
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4176479

Embedded intelligent supervision and piloting for oceanographic AUV

Conference Paper · July 2005

DOI: 10.1109/OCEANSE.2005.1513174 · Source: IEEE Xplore

CITATIONS

11
READS

88

11 authors, including:

Some of the authors of this publication are also working on these related projects:

ERGO/TASTE View project

Directeur Ifremer Mediterranée View project

Laurent Tchamnda Nana

Université de Bretagne Occidentale

101 PUBLICATIONS 926 CITATIONS

SEE PROFILE

Frank Singhoff

Université de Bretagne Occidentale

119 PUBLICATIONS 1,069 CITATIONS

SEE PROFILE

Jérôme Legrand

Ellidiss Technologies

23 PUBLICATIONS 590 CITATIONS

SEE PROFILE

Jean Vareille

Université de Bretagne Occidentale

42 PUBLICATIONS 102 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jean Vareille on 07 May 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4176479_Embedded_intelligent_supervision_and_piloting_for_oceanographic_AUV?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4176479_Embedded_intelligent_supervision_and_piloting_for_oceanographic_AUV?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ERGO-TASTE?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Directeur-Ifremer-Mediterranee?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laurent-Nana?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laurent-Nana?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Bretagne_Occidentale?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laurent-Nana?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frank-Singhoff?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frank-Singhoff?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Bretagne_Occidentale?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frank-Singhoff?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jerome-Legrand?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jerome-Legrand?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jerome-Legrand?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Vareille?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Vareille?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Bretagne_Occidentale?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Vareille?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Vareille?enrichId=rgreq-c0210ca986e184a41be21d851d243289-XXX&enrichSource=Y292ZXJQYWdlOzQxNzY0Nzk7QVM6MjI2NTc2NTI5NjYxOTUyQDE0MzEwMzE0NjIyMTk%3D&el=1_x_10&_esc=publicationCoverPdf

Embedded intelligent supervision and piloting for oceanographic AUV

L. Nana, F. Singhoff, J. Legrand, J. Vareille, P. Le Parc, F. Monin, D. Massé and L. Marcé
Computer Science Department, University of Brest

20, Avenue Le Gorgeu

CS 93837 - 29238 Brest cedex 3 - FRANCE

{nana,singhoff,jlegrand,vareille,leparc,monin,masse,marce}@univ-brest.fr

J. Opderbecke, M. Perrier and V. Rigaud
IFREMER, Underwater System Department

ZP de Bregaillon

83507 La Seyne sur Mer -FRANCE

{Jan.Opderbecke,Michel.Perrier,Vincent.Rigaud}@ifremer.fr

Abstract -The main goal of the work presented in this

paper is to associate a basic AUV (Autonomous Underwater
Vehicle) control system such as ACE (an IFREMER control
system) with a high level command part. This high level part
is provided with complementary features needed by the initial
AUV subsystem namely, a language allowing plans
modification during their execution and a diagnosis and
analysis system. The latter checks continuously the
information provided by the sensors in relation to some
predefined rules in order to ensure the good working of the
AUV within its environment.

I. INTRODUCTION

Most of the AUV control systems are adapted to simple
preprogrammed missions such as following roads
composed of a series of waypoints. The «plans» of these
missions are loaded at the beginning but they are not
modifiable during execution. The management of the
incidents and of unforeseen situations is limited to the
stopping of the mission with different levels of seriousness.
It doesn't allow the re-programming of the mission in
reaction to the occurred events. This mechanism is well
suited for serious faults (essential sensors, propulsion,
waterway, etc.). For less serious dysfunctions (gap of the
road, unforeseen submarine flowing, undervalued energy
consumption, «small» obstacles), such a stop is not often the
proper solution, since it is difficult to envision to restart
immediately the whole procedures which are necessary for
the resumption of the mission. Once immersed, the
communication capacity of the AUV is most often reduced
to an acoustic low data-rate connection, unsuitable with the
transmission of the whole information collected by the
sensors.

In order to overcome the problems above, we propose,
on the one hand, to associate the current system with a high
level command part provided with a mission programming
language allowing plans modification during their
execution and comprising a diagnosis and analysis system
checking continuously the information provided by the
sensors in relation to some predefined rules which should be
satisfied in order to ensure the good working of the AUV

within its environment. On the other hand, we propose to
associate the control system with a system for
communication monotoring.

