied to practical embedded
applications, such as Al speakers.

V. CONCLUSION

In this letter, we proposed a multivariate time-series classi-
fication system that fuses heterogeneous sensor measurements
using a late fusion CNN. By listening to the multivariate
measurements, i.e., sound and inertial signals, when hitting
a surface, the proposed system can identify ten different cat-
egories of surfaces found in our daily environment. For the
blind test set, a test accuracy of approximately 93% was
achieved even with a lower sampling rate (i.e., 8000 Hz).
In addition, because the inference time was measured at less
than 300 ms, we believe that our system can be applied
to various embedded devices, enabling a contextual human—
machine interaction. Future studies will focus on extending the
proposed approach to more diverse surfaces and implementing
in real-world applications with the further miniaturization of
the system.
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