In the second section of this paper, a brief overview of
missions programming languages is given.

The language PILOT and its control system [14],
suggested for the high level command part, are presented
in the third section. It makes it possible to modify plans
during their execution. The control system of PILOT is
modular and comprises a basic inference engine.

The fourth section is dedicated to various solutions for
AUV missions’ safety and supervision. The first approach
is based on real-time scheduling. The goal is to ensure
temporal properties of plans. The second approach is
related to the monitoring of communication failures. In the
third approach, a system named ADVOCATE II, providing
mechanisms for a deepened diagnosis in case of failure, is
considered. IFREMER Toulon has proposed this system in
the context of a European project [16], which led to
modular, generic and opened software architecture for the
control of autonomous robotic systems and their recovery
in case of dysfunction. It can be associated with the
inference engine of the control system of PILOT or other
similar control systems, in order to increase the safety of
AUV applications. This section ends with the verification
of safety properties on PILOT control system using proof
approaches.

The paper ends by a conclusion in the fifth section.

II. OVERVIEW OF MISSIONS PROGRAMMMING

LANGUAGES

Missions programming languages are based on the
existence of elementary actions provided by a subsystem to
allow the specification of the robotics applications in term
of scheduling of the elementary actions. To date, three
techniques were developed in the design of missions
programming languages: extension of general purpose
languages (as C, Ada or LISP) with robot-like directed
libraries, the creation of languages specific to the field of
robotics, and the modification of languages of control such
as LUSTRE and SIGNAL.

The disadvantage of the first approach is the inadequacy
from the point of view of the specification and the
determinism of the execution. The second approach is of
multiple interests. The languages are closer to specification
languages, capture the semantics of the field better and
produce consequently clearer and more concise programs.
Many languages dedicated to the programming of
manufacturing robotics applications were thus created at
the end of the seventies: LM [13], VAL [19], etc. Their
capacity of expression however is very directed towards
the control of arm manipulators, which compromises their
extensibility to a wider domain such as that of mobile
robotics. In the same category, other languages, generic
insofar as they are not dedicated to only one type of robot,
were created in the world of research. It is for example
the case of the language of handling of the robotics actions
and the intermediate goals used by the C-PRS [6]
subsystem of the decisional level of the robotics
architecture of the LAAS. However, these languages do
not take into account, in their semantics, the kinematics
and dynamic aspects specific to robotics such as the
sequence of trajectories. Control languages have an
expressivity much nearer to the programming of robotics
missions than that of general purpose languages. They
have a rigorously established semantics (operational
semantics) and tools of simulation and/or checking and/or
analysis, which represent an advantage for the safety of the
robotics applications. However, their use in a robotics
context requires adaptations.
From study of the robotics missions programming
languages of robot-like missions, it arises clearly that none
of the evoked approaches constitutes alone the ideal
solution. Such a solution, although dependent on
architecture and on the target application, can emerge from
a combination of approaches among the preceding ones.
Such a language would have:
• To allow the application of formal methods of checking

and analysis: this passes by the availability of a
clearly defined semantics and the availability of tools
of simulation, checking and analysis of properties.

• To have a sufficient expressivity: it must provide the
structures of basic control, which one finds in the
traditional imperative languages such as PASCAL or C,
but also structures for the parallel programming, and
structures adapted to the reactive programming
(management of events and/or signals, …).

• To allow intuitive programming of the control of the
applications, for example, by the use of a graphic
formalism.

• Make it possible to program at robot-task level.
• Provide a good compromise between extensibility and

specialization.
• To integrate possibilities of operator action.
• To allow on line modification of the program if its

execution does not proceed as envisaged.
The last two points are particularly useful for
fault-tolerance which is an essential complement to the
methods of formal checking and analysis to fully ensure
the reliability of the applications. After this overview of
missions programming languages, the next section deals
with the language PILOT and its control system, suggested
for the high level command part to associate with an AUV
control subsystem such as ACE [17].

III. PILOT : A LANGAGE AND A CONTROL SYSTEM

A. The language PILOT

The language PILOT (Programming and Interpreted
Language of actiOns for Telerobotics) is a graphical and
interpreted language dedicated to the remote control of
systems. It has been designed and built by the LISYC
laboratory shared by UBO (Université de Bretagne
Occidentale) and ENIB (Ecole Nationale des Ingénieurs de
Brest), in order to easy and to secure the programming of
missions [11] [3] [15]. It is based on the notion of action.
Two kinds of actions are defined (see figure 1): elementary
actions which have their own end and which generally end
when their predefined goal is reached, and continuous
actions whose end is triggered by another primitive of the
language.

 Elementary action Continuous action

Fig. 1 Elementary and continuous actions
The language PILOT provides different control structures
for plans building:
• Sequentiality: it is made of a succession, possibly

empty, of actions and/or control structures. Figure 2
shows an example of sequence made of two
elementary actions (Action1 and Action2). The
execution of Action2 starts after the end of Action1.

Action1 Action2

Fig. 2. Example of sequence

• Conditional: It is made of one or more alternatives
ordered from top to bottom. Each alternative
comprises a condition followed by a sequence. The
only sequence executed is the first one whose
condition is true. Figure 3 shows an example of
conditional.

• Iteration: it comprises a continuation criterion

followed by a sequence. The criterion is either a
number of loops (fix iteration) or a Boolean
expression (conditional iteration). Figure 4 and 5 show
examples of fix and conditional iteration.

?

E1 E2

Cond2 E3 E4

Cond1

Fig. 3. Example of conditional

Fig. 5. Example of conditional iteration

S<2 Action

Fig. 4. Example of fix iteration

3 Action

• Parallelism: it is made of sequences which execute in

parallel. Its execution ends when all the sequences
reach their end. An example of parallelism is shown in
figure 6.

• Preemption: as parallelism, it is made of sequences

which execute in parallel, but unlike the latter, when
one of the sequences ends, it triggers the end of the
other sequences and the end of the preemption. We
illustrate the use of preemption in figure 7.

B. The control system

The control system is the interface between the user
and the remotely operated machine. It comprises six
concurrent modules (figure 8):

Fig. 8. PILOT control system

• a graphical interface also called man-machine interface

(MMI),
• an interpreter,
• a communication server,
• a rules generator,
• an evaluator and
• an execution module or driver.
These processes communicate through sockets and shared
memory and can execute either on a single computer or on
a network of computers.

The man-machine interface provides different features
for designing plans. It stores the plan into a memory space
shared with the interpreter. The interpreter reads the plan
from the shared memory and sends orders (precondition
request, order to start an action, ...) to the other modules in
order to achieve the plan execution. The communication
server handles inter-process communications. The purpose
of the rules generator is to transform character strings of
precondition and supervising rules into binary trees. It
stores the result into shared memory for future use by the
evaluator. The rules evaluator is in charge of calculating
the Boolean expressions of precondition and supervising
rules. The execution module is the interface between the
robot and the control system. It translates high level orders
of the plan into low-level orders which are understandable
by the remotely operated machine. The execution module
is the only one comprising a part which is specific to the
remotely operated robot. This makes the control system of
PILOT easily adaptable to robots of different natures.

In the next section, we propose some solutions for
AUV missions safety. The first one is based on real-time
scheduling and aims at ensuring that real-time constraints
of the application will be met. The second consists in
monitoring communication failures. The third solution is
an artificial intelligence based approach for a deepened
diagnosis an recovery of failures and the last one uses
proof approaches.

IV. MISSIONS SAFETY AND SUPERVISION

A. A safety approach based on real-time scheduling

The goal is to ensure temporal properties of plans [8]. The
control system of PILOT as well as its execution support
part embedded on the robot can be modelled in terms of
tasks, buffers and communication channels.
From this model and from measures performed on the
platform, we calculate the maximum bounds on the
occupation and the waiting time of its buffers [20] and
worst case response time of tasks [7, 1]. The response time
is the maximum delay between the time the task becomes
ready to run and the time the task ends its job. Finally,
we apply the holistic analysis to determine the response
time of the control system of PILOT [21]. The holistic
analysis method makes it possible to compute, for the
worst case, the execution time of a set of tasks possibly
located on different processors and which have to be
executed according to some precedence constraints. When
response times of PILOT control system tasks are
computed, we can obtain the response time of the actions
and control structures of the language PILOT. Thanks to
these response times, we can finally validate temporally a
plan built by an operator, before its transfer on the robot

 Fig. 6. Example of parallelism

Action1
//

Action2

Action1

Action2

·

Fig. 7. Example of preemption

Interpreter

Communication
Server

Rules
generator

Evaluator

Execution
Module

Graphical User Interface

Shared Memory

Socket

TARGET ROBOT
Wireless link

and therefore before its execution.

1. How to compute task response times
Since 1980, to check or compute task response time of

an application made of concurrent tasks, many models,
methods and tools were proposed (e.g. Petri Nets,
synchronous languages [9], …). One of them, usually
called “Rate Monotonic Analysis” is part of a larger set of
quantitative methods: the real time scheduling theory. This
theory helps the system designer to predict the timing
behaviour of a set of real time tasks with scheduling
simulation and feasibility tests. Scheduling simulation
requires, first to compute a scheduling on a given time
interval and second, to look for timing properties in this
computed scheduling. On the contrary, feasibility tests
allow the designer to investigate a set of real time tasks
without computing scheduling. The first real time
scheduling theory contributions were proposed 30 years
ago [12]. The theory was strongly extended to cope with
many application requirements and was successfully used
in many projects [2, 18].

In the most simple task model, each task periodically
performs a treatment. This “periodic” task is defined by
three parameters: its deadline (Di), its period (Pi) and its
capacity (Ci). Pi is a fixed delay between two wake up
times of the task i. Each time the task i is woken up, it has
to do a job whose execution time is bounded by Ci units of
time. This job has to be ended before Di units of time after
the task wake up time.

As mentioned above, from a set of periodic tasks, two
kinds of analysis can be performed: scheduling simulation
and feasibility tests.

Scheduling simulation consists in predicting for each
unit of time, the task to which the processor should be
allocated.

Different kinds of feasibility tests exist: tests based on
processor utilization factor, task response time designed to
check task deadlines and tests based on buffer utilization
factor designed to check buffer overflow.

The second feasibility test mentioned above consists in
comparing the worst case response time of each task with
its deadline. In [7, 1], Joseph, Pandia, Audsley et al. have
shown that ri, the worst response time of a task i, can be
computed as follows:

Where

And

And where hp (i) is the set of tasks which have a priority
greater than i, Bi is a bound on shared resource blocking
times and Ji is a bound on the task wake up time jitter.

Finally, Tindell had shown in [1] how equation 1.1 can
be extended to compute worst case response times of tasks
running on a distributed system.

2. From task response times to PILOT
plans response times

When the response time of the control system of
PILOT are computed, one can compute the worst case

execution time of PILOT plans.

Fig. 9. An example of plan with parallelism

Figure 9 shows an example of plan composed of two

sequences of actions: the sequence Action1.1 and the
sequence Action2.1/Action2.2/…/Action2.n. The two
sequences are run in a parallel way. The worst case
execution time of such plan can be computed as follows.

1. First, the worst case execution time of each

sequence has to be evaluated. The sequence worst

case execution time can be evaluated by :

Where Wk is the time required by the robot to
perform the action k of the sequence, and ri is the
response time of the PILOT control system.

2. Second, from the worst case response time of a

sequence, one can evaluate the worst case execution

time of the plan of figure 3 with :
Where Sj is the worst case execution time of the
sequence j composing the parallel statement.

This method can be applied on the different plan
statements provided by PILOT. In [8], one can find a
detailed description of how this method can be applied to
PILOT preemption, conditional and iteration statements.

B. Monitoring communication failures

The AUV can communicate when it is on the surface
thanks to a hertzian antenna. It can also communicate by
acoustic way when it is in diving. The band-width
available on the surface can reach the Mbit per second with
a sufficient quality of communication. On the other hand in
diving the band-width is much smaller, some kilobits per
second, the connection is much more unreliable because of
the variations of the acoustic index of the sea water which
depend on the temperature and the salinity and which
sometimes place the AUV in zones of shade, or rain which
can create sound waves which blurs the signal. The
possibilities of communication in diving do not allow to
teleoperate the AUV with reliability. Consequently it is
necessary to equip the AUV with a decisional system
enabling it to carry out choices similar to those which
would be taken by a human operator.

The AUV thus has an autonomous behavior.
Nevertheless, some operations remain critical like
navigation in low depth and recovery at sea. For this
reason it should be interesting to equip it with a system of
supervision making it possible to supervise the critical
phases and to enable the change of plans of mission. The
language PILOT is particularly adapted to the dynamic
change of the plans of mission. To be able to profit from
this quality it is thus necessary to be able to communicate

∑
∈∀

 +++=
)(

)()1()(
ihpj Pj

qwiJjCiqqwi

))((max 2,1,0 qPiqwiBiJiri q +++= = (.)11

∀ ≤ +q wi q q Pi: () ()1

rs Wk ri
k n

= +
≤ ≤
∑

1

21
)max(

≤≤∀
=

j
Sjrplan

Action 2.nAction 2.2 Action 2.1

Action 1.1

during the mission and afterwards until the recovery of the
vehicle. As the communication is not reliable in diving,
but can also be disabled on the surface because of the
movements of the sea and of the small size of the vehicle,
we propose to take into account the quality of
communication like additional parameter in entry of the
decisional system. The measurement of the quality of
communication can very simply be taken by the sending of
very small time stamped frames by the vehicle
immediately returned by the distant supervisor. This
measurement of round trip time similar to an ICMP “ping”
but different in the sense that it is carried out local
decisional level up to the distant decisional level, makes it
possible to quantify the latency time of communication.
According to this one, the embedded decisional system
will be able to estimate if the received orders of the remote
supervision correspond to its current situation or to a too
old situation so that they can be executed validly. We
resume the studies carried out for the terrestrial systems
[22, 10] by adapting them to the context of the AUV.

C. An Artificial Intelligence based approach for missions
supervision : the system Advocate II

The principal objectives of ADVOCATE II [16] are to

increase the performance of AUV and terrestrial robotics
applications, to increase the safety of the system and its
environment. The adopted approach consists in adding
intelligence in existing or new architectures of control.
The techniques of artificial intelligence used are: BBN
(Bayesian Belief Network), fuzzy logic and
neuro-symbolic systems.

Fig. 10 Architecture of Advocate II

The modules of the Advocate II system (figure 10) are described
below.

1. Robot piloting modules
Each robot piloting module runs on a specific robot and
communicate directly with the sensors and effectors of the
vehicle. It offers the following functionalities:
management of the plans of missions, self-piloting,
guidance and navigation. It interacts with the modules of
Intelligent Diagnosis and Decision while providing: data
(sensors, effectors, computation results, alarms) emanating
from the Robot, as well as information relating to the
mission and actions.

2. Directory module and configuration
tool

The role of the directory module is the administration
of the list of recorded intelligent modules and the
administration of the list of the services offered by those
modules. The role of the configuration tool is the
positioning of the parameters of the system and the choice
of the intelligent module adapted for the resolution of a
particular problem.

3. The decision module
The decision module can be regarded as the central unit

of the architecture. It interacts with:
- The GUI, if it exists, by transmission of information

intended for the operator.
- Robot Piloting Modules of the vehicle for the setting

of recovery plans produced like result of a process of
diagnosis and recovery.

- Intelligent Diagnosis modules: request/reception of
the diagnoses, request/reception of actions of
compensation. These modules need to have a good
knowledge on the whole of the system.

4. Intelligent Diagnosis module
The main goal of the Intelligent Diagnosis Module is

the resolution of the problems of diagnosis and the
recovery actions. It comprises two parts: a generic part
and a part specific to the problem. The specific part is
formed of a knowledge base (network of neurons, rules
base or probabilistic networks). Its role is to carry out
actions of diagnosis and/or recovery and to maintain a "log
book" of pre/post - treatment. The generic part provides
as for it the interface and the functionalities common to all
the intelligent modules (method of solution, inference
engine, etc). The modules of intelligent diagnosis have
two operating modes: an "on line" operating mode and
an "off line" operating mode. In the off line mode, they
make it possible to build, update or to revise the
Knowledge Base to be used on line. In this mode, their
functionality is dependent on the technique of Artificial
Intelligence (AI) used [16]. In on-line mode they use the
Base of Knowledge to treat the requests in order to
produce the diagnoses and actions of recovery.

D. Formal Approaches

The formalization of the semantics of PILOT enables us to
work on other formal approaches to further ensure the
safety of generated plans, e.g. using a proof checker like
the PVS system.
The choice of PVS is in part due to our experience in using
this tool for the formal checking of protocols (see [4, 5]).
A preliminary work is to express the logical rules from
which a plan can be built in the language of PVS, that is
a higher-order typed logic devoted to writing formal
specifications and checking formal proofs, to show that the
process of constructing plans meet consistency (and
completeness) requirements. Hence from all generated plan
we can derive an exact formal semantics, which allows us
to use theorem proving or static analysis techniques to
prove the satisfaction of specifications.

D i r e c t o r y
M o d u l e

S O A P s e r v i c e

D e c i s i o n
M o d u l e

S O A P s e r v i c e

C o n f i g u r a t i o n
T o o l

S O A P s e r v i c e

S O A P s e r v i c e
R o b o t

P i l o t i n g
M o d u l e

S O A P s e r v i c e
I n t e l l i g e n t
D i a g n o s i s

M o d u l e

S O A P s e r v i c e
I n t e l l i g e n t
D i a g n o s i s

M o d u l e

D o c u m e n t s X M L - H T T P

R o b o t

V. CONCLUSION

In this paper, we proposed solutions allowing meeting
the needs as regard capacity of modification of missions in
the course of execution. Such capacity is non-existent in
the majority of the traditional AUV control systems. To
be entirely effective, such a capacity requires to be
supplemented by complementary safety mechanisms, in
order to avoid disastrous consequences of a bad
modification of the plan of mission. The approach
suggested consists in associating with the system of control
of the AUV, the control system of PILOT. This last
makes it possible to modify missions in the course of
execution and is, in addition, equipped with supplies
making it possible to make safe the modifications and to
assist the operator in the development and the modification
of the plan of mission (edition directed by syntax, protocol
of modification in the course of execution taking of
account the semantics of the mission). We also proposed
solutions allowing meeting the needs as regard supervision
and checking of plans of missions of AUV. Two
approaches were proposed for the supervision of AUV
applications. The first is based on the results of work
undertaken by the IFREMER within the framework of
European project ADVOCATE II. It is based on the use of
techniques of artificial intelligence to carry out a thorough
diagnosis of the failures and to allow the recovery of error.
The second consists in defining levels of quality of
connections of communication between the control unit on
the surface and the AUV in order to detect the problems of
communication and to make it possible to react in a way
appropriate with the fall of quality or the rupture of the
communication. Two approaches were proposed for the
checking in the conceptual phase of the mission. The first
one is based on the use of techniques of real time
scheduling to check the respect of temporal constraints on
a plan of mission. The second one relies as for it on the
use of the techniques of proofs to check the respect of
properties within mission or its environment.

One of the prospects for the work presented in this
article is the implementation of the solutions suggested.
We also consider, in collaboration with TNI-Valyosis, to
integrate into tool STOOD and our tool for checking of
properties of tasks (Cheddar), a translator towards AADL
of their respective models of representation, in order to
allow them to inter-operate. The interest is to be able,
starting from the Cheddar model, to generate a description
usable by the various tools of checking and in particular
those associated to STOOD, and conversely of being able,
starting from models resulting from STOOD, to generate
models usable by the Cheddar tool. The implementation
of the application of the evoked formal techniques of proof
is also in hand. It initially aims at validating the approach
of construction directed by the syntax of PILOT plans.

REFERENCES

[1] Audsley A.N., A.Burns, M.Richardson, and K.Tindell.

“Applying new scheduling theory to static priority
pre-emptive scheduling”. Software Engineering
Journal, pages 284-292, 1993.

[2] Cottet F., J. Delacroix, C.Kaiser, and Z.Mammeri.
“Scheduling in Real Time Systems”. John Wiley and
Sons Ltd editors, 2002.

[3] Fleureau J.-L., « Vers une méthodologie de
programmation d'un système de télérobotique :
comparaison des approches PILOT et Grafcet », PhD
thesis, University of Rennes 1, July 1998.

[4] Groote J.F., F. Monin and J. Springintveld. “A
computer checked algebraic verification of a distributed
summation algorithm,” Formal Aspects of Computing.
Springer Verlag. Published Online, 2004

[5] Groote J.F., F. Monin and J.C. Van de Pol. “Checking
verifications of protocols and distributed systems by
computer”, Proceedings of Concur'98, Sophia
Antipolis, LNCS 1466, pp. 629-655, Springer Verlag,
1998.

[6] Ingrand F. F., R. Chatila, R. Alami and F. Robert. “PRS:
a high level supervision and control language for
autonomous mobile robots”. In proceedings of the
IEEE International Conference on Robotics and
Automation, Volume 1, pp. 43-49, Minneapolis , USA,
1996.

[7] Joseph M. and P. Pandia. “Finding Response Time in a
Real- Time System”. Computer Journal, 29(5):390-395,
1986.

[8] Legrand J. « Contribution à l’ordonnancement de
tâches partagant des tampons ». PhD thesis, University
of Brest, December 2004.

[9] Le Guernic P., T. Gautier, M. L. Borgne and C. L.
Maire. “Programming Real-Time application with
SIGNAL”, INRIA Rennes, Technical Report N°1446,
1991.

[10] Le Parc P., J. Vareille et L. Marcé. “Web remote
control of machine-tools: the whole word within less
than one half second” ISR 2004: International
Symposium on Robotics 2004 - Paris (France), March
2004

[11] Le Rest E. « PILOT : un langage pour la
télérobotique », PhD thesis, University of Rennes 1,
June 1996.

[12] Liu C.L. and J.W. Layland. “Scheduling Algorithms
for Multiprogramming in a Hard Real-Time
Environnment”. Journal of the Association for
Computing Machinery, 20(1):46--61, January 1973.

[13] Mazer E. and J. Miribel. “Le langage LM : Manuel de
référence », Cépaduès éditions, 1984.

[14] Nana L., J. Legrand, F. Singhoff and L. Marcé,
“Modelling and Testing of PILOT Plans Interpretation
Algorithms”, Multi-conference on Computational
Engineering in Systems Applications, CESA'03, IEEE,
Lille, July 2003.

[15] Nana Tchamnda L., Marcé L. « Vers une
programmation sûre avec PILOT », MSR’2001,
Colloque Francophone sur la Modélisation des
Systèmes Réactifs, Toulouse, France, 2001.

[16] Perrier M. “ADVOCATE - Data collection report”,
Rapport Interne, IFREMER, DNIS/SM/RNV/00.032,
2000.

[17] Rigaud V., Michel J. L., Ferguson J.S., Laframboise
J.M., Crees T., Leon P., Opderbecke J., Chardard Y.,
« First Steps in IFREMER’s Autonomous Underwater
Vehicle Program – A 3000m Depth Operational Survey
AUV for Environmental Monitoring », ISOPE 2004,
vol. 2. pp 203-208, Toulon, France, Mai 2004.

[18] SEI. “The Rate Monotonic Analysis”. Technical
report, In the Software Technology Roadmap.
http://www.sei.cmu.edu/str/

descriptions/rma_body.html, September 2003.
[19] Shimano B., C. Geschke and C. Spalding, “VAL-II : A

robot programming language and control system”, In
Proceedings of the First International Symposium on
Robotics Research, pp. 917-940, Bretton Woods, 1983.

[20] Singhoff F., J. Legrand, L. Nana, and L. Marcé.
“Extending Rate Monotonic Analysis when Tasks
Share Buffers”. In the DAta Systems in Aerospace
conference (DASIA 2004), Nice, July 2004.

[21] Tindell K.W. and J. Clark. Holistic schedulability
analysis for distributed hard real-time systems.
Microprocessing and Microprogramming,
40(2-3):117--134, April 1994.

[22] Vareille J., P. Le Parc et L. Marcé. “Web remote
control of mechanical systems: delay problems and
experimental measurements of Round Trip Time”, 2nd
Workshop CNRS-NSF Applications of Time-Delay
systems, Nantes, September 2004.

__

© Copyright 2005 IEEE

View publication statsView publication stats

https://www.researchgate.net/publication/4176479

